LINEAR REGRESSION MODELS W4315 HOMEWORK 4 QUESTIONS

October 21, 2010

Instructor: Frank Wood

1. (25 points) A is an $n \times p$ matrix (in typical multiple regression settings, n is the number of observations and p is the number of parameters, and $n \geq p$), prove that
(1) $A^{\prime} A$ and $A A^{\prime}$ are symmetric matrices. (A^{\prime} denotes the transpose of A)
(2) $A^{\prime} A$ and $A A^{\prime}$ are semi-positive-definite matrices. (An $n \times n$ matrix M is semi-positivedefinite if $\forall x \in \mathbb{R}^{n}, x^{\prime} M x \geq 0$.)
(3) If A has full column $\operatorname{rank}(\operatorname{rank}(A)=p)$, then prove $A^{\prime} A$ is a positive-definite matrix. (An $n \times n$ matrix M is positive-definite if \forall nonzero $x \in \mathbb{R}^{n}, x^{\prime} M x>0$.)
2. (25 points) A is an $n \times p$ matrix with full column rank. Let $P \equiv A\left(A^{\prime} A\right)^{-1} A^{\prime}$
(1) An $n \times n$ matrix M is a projection matrix if it is symmetric and idempotent (i.e. $A^{2}=A$). Prove that P is a projection matrix.
(2) Give the rank of P and $I-P$. (I is the $n \times n$ identity matrix)
(3) Prove that the projection P is orthogonal. (i.e. $\left.\forall x \in \mathbb{R}^{n},(P x)^{\prime}[(I-P) x]=0\right)$
3. (25 points) \vec{X} is a 3 dimensional Gaussian random vector, with distribution $N_{3}(\mu, \Sigma)$, in which

$$
\mu=\left(\begin{array}{c}
3 \\
4 \\
-3
\end{array}\right), \Sigma=\left(\begin{array}{ccc}
2 & 1 & 3 \\
1 & 4 & -2 \\
3 & -2 & 8
\end{array}\right)
$$

Let $Y_{1}=X_{1}+X_{3}$ and $Y_{2}=2 X_{2}$, determine the distribution of $\vec{Y}=\left(Y_{1}, Y_{2}\right)^{\prime}$ and the conditional distribution $Y_{1} \mid Y_{2}=10$.
4. (10 points) Prove $\vec{Y} \sim N\left(0_{n \times 1}, I_{n \times n}\right)$ implies that all Y_{i} i.i.d. follow $N(0,1)$. (This problem may seem ridiculously easy to you. Just write out the joint density and see what it tells us about the marginal distributions.)
5. (15 points) Assume that an n dimensional Gaussian random vector X is distributed as $N(\mu, \Sigma)$
(1) Find a transformation of $X, Y=f(X)$, such that $Y \sim N\left(0_{n \times 1}, I_{n \times n}\right)$.
(2) Prove that

$$
(X-\mu)^{\prime} \Sigma^{-1}(X-\mu) \sim \chi^{2}(n)
$$

