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The Way Machine Learning Will Be
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Larger Goal: Expressive Compact Models (Al)
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(Streaming) Sequence Memoizer

Model Problem
« World state = (infinite) history of « ~2500 lines of Java code
emissions «  New student re-implementation
* Per-state emissions learned —  6-12 months
— Requires careful smoothing « High-arity state space brings out
- Deterministic transitions fixed statistical inefficiencies
«  Wikipedia next-byte predictive 4 6?0 EmtcP Bt BlLro

performance in range of Shannon’s
human-estimate of the entropy of
written English
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Wood, Archambeau, Gasthaus, James, and Teh A Stochastic Memoizer for Sequence Data, ICML 2009
Bartlett and Wood Deplump for Streaming Data, DCC 2011



Probabilistic Deterministic Infinite Automata

Model Problem

 World state = sufficient statistic of « ~4000 lines of Java code
emissions « New student re-implementation
 Per-state emissions learned —  6-12 months
 Per-state deterministic transition
fu nCtlonS learned A Prior over PDFA with a bounded number of states
0 v~ Dir(ao/[QI)
_ _ %0z ¢; ~ Dir(op) j=0,...,|5 -1
* Unsupervised PDFA structure learning | & @ o 8(ai,05) =05 ~d;  i=0,...,1Q| -1
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Pfau, Bartlett, and Wood Probabilistic Deterministic Infinite Automata, NIPS, 2011
Doshi-Velez, Pfau, Wood, and Roy Bayesian Nonparametric Methods for Partially-Observable Reinforcement Learning, TPAMI, 2013




Mixture of Objects Markov Model

Model Problem
« World state = infinite mixture of objects « ~5000 lines of Matlab code
« Per-state, per-object emissions learned ¢ Implementation

« Per-state, per-object complex transition -~ lyear
functions learned  Generative model
— ~1 page latex math

* Inference algorithm
— ~3 pages latex math

Neiswanger, Wood, and Xing The Dependent Dirichlet Process Mixture of Objects for Detection-free Tracking and Object Modeling, AISTATS, 2014



Motivation, Proposal, Honesty

« Existing tools for modeling are cumbersome
— AKin to writing code in assembly language
— Model specification and forward sampling “easy”
— Inference hard

* Probabilistic programming systems
— Efficient model development and testing
— Decoupling of modeling and inference
— More compact notation
— Bigger more expressive models
— Automated inference

* Problem
— Existing probabilistic programming systems not quite there yet




Probabilistic Programming

Inverse Computing
Automated Inference For Generative Modeling
Stochastic Black-box Simulator Inversion

“Probabilistic programs are usual functional or
imperative programs with two added constructs: (1)
the ability to draw values at random from
distributions, and (2) the ability to condition values of
variables in a program via observations. Models
from diverse application areas such as computer
vision, coding theory, cryptographic protocoils,
biology and reliability analysis can be written as
probabilistic programs.”

Gordon et al, “Probabilistic Programming”, ICSE 2014



Teaching and Research Language

Anglican

A “Church” of England “Venture”

http://www.robots.ox.ac.uk/~fwood/anglican/

Please report bugs to

https://bitbucket.org/fwood/anglican/issues

Wood, van de Meent, Mansinghka “A New Approach to Probabilistic Programming Inference” AISTATS 2014



Modeling Language Syntax

Outer Directives
[assume symbol expr]
[observe expr value]

[predict expr]

Inner Expressions - Scheme/Lisp/Clojure

* Functional except stochastic procedures
* Pure (no side-effects) except mem

« Higher order




Ugh, Why Lisp?

« Redefinition prohibited (“pure functional®)
[assume (a (normal 5 10)) ]
[assume (b (normal a 2 )) ]
[assume (a (normal b 7 ))]

=> Bkrror

« Imperative languages (i.e. Probabilistic-C) allow (1?1!)

int a = normal (5,10);
int b = normal(a,2 );
int a = normal (b,7 );

Paige and Wood “A Compilation Target for Probabilistic Programming Languages” ICML 2014



Anglican Stochastic Procedures

(flip p) sample a single binomial trial. Returns true with
probability p and false with probability 1-p.

(gamma a b) samples from a Gamma distribution with shape a
and rate b. Returns a double on the domain (0, Inf).

(invgamma a b) samples from an inverse Gamma distribution
with shape a and rate b. Returns a double on the domain (0,
Inf).

(normal m s) samples from a univariate normal distribution
with mean m and stdev s. Returns a double on the domain (-
Inf, Inf)

http://www.robots.ox.ac.uk/~fwood/anglican/langquage/




Higher Order

(lambda (& symbols) body) => compound procedure
(lambda symbol body) => compound procedure

Constructs a compound procedure.
Example
((lambda (n m)
(* (+ n 1) m))

1 2)

=> 4

http://www.robots.ox.ac.uk/~fwood/anglican/langquage/




Memoization

(mem proc)

Constructs a memoized procedure instance from an
expression proc that must evaluate to a procedure. If a
memolized procedure call 1s made with a previously used
set of arguments, a cached wvalue 1s returned instead of
re-doing computation. This 1is typically used both to get
dynamic programming for free and to incrementally
construct complex datastructures.

Example

[assume H (mem (lambda (k) (list (normal 3 4) (gamma 1 1))))]
[assume theta 1 (H 1)]

[assume theta 2 (H 2)]

[assume theta 3 (H 1)]

[predict (= theta 1 theta 3 )] => always true

http://www.robots.ox.ac.uk/~fwood/anglican/langquage/




Complex Control Flow

(1f bool-expr cons-expr alt-expr)
Example
(1f (= 1 (poisson 2))
"the predicate 1s true"

(normal 18 (/ 45 3.98)))

=> "the predicate 1s true” w.p. 0.2707

http://www.robots.ox.ac.uk/~fwood/anglican/langquage/




Birthday Coincidence

Approximately, what's the probability that in a room
filled with 23 people at least one pair of people
have the same birthday?




Solution

[assume birthday (mem (lambda (i) (uniform-discrete 1 366))) ]
[assume N 23]
[assume palir-equal
(lambda (1 73)
(1f (> 1 N)

false
(if (> j N)
(pair-equal (+ i 1) (+ i 2))
(1f (= (birthday i) (birthday 7))
true

(pair-equal 1 (+ 3 1))))))]
[predict (pair-equal 1 2)]




Invoking Anglican

anglican -s *yoursourcefile*
cat *yoursourcefile* | anglican

Some command line switches

Switches Default Desc

-h, —--no-help, --help false Show help

-s, --source-file *in* Anglican source file to interpret
-p, —--predict-file *out* File into which to print predicts

-n, —--num-samples Infinity Number of samples




Anglican Semantics Lite

* Applying a (random) procedure generates a sample.

* Running an Anglican program yields a stream of predict
expression samples generated from a sequence of program
execution paths sampled via a Markov chain Monte Carlo
exploration of the space of execution paths.




Inference

o~ N(175>

y1 =9
Yo = 8

wlyr.0 ~ N(7.25,0.8333)



Solution

assume sigma (sgrt 2) ]

assume mu (normal 1 (sgrt 5)) ]

[
[
[Oobserve (normal mu sigma) 9]
[observe (normal mu sigma) 8]
[

predict mu]




Addition

What numbers added together equal seven?




Solution

lassume a (- (poisson 100) 100) ]
assume b (- (poisson 100) 100) ]

[ Oobserve (normal (+ a b) .00001) 7]
‘predict (list a b) ]




Anglican Semantics

* Running an Anglican program yields a stream of predict
expression samples generated from a dependent sequence
of program execution paths sampled via a Markov chain
Monte Carlo exploration of the posterior of execution paths
conditioned on observed data.

« Test function averages converge in the usual sense.




Leaving The Beaten Path

1 ~ Poisson(1)

y1 =9
Yo = 8

By1.2 ~7



Solution

[assume sigma (sqgrt
assume mu (polsson
[ Observe (normal mu

[ Observe (normal mu

‘predict mu]

2) ]
1) ]
sigma)

sigma)

I ]
3 ]



Multivariate Logistic Regression

0° ~ Gamma(1,1)

B; ~ Normal(0, o%)
1
1 +e B2

p(zi =1) =




Solution

[assume dot-product (lambda (u v)

(if (= (count u) 0)
0
(+ (* (first u) (first wv))
(dot-product (rest u) (rest v)))))]

assume sigma (sgrt (gamma 1 1)) ]

[
[assume beta (list (normal 0 sigma) (normal 0 sigma) (normal 0 sigma) (normal 0 sigma)
(normal 0 sigma)) ]

[assume z (lambda (x)

(/1 (+ 1 (exp (* -1 (dot-product beta x))))))]

[observe-csv
"http://www.robots.ox.ac.uk/~fwood/anglican/examples/logistic regression/iris.csv"
(flip (z (list 1 S$1 $2 $3 $4))) (= $5 "Iris-setosa")]

[predict beta]

; should be Iris-setosa, i.e. 1 (from training data)

[predict (z (list 1 5.1 3.5 1.4 0.2 ))]

; should be Iris-virginica, i.e. 0 (from training data)

[predict (z (list 1 7.7 2.6 6.9 2.3 ))]




Hidden Markov Model

[assume initial-state-dist (list (/ 1 3) (/ 1 3) (/ 1 3))]
[assume get-state-transition-dist
(lambda (s) (cond ((= s 0) (list .1 .5 L4))
((= s 1) (list .2 .2 .6))
((= s 2) (list .15 .15 .7))))]1]
[assume transition (lambda (prev-state)
(discrete (get-state-transition-dist prev-state)))]
[assume get-state (mem (lambda (index)

(if (<= index 0) (discrete initial-state-dist)
(transition (get-state (- index 1))))))]
[assume get-state-observation-mean
(lambda (s) (cond ((= s 0) -1)
((=s 1) 1)
((=s 2) 0)))]
[observe (normal (get-state-obs-mean (get-state 1 )) 1) 9]
[observe (normal (get-state-obs-mean (get-state 2 )) 1) .8]
[observe (normal (get-state-obs-mean (get-state 16)) 1) -1]

[predict (get-state 0)]
[predict (get-state 1)]

[predict (get-state 16)]




Bayesian Nonparametrics

* One way : lazy stick sampling

; sample-stick-index 1s a procedure that samples an index from
; a potentially infinite dimensional discrete distribution

; lazily constructed using a stick breaking rule

[assume sample-stick-index (lambda (breaking-rule index)
(if (flip (breaking-rule index))
index

(sample-stick-index breaking-rule (+ index 1))))]




Sethuraman Stick Breaking

sethuraman-stick-picking-procedure returns a procedure
that picks a stick each time its called from the set of sticks
lazily constructed via a closed-over one-parameter stick

; breaking rule

[assume make-sethuraman-stick-picking-procedure
(lambda (concentration)
(begin (define V
(mem (lambda (x) (beta 1.0 concentration))))

(lambda () (sample-stick-index V 1))))]




DPMem

; DPmem is a procedure that takes two arguments -- the concentration
; to a Dirichlet process and a base sampling procedure
; DPmem returns a procedure

[assume DPmem (lambda (concentration base)
(begin

(define get-value-from-cache-or-sample

(mem (lambda (args stick-index)
(apply base args))))

(define get-stick-picking-procedure-from-cache

(mem (lambda (args)
(make-sethuraman-stick-picking-procedure concentration))))
(lambda varargs

; when the returned function is called , the first thing

; it does is get the cached stick breaking

; procedure for the passed in arguments

; and calls 1t to get an index

(begin

(define index ((get-stick-picking-procedure-from-cache varargs)))

; if , for the given set of arguments and
; just sampled index a return value has already
; been computed , get it from the cache
; and return it , otherwise sample a new value

(get-value-from-cache-or-sample varargs index)))))]




Dirichlet Process Mixture

[assume H (lambda ()

(begin
(define v (/ 1.0 (gamma 1 10)))
(list (normal O (sgrt (* 10 wv))) (sgrt v))))]

[assume gaussian-—-mixture-model-parameters (DPmem 1.72 H) ]

[observe-csv "http://
(apply normal (gaussian-mixture-model-parameters)) S$2]

[predict (apply normal (gaussian-mixture-model-parameters)) ]

Example:

curl -s http://www.robots.ox.ac.uk/~fwood/anglican/examples/

dp mixture model/dp-church.anglican | anglican | grep 'normal' |
awk -F',' '"{print $2}' | feedgnuplot --stream --histogram 0 --with
boxes --xlabel 'x' --ylabel Frequency --binwidth 1




Expressivity

« Easily implement modern machine learning
methods

— 10’s of lines of code
* Higher-order functionality




Symbolic Function Induction

What's the next value? And the function?

V= W Ul

1
2
3
4




Solution

[assume get-int-constant
(lambda () (uniform-discrete 0 10))]

[assume safe-div
(lambda (x y) (if (= y 0) 0 (/ x y)))]

[assume pcfg
(lambda ()
(define expression-type (discrete (list 0.40 0.30 0.30)))

(cond
((= expression-type 0) (get-int-constant))
((= expression-type 1) 'x)
(else
(list
(nth (list (quote +) (quote -) (quote *) (quote safe-div))

(discrete (list 0.25 0.25 0.25 0.25)))
(pcfg) (pcfg)))))]

[assume induced-procedure-code (list 'lambda (list 'x) (pcfqg))]

[assume induced-procedure (eval induced-procedure-code) ]

[assume noise 0.00001]

[observe (normal (induced-procedure 1) noise) 5]
[observe (normal (induced-procedure 2) noise) 3]
[

observe (normal (induced-procedure 3) noise) 1]

[predict induced-procedure-code]

[predict (induced-procedure 4) ]




Goals and Aims

(i) Accelerate iteration over models
- Inference is automatic
- Writing generative code is easier than deriving model inverses
- Lower technical barrier of entry to development of new models

(i1) Accelerate iteration over inference procedures

- Computer language is an abstraction barrier
- Inference procedures can be tested against a library of models
- Inference procedures become “compiler optimizations”

(iii) Enable development of more expressive models

- Probabilistic programs can express a superset of graphical
models

- Modern machine learning models are tens of lines of code




How Does it Work?




Probabilistic Programming Concepts
* First half

— Procedures “sample”
— Programs are generative models

 This half

— “Sampling” execution traces = inference

— Different traces arise from stochastic procedure outputs
+ Elementary

flip, normal, discrete, poisson, gamma, ..

« Compound

(lambda (a b) (if (flip a)
(+ (poisson b) 7)
(normal a b)))

— Various sampling algorithms apply
* Rejection sampling
* Metropolis Hastings
» Sequential Monte Carlo
» Particle Markov Chain Monte Carlo




Outline

* Trace Probability

* Probabilistic Program Interpretation

» Monte Carlo-based probabilistic inference
— Rejection Sampling
— MCMC
— SMC
— PMCMC




Probabilistic Inference

Inference, prediction, and inspection can all be expressed as expectations

E[f] = / £(x)p(x)dx

Where x is all latent variables, f is a test function, and p is the
distribution against which we're integrating.




Monte Carlo Integration

@ Sample xY ~ p(x) for ¢ =1...L
@ Estimate E[f] ~ f = 1 3, f(x())




How To Sample Execution Traces

 What is an execution trace?
 What is its probability”?




Execution Trace Probability

Observed value

Posterior Distribution of Trace Given Parameter of observation distribution

Observations

N
p(X1:N|y1:N) X ]5(}’1:N, Xl:N) H g(yn‘etn ’ Xl:n)f(xnyxlzn—l)
n=1

Joint Distribution of Trace And
Type of observation Interpreter memory state

Observations
distribution
Parameter of stochastic procedure
|%n |
f(anxl:n—l) — H f(ajn,k etn,kaxn,lz(k—l)a Xl:(n—l))
k=1

Type of stochastic procedure




Suggests Relationship To State Space Modeling

Program generates all random variables

- State is interpreter memory state

- Transition is stochastic procedure application
« Only observes need be indexed

f = execute forward

7
@

<-------

®

g = observe

®
=)




Program Interpretation

eval apply

(define (eval exp env) (define (apply procedure arguments)
(cond
((primitive-procedure? procedure)
(apply-primitive-procedure procedure arguments))
( (compound-procedure? procedure)
(eval-sequence
(procedure-body procedure)
(extend-environment
(procedure-parameters procedure)
arguments

(procedure-environment procedure)

((application? exp)
(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))

Copied from Abelson, Sussman and Sussman “Structure and Interpretation of Computer Programs”



What is X1 ?

r11 ~ Beta(7,4)
x12|lr11 =04 ~ Poisson(8)
r13lri2=06,211 =04 ~ DBinomial(0.4)
T14|r13 =true,x19 =6,211 =04 ~ Poisson(7)
y1 = 18|z1 4 = 7,213 = true,z1 20 =6,211 =04 ~ Normal(14,1)
ro1|... ~ Gamma(0.4,7)
Yo = 6|z21 =6.92,... ~ Normal(0,6.92)

[assume poi-1 [(beta 7 4)[]
[assume poi-2 (+ 1 [poisson 8%)]
[assume generative-model-part-1 (lambda (a b)
(if [(flip a)
(+ |[(poisson Db)| 7)
(normal a b)))]
[assume generative-model-part-2 (lambda () (gamma poi-1 poi-2))]
[observe (normal (generative-model-part-1 poi-1 poi-2) 1) EED
[observe (normal O (generative-model-part-2)) 6]
[predict (list poi-1 poi-2)]




What is x1.2 ?

21
Yo = 6‘332,1 = 692, ce

[assume poi-1 (beta 7 4)]
[assume poi-2 (+ 1 (poisson 8))]

~ Gamma(0.4,7)
~ Normal(0, 6.92)

[assume generative-model-part-1 (lambda (a b)
(if (flip a)
(+ (poisson b) 7)
(normal a b)))]

[assume generative-model-part-2 (lambda ()

(gamma poi-1 poi-2)

[observe (normal (generative-model-part-1 poi-1 poi-2) 1) 18]
[observe (normal O (generative-model-part-2)) [}

[predict (list poi-1 poi-2)]

) ]



Observe Statements

f(yn|9tn ’ Xl:n)

A

[observe (mnormal kgenerative—model—part—l poi-1 poi-2) 15 18]




Original Church : Rejection Sampling

* Run program forward and condition on all
observations exactly matching the observed
output

1| (define (rejection-query thunk condition)
(let ((val (thunk)))

: (if (condition val)

4 val
5 (rejection-query thunk condition))))

Goodman, Mansinghka, Roy, Bonawitz, and. Tenenbaum Church: A language for generative models, UAI, 2008



Review: Rejection Sampling

Assume
@ Want sample from p(x)

@ p(x) is easy to evaluate, but only up to an unknown normalising

constant, I.e. .

p(x) = ZP(X)
@ A proposal distribution q(x) s.t. kq(x) > p(x) for all x can be
designed

Note x is, in general, a vector of random variables.




Rejection Sampling

kq(z0) kq(z)

// SR

20 z

Sampling x(7) ~ g and u{") ~ Uniform(0, kq(x(7))) yields a pair of values
uniformly distributed in the gray region.

If up < p(x) then x(7) is accepted, otherwise it is rejected and the process
repeats until a sample is accepted.

Accepted pairs are uniformly distributed in the white area; dropping u(m)
yields a sample distributed according to j(x), and equivalently, p(x).




Rejection Sampling

Assume we have a model p(x), some variables of which are known, some
of which are not. Also let x,,s be the “observed” variables and xj,; be
latent variables such that x,ps U Xj0t = X.

p(x)
p(xobs)

We would like samples from p(Xjat|Xobs) =

Equivalently we can write the conditional distribution of interest as an
unnormalised distribution p(Xiat|Xobs) = pP(X)I[Xons = V| using an indicator
function that imposes the constraint that the observed variables are
constrained to take values v.

Rejection sampling with g(x) = p(x) (i.e. proposing via ancestral sampling
of the joint) can be used to generate samples distributed according to
B(X1at|Xobs ). Note that g(x) > p(Xiat|Xops) VX by construction.




Rejection Sampling

Conditioning via Rejection and Ancestral Sampling

@ Sample x(7) ~ g(x) (i.e. generate via ancestral sampling)
@ Sample u() ~ U(0, g(x))

@ Accept x(™) only if ul™) < p(x)I[Xops = V]

© Repeat

y

A sample will only ever be accepted when x,,s = v and then it will always
be because g(x) = p(x)

Unless the prior and posterior are extremely well matched this will be an
extremely inefficient sampler.




Original Church : Rejection Sampling

* Run program forward and condition on all
observations exactly matching the observed
output

1| (define (rejection-query thunk condition)
(let ((val (thunk)))

: (if (condition val)

4 val
5 (rejection-query thunk condition))))

Goodman, Mansinghka, Roy, Bonawitz, and. Tenenbaum Church: A language for generative models, UAI, 2008



New Church : Single-Site Independent MH

Sample posterior distribution of execution traces using joint with observed
values plugged in

p(x|y) o p(y = observes, x)

Metropolis-Hastings acceptance rule

in (1 p(YlX’)p(X’)CJ(XIX’))

" p(y]x)p(x)q(x'[x)

Need

Proposal
Have

Likelihoods (via observe statement restrictions)
Prior (sequence of ERP returns; scored in interpreter)

Wingate, Stuhlmiiller et al Lightweight Implementations of Probabilistic Programming Languages Via Transformational Compilation, 2011
Wood, van de Meent, and Mansinghka “A New Approach to Probabilistic Programming Inference” AISTATS 2014
Mansinghka, Selsam, and Perov “Venture: an interactive, Turing-complete probabilistic programming platform” arXiv 2014




Review : Metropolis Hastings

Initialize 7 + 1.x(7) <2

Repeat Forever Yielding {x(1),x(?) .}
@ Propose x* ~ g(x*|x("))

@ Accept x° wip. A ) = min (1, ZEE

© If x* accepted set x(TH1) « x* else x(7T1) « x(7)

O Increment 7

Common choices of proposal include g(x*|x(™) = N(x(7)|o?I)
(random-walk Metropolis) and/or g(x*|x(7)) = g(x*) (independent MH).
Rules of thumb suggest aiming for acceptance rates of between 25% and
50% by tuning the proposal distribution.




Random Database (RDB) MH Proposal

Probability of new part of

Single stochastic proposed execution trace

procedure (SP) output

R, 1Tm.5) p(x"\x | X N x)

X| p(:c’m’j|x’ N x)

q(x'|x) =

Number of SP’s in

iginal t
originat trace Probability of new SP return

value (sample) given trace prefix




RDB Implementation

Single site update = sample from the prior = run program forward

K 5 |m.5) = (@ ;1% (1)

MH acceptance ratio simplifies

Number of SP applications  Probability of regenerating current trace
in original trace continuation given proposal trace beginning

p(y|x’) p(x') [x| p(x\x" | x N X’)
p(y|x) p(x) [x'[ p(x'\x | X" N x)

Number of SP applications  Probability of generating proposal trace
in new trace continuation given current trace beginning




[assume
[assume
[assume

~ 1
gl—_LS

RDB Implementation Sketch

ri1 ~ Beta(7,4)
z1 2|11 =04 ~ Poisson(8)
[ r1 3|12 =611 =04 ~ Binomial(0.4)]
r14|x13 = false,x1 2 =06,211 = 0.4 -*ro--Poisson()

g =" w3 = true; vy g =6 ry =04

|
$2’1|... Y

Py P— PR A -
32 s 6|3§'27l e U-927... i

poi-1 (beta 7 4)]
poi-2 (+ 1 (poisson 8))]

generative-model-part-1 (lambda (a b)

(if

(flip a)

Normal(i4; 1)
Gammia(0:4,7)

Normal(0;6:92)

(+ (poisson b) 7)

(normal a b)))]

[assume generative-model-part-2 (lambda () (gamma poi-1 poi-2))]
[observe (normal (generative-model-part-1 poi-1 poi-2) 1) 18]
[observe (normal O (generative-model-part-2)) 6]

[predict (list poi-1 poi-2)]



SMC for Prob. Prog. Inference

State-space-model-like decomposition
p(Xlzn’ylzn) — g(yn|X1:n)f(Xn’X1:n—1)p(xlzn—1|y1:n—1)

Suggests Sequential Importance Resampling (SIR)

p(Xl:n|y1:n) L g(yn|X1:n)f(xn|X1:n—1>p(xl:n—1|y1:n—1>

= = g(y |X1: )
Q(Xl:n\ylzn) f(Xn\Xl:n—l)p(Xl:n—l|y1:n—1) " "
Proposal Run program forward Weight of particle
until next observe directive Is observation likelihood

Fischer, Kiselyov, and Shan “Purely functional lazy non-deterministic programming” ACM Sigplan 2009
Wood, van de Meent, and Mansinghka “A New Approach to Probabilistic Programming Inference” AISTATS 2014
Paige and Wood “A Compilation Target for Probabilistic Programming Languages” ICML 2014




Review : Sequential Importance Resampling

SIR Targets
N

p(X1:N|Y1:N) X ﬁ(Y1:N,X1:N) = g(yn|X1:n)f(Xn\X1:n—1)
n=1

With a weighted set of particles
p(X1:n|Y1:N) wa e (%)
Noting the identity
P(X1:n|y1:n) = g(Un[X1:0) [ (Xn|X1:0-1)P(X1:n—1|Y1:0-1)
We can use importance sampling to generate samples from
p(X1:n|Y1:n)

Given our sample-based approximation to

p<X1:n—1 ‘ylzn—l)




Review : Importance Sampling

Ep(xy)lh(x)] = / h(x)p(x|y)dx

p(x|y)

- /h(X>Q(XY)Q(X‘y)dX

o1 S <! p(x‘ly) 2~ a(x
~ L;h( ) aly) q(x|y)
LN o)t — PEEY)
= I Zh( ) n Q< ‘Y)7 n q(Xﬁ’y)

~
I

1




Review: Sequential Importance Resampling
L
p(Xlzn—1|y1:n—1) ~ Zwﬁ_l(sxf:n_l(xlzn—l)
/=1

p(Xlzn’ylzn) — g(yn‘xlzn)f(xn’X1:n—1)p(X1:n—1‘ylzn—l)

Q(Xlzn‘ylzn) — f(Xn’XLn—l)p<X1:n—1‘ylzn—l)

L

p<X11?’L‘y127’L) ~ Zg(yn‘xgzn>5xfzn(xlin)7 Xf:n — X?éxlzn—l ™~ f
/=1




SMC Methods Discussed Require Only

Initialization

p(x1) can be sampled

Forward Simulation

f(xn|X1.n—1) can be sampled (blackbox)

Observation Likelihood Weight Computation

9(Yn|X1:n) can be point-wise evaluated up to constant multiple




Sequential Monte Carlo for Prob. Prog.

Algorithm 1 Parallel SMC program execution

Assume: N observations, L particles

launch L copies of the program (parallel)
forn=1...Ndo
wait until all L reach observe y, (barrier)
update unnormalized weights % (serial)
if £SS < 7 then
sample number of offspring O~ (serial)
set weight w1l =1 (serial)
for/{=1...Ldo
fork or exit (parallel)
end for
else
set all number of offspring Of = 1 (serial)
end if
continue program execution (parallel)
end for
wait until L program traces terminate (barrier)

predict from L samples from p(x1% |y1.y)  (serial)




Probabilistic-C

#include "probabilistic.h"
#define K 3
#define N 11

/% Markov transition matrix */

static double TI[K] [K] { { 0.1, 0.5
{ 0.2, 0.2

{ 0.15, 0.1

/+ Observed data =/
static double data[N]

{ NAN, .9, .8, .7, 0, —-.025,
-5, -2, -.1, 0, 0.13 };

/% Prior distribution on initial state =*/
static double initial_ state[K] = { 1.0/3, 1.0/3, 1.0/3 };

/* Per—-state mean of Gaussilian emission distribution */
static double state_mean[K] = { -1, 1, 0 };

/+* Generative program for a HMM */
int main(int argc, char xxargv) {

int states[N];
for (int n=0; n<N; n++) {
states[n] = (n==0) ? discrete_rng(initial_state, K)
discrete_rng(T[states[n-1]1], K);
if (n > 0) {
observe (normal_lnp (data[n], state_mean[states([n]], 1));
}
predict ("state[%d], %d\n", n, states[n]);

return 0;

Paige and Wood “A Compilation Target for Probabilistic Programming Languages” ICML 2014




Inverse Stochastic Simulation

 Deterministic simulator exists as code

« Parameter uncertainties exist

— Varying parameters to simulator = stochastic
simulator

« What to do with observations?

— Update estimates of parameters
— Posterior predictions




Houlsby

v’ Example : Jack-Up Units

Keppel FELS

Maersk

Keppel FELS



Jack-up operations

BRIRRRRRRRRRRY BB

QU

DU T

QLU PO

Float Lower Light ship Preload Dump Climb to Storm
to site legs load preload air-gap
and
operate

sketches after Poulos (1988)
Slide from Houlsby




Spudcan Simulator + Probabilistic-C -> Inference

6 observations
0

Deterministic simulator Al

— ~750 lines of C code

— 10-100’s of parameters

— Black-box

— Not differentiable
Stochastic simulator

— +150 lines of C code

— Priors on parameters
Automatic inference

— +15 lines of Probabilistic-C

10
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[ J
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30

~1000 samples / second

35
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Review : Inference In State Space Models

Consider inference in a state space model that depends on fixed

parameters
can’t use SMC @
@ @ single-site
updates won’t
mix




“Ideal” Inference

Ideal MH @

. p(y1:n10")p(0")q(0]0")

o (1’ p<y1;N|e>p<e>q<e'\e>> CONEINE?
intractable. @ @ @

SMC provides unbiased estimate

. ol
Z =p(y1.n10) = H [N

L
n=1 /=

>l

1

Del Moral “Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications”



Particle Marginal Metropolis Hastings

MH with unbiased likelihood estimates @
Z'p(0)q(0]0)
min | 1, —
(1. 2pea0e FONEINE
computed via SMC proposal @ @ @

targets correct distribution!

C. Andrieu, A. Doucet, R. Holenstein Particle Markov Chain Monte Carlo methods



Conditional SMC for Prob. Prog. Inference

No fixed parameter
Program generates all random variables

Eager parameter Lazy parameter
generation generation

State is interpreter memory state

Transition is stochastic procedure application
Only observes need be indexed




PIMH For Probabilistic Programming

 Run SMC Once
« Compute marginal likelihood estimate

Z = p(y1:n) & H [% wal]
(=1

n=1

No theta!
« Do forever

* Re-run SMC
« Compute new marginal likelihood estimate
7
» Accept particle set with probability
min(1, 2’/ Z)
« Emit predictions from all particles in next set (new and/or old)




Particle Gibbs for Prob. Prog.

« MH w/ accept prob. =1
SMC “inner-loop” proposal
» “Retained particle”
* Non-local
« Single “sweep” can propose
changes to many variable values at
once

[Holenstein 2009; Andrieu, Doucet, Holenstein 2010; etc]

Wood, van de Meent, Mansinghka “A New Approach to Probabilistic Programming Inference” AISTATS 2014

Paige and Wood “A Compilation Target for Probabilistic Programming Languages” ICML 2014



PMCMC Prob. Prog. Example

HMM - Single-site MH HMM - PMCMC
(] (]
© ©
& &
0 5 10 15 0 5 10 15
Time Time
HMM - Single-site MH HMM - PMCMC
(] (]
© ©
& &
Time Time
forward-backward
2




Goals and Aims

(i) Accelerate iteration over models
- Inference is automatic
- Writing generative code is easier than deriving model inverses
- Lower technical barrier of entry to development of new models

(i1) Accelerate iteration over inference procedures

- Computer language is an abstraction barrier
- Inference procedures can be tested against a library of models
- Inference procedures become “compiler optimizations”

(iii) Enable development of more expressive models

- Probabilistic programs can express a superset of graphical
models

- Modern machine learning models are tens of lines of code




Wrap-Up

e Research

— New paths to efficient, scalable probabilistic
programming inference

— True hope for general purpose automatic inference
— New models (soon)

 Resources
— http://www.robots.ox.ac.uk/~fwood/anglican/
— http://www.robots.ox.ac.uk/~brooks/probabilistic-c/
— http://probabilistic-programming.org/wiki/Home
— http://forestdb.org/




Parameter Posterior vs. Expert

Depth (m)
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Compiled PMCMC Algorithm
Performance
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What if dirac Observes?

dirac observes are constraints

p(X1:N|Y1:N) X ]5(}’1:N, X1:N) = H H[yn = Gn(XLn)]f(Xn\Xl:n—ﬂ

n=1

= pxun)yr.v = ann(X1:n)]

=> SMC / PMCMC reduce to rejection / repeated rejection sampling
if all observes are constraints




Opportunity : Optimizing Inference by Program Line Reordering

6
2 T IIIIIIII T IIIIIIII T IIIIIIII T IIIIIIII 2 T IIIIIIII T IIIIIIII T IIIIIIII 1 IIIIIIII

KL*
N

1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 2
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Simulation Simulation

(a) HMM (b) DP Mixture
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Anglican : Particle MCMC Inference

FOrWard-BaCkWard 26 1 IIIIII| L] IIIIII| L] IIIIII| L] IIIIII| 1
L S — -
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2 |
PMCMC i
-k
2 o |
] = < 2
L !
27 -
RandomDB 74 L e PMCMC
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Apply

Wood, van de Meent, Mansinghka “A new approach to probabilistic programming inference.” AISTATS, 2014
Wingate et al “Lightweight implementations of probabilistic programming languages via transformational compilation” AISTATS, 2011




