Estimating Soccer Team Strength Using a Markov Random Field

John Zech
1/17/2012

Who will win? It's not obvious...

Let's try to figure it out:

- We want to estimate team strength in soccer, and then we want to use that to predict outcomes. But:
- We only observe teams together \rightarrow how can we figure any of them out individually?
- We don't know how to map strength to goals. We don't know how team strength evolves over time. \rightarrow can we learn these and strengths simultaneously?

Graphical Model

- This is a big graphical model
- Also, loopy

Graphical Model = Joint Distribution

- An objective function involving both θ and Z

Tool used \# 1: Belief Propagation

Naïve marginalization is costly $\mathrm{O}\left(\mathrm{N}^{\mathrm{K}}\right)$:

$$
\begin{gathered}
P\left(X_{i}\right)= \\
\sum_{X_{1}} \sum_{X_{2}} \ldots \sum_{X_{i-1}} \sum_{X_{i+1}} \ldots \sum_{X_{n}} P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) \ldots P\left(X_{i} \mid X_{i-1}\right) P\left(X_{i+1} \mid X_{i}\right) \ldots P\left(X_{N} \mid X_{N-1}\right)
\end{gathered}
$$

With belief propagation, marginalization is much cheaper $\mathrm{O}\left(\mathrm{NK}^{2}\right)$:

$$
\begin{aligned}
P\left(X_{i}\right)= & {\left[\sum_{X_{i-1}} P\left(X_{i} \mid X_{i-1}\right) \ldots\left[\sum_{X_{2}} P\left(X_{3} \mid X_{2}\right)\left[\sum_{X_{1}} P\left(X_{2} \mid X_{1}\right) P\left(X_{1}\right)\right] \ldots\right]\right.} \\
& {\left[\sum_{X_{i+1}} P\left(X_{i+1} \mid X_{i}\right) \ldots\left[\sum_{X_{N}} P\left(X_{N} \mid X_{N-1}\right)\right] \ldots\right] }
\end{aligned}
$$

Tool used \#1: Belief Propagation

- We can use loopy belief propagation
- Reduces marginalization computational cost from $\mathrm{O}\left(\mathrm{K}^{\mathrm{N}}\right)$ to $\mathrm{O}\left(\mathrm{NK}^{2}\right)$.

Tool used \#2: Expectation Maximization

- We need Z to estimate θ
- We need θ to estimate Z
- Solution: EM Algorithm hold one constant to estimate the other
- Derive update parameters by maximizing objective w.r.t θ

Estimation procedure

- Run 25 cycles of message passing to find distribution over strengths
- Estimate state parameters (initializations / transitions) using updates derived from log-likelihood
- Estimate goal emission parameters using interior point methods (optimization constrained to enforce that higher strengths correspond to higher skill)
- \rightarrow cycle until convergence of joint log-likelihood

Implementation

- C++ with MATLAB interfacing for Optimization Toolbox
- Run on Columbia's High-Performance Cluster (HPC) to find regularization parameters

Competing method: Elo

$$
\begin{gathered}
h \sim N\left(\mu_{h}+\eta, \sigma^{2}\right) \quad a \sim N\left(\mu_{a}, \sigma^{2}\right) \\
s=(h-a) \sim N\left(\eta+\mu_{h}-\mu_{a}, 2 \sigma^{2}\right)
\end{gathered}
$$

$$
P(\text { win })=P(s>\varepsilon) \quad P(\text { draw })=P(s<=|\varepsilon|) \quad P(\text { loss })=P(s<-\varepsilon)
$$

Results (Diagnostic)

Results (Prediction)

