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Introduction

I Data mining is the search for patterns in large collections of
data

I Designing models
I Fitting models to data
I Using models to perform inference/prediction

I Pattern recognition is concerned with automatically finding
patterns in data / learning models

I Machine learning is pattern recognition with concern for
computational tractability and full automation

I Data mining = Machine Learning = Applied Statistics
I Scale
I Computation



High Level Course Goals

I Problem formulation
I Starting from data and/or a question, you will learn how to

create and design a model that will answer the question(s) of
interest.

I You will learn how to formally, mathematically codify a model.
I You will learn how to fit models.
I You will learn to think about computational/inferential

trade-offs.

I Tool Creation
I You will learn how to design and implement general purpose

learning algorithms
I You will implement inference algorithms for several models

such as latent Dirichlet allocation, Bayesian logistic regression,
Gaussian mixture models and more.

I Practice
I Through your homework and final project you will be evaluated

on how well you can put into practice the theory that will be
taught in class.



Style of Instruction

I Great textbook (Bishop, Pattern Recognition and Machine
Learning, required!)!

I Will follow second half of text closely.
I Class time will be spent on theory and “proof,” explaining the

tricky parts of the text by doing math on the board.
I Homework (extensive and hard) will be spent on practice.
I Team-based final project
I You will learn to think about computational/inferential

trade-offs.

I Tool Creation
I You will learn how to design and implement general purpose

learning algorithms
I You will implement inference algorithms for several models

such as latent Dirichlet allocation, Bayesian logistic regression,
Gaussian mixture models and more.

I This is not a “What tool do we use and how do we use it?”
course!



Grading - What you should expect.

Figure: Fall 2010 Grade Distribution



Links and Syllabus

I Course home page :
http://www.stat.columbia.edu/∼fwood/w4240/

I Bookmark this page (not courseworks)

I Guest lectures may be sprinkled throughout the course.

http://www.stat.columbia.edu/~fwood/w4240/


Prerequisites

I Linear algebra

I Multivariate calculus (matrix and vector calculus)

I Probability and statistics at a masters level

I Programming experience in some language like pascal,
matlab, c++, java, c, fortran, scheme, etc.

I Some algorithmic complexity theory (basics) useful

I Information theory (entropy, KL-divergence)



Review

Good idea to familiarize yourself with PRML [3] Chapter 1 and 2
and Appendices B,C,D, and E. In particular:

I Information theory

I Multivariate Gaussian distribution

I Discrete, multinomial, and Dirichlet distributions

I Lagrange multipliers

I Matlab

We will offer extra Matlab programming sections, a review of both
the multivariate Gaussian and information theory.



Homework (from anonymous student feedback)

The assignments were challenging and probably the best
part of the course. It was with bated breath, and nervous
anticipation - almost like a blind date with someone you
knew would be pretty - that we waited for the homework
ok, maybe that was 10% exaggerated. ....

The assignments in this course were more challenging
than any other course I have taken in the past.

Really enjoyed the assignments in this class. Excellent job
putting them together.

Very difficult programming assignments, and I learned a
lot doing them,

The homework in this course is programming. You will implement
various data mining / machine learning algorithms. If you have not
programmed before the course is doable but difficult.



Project

The final project is a significant piece of team-based work that
demonstrates your data mining / statistical machine learning
knowledge on a problem domain of interest to you (and hopefully
also of interest to a larger academic, governmental, or industry
community). The deliverables include a 2 page proposal; a short,
publication-quality paper; and a 10-20 minute presentation. You
will fail to complete a satisfactory final project if you wait until the
last minute to begin.



Past Example Projects

I Government Bias in sub-Saharan African Press
I Bayesian logistic regression to predict “slant” of press articles

from extracted text features

I A Pattern Recognition System for American Sign Language
I Component analysis approach to feature extraction and

classification of ASL from videos of expert signers

I Supervised Topic Modeling in Clinical Text
I Automatically assign ICD-9-CM codes to patient discharge

records.

I FriendFinder: Predicting missing links in a Gargantuan social
network

I Ordering Shakespeares Plays using a Sequential Generative
Model



Syllabus

I Review
I Graphical models

I Belief propagation

I Expectation Maximization

I Variational Inference

I Sampling

I Misc.

Along the way you will implement estimation and inference
procedures for the following models (minimally)

I Gaussian mixture model

I Bayesian linear regression

I Bayesian logistic regression

I Latent Dirichlet allocation

I ...



Today: Really Big Picture

I The glue that binds the course together : graphical models.

I A guiding philosophy : Bayesian inference.



The Glue: Graphical Models

I Many probabilistic models can be expressed in the “language”
of graphical models.
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Figure: Directed Graphical Model : Chapter 8, Figure 22a, PRML [3]

P(a, b, c , e, f ) = P(a)P(f )P(e|a, f )P(b|f )P(c |e)



Graphical Models Cont.

I Correspond (sometimes) to a “plausible” generative
mechanism.

I Reveal latent variable choices and help clarify what inferences
can be performed

I Provide datastructure on which inference and estimation
algorithms can run

I Specify conditional indendencies and highlight computational
savings

Course Goal
Learn how to “think” in terms of graphical models. Be able to
write down a generative graphical model for data of interest to you
and to know how to do inference in generic graphical models.

Give ordering Shakespeare example



Example directed graphical model / Bayes net : ALARM,
expert diagnostic system

Goal: Inference in given/known/hand-specified Bayesian network

Figure: ALARM stands for ’A Logical Alarm Reduction Mechanism’.
This is a medical diagnostic system for patient monitoring. It is a
nontrivial belief network with 8 diagnoses, 16 findings and 13
intermediate variables. Described in [2]



Inference in discrete directed acyclic graphical models

Inference procedures known as the sum-product algorithm and
belief propagation are general inference techniques that can easily
be adapted to discrete and linear-Gaussian graphical models.

Belief propagation

I Computes marginal distributions of any subset of variables in
the graphical model conditioned on any other subset of
variables (values observed / fixed)

I Generalizes many, many inference procedures such as Kalman
filter, forward-backward, etc.

I Can be used for parameter estimation in the case where all
latent, unknown variables are “parameters” and all
observations are fixed, known variables.



Bayesian Analysis Recipe

Bayesian data analysis can be described as a three step process

1. Set up a full (generative) probability model

2. Condition on the observed data to produce a posterior
distribution, the conditional distribution of the unobserved
quantities of interest (parameters or functions of the
parameters, etc.)

3. Evaluate the goodness of the model

4. Perform inference taking into account the uncertainty about
the model parameters encoded in the posterior distribution



Philosophy

Gelman, “Bayesian Data Analysis”

A primary motivation for believing Bayesian thinking
important is that it facilitates a common-sense interpretation
of statistical conclusions. For instance, a Bayesian (probability)
interval for an unknown quantity of interest can be directly
regarded as having a high probability of containing the
unknown quantity, in contrast to a frequentist (confidence)
interval, which may strictly be interpreted only in relation to a
sequence of similar inferences that might be made in repeated
practice.



Theoretical Setup

Consider a model with parameters Θ and observations that are
independently and identically distributed from some distribution
Xi ∼ F (·,Θ) parameterized by Θ.
Consider a prior distribution on the model parameters P(Θ; Ψ)

I What does

P(Θ|X1, . . . ,XN ; Ψ) ∝ P(X1, . . . ,XN |Θ; Ψ)P(Θ; Ψ)

mean?

I What does P(Θ; Ψ) mean? What does it represent?

In this course we will consider complicated likelihoods and priors
(many parameters, often related in non-trivial ways) and the
algorithms required to perform inference in such models.



Very Simple Example

Consider the following example: suppose that you are thinking
about purchasing a factory that makes pencils. Your accountants
have determined that you can make a profit (i.e. you should
transact the purchase) if the percentage of defective pencils
manufactured by the factory is less than 30%.

In your prior experience, you learned that, on average, pencil
factories produce defective pencils at a rate of 50%.

To make your judgement about the efficiency of this factory you
test pencils one at a time in sequence as they emerge from the
factory to see if they are defective.



Notation

Let X1, . . . ,XN ,Xi ∈ {0, 1} be a set of defective/not defective
observations.

Let Θ be the probability of pencil defect.

Let P(Xi |Θ) = ΘXi (1−Θ)1−Xi (a Bernoulli random variable)



Typical elements of Bayesian inference

Two typical Bayesian inference objectives are

1. The posterior distribution of the model parameters

P(Θ|X1, . . . ,Xn) ∝ P(X1, . . . ,Xn|Θ)P(Θ)

This distribution is used to make statements about the
distribution of the unknown or latent quantities in the model.

2. The posterior predictive distribution

P(Xn|X1, . . . ,Xn−1) =

∫
P(Xn|Θ)P(Θ|X1, . . . ,Xn−1)dΘ

This distribution is used to make predictions about the
population given the model and a set of observations.



The Prior

Both the posterior and the posterior predictive distributions require
the choice of a prior over model parameters P(Θ) which itself will
usually have some parameters. If we call those parameters Ψ then
you might see the prior written as P(Θ; Ψ).

The prior encodes your prior belief about the values of the
parameters in your model. The prior has several interpretations
and many modeling uses

I Encoding previously observed, related observations
(pseudocounts)

I Biasing the estimate of model parameters towards more
realistic or probable values

I Regularizing or contributing towards the numerical stability of
an estimator

I Imposing constraints on the values a parameter can take



Choice of Prior - Continuing the Example

In our example the model parameter Θ can take a value in
Θ ∈ [0, 1]. Therefore the prior distribution’s support should be [0, 1]

One possibility is P(Θ) = 1. This means that we have no prior
information about the value Θ takes in the real world. Our prior
belief is uniform over all possible values.

Given our assumptions (that 50% of manufactured pencils are
defective in a typical factory) this seems like a poor choice.

A better choice might be a non-uniform parameterization of the
Beta distribution.



Beta Distribution

The Beta distribution Θ ∼ Beta(α, β) (α > 0, β > 0,Θ ∈ [0, 1]) is
a distribution over a single number between 0 and 1. This number
can be interpreted as a probability. In this case, one can think of α
as a pseudo-count related to the number of successes (here a
success will be the failure of a pencil) and β as a pseudo-count
related to the number of failures in a population. In that sense, the
distribution of Θ encoded by the Beta distribution can produce
many different biases.

The formula for the Beta distribution is

P(Θ|α, β) =
Γ(α + β)

Γ(α)Γ(β)
Θα−1(1−Θ)β−1

Run introduction to bayes/main.m



Γ function

In the formula for the Beta distribution

P(Θ|α, β) =
Γ(α + β)

Γ(α)Γ(β)
Θα−1(1−Θ)β−1

The gamma function (written Γ(x)) appears.

It can be defined recursively as Γ(x) = (x − 1)Γ(x − 1) = (x − 1)!
with Γ(1) = 1.

This is just a generalized factorial (to real and complex numbers in
addition to integers). It’s value can be computed. It’s derivative
can be taken, etc.

Note that, by inspection (and definition of distribution)

∫
Θα−1(1−Θ)β−1dΘ =

Γ(α)Γ(β)

Γ(α + β)



Beta Distribution
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Figure: Beta(5,5)



Beta Distribution
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Figure: Beta(10,1)



Generative Model

With the introduction of this prior we now have a full generative
model of our data (given α and β, the model’s hyperparameters).
Consider the following procedure for generating pencil failure data:

I Sample a failure rate parameter Θ for the “factory” from a
Beta(α, β) distribution. This yields the failure rate for the
factory.

I Given the failure rate Θ, sample N defect/no-defect
observations from a Bernoulli distribution with parameter Θ.

Bayesian inference involves “turning around” this generative
model, i.e. uncovering a distribution over the parameter Θ given
both the observations and the prior.

This class will be about the general purpose computations
necessary to do this.



Inferring the Posterior Distribution

Remember that the posterior distribution of the model parameters
is given by Bayes rule, here

P(Θ|X1, . . . ,Xn) ∝ P(X1, . . . ,Xn|Θ)P(Θ)

Let’s consider what the posterior looks like after observing a single
observation (in our example).

Our likelihood is given by

P(X1|Θ) = ΘX1(1−Θ)1−X1

Our prior, the Beta distribution, is given by

P(Θ) =
Γ(α + β)

Γ(α)Γ(β)
Θα−1(1−Θ)β−1



Analytic Posterior Update - No Computation

Since we know that

P(Θ|X1) ∝ P(X1|Θ)P(Θ)

we can write

P(Θ|X1) ∝ ΘX1(1−Θ)1−X1
Γ(α + β)

Γ(α)Γ(β)
Θα−1(1−Θ)β−1

but since we are interested in a function (distribution) of Θ and we
are working with a proportionality, we can throw away terms that
do not involve Θ yielding

P(Θ|X1) ∝ Θα+X1−1(1−Θ)1−X1+β−1

Because of conjugacy we have an analytic form for the posterior
distribution of the model parameters of the data. The class is
about similar computation in more difficult models.
Note that this is an incremental procedure.



Bayesian Computation, Implicit Integration

From the previous slide we have

P(Θ|X1) ∝ Θα+X1−1(1−Θ)1−X1+β−1

To make this proportionality an equality (i.e. to construct a
properly normalized distribution) we have to integrate this
expression w.r.t. Θ, i.e.

P(Θ|X1) =
Θα+X1−1(1−Θ)1−X1+β−1

∫
Θα+X1−1(1−Θ)1−X1+β−1dΘ

But in this and other special cases like it (when the likelihood and
the prior form a conjugate pair) this integral can be solved by
recognizing the form of the distribution, i.e. note that this
expression looks exactly like a Beta distribution but with updated
parameters, α1 = α + X1, β1 = β + 1− X1



Posterior and Repeated Observations

This yields the following pleasant result

Θ|X1, α, β ∼ Beta(α + X1, β + 1− X1)

This means that the posterior distribution of Θ given an
observation is in the same parametric family as the prior. This is
characteristic of conjugate likelihood/prior pairs.

Note the following decomposition

P(Θ|X1,X2, α, β) ∝ P(X2|Θ,X1)P(Θ|X1, α, β)

This means that the preceding posterior update procedure can be
repeated. This is because P(Θ|X1, α, β) is in the same family
(Beta) as the original prior. The posterior distribution of Θ given
two observations will still be Beta distributed, now just with
further updated parameters.



Incremental Posterior Inference

Starting with

Θ|X1, α, β ∼ Beta(α + X1, β + 1− X1)

and adding X2 we can almost immediately identify

Θ|X1,X2, α, β ∼ Beta(α + X1 + X2, β + 1− X1 + 1− X2)

which simplifies to

Θ|X1,X2, α, β ∼ Beta(α + X1 + X2, β + 2− X1 − X2)

and generalizes to

Θ|X1, . . . ,XN , α, β ∼ Beta(α +
∑

Xi , β + N −
∑

Xi )



Interpretation, Notes, and Caveats

I The posterior update computation performed here is unusually
simple in that it is analytically tractable. The integration
necessary to normalize the posterior distribution is more often
not analytically tractable than it is analytically tractable.
When it is not analytically tractable other methods must be
utilized to get an estimate of the posterior distribution –
numerical integration and Markov chain Monte Carlo
(MCMC) amongst them.

I The posterior distribution can be interpreted as the
distribution of the model parameters given both the structural
assumptions made in the model selection step and the
selected prior parameterization. Asking questions like, “What
is the probability that the factory has a defect rate of less
than 10%?” can be answered through operations on the
posterior distribution.



More Interpretation, Notes, and Caveats

The posterior can be seen in multiple ways

P(Θ|X1:N) ∝ P(X1, . . . ,XN |Θ)P(Θ)

∝ P(XN |X1:N−1,Θ)P(XN−1|X1:N−2,Θ) · · ·P(X1|Θ)P(Θ)

∝ P(XN |Θ)P(XN−1|Θ) · · ·P(X1|Θ)P(Θ)

(when X ’s are iid given Θ or exchangeable) and

P(Θ|X1, . . . ,XN) ∝ P(XN ,Θ|X1 . . . ,XN−1)

∝ P(XN |Θ)P(Θ|X1 . . . ,XN−1)

The first decomposition highlights the fact that the posterior
distribution is influenced by each observation.

The second recursive decomposition highlights the fact that the
posterior distribution can be interpreted as the full characterization
of the uncertainty about the hidden parameters after having
accounted for all observations to some point.



Posterior Predictive Inference

Now that we know how to update our prior beliefs about the state
of latent variables in our model we can consider posterior
predictive inference.

Posterior predictive inference performs a weighted average
prediction of future values over all possible settings of the model
parameters. The prediction is weighted by the posterior probability
of the model parameter setting, i.e.

P(XN+1|X1:N) =

∫
P(XN+1|Θ)P(Θ|X1:N)dΘ

Note that this is just the likelihood convolved against the posterior
distribution having accounted for N observations.



More Implicit Integration

If we return to our example we have the updated posterior
distribution

Θ|X1, . . . ,XN , α, β ∼ Beta(α +
N∑

i=1

Xi , β + N −
N∑

i=1

Xi )

and the likelihood of the (N + 1)th observation

P(XN+1|Θ) = ΘXN+1(1−Θ)1−XN+1

Note that the following integral is similar in many ways to the
posterior update

P(XN+1|X1:N) =

∫
P(XN+1|Θ)P(Θ|X1:N)dΘ

which means that in this case (and in all conjugate pairs) this is
easy to do.



More Implicit Integration

P(XN+1|X1:N) =

∫
ΘXN+1(1−Θ)1−XN+1

× Γ(α + β + N)

Γ(α +
∑N

i=1 Xi )Γ(β + N −∑N
i=1 Xi )

× Θα+
PN

i=1 Xi−1(1−Θ)β+N−
PN

i=1 Xi )−1dΘ

=
Γ(α + β + N)

Γ(α +
∑N

i=1 Xi )Γ(β + N −∑N
i=1 Xi )

× Γ(α +
∑N

i=1 Xi + XN+1)Γ(β + N + 1−∑N
i=1 Xi − XN+1)

Γ(α + β + N + 1)



Interpretation

P(XN+1|X1:N)

=
Γ(α + β + N)

Γ(α +
∑N

i=1 Xi )Γ(β + N −∑N
i=1 Xi )

× Γ(α +
∑N

i=1 Xi + XN+1)Γ(β + N + 1−∑N
i=1 Xi − XN+1)

Γ(α + β + N + 1)

Is a ratio of Beta normalizing constants.

This a distribution over [0, 1] which averages over all possible
models in the family under consideration (again, weighted by their
posterior probability).



Caveats again

In posterior predictive inference many of the same caveats apply.

I Inference can be computationally demanding if conjugacy isn’t
exploited.

I Inference results are only as good as the model and the
chosen prior.

But Bayesian inference has some pretty big advantages

I Assumptions are explicit and easy to characterize.

I It is easy to plug and play Bayesian models.
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More complicated models

It is possible to extend this generative framework to model more
complicated phenomena. The basics stay the same, computation
just gets harder.
Canonical examples include

I Classification of handwritten digits

I Trajectory inference

I Clustering



Digit classification cast as probabilistic modeling challenge

Goal

I Build a machine that can identify handwritten digits
automatically

Approaches

I Hand craft a set of rules that separate each digit from the next

I Set of rules invariably grows large and unwieldy and requires
many “exceptions”

I “Learn” a set of models for each digit automatically from
labeled training data, i.e. mine a large collection of
handwritten digits and produce a model of each

I Use model to do classification

Formalism

I Each digit is 28x28 pixel image

I Vectorized into a 784 entry vector x



Handwritten Digit Recognition Training Data

Figure: Hand written digits from the USPS



Machine learning approach to digit recognition

Recipe

I Obtain a of N digits {x1, . . . , xN} called the training set.

I Label (by hand) the training set to produce a label or “target”
t for each digit image x

I Learn a function y(x) which takes an image x as input and
returns an output in the same “format” as the target vector.

Terminology

I The process of determining the precise shape of the function y
is known as the “training” or “learning” phase.

I After training, the model (function y) can be used to figure
out what digit unseen images might be of. The set comprised
of such data is called the “test set”



Tools for the handwriting recognition job

Supervised Regression/Classification Models

I Logistic regression

I Neural networks

I Support vector machines

I Naive Bayes classifiers

Unsupervised Clustering

I Gaussian mixture model

Model Parameter Estimation

I Maximum likelihood / Expectation Maximization

I Variational inference

I Sampling
I Sequential Monte Carlo

I ... for all, batch or online



Example Application: Trajectory Inference From Noisy
Data

Goal

I Build a machine that can uncover and compute the true
trajectory of an indirectly and noisily observed moving target

Approaches

I Hand craft a set of rules that govern the possible movements
of said target

I Set of rules invariably grows large and unwieldy and requires
many “exceptions”

I “Learn” a model of the kind of movements such a target can
make and perform inference in said model

Formalism

I Example observed trajectories {xn}Nn=1

I Unobserved latent trajectories {zn}Nn=1



Latent trajectory Inference

Problem Schematic 

rt 

µt 
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(xt, yt) 

Figure: Schematic of trajectory inference problem



Tools for Latent Trajectory Inference

Known/hand-crafted model, inference only

I Belief propagation

I Kalman filter

I Particle filter

I Switching variants thereof

I Hidden Markov Models

Learning too / Model Parameter Estimation

I Maximum likelihood / Expectation Maximization

I Variational inference

I Sampling
I Sequential Monte Carlo

I ... for all, batch or online

Trajectory need not be “physical,” could be an economic indicator,
completely abstract, etc.



Cool Trajectory Inference Application : Neural Decoding

true 
reconstructed 

Figure: Actual and predicted hand positions (predicted from neural firing
rates alone using a Kalman filter) [5]



Another Application: Unsupervised Clustering

Forensic analysis of printed documents, infer printer used to print
document from visual features.

PCA

Test 
Page

1-D 
Projections

Printer 1

Printer 2

Figure 2: Principal component analysis using 1D projected sig-
nal.

Experimental Results
To perform the experiments, we have used the printers in
our printer bank1. The experimental procedure is depicted
in Fig. 2.

The test page has the letter ‘I’ in 10pt., 12pt. and 14pt.
size in Arial font. Each test page has 40-100 letters. From
each letter, a one dimensional projected signal is extracted.
The projected signals are mean subtracted and normalized.
This step is done to remove variability due to long term
trends, such as cartridge depletion and printer wear, and
other factors which are not stable intrinsic features. The
projected signals from different printers are concatenated
into a large data matrix. The Canonical Variates method is
applied to this data matrix to get the principal components.

The PCA using five different printer models is shown
in Fig. 3. Each projection has 168 samples. The high
dimensional data is represented only by the first two prin-
cipal components. The classes (different printers) are well
separated. A sixth printer is added as a ‘test’ printer. The
sixth printer is an HP Laserjet 4050 and the projections
from this printer(!) overlap with those of the other Laser-
jet 4050(◦). The projections from the Laserjet 1000(×)
and Laserjet 1200( ) overlap because of the similarities in
their banding characteristics1. It should be noted that the
Samsung ML-1450(+) and the Okipage 14e(♦) show well
separated classes.

Gaussian Mixture Model for Classification

The dimension of the projected signal is reduced by PCA.
The next step is to classify the printers using the features.
The Gaussian mixture model (GMM) is a generative model.
The posterior probability of a data point can be determined
using Bayes’ theorem. A model with m components is
given by

p(x) =
m∑

j=1

P (j)p(x|j). (4)
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Figure 3: Representation of the projected signal by the first two
principal components.

The parameter P (j) is called the mixing coefficients.
The component density function p(x|j) is Gaussian with
spherical covariance matrix and data dimension d.

p(x|j) =
1

(2πσ2
j )

d
2

exp

{
−

∥∥x− µj

∥∥2

2σ2
j

}
. (5)

Suppose that the data set contains projections from dif-
ferent printers A1, ...., Ak. The classification can be done
by using the posterior probabilities of class membership
P (Ak|x)7. The density model for class At is built by train-
ing the model only on data from that class. This gives an
estimate of p(x|At). Then by using the Bayes’ theorem,

P (At|x) =
p(x|At)P (At)

p(x)
. (6)

The prior probabilities P (At) are determined by the
fraction of samples class At in the training set.

Parameter Estimation
The parameters of a Gaussian mixture are determined from
a data set by maximizing the data likelihood. The most
widely used method is the expectation-maximization (EM)
algorithm8, 9. The EM algorithm works by using the log
likelihood expression of the complete data set. The maxi-
mization is repeatedly performed over the modified likeli-
hood. Basically, the EM algorithm iteratively modifies the
GMM parameters to decrease the negative log likelihood
of the data set7. The source or class of each data point xi

is known during the training process. The maximization

Figure: PCA projection of printer features [1]



Another Unsupervised Clustering Application

Automatic discovery of number of neurons and assignment of
waveforms to neurons. Essential to electrophysiological study of
the brain.

Fig. 3. Results from sorting six channels of the pursuit tracking neural data using
different techniques. Projections of waveforms from channels 1-6 onto the first two
principal component directions are shown in each of the six panels. The top left
panel shows the unsorted waveforms, the top right shows a manual labeling (the
black points are not assigned to any neuron), the left panel in the second row shows a
maximum likelihood labeling, and the remaining three are samples from the IGMM
posterior.
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Figure: Automatically sorted action potential PCA projections [4]



A Big Unsupervised Clustering Application

Multinomial mixture model automatic document clustering for
information retrieval.

zn|π ∼ Discrete(π)

xn|zn = k ,Θ ∼ Multinomial(θzn)

where xn is a bag of words or feature representation of a document,
zn is a per document class indicator variable, Θ = {θk}Kk=1 is a
collection of probability vectors over types (or features) (per cluster
k), and π = [π1, . . . , πK ],

∑
k πk = 1 is the class prior.

Such a model can be used to cluster similar documents together
for information retrieval (Google, Bing, etc.) purposes.



Tools for Unsupervised Clustering

Known/hand-crafted model, inference only

I K-means

I Gaussian mixture models

I Multinomial mixture models

Learning too / Model Parameter Estimation

I Maximum likelihood / Expectation Maximization

I Variational inference

I Sampling
I Sequential Monte Carlo

I ... for all, batch or online



Tools for All

I Maximum likelihood / Expectation Maximization

I Variational inference

I Sampling
I Sequential Monte Carlo

I ... for all, batch or online
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