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Figure 1. Graphical model for LDA model

Lecture LDA

LDA is a hierarchical model used to model text documents. Each document is modeled as
a mixture of topics. Each topic is defined as a distribution over the words in the vocabulary.
Here, we will denote by K the number of topics in the model. We use D to indicate the
number of documents, M to denote the number of words in the vocabulary, and Nd

. to
denote the number of words in document d. We will assume that the words have been
translated to the set of integers {1, . . . ,M} through the use of a static dictionary. This is
for convenience only and the integer mapping will contain no semantic information. The
generative model for the D documents can be thought of as sequentially drawing a topic
mixture θd for each document independently from a DirK(α~1) distribution, where DirK(~φ)
is a Dirichlet distribution over the K-dimensional simplex with parameters [φ1, φ2, . . . , φK ].
Each of K topics {βk}Kk=1 are drawn independently from DirM (γ~1). Then, for each of the
i = 1 . . . Nd. words in document d, an assignment variable zdi is drawn from Mult(θd).
Conditional on the assignment variable zdi , word i in document d, denoted as wdi , is drawn
independently from Mult(βzd

i
). The graphical model for the process can be seen in Figure 1.

The model is parameterized by the vector valued parameters {θd}Dd=1, and {βk}Kk=1, the
parameters {Zdi }d=1,...,D,i=1,...,Nd

.
, and the scalar positive parameters α and γ. The model

is formally written as:

θd ∼ DirK(α~1)

βk ∼ DirM (γ~1)

zdi ∼ Mult(θd)

wdi ∼ Mult(βzd
i
)

1
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Again, each of the K βk parameters represents a unique “topic”. Here, the mathematical
realization of a topic is a multinomial distribution over the words in the vocabulary. You
can imagine that topics having to do with football will have high probability on words
like “throw”, “ball”, “running”, and “concussion”, while a topic like machine learning will
have high probability on words like “algorithm”, “learning”, and “empirical”. For each
document there is a mixture of topics which represent it. This allows documents to be
about multiple “topics”. Since we are sharing topics accross documents we have a chance
at learning which documents are like each other based on the topics they are about.

We will now take a quick detour to discuss the Dirichlet distribution and the gamma
function. Recall that if θ ∼ DirK(α) then

P (θ) =
Γ(
∑

i αi)
ΠiΓ(αi)

θα1−1
1 θα2−1

2 . . . θαK−1
K .

Note that the pdf for the Dirichlet distribution makes use of the gamma function Γ. Now
reecall that

Γ(η + 1) =
∫ ∞

0
e−ttηdt

= −tηe−t|∞0 + η

∫ ∞
0

e−ttη−1dt

= ηΓ(η)

The recursive relationship is derived here using integration by parts.
We can now return to the LDA model and consider the joint likelihood of the model.

We can write the joint likelihood L({Zdi }, {θd}, {βk}) as :

[
ΠD
d=1

Γ(Kα)
ΓK(α)

θα−1
d,1 . . . θα−1

d,K

] [
ΠD
d=1ΠNd

.
i=1θd,zd

i

] [
ΠK
k=1

Γ(Mγ)
ΓM (γ)

βγ−1
k,1 . . . βγ−1

k,M

] [
ΠD
d=1ΠNd

.
i=1βzd

i ,w
d
i

]
If we define Nd

k =
∑Nd

.
i=1 I(zd,i == k) and W k

m =
∑D

d=1

∑Nd
.

i=1 I(wdi == m && zdi == k)
we will be able to write the joint likelihood in a more compressed form. Note that Nd

k is
the number of words in document d assigned to topic k and W k

m is the number of words of
type m assigned to topic k. Furthermore, we will use a . in the subscript or superscript to
indicate marginal counts. Thus, Nd

. is the number of words in document d and W k
. is the

total number of words assigned to topic k.
Now, re-writing the joint likelihood we find it is[

ΠD
d=1

Γ(Kα)
ΓK(α)

θ
α+Nd

1−1
d,1 . . . θ

α+Nd
K−1

d,K

] [
ΠK
k=1

Γ(Mγ)
ΓM (γ)

β
γ+Wk

1 −1
k,1 . . . β

γ+Wk
M−1

k,M

]
From this we can see that conditioned on {Zdi }

θd ∼ DirK([α+Nd
1 , α+Nd

2 , . . . , α+Nd
K ])



3

and

βk ∼ DirM ([γ +W k
1 , γ +W k

2 , . . . , γ +W k
M ])

If we wish to write a Gibbs sampler in this model representation the only other conditional
distribution we need to consider is that of the Zdi . If we consider the original form of the
joint likelihood we see that Zdi for a fixed i and d shows up only twice. Once, it shows
up in a θd,zd

i
term and once in a βzd

i ,w
d
i

term. Thus, conditioned on {βk} and {θd}, we

see that P (Zdi = k̃) ∝ θd,k̃βk̃,wd
i
. We could now write a Gibbs sampler by sampling the θ

and β parameters conditioned on the Z parameters and then sampling the Z parameters
conditioned on the θ and beta parameters.

While the above Gibbs sampler will work it actually mixes quite slowly. One thing we
can sometimes do in hierarchical models of this type is reduce the parameter space by
analytically integerating some of the latent parameters out. Here, we will integerate out
both the θ and β parameters and consider only the latent parameters z.

L({Zdi }) =
∫ ∫

L({θk}, {βk}, {Zdi })d{θd}d{βk}

=
[
ΠD
d=1

(
Γ(Kα)
ΓK(α)

)(
ΠK
k=1Γ(α+Nd

k )
Γ(Kα+Nd

. )

)][
ΠK
k=1

(
Γ(Mγ)
ΓM (γ)

)(
ΠM
m=1Γ(γ +W k

m)
Γ(Mγ +W k

. )

)]
∝

[
ΠD
d=1ΠK

k=1Γ(α+Nd
k )
] [

ΠK
k=1

ΠM
m=1Γ(γ +W k

m)
Γ(Mγ +W k

. )

]
This integral is not hard to do since we already know the normalizing constant of the
Dirichlet distribution. When we integrate the unormalized Dirichlet pdf we must get the
inverse of the normalizing constant in the pdf.

Now, to create a Gibbs sampler we need only consider the conditional distribution of zdi
for each d and i. For this part of the derivation we will consider a fixed zdi . We will definte
Ñd
k and W̃ k

m the same as before except without the contribution of zdi . Therefore, Nd
k is

the number of words in document d, other than the i’th word, assigned to topic k. Using
these new count variables we can derive the conditional distribution of zdi up to a constant
of proportionality.

P (zdi = k̃) ∝ ΠK
k=1

[
Γ(α+ Ñd

k + I(k = k̃))
ΠM
m=1Γ(γ + W̃ k

m + I(wdi = m, k = k̃))
Γ(Mγ + W̃ k

. + I(k = k̃))

]

∝

(
ΠK
k=1

[
Γ(α+ Ñd

k )
ΠM
m=1Γ(γ + W̃ k

m)
Γ(Mγ + W̃ k

. )

])(α+ Ñd
k̃
)(γ + W̃ k̃

wd
i
)

Mγ + W̃ k̃
.


∝

(α+ Ñd
k̃
)(γ + W̃ k̃

wd
i
)

Mγ + W̃ k̃
.
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Because Zdi can only take values 1, . . . ,K it is not hard to normalize this distribution to
find the conditional distribution we need for Gibbs sampling. To create a Gibbs sampler
in this representation we need only sample each Zdi in succession. We can always recover
the β and θ parameters if we need them based on the conditional distributions of the β
and θ variables conditioned on the Z variables.


