
Probabilistic Programming

Frank Wood
fwood@robots.ox.ac.uk

What Is It?

Parameters

Program

Output

Computer Science

✓

X

Statistics

p(X|✓)p(✓)

Parameters

Program

Observations

Probabilistic Programming

The Way Machine Learning Is

Start

Identify And Formalize
Problem, Gather Data

Design Model =
Read Papers, Do Math

Existing Model
Sufficient?

Choose Approximate
Inference Algorithm

Derive Updates And
Code Inference

Algorithm

Exists And
Can Use?

Performs Well
Statistically?

End

Performs Well
Computationally?

Search For Useable
Implementation

Test

Scale

Deploy

Simple Model?

Implement Using High
Level Modeling Tool

Tool
Supports Required

Features?

N

N

N

N

N N

Y

Y Y

Y

Y

Y

LEGEND Color indicates the skills that are
required to traverse the edge.

PhD-level machine learning or statistics

PhD-level machine learning or computer
science

Non-specialist

Feasible?

Y
N

The Way Machine Learning Will Be

Start

Identify And Formalize
Problem, Gather Data

Design Model =
Write Probabilistic

Program

Existing Model
Sufficient?

Derive Updates And
Code Inference

Algorithm

Exists And
Can Use?

Performs Well?

End

Performs Well
Computationally?

Search For Useable
Implementation

Debug, Test, Profile

Scale

Deploy

N Y

LEGEND Color indicates the skills that are
required to traverse the edge.

Non-specialist

Choose Approximate
Inference Algorithm

Simple Model?

Implement Using High
Level Modeling Tool

Tool
Supports Required

Features?

Feasible?

Larger Goal: Expressive Compact Models (AI)

David Pfau, Nicholas Bartlett, Frank Wood
{pfau@neurotheory, bartlett@stat, fwood@stat}.columbia.edu

Probabilistic Deterministic Infinite Automata

Overview Generative Model Natural Language, DNA Prediction

Synthetic Grammar Induction

Future Directions

Probabilistic Deterministic Finite Automata

Finite Automata

Probabilistic Nondeterministic Finite Automata

0

1 2

3

A/0.5 A/0.5

A/0.8 A/0.6

B/0.4B/0.2

(a) (b)

0

1 2

A/0.5 A/0.5

A/0.8 A/0.6

B/0.4B/0.2

0 1
B/1.0

2

3

4

5

6

T/0.5

P/0.5

S/0.6
X/0.4

V/0.3T/0.7

V/0.5

X/0.5

P/0.5

S/0.5

E/1.0

to 0from 6

0 1A/0.5

B/0.5

B/1.0

0 1 2 3

4

5

6

B/0.8125

B/0.8125

B/0.75

A/0.1875 A/0.5625 A/0.5625

B/0.0625

A/0.1875

B
/0.4375

A
/0.25

A/0.9375

B/0.4375A/0.75
B/0.25

ε

0 1

00 01 10 11

0

0
0 0

0

1

1 10 1

1

1

1

0

Trigram as DFA (without probability)

Even Process

Reber Grammar

Foulkes Grammar

(a) in mixtures of PDFA but not PDFA
(b) in PNFA but not mixtures of PDFA

A Probabilistic Deterministic Infinite Automata (PDIA) is a
Probabilistic Deterministic Finite Automata (PDFA)[1] with an
unbounded number of states. We take a nonparametric Bayesian
approach to PDIA inference.

PDIA models are a an attractive compromise between the
computational costs of Hidden Markov Models and the storage
requirements of smoothed Markov models for predicting
sequence data.

Given a finite training sequence, the posterior distribution over
PDIA parameters is an infinite mixture of PDFAs.

Samples for this distribution drawn via MCMC form a finite
mixture approximating this posterior.

Model classes, from least to most general -

nth-order Markov ⊊ PDFA ⊊ finite mixture of PDFA ⊊ PNFA = HMM

(Technically, HMM = PNFA without final state)

10^1 10^2 10^3 10^4 10^5 10^6
1

2

3

4

5

6

7

8

Observations

St
at

es

Even Process

Foulkes Grammar

Reber Grammar

References

Evaluation on larger data sets
Sampler that proposes “similar” PDFA, i.e. spilt-merge sampling
Smoothed emission distributions

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

PDIA PDIA-MAP HMM-EM bigram trigram 4-gram 5-gram 6-gram SSM
AIW 5.13 5.46 7.89 9.71 6.45 5.13 4.80 4.69 4.78

365.6 379 52 28 382 2,023 5,592 10,838 19,358
DNA 3.72 3.72 3.76 3.77 3.75 3.74 3.73 3.72 3.56

64.7 54 19 5 21 85 341 1,365 314,166

Table 1: PDIA inference performance relative to HMM and fixed order Markov models. Top rows:
perplexity. Bottom rows: number of states in each model. For the PDIA this is an average number.

!"# $ $"# % %"# &

'($!
)

!$"*+

!$"*,

!$"*)

!$"*%

!$"*

!$"++

!$"+,

'($!
)

-./01.2345

6
3
7
(6
28
/
92:
3
3
;

!"# $ $"# % %"# &

'($!
)

&%#

&#!

&<#

)!!

)%#

)#!

=
.1
./
5

Figure 1: Subsampled PDIA sampler trace for Alice in Wonderland. The top trace is the joint log
likelihood of the model and training data, the bottom trace is the number of states.

the start of the test data was set to the last state of the model after accepting the training data. We
placed Gamma(1,1) priors over �, ⇥ and ⇤, set ⌅ = .001, and used uniform priors for d0 and d.

We evaluated the performance of the learned models by calculating the average per character pre-
dictive perplexity of the test data. For training data x1:T and test data y1:T � this is given by
2�

1
T � log2 P (y1:T � |x1:T). It is a measure of the average uncertainty the model has about what character

comes next given the sequence up to that point, and is at most |�|. We evaluated the probability of
the test data incrementally, integrating the test data into the model in the standard Bayesian way.

Test perplexity results are shown in Table 1 on the first line of each subtable. Every fifth sample
for AIW and every tenth sample for DNA after burn-in was used for prediction. For AIW, we ran
15,000 burn-in samples and used 3,500 samples for predictive inference. Subsampled sampler di-
agnostic plots are shown in Figure 1 that demonstrate the convergence properties of our sampler.
When modeling the DNA dataset we burn-in for 1,000 samples and use 900 samples for inference.
For the smoothed n-gram models, we report thousand-sample average perplexity results for hierar-
chical Pitman-Yor process (HPYP) [14] models of varying Markov order (1 through 5 notated as
bigram through 6-gram) after burning each model in for one hundred samples. We also show the
performance of the single particle incremental variant of the sequence memoizer (SM) [5], the SM
being the limit of an n-gram model as n � ⇥. We also show results for a hidden Markov model
(HMM) [8] trained using expectation-maximization (EM). We determined the best number of hid-
den states by cross-validation on the test data (a procedure used here to produce optimistic HMM
performance for comparison purposes only).

The performance of the PDIA exceeds that of the HMM and is approximately equal to that of
a smoothed 4-gram model, though it does not outperform very deep, smoothed Markov models.
This is in contrast to [16], which found that PDFAs trained on natural language data were able to
predict as well as unsmoothed trigrams, but were significantly worse than smoothed trigrams, even
when averaging over multiple learned PDFAs. As can be seen in the second line of each subtable
in Table 1, the MAP number of states learned by the PDIA is significantly lower than that of the
n-gram model with equal predictive performance.

Unlike the HMM, the computational complexity of PDFA prediction does not depend on the number
of states in the model because only a single path through the states is followed. This means that the
asymptotic cost of prediction for the PDIA is O(LT ⇥), where L is the number of posterior samples
and T ⇥ is the length of the test sequence. For any single HMM it is O(KT ⇥), where K is the number
of states in the HMM. This is because all possible paths must be followed to achieve the given HMM

6

!"# $ $"# % %"# &

'($!
)

!$"*+

!$"*,

!$"*)

!$"*%

!$"*

!$"++

!$"+,

'($!
)

-./01.2345

6
3
7
(6
28
/
92:
3
3
;

!"# $ $"# % %"# &

'($!
)

&%#

&#!

&<#

)!!

)%#

)#!

=
.1
./
5

Top rows: perplexity of held out data. Bottom rows: number of states

Predictions from average of many samples better than MAP sample

Low model complexity relative to other models with the same
predictive performace

Alice in Wonderland:10k training characters, 4k test “alice was beginning to...”
Mouse DNA: 150k train, 50k test “CGTATATGCGCC...”
Controls: EM-trained HMM, HPYP smoothed n-gram[3], sequentially-trained sequence
memoizer[4]

µ � Dir(�0/|Q|)
⌥j � Dir(�µ)
⇤(qi, ⌃j) = ⇤ij � ⌥j

⇧qi � Dir(⇥/|�|)
⌅0 = q0, ⌅t = ⇤(⌅t�1, xt�1)
xt � ⇧�t

Notation:
 - finite set of states
 - finite alphabet
 - transition function
 - emission distribution
 - initial state
 - data at time t
 - state at time t
 - hyperparameters

q0

q1

q2

q3

q4

q5

...

�
�0 �1 �2

q1

q1

·

...
...

...
·

· ··
q2

q3

q3

q3

q3

q4

q5

q5q42

q12

q6

�
q0

q1

...

�0 �1 �2

(iid probability vector)
(iid probability vector)

...
...

...
q0 q1 q3 q3 q3 q5 q2 q4 q5 q2 . . .

1 1 0 0 2 2 1 2 1 0 . . .

This prior biases towards state reuse in two ways: the global bias toward some
states due to and the column-specific bias towards certain states when the
same symbol is emitted due to .�j

A Prior over PDFA with a bounded number of states

A Prior over infinite models

The limit as is a PDIA prior. The two-level Dirichlet construction of the
finite model becomes a Hierarchical Dirichlet Process (HDP)[2] which we give
geometric base distribution. When and are marginalized out, are
exchangeable.

|Q|�⇥

µ

µ �j �ij

Inference

MCMC sampler for
Marginalizing out in likelihood gives form that only depends on counts

Propose from , easy if , use Chinese Restaurant
Franchise Process[2] if

Accept with probability

If , can be ignored

⇤ij |⇤�ij , x0:T , �, �0, ⇥
�

cij =
T�

t=0

1ij(�t, xt)p(x0:T |⇥, c, �) =
|Q|�1⇤

i=0

�(�)
�(�

|�|)|�|

⇥|�|
j=1 �(�

|�| + cij)

�(� +
�|�|

j=1 cij)

cij = 0 �ij

��ij ⇥⇥ij |⇥�ij , �, �0 |Q| <�
|Q| =�

min
�

1,
p(x0:T |�⇥ij , ��ij)
p(x0:T |�ij , ��ij)

⇥ [1] M.O. Rabin. Probabilistic Automata. Information and Control, 6(3):230-245, 1963
[2] Y. W. Teh, M. I. Jordan, M. J. Beal, D. M. Blei. Hierarchical Dirichlet Processes.
Journal of the American Statistical Association. 101(476):1566-1581, 2006
[3] Y. W. Teh. A hierarchical Bayesian language model based on Pitman-Yor
processes. Proceedings of the ACL. 985-992, 2006
[4] F. Wood, C. Archambeau, J. Gasthaus, L. James, Y. W. Teh. A Stochastic
Memoizer for Sequence Data. Proceedings of the 26th ICML. 1129-1136, 2009
This research was supported by the NSF GRFP

j = 0, . . . , |�|� 1
i = 0, . . . , |Q|� 1
i = 0, . . . , |Q|� 1

Q
�
⇤ : Q� �⇥ Q
⇧ : Q� �⇥ [0, 1]
q0 ⇤ Q
xt ⇤ �
⌅t ⇤ Q
�,�0, ⇥

Thursday, October 21, 2010

(Streaming) Sequence Memoizer
Model
•  World state = (infinite) history of

emissions
•  Per-state emissions learned

–  Requires careful smoothing
•  Deterministic transitions fixed

•  Wikipedia next-byte predictive
performance in range of Shannon’s
human-estimate of the entropy of
written English

Problem
•  ~2500 lines of Java code
•  New student re-implementation

–  6-12 months

•  High-arity state space brings out
statistical inefficiencies

G[oacac]

G[acac]

G[cac]

G[ac]

G[c]

G[]

G[a] G[o]

G[ca]

G[aca]

G[oaca]

G[oa]

G[oac]

c

a

a

c

c

c

c

a

a

o

o

o

o

a

o

a

o

H

(a) Prefix trie for oacac.

oac

ac

oac

G[oacac]

G[ac]

G[]

G[a] G[o]

G[oaca]

G[oa]

G[oac]

c

c

a

a

o

o

o

a

o

H

(b) Prefix tree for oacac.

G[]

G[a]

G[oaca]

G[oa]

a c o

1 1 1

d0:0

c

c

1

c

1

d2:4

d2:2

d1:1

11

(c) Initialisation.

Figure 1. (a) prefix trie and (b) corresponding prefix tree for the string oacac. Note that (a) and (b) correspond to the
suffix trie and the suffix tree of cacao. (c) Chinese restaurant franchise sampler representation of subtree highlighted in
(b).

of branches descending from each node is given by the
number of elements in Σ.

The hierarchical Pitman-Yor process (HPYP) with
finite depth has been applied to language models
(Teh, 2006), producing state-of-the-art results. It has
also been applied to unsupervised image segmentation
(Sudderth & Jordan, 2009). Defining an HPYP of un-
bounded depth is straightforward given the recursive
nature of the HPYP formulation. One contribution of
this paper to make inference in such a model tractable
and efficient.

A well known special case of the HPYP is the hierar-
chical Dirichlet process (Teh et al., 2006), which arises
from setting dn = 0 for n ≥ 0. Here, we will use a less-
well-known special case where cn = 0 for n ≥ 0. In this
parameter setting the Pitman-Yor process specializes
to a normalized stable process (Perman, 1990). We use
this particular prior because, as we shall see, it makes
it possible to construct representations of the posterior
of this model in time and space linear in the length
of a training observation sequence. The trade-off be-
tween this particular parameterization of the Pitman-
Yor process and one in which non-zero concentrations
are allowed is studied in Section 6 and shown to be in-
consequential in the language modelling domain. This
is largely due to the fact that the discount parameter
and the concentration both add mass to the base distri-
bution in the Pitman-Yor process. This notwithstand-
ing, the potential detriment of using a less expressive
prior is often outweighed when gains in computational
efficiency mean that more data can be modelled albeit
using a slightly less expressive prior.

3. Representing the Infinite Model

Given a sequence of observations x1:T we are interested
in the posterior distribution over {G[s]}s∈Σ∗ , and ulti-

mately in the predictive distribution for a continuation
of the original sequence (or a new sequence of obser-
vations y1:τ), conditioned on having already observed
x1:T . Inference in the sequence memoizer as described
is computationally intractable because it contains an
infinite number of latent variables {G[s]}s∈Σ∗ . In this
section we describe two steps that can be taken to re-
duce the number of these variables such that inference
becomes feasible (and efficient).

First, consider a single, finite training sequence s con-
sisting of T symbols. The only variables that will
have observations associated with them are the ones
that correspond to contexts that are prefixes of s,
i.e. {G[π]}π∈{s1:i|0≤i<T}. These nodes depend only
on their ancestors in the graphical model, which cor-
respond to the suffixes of the contexts π. Thus, the
only variables that we need perform inference on are
precisely all those corresponding to contexts which are
contiguous subsequences of s, i.e. {G[sj:i]}1≤j≤i<T .

This reduces the effective number of variables to
O(T 2). The structure of the remaining graphical
model for the sequence s = oacac is given in Fig-
ure 1(a). This structure corresponds to what is known
as a prefix trie, which can be constructed from an input
string in O(T 2) time and space (Ukkonen, 1995).

The second marginalization step is more involved and
requires a two step explanation. We start by high-
lighting a marginalization transformation of this prefix
trie graphical model that results in a graphical model
with fewer nodes. In the next section we describe how
such analytic marginalization operations can be done
for the Pitman-Yor parameterization (cn = 0 ∀ n) we
have chosen.

Consider a transformation of the branch of the graph-
ical model trie in Figure 1(a) that starts with a. The
transformation of interest will involve marginalizing

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
1

1.5

2

2.5

3

depth

b
it
s
 /

b
y
te

L=10

3
L=10

4
L=10

5
L=10

6
L=10

7

Figure 1: Average (± std.) streaming deplump compression performance as measured in
bits in compressed output vs. bytes in uncompressed input. Here the depth limit (D) and
node limit (L) are varied. From this we conclude that setting the depth limit to D � 16

and the node limit to the largest value possible given physical memory constraints leads to
optimal compression performance.

3 4 5 6 7 8 9

2

4

stream length (log
10

)

b
it
s
 /
 b

y
te

L=10

3
L=10

4
L=10

5
L=10

6
L=10

7

Figure 2: Average (± std.) streaming deplump compression performance as measured in
bits in compressed output vs. bytes in uncompressed input. Here the input stream length and
node limit (L) are varied. From this we observe that average deplump streaming compression
performance monotonically improves as the input sequence grows in length but asymptotes
at a different value per node limit Also, it can be seen that large node limits may actually
hurt compression performance for small input sequences.

ENTS are too long to include. UPDATECOUNTSANDDISCOUNTS also uses THINCOUNTS
(Alg. 6) to enforce the bound on the counts in each node required to ensure computational
asymptotics appropriate for streaming compression.

To use streaming deplump a choice of approximation parameters must be made. The
full set of these parameters consists of D, D, T , k, L, ⌘. D = [�0, �1, . . . , �10, ↵] is a list
of discount parameters, each taking a real value in (0, 1). If we define �n = �↵n�10

10 for
n � 10, and �n for n  10 then dN = ⇧

|N |
i=|PA(N)|+1�i. D is the maximum depth of the

suffix tree which corresponds to both the maximum context length used in modeling and
the maximum recursion depth of all of the algorithms. T is the bound on the length of the
reference sequenceR and is typically set to a multiple of the upper bound on the number of
node instances in the suffix tree L. The parameter k is the upper bound on the total count cN

in each node. The parameter ⌘ is a learning rate for the updating of the discount parameters
and is typically set to a very small value.

8

Wood,	
 Archambeau,	
 Gasthaus,	
 James,	
 and	
 Teh	
 A	
 Stochas*c	
 Memoizer	
 for	
 Sequence	
 Data,	
 ICML	
 2009	

Bartle7	
 and	
 Wood	
 Deplump	
 for	
 Streaming	
 Data,	
 DCC	
 2011	

	

Probabilistic Deterministic Infinite Automata
Model
•  World state ≈ sufficient statistic of

emissions
•  Per-state emissions learned
•  Per-state deterministic transition

functions learned

•  Unsupervised PDFA structure learning
biases towards compact (few states)
world models that are fast approximate
predictors

Problem
•  ~4000 lines of Java code
•  New student re-implementation

–  6-12 months

Pfau,	
 Bartle7,	
 and	
 Wood	
 Probabilis*c	
 Determinis*c	
 Infinite	
 Automata,	
 NIPS,	
 2011	

Doshi-­‐Velez,	
 Pfau,	
 Wood,	
 and	
 Roy	
 Bayesian	
 Nonparametric	
 Methods	
 for	
 Par*ally-­‐Observable	
 Reinforcement	
 Learning,	
 TPAMI,	
 2013	

	

David Pfau, Nicholas Bartlett, Frank Wood
{pfau@neurotheory, bartlett@stat, fwood@stat}.columbia.edu

Probabilistic Deterministic Infinite Automata

Overview Generative Model Natural Language, DNA Prediction

Synthetic Grammar Induction

Future Directions

Probabilistic Deterministic Finite Automata

Finite Automata

Probabilistic Nondeterministic Finite Automata

0

1 2

3

A/0.5 A/0.5

A/0.8 A/0.6

B/0.4B/0.2

(a) (b)

0

1 2

A/0.5 A/0.5

A/0.8 A/0.6

B/0.4B/0.2

0 1
B/1.0

2

3

4

5

6

T/0.5

P/0.5

S/0.6
X/0.4

V/0.3T/0.7

V/0.5

X/0.5

P/0.5

S/0.5

E/1.0

to 0from 6

0 1A/0.5

B/0.5

B/1.0

0 1 2 3

4

5

6

B/0.8125

B/0.8125

B/0.75

A/0.1875 A/0.5625 A/0.5625

B/0.0625

A/0.1875

B
/0.4375

A
/0.25

A/0.9375

B/0.4375A/0.75
B/0.25

ε

0 1

00 01 10 11

0

0
0 0

0

1

1 10 1

1

1

1

0

Trigram as DFA (without probability)

Even Process

Reber Grammar

Foulkes Grammar

(a) in mixtures of PDFA but not PDFA
(b) in PNFA but not mixtures of PDFA

A Probabilistic Deterministic Infinite Automata (PDIA) is a
Probabilistic Deterministic Finite Automata (PDFA)[1] with an
unbounded number of states. We take a nonparametric Bayesian
approach to PDIA inference.

PDIA models are a an attractive compromise between the
computational costs of Hidden Markov Models and the storage
requirements of smoothed Markov models for predicting
sequence data.

Given a finite training sequence, the posterior distribution over
PDIA parameters is an infinite mixture of PDFAs.

Samples for this distribution drawn via MCMC form a finite
mixture approximating this posterior.

Model classes, from least to most general -

nth-order Markov ⊊ PDFA ⊊ finite mixture of PDFA ⊊ PNFA = HMM

(Technically, HMM = PNFA without final state)

10^1 10^2 10^3 10^4 10^5 10^6
1

2

3

4

5

6

7

8

Observations

St
at

es

Even Process

Foulkes Grammar

Reber Grammar

References

Evaluation on larger data sets
Sampler that proposes “similar” PDFA, i.e. spilt-merge sampling
Smoothed emission distributions

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

PDIA PDIA-MAP HMM-EM bigram trigram 4-gram 5-gram 6-gram SSM
AIW 5.13 5.46 7.89 9.71 6.45 5.13 4.80 4.69 4.78

365.6 379 52 28 382 2,023 5,592 10,838 19,358
DNA 3.72 3.72 3.76 3.77 3.75 3.74 3.73 3.72 3.56

64.7 54 19 5 21 85 341 1,365 314,166

Table 1: PDIA inference performance relative to HMM and fixed order Markov models. Top rows:
perplexity. Bottom rows: number of states in each model. For the PDIA this is an average number.

!"# $ $"# % %"# &

'($!
)

!$"*+

!$"*,

!$"*)

!$"*%

!$"*

!$"++

!$"+,

'($!
)

-./01.2345

6
3
7
(6
28
/
92:
3
3
;

!"# $ $"# % %"# &

'($!
)

&%#

&#!

&<#

)!!

)%#

)#!

=
.1
./
5

Figure 1: Subsampled PDIA sampler trace for Alice in Wonderland. The top trace is the joint log
likelihood of the model and training data, the bottom trace is the number of states.

the start of the test data was set to the last state of the model after accepting the training data. We
placed Gamma(1,1) priors over �, ⇥ and ⇤, set ⌅ = .001, and used uniform priors for d0 and d.

We evaluated the performance of the learned models by calculating the average per character pre-
dictive perplexity of the test data. For training data x1:T and test data y1:T � this is given by
2�

1
T � log2 P (y1:T � |x1:T). It is a measure of the average uncertainty the model has about what character

comes next given the sequence up to that point, and is at most |�|. We evaluated the probability of
the test data incrementally, integrating the test data into the model in the standard Bayesian way.

Test perplexity results are shown in Table 1 on the first line of each subtable. Every fifth sample
for AIW and every tenth sample for DNA after burn-in was used for prediction. For AIW, we ran
15,000 burn-in samples and used 3,500 samples for predictive inference. Subsampled sampler di-
agnostic plots are shown in Figure 1 that demonstrate the convergence properties of our sampler.
When modeling the DNA dataset we burn-in for 1,000 samples and use 900 samples for inference.
For the smoothed n-gram models, we report thousand-sample average perplexity results for hierar-
chical Pitman-Yor process (HPYP) [14] models of varying Markov order (1 through 5 notated as
bigram through 6-gram) after burning each model in for one hundred samples. We also show the
performance of the single particle incremental variant of the sequence memoizer (SM) [5], the SM
being the limit of an n-gram model as n � ⇥. We also show results for a hidden Markov model
(HMM) [8] trained using expectation-maximization (EM). We determined the best number of hid-
den states by cross-validation on the test data (a procedure used here to produce optimistic HMM
performance for comparison purposes only).

The performance of the PDIA exceeds that of the HMM and is approximately equal to that of
a smoothed 4-gram model, though it does not outperform very deep, smoothed Markov models.
This is in contrast to [16], which found that PDFAs trained on natural language data were able to
predict as well as unsmoothed trigrams, but were significantly worse than smoothed trigrams, even
when averaging over multiple learned PDFAs. As can be seen in the second line of each subtable
in Table 1, the MAP number of states learned by the PDIA is significantly lower than that of the
n-gram model with equal predictive performance.

Unlike the HMM, the computational complexity of PDFA prediction does not depend on the number
of states in the model because only a single path through the states is followed. This means that the
asymptotic cost of prediction for the PDIA is O(LT ⇥), where L is the number of posterior samples
and T ⇥ is the length of the test sequence. For any single HMM it is O(KT ⇥), where K is the number
of states in the HMM. This is because all possible paths must be followed to achieve the given HMM

6

!"# $ $"# % %"# &

'($!
)

!$"*+

!$"*,

!$"*)

!$"*%

!$"*

!$"++

!$"+,

'($!
)

-./01.2345

6
3
7
(6
28
/
92:
3
3
;

!"# $ $"# % %"# &

'($!
)

&%#

&#!

&<#

)!!

)%#

)#!

=
.1
./
5

Top rows: perplexity of held out data. Bottom rows: number of states

Predictions from average of many samples better than MAP sample

Low model complexity relative to other models with the same
predictive performace

Alice in Wonderland:10k training characters, 4k test “alice was beginning to...”
Mouse DNA: 150k train, 50k test “CGTATATGCGCC...”
Controls: EM-trained HMM, HPYP smoothed n-gram[3], sequentially-trained sequence
memoizer[4]

µ � Dir(�0/|Q|)
⌥j � Dir(�µ)
⇤(qi, ⌃j) = ⇤ij � ⌥j

⇧qi � Dir(⇥/|�|)
⌅0 = q0, ⌅t = ⇤(⌅t�1, xt�1)
xt � ⇧�t

Notation:
 - finite set of states
 - finite alphabet
 - transition function
 - emission distribution
 - initial state
 - data at time t
 - state at time t
 - hyperparameters

q0

q1

q2

q3

q4

q5

...

�
�0 �1 �2

q1

q1

·

...
...

...
·

· ··
q2

q3

q3

q3

q3

q4

q5

q5q42

q12

q6

�
q0

q1

...

�0 �1 �2

(iid probability vector)
(iid probability vector)

...
...

...
q0 q1 q3 q3 q3 q5 q2 q4 q5 q2 . . .

1 1 0 0 2 2 1 2 1 0 . . .

This prior biases towards state reuse in two ways: the global bias toward some
states due to and the column-specific bias towards certain states when the
same symbol is emitted due to .�j

A Prior over PDFA with a bounded number of states

A Prior over infinite models

The limit as is a PDIA prior. The two-level Dirichlet construction of the
finite model becomes a Hierarchical Dirichlet Process (HDP)[2] which we give
geometric base distribution. When and are marginalized out, are
exchangeable.

|Q|�⇥

µ

µ �j �ij

Inference

MCMC sampler for
Marginalizing out in likelihood gives form that only depends on counts

Propose from , easy if , use Chinese Restaurant
Franchise Process[2] if

Accept with probability

If , can be ignored

⇤ij |⇤�ij , x0:T , �, �0, ⇥
�

cij =
T�

t=0

1ij(�t, xt)p(x0:T |⇥, c, �) =
|Q|�1⇤

i=0

�(�)
�(�

|�|)|�|

⇥|�|
j=1 �(�

|�| + cij)

�(� +
�|�|

j=1 cij)

cij = 0 �ij

��ij ⇥⇥ij |⇥�ij , �, �0 |Q| <�
|Q| =�

min
�

1,
p(x0:T |�⇥ij , ��ij)
p(x0:T |�ij , ��ij)

⇥ [1] M.O. Rabin. Probabilistic Automata. Information and Control, 6(3):230-245, 1963
[2] Y. W. Teh, M. I. Jordan, M. J. Beal, D. M. Blei. Hierarchical Dirichlet Processes.
Journal of the American Statistical Association. 101(476):1566-1581, 2006
[3] Y. W. Teh. A hierarchical Bayesian language model based on Pitman-Yor
processes. Proceedings of the ACL. 985-992, 2006
[4] F. Wood, C. Archambeau, J. Gasthaus, L. James, Y. W. Teh. A Stochastic
Memoizer for Sequence Data. Proceedings of the 26th ICML. 1129-1136, 2009
This research was supported by the NSF GRFP

j = 0, . . . , |�|� 1
i = 0, . . . , |Q|� 1
i = 0, . . . , |Q|� 1

Q
�
⇤ : Q� �⇥ Q
⇧ : Q� �⇥ [0, 1]
q0 ⇤ Q
xt ⇤ �
⌅t ⇤ Q
�,�0, ⇥

Thursday, October 21, 2010

David Pfau, Nicholas Bartlett, Frank Wood
{pfau@neurotheory, bartlett@stat, fwood@stat}.columbia.edu

Probabilistic Deterministic Infinite Automata

Overview Generative Model Natural Language, DNA Prediction

Synthetic Grammar Induction

Future Directions

Probabilistic Deterministic Finite Automata

Finite Automata

Probabilistic Nondeterministic Finite Automata

0

1 2

3

A/0.5 A/0.5

A/0.8 A/0.6

B/0.4B/0.2

(a) (b)

0

1 2

A/0.5 A/0.5

A/0.8 A/0.6

B/0.4B/0.2

0 1
B/1.0

2

3

4

5

6

T/0.5

P/0.5

S/0.6
X/0.4

V/0.3T/0.7

V/0.5

X/0.5

P/0.5

S/0.5

E/1.0

to 0from 6

0 1A/0.5

B/0.5

B/1.0

0 1 2 3

4

5

6

B/0.8125

B/0.8125

B/0.75

A/0.1875 A/0.5625 A/0.5625

B/0.0625

A/0.1875

B
/0.4375

A
/0.25

A/0.9375

B/0.4375A/0.75
B/0.25

ε

0 1

00 01 10 11

0

0
0 0

0

1

1 10 1

1

1

1

0

Trigram as DFA (without probability)

Even Process

Reber Grammar

Foulkes Grammar

(a) in mixtures of PDFA but not PDFA
(b) in PNFA but not mixtures of PDFA

A Probabilistic Deterministic Infinite Automata (PDIA) is a
Probabilistic Deterministic Finite Automata (PDFA)[1] with an
unbounded number of states. We take a nonparametric Bayesian
approach to PDIA inference.

PDIA models are a an attractive compromise between the
computational costs of Hidden Markov Models and the storage
requirements of smoothed Markov models for predicting
sequence data.

Given a finite training sequence, the posterior distribution over
PDIA parameters is an infinite mixture of PDFAs.

Samples for this distribution drawn via MCMC form a finite
mixture approximating this posterior.

Model classes, from least to most general -

nth-order Markov ⊊ PDFA ⊊ finite mixture of PDFA ⊊ PNFA = HMM

(Technically, HMM = PNFA without final state)

10^1 10^2 10^3 10^4 10^5 10^6
1

2

3

4

5

6

7

8

Observations

St
at

es

Even Process

Foulkes Grammar

Reber Grammar

References

Evaluation on larger data sets
Sampler that proposes “similar” PDFA, i.e. spilt-merge sampling
Smoothed emission distributions

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

PDIA PDIA-MAP HMM-EM bigram trigram 4-gram 5-gram 6-gram SSM
AIW 5.13 5.46 7.89 9.71 6.45 5.13 4.80 4.69 4.78

365.6 379 52 28 382 2,023 5,592 10,838 19,358
DNA 3.72 3.72 3.76 3.77 3.75 3.74 3.73 3.72 3.56

64.7 54 19 5 21 85 341 1,365 314,166

Table 1: PDIA inference performance relative to HMM and fixed order Markov models. Top rows:
perplexity. Bottom rows: number of states in each model. For the PDIA this is an average number.

!"# $ $"# % %"# &

'($!
)

!$"*+

!$"*,

!$"*)

!$"*%

!$"*

!$"++

!$"+,

'($!
)

-./01.2345

6
3
7
(6
28
/
92:
3
3
;

!"# $ $"# % %"# &

'($!
)

&%#

&#!

&<#

)!!

)%#

)#!

=
.1
./
5

Figure 1: Subsampled PDIA sampler trace for Alice in Wonderland. The top trace is the joint log
likelihood of the model and training data, the bottom trace is the number of states.

the start of the test data was set to the last state of the model after accepting the training data. We
placed Gamma(1,1) priors over �, ⇥ and ⇤, set ⌅ = .001, and used uniform priors for d0 and d.

We evaluated the performance of the learned models by calculating the average per character pre-
dictive perplexity of the test data. For training data x1:T and test data y1:T � this is given by
2�

1
T � log2 P (y1:T � |x1:T). It is a measure of the average uncertainty the model has about what character

comes next given the sequence up to that point, and is at most |�|. We evaluated the probability of
the test data incrementally, integrating the test data into the model in the standard Bayesian way.

Test perplexity results are shown in Table 1 on the first line of each subtable. Every fifth sample
for AIW and every tenth sample for DNA after burn-in was used for prediction. For AIW, we ran
15,000 burn-in samples and used 3,500 samples for predictive inference. Subsampled sampler di-
agnostic plots are shown in Figure 1 that demonstrate the convergence properties of our sampler.
When modeling the DNA dataset we burn-in for 1,000 samples and use 900 samples for inference.
For the smoothed n-gram models, we report thousand-sample average perplexity results for hierar-
chical Pitman-Yor process (HPYP) [14] models of varying Markov order (1 through 5 notated as
bigram through 6-gram) after burning each model in for one hundred samples. We also show the
performance of the single particle incremental variant of the sequence memoizer (SM) [5], the SM
being the limit of an n-gram model as n � ⇥. We also show results for a hidden Markov model
(HMM) [8] trained using expectation-maximization (EM). We determined the best number of hid-
den states by cross-validation on the test data (a procedure used here to produce optimistic HMM
performance for comparison purposes only).

The performance of the PDIA exceeds that of the HMM and is approximately equal to that of
a smoothed 4-gram model, though it does not outperform very deep, smoothed Markov models.
This is in contrast to [16], which found that PDFAs trained on natural language data were able to
predict as well as unsmoothed trigrams, but were significantly worse than smoothed trigrams, even
when averaging over multiple learned PDFAs. As can be seen in the second line of each subtable
in Table 1, the MAP number of states learned by the PDIA is significantly lower than that of the
n-gram model with equal predictive performance.

Unlike the HMM, the computational complexity of PDFA prediction does not depend on the number
of states in the model because only a single path through the states is followed. This means that the
asymptotic cost of prediction for the PDIA is O(LT ⇥), where L is the number of posterior samples
and T ⇥ is the length of the test sequence. For any single HMM it is O(KT ⇥), where K is the number
of states in the HMM. This is because all possible paths must be followed to achieve the given HMM

6

!"# $ $"# % %"# &

'($!
)

!$"*+

!$"*,

!$"*)

!$"*%

!$"*

!$"++

!$"+,

'($!
)

-./01.2345

6
3
7
(6
28
/
92:
3
3
;

!"# $ $"# % %"# &

'($!
)

&%#

&#!

&<#

)!!

)%#

)#!

=
.1
./
5

Top rows: perplexity of held out data. Bottom rows: number of states

Predictions from average of many samples better than MAP sample

Low model complexity relative to other models with the same
predictive performace

Alice in Wonderland:10k training characters, 4k test “alice was beginning to...”
Mouse DNA: 150k train, 50k test “CGTATATGCGCC...”
Controls: EM-trained HMM, HPYP smoothed n-gram[3], sequentially-trained sequence
memoizer[4]

µ � Dir(�0/|Q|)
⌥j � Dir(�µ)
⇤(qi, ⌃j) = ⇤ij � ⌥j

⇧qi � Dir(⇥/|�|)
⌅0 = q0, ⌅t = ⇤(⌅t�1, xt�1)
xt � ⇧�t

Notation:
 - finite set of states
 - finite alphabet
 - transition function
 - emission distribution
 - initial state
 - data at time t
 - state at time t
 - hyperparameters

q0

q1

q2

q3

q4

q5

...

�
�0 �1 �2

q1

q1

·

...
...

...
·

· ··
q2

q3

q3

q3

q3

q4

q5

q5q42

q12

q6

�
q0

q1

...

�0 �1 �2

(iid probability vector)
(iid probability vector)

...
...

...
q0 q1 q3 q3 q3 q5 q2 q4 q5 q2 . . .

1 1 0 0 2 2 1 2 1 0 . . .

This prior biases towards state reuse in two ways: the global bias toward some
states due to and the column-specific bias towards certain states when the
same symbol is emitted due to .�j

A Prior over PDFA with a bounded number of states

A Prior over infinite models

The limit as is a PDIA prior. The two-level Dirichlet construction of the
finite model becomes a Hierarchical Dirichlet Process (HDP)[2] which we give
geometric base distribution. When and are marginalized out, are
exchangeable.

|Q|�⇥

µ

µ �j �ij

Inference

MCMC sampler for
Marginalizing out in likelihood gives form that only depends on counts

Propose from , easy if , use Chinese Restaurant
Franchise Process[2] if

Accept with probability

If , can be ignored

⇤ij |⇤�ij , x0:T , �, �0, ⇥
�

cij =
T�

t=0

1ij(�t, xt)p(x0:T |⇥, c, �) =
|Q|�1⇤

i=0

�(�)
�(�

|�|)|�|

⇥|�|
j=1 �(�

|�| + cij)

�(� +
�|�|

j=1 cij)

cij = 0 �ij

��ij ⇥⇥ij |⇥�ij , �, �0 |Q| <�
|Q| =�

min
�

1,
p(x0:T |�⇥ij , ��ij)
p(x0:T |�ij , ��ij)

⇥ [1] M.O. Rabin. Probabilistic Automata. Information and Control, 6(3):230-245, 1963
[2] Y. W. Teh, M. I. Jordan, M. J. Beal, D. M. Blei. Hierarchical Dirichlet Processes.
Journal of the American Statistical Association. 101(476):1566-1581, 2006
[3] Y. W. Teh. A hierarchical Bayesian language model based on Pitman-Yor
processes. Proceedings of the ACL. 985-992, 2006
[4] F. Wood, C. Archambeau, J. Gasthaus, L. James, Y. W. Teh. A Stochastic
Memoizer for Sequence Data. Proceedings of the 26th ICML. 1129-1136, 2009
This research was supported by the NSF GRFP

j = 0, . . . , |�|� 1
i = 0, . . . , |Q|� 1
i = 0, . . . , |Q|� 1

Q
�
⇤ : Q� �⇥ Q
⇧ : Q� �⇥ [0, 1]
q0 ⇤ Q
xt ⇤ �
⌅t ⇤ Q
�,�0, ⇥

Thursday, October 21, 2010

Mixture of Objects Markov Model
Model
•  World state ≈ infinite mixture of objects
•  Per-state, per-object emissions learned
•  Per-state, per-object complex transition

functions learned

Problem
•  ~5000 lines of Matlab code
•  Implementation

–  ~ 1 year

•  Generative model
–  ~1 page latex math

•  Inference algorithm
–  ~3 pages latex math

	

Neiswanger,	
 Wood,	
 and	
 Xing	
 The	
 Dependent	
 Dirichlet	
 Process	
 Mixture	
 of	
 Objects	
 for	
 Detec*on-­‐free	
 Tracking	
 and	
 Object	
 Modeling,	
 AISTATS,	
 2014	

	

14 Willie Neiswanger and Frank Wood

−4

−2

0

2

4 −4

−2

0

2

4

0

10

20

30

40

50

60

70

80

90

100

(a)

−8
−6

−4
−2

0
2

4

−4

−2

0

2

4

5

10

15

20

25

30

35

40

45

50

(b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 5: Results from the PETS2000 (a) and PETS2001 (b) dataset. Both plots show a sample from the posterior
distribution of the state, where the vertical axis denotes time, the horizontal axes represent spatial position, color
represents assignment, and the mean and standard deviation are shown. Below are four frames from the PETS2000
(c-f) and PETS2001 (g-j) sequence with one posterior sample mean and covariance matrix representation shown
for each frame (and one sample mean shown for the previous 20 frames).

09/2010 dataset. As this dataset consists solely of hu-
mans, all ten of the algorithms presented for compar-
ison were developed for the specific purpose of people
tracking (i.e. not for general detection and tracking of
arbitrary objects). As a consequence, many of these
studies use externally developed (and trained) state-
of-the-art human detectors, exploit the orientation of
the humans in this specific dataset, or apply motion

models based on assumptions about human motion. In
particular, Breitenstein et al. [6] base their tracking on
ouput from an externally trained human-specific detec-
tor; Yang et al. [63] assume they are tracking an upright
person, and perform feet and head detection; Conte et
al. [17] group foreground fragments based on geome-
try of the human shape to be recognized and look for
shadows often present in human surveillance scenarios;

Motivation, Proposal, Honesty
•  Existing tools for modeling are cumbersome

–  Akin to writing code in assembly language
–  Model specification and forward sampling “easy”
–  Inference hard

•  Probabilistic programming systems
–  Efficient model development and testing
–  Decoupling of modeling and inference
–  More compact notation
–  Bigger more expressive models
–  Automated inference

•  Problem
–  Existing probabilistic programming systems not quite there yet

Probabilistic Programming
•  Inverse Computing
•  Automated Inference For Generative Modeling
•  Stochastic Black-box Simulator Inversion

•  “Probabilistic programs are usual functional or
imperative programs with two added constructs: (1)
the ability to draw values at random from
distributions, and (2) the ability to condition values of
variables in a program via observations. Models
from diverse application areas such as computer
vision, coding theory, cryptographic protocols,
biology and reliability analysis can be written as
probabilistic programs.”

Gordon et al, “Probabilistic Programming”, ICSE 2014

Teaching and Research Language

Anglican
A “Church” of England “Venture”

 e�

Wood, van de Meent, Mansinghka “A New Approach to Probabilistic Programming Inference” AISTATS 2014

van de Meent

http://www.robots.ox.ac.uk/~fwood/anglican/

Please report bugs to

https://bitbucket.org/fwood/anglican/issues

Perov

Modeling Language Syntax
Outer Directives

[assume symbol expr]

[observe expr value]
[predict expr]

Inner Expressions - Scheme/Lisp/Clojure
•  Functional except stochastic procedures
•  Pure (no side-effects) except mem
•  Higher order

Ugh, Why Lisp?
•  Redefinition prohibited (“pure functional”)

[assume (a (normal 5 10))]

[assume (b (normal a 2))]
[assume (a (normal b 7))]

=> Error

•  Imperative languages (i.e. Probabilistic-C) allow (!?!!)

int a = normal(5,10);
int b = normal(a,2);

int a = normal(b,7);

Paige and Wood “A Compilation Target for Probabilistic Programming Languages” ICML 2014

Anglican Stochastic Procedures

(flip p) sample a single binomial trial. Returns true with
probability p and false with probability 1-p.

(gamma a b) samples from a Gamma distribution with shape a
and rate b. Returns a double on the domain (0, Inf).

(invgamma a b) samples from an inverse Gamma distribution
with shape a and rate b. Returns a double on the domain (0,
Inf).

(normal m s) samples from a univariate normal distribution
with mean m and stdev s. Returns a double on the domain (-
Inf, Inf)

http://www.robots.ox.ac.uk/~fwood/anglican/language/

Higher Order

(lambda (& symbols) body) => compound procedure
(lambda symbol body) => compound procedure

Constructs a compound procedure.

Example

((lambda (n m)
 (* (+ n 1) m))
 1 2)

=> 4

http://www.robots.ox.ac.uk/~fwood/anglican/language/

Memoization

(mem proc)

Constructs a memoized procedure instance from an
expression proc that must evaluate to a procedure. If a
memoized procedure call is made with a previously used
set of arguments, a cached value is returned instead of
re-doing computation. This is typically used both to get
dynamic programming for free and to incrementally
construct complex datastructures.

Example

[assume H (mem (lambda (k) (list (normal 3 4) (gamma 1 1))))]
[assume theta_1 (H 1)]
[assume theta_2 (H 2)]
[assume theta_3 (H 1)]
[predict (= theta_1 theta_3)] => always true

http://www.robots.ox.ac.uk/~fwood/anglican/language/

Complex Control Flow

(if bool-expr cons-expr alt-expr)

Example

(if (= 1 (poisson 2))
 "the predicate is true"
 (normal 18 (/ 45 3.98)))

=> "the predicate is true” w.p. 0.2707

http://www.robots.ox.ac.uk/~fwood/anglican/language/

Birthday Coincidence
Approximately, what’s the probability that in a room
filled with 23 people at least one pair of people
have the same birthday?

Solution
[assume birthday (mem (lambda (i) (uniform-discrete 1 366)))]
[assume N 23]

[assume pair-equal

 (lambda (i j)

 (if (> i N)

 false

 (if (> j N)

 (pair-equal (+ i 1) (+ i 2))

 (if (= (birthday i) (birthday j))

 true

 (pair-equal i (+ j 1))))))]

[predict (pair-equal 1 2)]

Invoking Anglican

anglican -s *yoursourcefile*

-  or –

cat *yoursourcefile* | anglican

Some command line switches

 Switches Default Desc
 -------- ------- ----
 -h, --no-help, --help false Show help
 -s, --source-file *in* Anglican source file to interpret
 -p, --predict-file *out* File into which to print predicts
 -n, --num-samples Infinity Number of samples

Anglican Semantics Lite

•  Applying a (random) procedure generates a sample.

•  Running an Anglican program yields a stream of predict
expression samples generated from a sequence of program
execution paths sampled via a Markov chain Monte Carlo
exploration of the space of execution paths.

Inference

µ ⇠ N(1, 5)

yi|µ ⇠ N(µ, 2)

y1 = 9

y2 = 8

µ|y1:2 ⇠ N(7.25, 0.8333)

Solution
[assume sigma (sqrt 2)]
[assume mu (normal 1 (sqrt 5))]

[observe (normal mu sigma) 9]
[observe (normal mu sigma) 8]

[predict mu]

Addition
What numbers added together equal seven?

Solution
[assume a (- (poisson 100) 100)]
[assume b (- (poisson 100) 100)]

[observe (normal (+ a b) .00001) 7]

[predict (list a b)]

Anglican Semantics

•  Running an Anglican program yields a stream of predict
expression samples generated from a dependent sequence
of program execution paths sampled via a Markov chain
Monte Carlo exploration of the posterior of execution paths
conditioned on observed data.

•  Test function averages converge in the usual sense.

Leaving The Beaten Path

y1 = 9

y2 = 8

µ ⇠ Poisson(1)

yi|µ ⇠ N(µ, 2)

µ|y1:2 ⇠?

Solution
[assume sigma (sqrt 2)]
[assume mu (poisson 1)]

[observe (normal mu sigma) 9]

[observe (normal mu sigma) 8]

[predict mu]

Multivariate Logistic Regression

�2 ⇠ Gamma(1, 1)

�
j

⇠ Normal(0,�2
)

p(z
i

= 1) =

1

1 + e��

T
x

Solution
[assume dot-product (lambda (u v)
 (if (= (count u) 0)
 0
 (+ (* (first u) (first v))

 (dot-product (rest u) (rest v)))))]
[assume sigma (sqrt (gamma 1 1))]
[assume beta (list (normal 0 sigma) (normal 0 sigma) (normal 0 sigma) (normal 0 sigma)
(normal 0 sigma))]
[assume z (lambda (x)
 (/ 1 (+ 1 (exp (* -1 (dot-product beta x))))))]

[observe-csv
 "http://www.robots.ox.ac.uk/~fwood/anglican/examples/logistic_regression/iris.csv"
 (flip (z (list 1 $1 $2 $3 $4))) (= $5 "Iris-setosa")]
[predict beta]

; should be Iris-setosa, i.e. 1 (from training data)
[predict (z (list 1 5.1 3.5 1.4 0.2))]
; should be Iris-virginica, i.e. 0 (from training data)
[predict (z (list 1 7.7 2.6 6.9 2.3))]

Hidden Markov Model

[assume initial-state-dist (list (/ 1 3) (/ 1 3) (/ 1 3))]
[assume get-state-transition-dist
 (lambda (s) (cond ((= s 0) (list .1 .5 .4))
 ((= s 1) (list .2 .2 .6))
 ((= s 2) (list .15 .15 .7))))]
[assume transition (lambda (prev-state)
 (discrete (get-state-transition-dist prev-state)))]
[assume get-state (mem (lambda (index)
 (if (<= index 0) (discrete initial-state-dist)
 (transition (get-state (- index 1))))))]
[assume get-state-observation-mean
 (lambda (s) (cond ((= s 0) -1)
 ((= s 1) 1)
 ((= s 2) 0)))]
[observe (normal (get-state-obs-mean (get-state 1)) 1) .9]
[observe (normal (get-state-obs-mean (get-state 2)) 1) .8]
…
[observe (normal (get-state-obs-mean (get-state 16)) 1) -1]
[predict (get-state 0)]
[predict (get-state 1)]
…
[predict (get-state 16)]

Bayesian Nonparametrics

; sample-stick-index is a procedure that samples an index from
; a potentially infinite dimensional discrete distribution

; lazily constructed using a stick breaking rule

[assume sample-stick-index (lambda (breaking-rule index)

 (if (flip (breaking-rule index))

 index

 (sample-stick-index breaking-rule (+ index 1))))]

•  One way : lazy stick sampling

Sethuraman Stick Breaking
; sethuraman-stick-picking-procedure returns a procedure
; that picks a stick each time its called from the set of sticks

; lazily constructed via a closed-over one-parameter stick

; breaking rule

[assume make-sethuraman-stick-picking-procedure

 (lambda (concentration)

 (begin (define V

 (mem (lambda (x) (beta 1.0 concentration))))

 (lambda () (sample-stick-index V 1))))]

DPMem
; DPmem is a procedure that takes two arguments -- the concentration
; to a Dirichlet process and a base sampling procedure
; DPmem returns a procedure

[assume DPmem (lambda (concentration base)
 (begin
 (define get-value-from-cache-or-sample
 (mem (lambda (args stick-index)
 (apply base args))))
 (define get-stick-picking-procedure-from-cache
 (mem (lambda (args)
 (make-sethuraman-stick-picking-procedure concentration))))
 (lambda varargs
 ; when the returned function is called , the first thing
 ; it does is get the cached stick breaking
 ; procedure for the passed in arguments
 ; and _calls_ it to get an index
 (begin
 (define index ((get-stick-picking-procedure-from-cache varargs)))
 ; if , for the given set of arguments and
 ; just sampled index a return value has already
 ; been computed , get it from the cache
 ; and return it , otherwise sample a new value
 (get-value-from-cache-or-sample varargs index)))))]

Dirichlet Process Mixture
[assume H (lambda ()
 (begin

 (define v (/ 1.0 (gamma 1 10)))

 (list (normal 0 (sqrt (* 10 v))) (sqrt v))))]

[assume gaussian-mixture-model-parameters (DPmem 1.72 H)]

[observe-csv "http:// ... "

 (apply normal (gaussian-mixture-model-parameters)) $2]

[predict (apply normal (gaussian-mixture-model-parameters))]

Example:

curl -s http://www.robots.ox.ac.uk/~fwood/anglican/examples/
dp_mixture_model/dp-church.anglican | anglican | grep 'normal' |
awk -F',' '{print $2}' | feedgnuplot --stream --histogram 0 --with
boxes --xlabel 'x' --ylabel Frequency --binwidth 1

Expressivity
•  Easily implement modern machine learning

methods
–  10’s of lines of code

•  Higher-order functionality

Symbolic Function Induction
What’s the next value? And the function?

Input	
 Output	

1	
 5	

2	
 3	

3	
 1	

4	
 ?	

Solution
[assume get-int-constant

 (lambda () (uniform-discrete 0 10))]

[assume safe-div

 (lambda (x y) (if (= y 0) 0 (/ x y)))]

[assume pcfg
 (lambda ()
 (define expression-type (discrete (list 0.40 0.30 0.30)))

 (cond
 ((= expression-type 0) (get-int-constant))

 ((= expression-type 1) 'x)
 (else
 (list

 (nth (list (quote +) (quote -) (quote *) (quote safe-div))
 (discrete (list 0.25 0.25 0.25 0.25)))
 (pcfg) (pcfg)))))]

[assume induced-procedure-code (list 'lambda (list 'x) (pcfg))]

[assume induced-procedure (eval induced-procedure-code)]

[assume noise 0.00001]

[observe (normal (induced-procedure 1) noise) 5]
[observe (normal (induced-procedure 2) noise) 3]

[observe (normal (induced-procedure 3) noise) 1]

[predict induced-procedure-code]

[predict (induced-procedure 4)]

Goals and Aims
(i)  Accelerate iteration over models

-  Inference is automatic
-  Writing generative code is easier than deriving model inverses
-  Lower technical barrier of entry to development of new models

(ii)  Accelerate iteration over inference procedures
-  Computer language is an abstraction barrier

-  Inference procedures can be tested against a library of models
-  Inference procedures become “compiler optimizations”

(iii)  Enable development of more expressive models

-  Probabilistic programs can express a superset of graphical
models

-  Modern machine learning models are tens of lines of code

How Does it Work?

Probabilistic Programming Concepts
•  First half

–  Procedures “sample”
–  Programs are generative models

•  This half
–  “Sampling” execution traces = inference

–  Different traces arise from stochastic procedure outputs
•  Elementary

flip, normal, discrete, poisson, gamma, …

•  Compound

(lambda (a b) (if (flip a)
 (+ (poisson b) 7)
 (normal a b)))

–  Various sampling algorithms apply

•  Rejection sampling
•  Metropolis Hastings
•  Sequential Monte Carlo
•  Particle Markov Chain Monte Carlo

Outline
•  Trace Probability

•  Probabilistic Program Interpretation

•  Monte Carlo-based probabilistic inference
–  Rejection Sampling
–  MCMC
–  SMC
–  PMCMC

Probabilistic Inference

Compressed Notation for Sampling

Generalizing

p(ci = cj |Y) /
Z Z Z Z Z

p(Y,⇥, C,~⇡,↵;G0)I(ci = cj)d⇥dCd~⇡d↵

Inference, prediction, and inspection can all be expressed as expectations

E[f] ⌘
Z

f (x)p(x)dx

Where x is all latent variables, f is a test function, and p is the
distribution against which we’re integrating.

Wood (University of Oxford) Unsupervised Machine Learning January, 2014 15 / 25

Monte Carlo Integration A Don’t Fix it If it Ain’t Broke Tool : Monte Carlo Integration

Recipe

1 Sample x(`) ⇠ p(x) for ` = 1 . . . L

2 Estimate E[f] ⇡ f̂ = 1
L

PL
`=1 f (x

(`))

Claim (1) : f̂ is unbiased, i.e. E[f̂] = E[f]

E[f̂] = E
"
1

L

LX

`=1

f (x(`))

#
=

1

L

LX

`=1

E[f (x(`))]

=
1

L

LX

`=1

E[f (x)] E[f (x(j))] = E[f (x(k))] since x(`) iid

= E[f]

Wood (University of Oxford) Unsupervised Machine Learning January, 2014 16 / 25

How To Sample Execution Traces
•  What is an execution trace?
•  What is its probability?

•  Forward interpretation generates sequences of stochastic
procedure applications

f(yn|✓tn ,x1:n)

p(x1:N |y1:N) / p̃(y1:N ,x1:N) ⌘
NY

n=1

g(yn|✓tn ,x1:n)f(xn|x1:n�1)

f(xn|x1:n�1) =

|xn|Y

k=1

f(xn,k|✓tn,k , xn,1:(k�1),x1:(n�1))

[assume std (sqrt 2)]

[assume mu (normal 1 (sqrt 5))]

[observe (normal mu std) 8]

[predict mu]

mu ,4.695378142528313

mu ,9.618613408203807

mu ,5.677518578193885

mu ,5.677518578193885

mu ,9.618613408203807

mu ,5.677518578193885

mu ,9.618613408203807

mu ,5.677518578193885

mu ,9.618613408203807

mu ,5.677518578193885

mu ,9.618613408203807

mu ,9.618613408203807

mu ,9.618613408203807

mu ,9.618613408203807

mu ,9.618613408203807

mu ,5.025871457838009

flip, normal, discrete, poisson, dirichlet, gamma, ...

(+ 8 9)

(lambda (a b) (if (flip a) (+ (poisson b) 7) (normal a b)))

1

Execution Trace Probability p(yn|✓tn ,x1:n)

p̃(y1:N ,x1:N) ⌘
NY

n=1

g(yn|✓tn ,x1:n)f(xn|x1:n�1)

f(xn|x1:n�1) =

|xn|Y

k=1

f(xn,k|✓tn,k , xn,1:(k�1),x1:(n�1))

[assume std (sqrt 2)]

[assume mu (normal 1 (sqrt 5))]

[observe (normal mu std) 8]

[predict mu]

mu ,4.695378142528313

mu ,9.618613408203807

mu ,5.677518578193885

mu ,5.677518578193885

mu ,9.618613408203807

mu ,5.677518578193885

mu ,9.618613408203807

mu ,5.677518578193885

mu ,9.618613408203807

mu ,5.677518578193885

mu ,9.618613408203807

mu ,9.618613408203807

mu ,9.618613408203807

mu ,9.618613408203807

mu ,9.618613408203807

mu ,5.025871457838009

flip, normal, discrete, poisson, dirichlet, gamma, ...

(+ 8 9)

(lambda (a b) (if (flip a) (+ (poisson b) 7) (normal a b)))

1

Type of stochastic procedure

Parameter of stochastic procedure

Observed value
Parameter of observation distribution

Type of observation
 distribution

Interpreter memory state

Posterior Distribution of Trace Given
Observations

Joint Distribution of Trace And
Observations

Suggests Relationship To State Space Modeling

y1 yN

✓

y2

x1,1 x1,2 x2,1 x3,1 x3,2

y3

{{ ✓

xN,|xN |

•  Program	
 generates	
 all	
 random	
 variables	

•  State	
 is	
 interpreter	
 memory	
 state	

•  Transi*on	
 is	
 stochas*c	
 procedure	
 applica*on	

•  Only	
 observes	
 need	
 be	
 indexed	

g = observe

f = execute forward

Program Interpretation

(define (eval exp env)
 (cond

 ((self-evaluating? exp) exp)
 ((variable? exp) (lookup-variable-value exp env))

 ((quoted? exp) (text-of-quotation exp))

 ((assignment? exp) (eval-assignment exp env))

 ((definition? exp) (eval-definition exp env))

 ((if? exp) (eval-if exp env))

 ((lambda? exp)
 (make-procedure (lambda-parameters exp)

 (lambda-body exp) env))

 ((begin? exp)

 (eval-sequence (begin-actions exp) env))

 ((cond? exp) (eval (cond->if exp) env))

 ((application? exp)
 (apply (eval (operator exp) env)

 (list-of-values (operands exp) env)))

 (else

 (error

 "Unknown expression type -- EVAL" exp))))

(define (apply procedure arguments)
 (cond

 ((primitive-procedure? procedure)
 (apply-primitive-procedure procedure arguments))

 ((compound-procedure? procedure)

 (eval-sequence

 (procedure-body procedure)

 (extend-environment

 (procedure-parameters procedure)
 arguments

 (procedure-environment procedure)

)

)

)

 (else
 (error

 "Unknown procedure type – APPLY” procedure))))

eval apply

Copied	
 from	
 Abelson,	
 Sussman	
 and	
 Sussman	
 “Structure	
 and	
 Interpreta*on	
 of	
 Computer	
 Programs”	

[assume poi-1 (beta 7 4)]

[assume poi-2 (+ 1 (poisson 8))]

[assume generative-model-part-1 (lambda (a b)

(if (flip a)

(+ (poisson b) 7)

(normal a b)))]

[assume generative-model-part-2 (lambda () (gamma poi-1 poi-2))]

[observe (normal (generative-model-part-1 poi-1 poi-2) 1) 18]

[observe (normal 0 (generative-model-part-2)) 6]

[predict (list poi-1 poi-2)]

x1,1 ⇠ Beta(7, 4)

x1,2|x1,1 = 0.4 ⇠ Poisson(8)

x1,3|x1,2 = 6, x1,1 = 0.4 ⇠ Binomial(0.4)

x1,4|x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Poisson(7)

y1 = 18|x1,4 = 7, x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Normal(14, 1)

x2,1| . . . ⇠ Gamma(0.4, 7)

y2 = 6|x2,1 = 6.92, . . . ⇠ Normal(0, 6.92)

p(x|y) / p̃(y = observes,x)

x1,1 ⇠ Beta(7, 4)

x1,2|x1,1 = 0.4 ⇠ Poisson(8)

x1,3|x1,2 = 6, x1,1 = 0.4 ⇠ Binomial(0.4)

x1,4|x1,3 = false, x1,2 = 6, x1,1 = 0.4 ⇠ Poisson(7)

y1 = 18|x1,4 = 7, x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Normal(14, 1)

x2,1| . . . ⇠ Gamma(0.4, 7)

y2 = 6|x2,1 = 6.92, . . . ⇠ Normal(0, 6.92)

3

[assume poi-1 (beta 7 4)]

[assume poi-2 (+ 1 (poisson 8))]

[assume generative-model-part-1 (lambda (a b)

(if (flip a)

(+ (poisson b) 7)

(normal a b)))]

[assume generative-model-part-2 (lambda () (gamma poi-1 poi-2))]

[observe (normal (generative-model-part-1 poi-1 poi-2) 1) 18]

[observe (normal 0 (generative-model-part-2)) 6]

[predict (list poi-1 poi-2)]

x1,1 ⇠ Beta(7, 4)

x1,2|x1,1 = 0.4 ⇠ Poisson(8)

x1,3|x1,2 = 6, x1,1 = 0.4 ⇠ Binomial(0.4)

x1,4|x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Poisson(4)

y1 = 18|x1,4 = 7, x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Normal(7, 1)

x2,1| . . . ⇠ Gamma(0.4, 6)

y2 = 6|x2,1 = 6.92, . . . ⇠ Normal(0, 6.92)

p(x|y) / p̃(y = observes,x)

x1,1 ⇠ Beta(7, 4)

x1,2|x1,1 = 0.4 ⇠ Poisson(8)

x1,3|x1,2 = 6, x1,1 = 0.4 ⇠ Binomial(0.4)

x1,4|x1,3 = false, x1,2 = 6, x1,1 = 0.4 ⇠ Poisson(4)

y1 = 18|x1,4 = 7, x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Normal(7, 1)

x2,1| . . . ⇠ Gamma(0.4, 6)

y2 = 6|x2,1 = 6.92, . . . ⇠ Normal(0, 6.92)

p(x1:N |y1:N) ⇡
LX

`=1

w

`
N�

x

`
1:N

(x1:N)

3

What is ? x1
x1

[assume poi-1 (beta 7 4)]

[assume poi-2 (+ 1 (poisson 8))]

[assume generative-model-part-1 (lambda (a b)

(if (flip a)

(+ (poisson b) 7)

(normal a b)))]

[assume generative-model-part-2 (lambda () (gamma poi-1 poi-2))]

[observe (normal (generative-model-part-1 poi-1 poi-2) 1) 18]

[observe (normal 0 (generative-model-part-2)) 6]

[predict (list poi-1 poi-2)]

x1,1 ⇠ Beta(7, 4)

x1,2|x1,1 = 0.4 ⇠ Poisson(8)

x1,3|x1,2 = 6, x1,1 = 0.4 ⇠ Binomial(0.4)

x1,4|x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Poisson(7)

y1 = 18|x1,4 = 7, x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Normal(14, 1)

x2,1| . . . ⇠ Gamma(0.4, 7)

y2 = 6|x2,1 = 6.92, . . . ⇠ Normal(0, 6.92)

p(x|y) / p̃(y = observes,x)

x1,1 ⇠ Beta(7, 4)

x1,2|x1,1 = 0.4 ⇠ Poisson(8)

x1,3|x1,2 = 6, x1,1 = 0.4 ⇠ Binomial(0.4)

x1,4|x1,3 = false, x1,2 = 6, x1,1 = 0.4 ⇠ Poisson(7)

y1 = 18|x1,4 = 7, x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Normal(14, 1)

x2,1| . . . ⇠ Gamma(0.4, 7)

y2 = 6|x2,1 = 6.92, . . . ⇠ Normal(0, 6.92)

3

[assume poi-1 (beta 7 4)]

[assume poi-2 (+ 1 (poisson 8))]

[assume generative-model-part-1 (lambda (a b)

(if (flip a)

(+ (poisson b) 7)

(normal a b)))]

[assume generative-model-part-2 (lambda () (gamma poi-1 poi-2))]

[observe (normal (generative-model-part-1 poi-1 poi-2) 1) 18]

[observe (normal 0 (generative-model-part-2)) 6]

[predict (list poi-1 poi-2)]

x1,1 ⇠ Beta(7, 4)

x1,2|x1,1 = 0.4 ⇠ Poisson(8)

x1,3|x1,2 = 6, x1,1 = 0.4 ⇠ Binomial(0.4)

x1,4|x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Poisson(4)

y1 = 18|x1,4 = 7, x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Normal(7, 1)

x2,1| . . . ⇠ Gamma(0.4, 6)

y2 = 6|x2,1 = 6.92, . . . ⇠ Normal(0, 6.92)

p(x|y) / p̃(y = observes,x)

x1,1 ⇠ Beta(7, 4)

x1,2|x1,1 = 0.4 ⇠ Poisson(8)

x1,3|x1,2 = 6, x1,1 = 0.4 ⇠ Binomial(0.4)

x1,4|x1,3 = false, x1,2 = 6, x1,1 = 0.4 ⇠ Poisson(4)

y1 = 18|x1,4 = 7, x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Normal(7, 1)

x2,1| . . . ⇠ Gamma(0.4, 6)

y2 = 6|x2,1 = 6.92, . . . ⇠ Normal(0, 6.92)

p(x1:N |y1:N) ⇡
LX

`=1

w

`
N�

x

`
1:N

(x1:N)

3

What is ? x1:2

f(yn|✓tn ,x1:n)

p̃(y1:N ,x1:N) ⌘
NY

n=1

g(yn|✓tn ,x1:n)f(xn|x1:n�1)

f(xn|x1:n�1) =

|xn|Y

k=1

f(xn,k|✓tn,k , xn,1:(k�1),x1:(n�1))

[assume std (sqrt 2)]

[assume mu (normal 1 (sqrt 5))]

[observe (normal mu std) 8]

[predict mu]

mu ,4.695378142528313

mu ,9.618613408203807

mu ,5.677518578193885

mu ,5.677518578193885

mu ,9.618613408203807

mu ,5.677518578193885

mu ,9.618613408203807

mu ,5.677518578193885

mu ,9.618613408203807

mu ,5.677518578193885

mu ,9.618613408203807

mu ,9.618613408203807

mu ,9.618613408203807

mu ,9.618613408203807

mu ,9.618613408203807

mu ,5.025871457838009

flip, normal, discrete, poisson, dirichlet, gamma, ...

(+ 8 9)

(lambda (a b) (if (flip a) (+ (poisson b) 7) (normal a b)))

1

Observe Statements

[assume generative-model-part-2 (gamma poi-1 poi-2)]

[observe (normal (generative-model-part-1 poi-1 poi-2) 1) 18]

[observe (normal 0 generative-model-part-2) 6]

[predict (list poi-1 poi-2)]

2

Original Church : Rejection Sampling
•  Run program forward and condition on all

observations exactly matching the observed
output

The Principles and Practice of Probabilistic Programming

Noah D. Goodman
Stanford University

ngoodman@stanford.edu

Categories and Subject Descriptors D [3]: m

Keywords probabilistic models, probabilistic programs

Probabilities describe degrees of belief, and probabilistic infer-
ence describes rational reasoning under uncertainty. It is no won-
der, then, that probabilistic models have exploded onto the scene of
modern artificial intelligence, cognitive science, and applied statis-
tics: these are all sciences of inference under uncertainty. But as
probabilistic models have become more sophisticated, the tools to
formally describe them and to perform probabilistic inference have
wrestled with new complexity. Just as programming beyond the
simplest algorithms requires tools for abstraction and composition,
complex probabilistic modeling requires new progress in model
representation—probabilistic programming languages. These lan-
guages provide compositional means for describing complex prob-
ability distributions; implementations of these languages provide
generic inference engines: tools for performing efficient probabilis-
tic inference over an arbitrary program.

In their simplest form, probabilistic programming languages
extend a well-specified deterministic programming language with
primitive constructs for random choice. This is a relatively old
idea, with foundational work by Giry, Kozen, Jones, Moggi, Saheb-
Djahromi, Plotkin, and others [see e.g. 7]. Yet it has seen a resur-
gence thanks to new tools for probabilistic inference and new com-
plexity of probabilistic modeling applications. There are a number
of recent probabilistic programming languages [e.g. 8, 9, 11–17],
embodying different tradeoffs in expressivity, efficiency, and per-
spicuity. We will focus on the probabilistic programming language
Church [6] for simplicity, but the design of probabilistic languages
to best support complex model representation and efficient infer-
ence is an active and important topic.

Church extends (the purely functional subset of) Scheme with
elementary random primitives, such as flip (a bernoulli), multino-
mial, and gaussian. In addition, Church includes language con-
structs that simplify modeling. For instance, mem, a higher-order
procedure that memoizes its input function, is useful for describing
persistent random properties and lazy model construction. (Inter-
estingly, memoization has a semantic effect in probabilistic lan-
guages.) If we view the semantics of the underlying deterministic
language as a map from programs to executions of the program,
the semantics of the probabilistic language will be a map from
programs to distributions over executions. When the program halts

Copyright is held by the author/owner(s).
POPL’13, January 23–25, 2013, Rome, Italy.
ACM 978-1-4503-1832-7/13/01.

1 (define (rejection-query thunk condition)
2 (let ((val (thunk)))
3 (if (condition val)
4 val
5 (rejection-query thunk condition))))

1 (query
2 ... defines...
3 query-expression
4 condition-expression)

1 (define (thunk)
2 ... defines...
3 (pair query-expression
4 condition-expression))
5 (define condition rest)

Figure 1. (Top) Defining conditional inference in Church as a
stochastic recursion: rejection sampling represents the conditional
probability of the thunk conditioned on the condition predicate
being true. We typically use special query syntax (Bottom, left),
which can be desugared into a query thunk (Bottom, right).

with probability one, this induces a proper distribution over return
values. Indeed, any computable distribution can be represented as
the distribution induced by a Church program in this way (see [3,
§6], [1, §11], and citations therein).

Probabilistic graphical models [10], aka Bayes nets, are one of
the most important ideas of modern AI. Probabilistic programs
extend probabilistic graphical models, leveraging concepts from
programming language research. Indeed, graphical models can be
seen as flow diagrams for probabilistic programs—and just as flow
diagrams for deterministic programs are useful but not powerful
enough to represent general computation, graphical models are a
useful but incomplete approach to probabilistic modeling. For an
example of this, we need look no further than the fundamental
operation for inference, probabilistic conditioning, which forms a
posterior distribution over executions from the prior distribution
specified by the program. Conditioning is typically viewed as a
special operation that happens to a probabilistic model (capturing
observations or assumptions), not one that can be expressed as a
model. However, because probabilistic programs allow stochastic
recursion, conditioning can be defined as an ordinary probabilistic
function (Fig. 1, Top). (However see [1] for complications in the
case of continuous values.)

A wide variety of probabilistic models are useful for diverse
tasks, including unsupervised learning, vision, planning, and statis-
tical model selection. Due to space limitations, we only mention
two characteristic examples here. The first, Fig. 2, captures key
concepts for commonsense reasoning about the game tug-of-war.
This “conceptual library” of probabilistic functions can be used to
reason about many patterns of evidence, via different queries, with-
out needing to specify ahead of time the set of people, the teams,
or the matches. The program thus enables a very large numbers
of different inferences to be modeled, and the model predictions
match human intuitions quite well (a correlation of 0.98 between

399

Copied	
 from	
 Goodman	
 “The	
 Principles	
 and	
 Prac*ce	
 of	
 Probabilis*c	
 Programming”	
 	

Goodman,	
 Mansinghka,	
 Roy,	
 Bonawitz,	
 and.	
 Tenenbaum	
 Church:	
 A	
 language	
 for	
 genera*ve	
 models,	
 UAI,	
 2008	

	

Review: Rejection Sampling Rejection Sampling I

Assume

Want sample from p(z)

p(z) is easy to evaluate, but only up to an unknown normalising
constant, i.e.

p(z) =
1

Zp
p̃(z)

A proposal distribution q(z) s.t. kq(z) � p̃(z) for all z can be
designed

Note z is, in general, a vector of random variables.

Wood (University of Oxford) Unsupervised Machine Learning January, 2014 19 / 24

Rejection Sampling I

Assume

Want sample from p(x)

p(x) is easy to evaluate, but only up to an unknown normalising
constant, i.e.

p(x) =
1

Zp
p̃(x)

A proposal distribution q(x) s.t. kq(x) � p̃(x) for all x can be
designed

Note x is, in general, a vector of random variables.

Wood (University of Oxford) Unsupervised Machine Learning January, 2014 19 / 25

Rejection Sampling II

z0 z

u0

kq(z0)
kq(z)

p̃(z)

Sampling x(⌧) ⇠ q and u

(⌧) ⇠ Uniform(0, kq(x(⌧))) yields a pair of values
uniformly distributed in the gray region.

If u0  p̃(x) then x(⌧) is accepted, otherwise it is rejected and the process
repeats until a sample is accepted.

Accepted pairs are uniformly distributed in the white area; dropping u

(⌧)

yields a sample distributed according to p̃(x), and equivalently, p(x).

The e�ciency of rejection sampling depends critically on the match
between the proposal distribution and the distribution of interest.

Wood (University of Oxford) Unsupervised Machine Learning January, 2014 20 / 25

Rejection Sampling

Figure	
 from	
 Bishop	
 “PaZern	
 Recogni*on	
 and	
 Machine	
 Learning”	

Conditioning via Rejection and Ancestral Sampling I

Assume we have a model p(x), some variables of which are known, some
of which are not. Also let x

obs

be the “observed” variables and x
lat

be
latent variables such that x

obs

[x
lat

= x.

We would like samples from p(x
lat

|x
obs

) = p(x)
p(x

obs

)

Equivalently we can write the conditional distribution of interest as an
unnormalised distribution p̃(x

lat

|x
obs

) = p(x)I[x
obs

= v] using an indicator
function that imposes the constraint that the observed variables are
constrained to take values v.

Rejection sampling with q(x) = p(x) (i.e. proposing via ancestral sampling
of the joint) can be used to generate samples distributed according to
p̃(x

lat

|x
obs

). Note that q(x) � p̃(x
lat

|x
obs

) 8x by construction.

Wood (University of Oxford) Unsupervised Machine Learning January, 2014 21 / 25

Rejection Sampling

Conditioning via Rejection and Ancestral Sampling II

Following the rejection sampling recipe yields a posterior conditional
sampler via ancestral sampling and rejection

Conditioning via Rejection and Ancestral Sampling

1 Sample x(⌧) ⇠ q(x) (i.e. generate via ancestral sampling)

2 Sample u

(⌧) ⇠ U(0, q(x))
3 Accept x(⌧) only if u(⌧)  p(x)I[x

obs

= v]
4 Repeat

A sample will only ever be accepted when x
obs

= v and then it will always
be because q(x) = p(x)

Unless the prior and posterior are extremely well matched this will be an
extremely ine�cient sampler.

Wood (University of Oxford) Unsupervised Machine Learning January, 2014 22 / 25

Rejection Sampling

Original Church : Rejection Sampling
•  Run program forward and condition on all

observations exactly matching the observed
output

The Principles and Practice of Probabilistic Programming

Noah D. Goodman
Stanford University

ngoodman@stanford.edu

Categories and Subject Descriptors D [3]: m

Keywords probabilistic models, probabilistic programs

Probabilities describe degrees of belief, and probabilistic infer-
ence describes rational reasoning under uncertainty. It is no won-
der, then, that probabilistic models have exploded onto the scene of
modern artificial intelligence, cognitive science, and applied statis-
tics: these are all sciences of inference under uncertainty. But as
probabilistic models have become more sophisticated, the tools to
formally describe them and to perform probabilistic inference have
wrestled with new complexity. Just as programming beyond the
simplest algorithms requires tools for abstraction and composition,
complex probabilistic modeling requires new progress in model
representation—probabilistic programming languages. These lan-
guages provide compositional means for describing complex prob-
ability distributions; implementations of these languages provide
generic inference engines: tools for performing efficient probabilis-
tic inference over an arbitrary program.

In their simplest form, probabilistic programming languages
extend a well-specified deterministic programming language with
primitive constructs for random choice. This is a relatively old
idea, with foundational work by Giry, Kozen, Jones, Moggi, Saheb-
Djahromi, Plotkin, and others [see e.g. 7]. Yet it has seen a resur-
gence thanks to new tools for probabilistic inference and new com-
plexity of probabilistic modeling applications. There are a number
of recent probabilistic programming languages [e.g. 8, 9, 11–17],
embodying different tradeoffs in expressivity, efficiency, and per-
spicuity. We will focus on the probabilistic programming language
Church [6] for simplicity, but the design of probabilistic languages
to best support complex model representation and efficient infer-
ence is an active and important topic.

Church extends (the purely functional subset of) Scheme with
elementary random primitives, such as flip (a bernoulli), multino-
mial, and gaussian. In addition, Church includes language con-
structs that simplify modeling. For instance, mem, a higher-order
procedure that memoizes its input function, is useful for describing
persistent random properties and lazy model construction. (Inter-
estingly, memoization has a semantic effect in probabilistic lan-
guages.) If we view the semantics of the underlying deterministic
language as a map from programs to executions of the program,
the semantics of the probabilistic language will be a map from
programs to distributions over executions. When the program halts

Copyright is held by the author/owner(s).
POPL’13, January 23–25, 2013, Rome, Italy.
ACM 978-1-4503-1832-7/13/01.

1 (define (rejection-query thunk condition)
2 (let ((val (thunk)))
3 (if (condition val)
4 val
5 (rejection-query thunk condition))))

1 (query
2 ... defines...
3 query-expression
4 condition-expression)

1 (define (thunk)
2 ... defines...
3 (pair query-expression
4 condition-expression))
5 (define condition rest)

Figure 1. (Top) Defining conditional inference in Church as a
stochastic recursion: rejection sampling represents the conditional
probability of the thunk conditioned on the condition predicate
being true. We typically use special query syntax (Bottom, left),
which can be desugared into a query thunk (Bottom, right).

with probability one, this induces a proper distribution over return
values. Indeed, any computable distribution can be represented as
the distribution induced by a Church program in this way (see [3,
§6], [1, §11], and citations therein).

Probabilistic graphical models [10], aka Bayes nets, are one of
the most important ideas of modern AI. Probabilistic programs
extend probabilistic graphical models, leveraging concepts from
programming language research. Indeed, graphical models can be
seen as flow diagrams for probabilistic programs—and just as flow
diagrams for deterministic programs are useful but not powerful
enough to represent general computation, graphical models are a
useful but incomplete approach to probabilistic modeling. For an
example of this, we need look no further than the fundamental
operation for inference, probabilistic conditioning, which forms a
posterior distribution over executions from the prior distribution
specified by the program. Conditioning is typically viewed as a
special operation that happens to a probabilistic model (capturing
observations or assumptions), not one that can be expressed as a
model. However, because probabilistic programs allow stochastic
recursion, conditioning can be defined as an ordinary probabilistic
function (Fig. 1, Top). (However see [1] for complications in the
case of continuous values.)

A wide variety of probabilistic models are useful for diverse
tasks, including unsupervised learning, vision, planning, and statis-
tical model selection. Due to space limitations, we only mention
two characteristic examples here. The first, Fig. 2, captures key
concepts for commonsense reasoning about the game tug-of-war.
This “conceptual library” of probabilistic functions can be used to
reason about many patterns of evidence, via different queries, with-
out needing to specify ahead of time the set of people, the teams,
or the matches. The program thus enables a very large numbers
of different inferences to be modeled, and the model predictions
match human intuitions quite well (a correlation of 0.98 between

399

Copied	
 from	
 Goodman	
 “The	
 Principles	
 and	
 Prac*ce	
 of	
 Probabilis*c	
 Programming”	
 	

Goodman,	
 Mansinghka,	
 Roy,	
 Bonawitz,	
 and.	
 Tenenbaum	
 Church:	
 A	
 language	
 for	
 genera*ve	
 models,	
 UAI,	
 2008	

	

New Church : Single-Site Independent MH

Manuscript under review by AISTATS 2014

Note that there are more e�cient PMCMC algorithms
for probabilistic programming inference. In particular,
there is no reason to fork unless an observe has just
been interpreted. Alg. 1 is presented in this form for
expositional purposes.

3.2 Random Database

We refer to the MH approach to sampling over
the space of all traces proposed in [13] as “random
database” (RDB). A RDB sampler is a MH sampler
where a single variable drawn in the course of a partic-
ular interpretation of a probabilistic program is modi-
fied via a standard MH proposal, and this modification
is accepted by comparing the value of the joint distri-
bution of old and new program traces. For complete-
ness we review RDB here, noting a subtle correction to
the acceptance ratio proposed in the original reference
which is proper for a larger family of models.

The RDB sampler employs a data structure that holds
all random variables x associated with an execution
trace, along with the parameters and log probability
of each draw. Note that interpretation of a program
is deterministic conditioned on x. A new proposal
trace is initialized by picking a single variable xm,j

from the |x| random draws, and resampling its value
using a reversible kernel (x0

m,j |xm,j). Starting from
this initialization, the program is rerun to generate a
new set of variables x0 that correspond to a new valid
execution trace. In each instance where the random
procedure type remains the same, we reuse the exist-
ing value from the set x, rescoring its log probability
conditioned on the preceding variables where neces-
sary. When the random procedure type has changed,
or a new random variable is encountered, its value is
sampled in the usual manner. Finally, we compute
the probability p(y|x0) by rescoring each observe as
needed, and accept with probability

min

✓
1,

p(y|x0)p(x0)q(x|x0)

p(y|x)p(x)q(x0|x)

◆
. (3)

In order to calculate the ratio of the proposal proba-
bilities q(x0|x) and q(x|x0), we need to account for the
variables that were resampled in the course of con-
structing the proposal, as well as the fact that the sets
x0 and x may have di↵erent cardinalities |x0| and |x|.
We will use the (slightly inaccurate) notation x0\x to
refer to the set of variables that were resampled, and
let x0 \ x represent the set of variables common to
both execution traces. The proposal probability is now
given by

q(x0|x) =
(x0

m,j |xm,j)

|x|
p(x0\x | x0 \ x)

p(x0
m,j |x0 \ x)

. (4)

In our implementation, the initialization x

0
m,j is sim-

ply resampled conditioned on the preceding variables,
such that (x0

m,j |xm,j) = p(x0
m,j |x0 \ x). The reverse

proposal density can now be expressed in a similar
fashion in terms of x\x0 and x \ x0 = x0 \ x, allowing
the full acceptance probability to be written as

p(y|x0) p(x0) |x| p(x\x0 | x \ x0)

p(y|x) p(x) |x0| p(x0\x | x0 \ x)
. (5)

4 Testing

Programming probabilistic program interpreters is a
non-trivial software development e↵ort, involving both
the correct implementation of an interpreter and the
correct implementation of a general purpose sampler.
The methodology we employ to ensure correctness of
both involves three levels of testing; 1) unit tests, 2)
measure tests, and 3) conditional measure tests.

4.1 Unit and Measure Tests

In the context of probabilistic programming, unit test-
ing includes verifying that the interpreter correctly
interprets a comprehensive set of small deterministic
programs. Measure testing involves interpreting short
revealing programs consisting of assume and predict

statements (producing a sequence of ancestral, uncon-
ditioned samples, i.e. no observe’s). Interpreter out-
put is tested relative to ground truth, where ground
truth is computed via exhaustive enumeration, ana-
lytic derivation, or some combination, and always in
a di↵erent, well-tested independent computational sys-
tem like Matlab. Various comparisons of the empirical
distribution constructed from the accumulating stream
of output predicts’s and ground truth are computed;
Kulback-Leibler (KL) divergences for discrete sample
spaces and Kolmogorov Smirnov (KS) test statistics
for continuous sample spaces. While it is possible
to construct distribution equality hypothesis tests for
some combinations of test statistic and program we
generally are content to accept interpreters for which
there is clear evidence of convergence towards zero of
all test statistics for all measure tests. Anglican passed
all unit and measure tests.

4.2 Conditional Measure Tests

Measure tests involving conditioning provide addi-
tional information beyond that provided by measure
and unit tests. Conditioning involves endowing pro-
grams with observe statements which constrain or
weight the set of possible execution traces. Interpret-
ing observe statements engages the full inference ma-
chinery. Conditional measure test performance is mea-
sured in the same way as measure test performance.

Sample posterior distribution of execution traces using joint with observed
values plugged in

Metropolis-Hastings acceptance rule

[assume poi-1 (beta 7 4)]

[assume poi-2 (+ 1 (poisson 8))]

[assume generative-model-part-1 (lambda (a b)

(if (flip a)

(+ (poisson b) 7)

(normal a b)))]

[assume generative-model-part-2 (gamma poi-1 poi-2)]

[observe (normal (generative-model-part-1 poi-1 poi-2) 1) 18]

[observe (normal 0 generative-model-part-2) 6]

[predict (list poi-1 poi-2)]

x1,1 ⇠ Beta(7, 4)

x1,2|x1,1 = 0.4 ⇠ Poisson(8)

x1,3|x1,2 = 6, x1,1 = 0.4 ⇠ Binomial(0.4)

x1,4|x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Poisson(4)

y1 = 18|x1,4 = 7, x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Normal(7, 1)

x2,1| . . . ⇠ Gamma(0.4, 6)

y2 = 6|x2,1 = 6.92, . . . ⇠ Normal(0, 6.92)

p(x|y) / p̃(y = observes,x)

2

§  Need	

§  Proposal	

§  Have	

§  Likelihoods	
 (via	
 observe	
 statement	
 restric*ons)	

§  Prior	
 (sequence	
 of	
 ERP	
 returns;	
 scored	
 in	
 interpreter)	

Wingate, Stuhlmüller et al Lightweight Implementations of Probabilistic Programming Languages Via Transformational Compilation, 2011
Wood, van de Meent, and Mansinghka “A New Approach to Probabilistic Programming Inference” AISTATS 2014
Mansinghka, Selsam, and Perov “Venture: an interactive, Turing-complete probabilistic programming platform” arXiv 2014

Review : Metropolis Hastings Metropolis Hastings (MH)

Algorithm

Initialize ⌧ 1,x(⌧) ?

Repeat Forever Yielding {x(1), x(2), . . . }
1 Propose x⇤ ⇠ q(x⇤|x(⌧))
2 Accept x⇤ w.p. A(x⇤, x(⌧)) = min

⇣
1, p(x⇤)q(x(⌧)|x⇤)

p(x(⌧))q(x⇤|x(⌧))

⌘

3 If x⇤ accepted set x(⌧+1) x⇤ else x(⌧+1) x(⌧)

4 Increment ⌧

Common choices of proposal include q(x⇤|x(⌧)) = N (x(⌧)|�2I)
(random-walk Metropolis) and/or q(x⇤|x(⌧)) = q(x⇤) (independent MH).
Rules of thumb suggest aiming for acceptance rates of between 25% and
50% by tuning the proposal distribution.

http://www.stat.duke.edu/~km68/materials/214.7%20(MH).pdf

Wood (University of Oxford) Unsupervised Machine Learning January, 2014 3 / 19

Random Database (RDB) MH Proposal

Manuscript under review by AISTATS 2014

Note that there are more e�cient PMCMC algorithms
for probabilistic programming inference. In particular,
there is no reason to fork unless an observe has just
been interpreted. Alg. 1 is presented in this form for
expositional purposes.

3.2 Random Database

We refer to the MH approach to sampling over
the space of all traces proposed in [13] as “random
database” (RDB). A RDB sampler is a MH sampler
where a single variable drawn in the course of a partic-
ular interpretation of a probabilistic program is modi-
fied via a standard MH proposal, and this modification
is accepted by comparing the value of the joint distri-
bution of old and new program traces. For complete-
ness we review RDB here, noting a subtle correction to
the acceptance ratio proposed in the original reference
which is proper for a larger family of models.

The RDB sampler employs a data structure that holds
all random variables x associated with an execution
trace, along with the parameters and log probability
of each draw. Note that interpretation of a program
is deterministic conditioned on x. A new proposal
trace is initialized by picking a single variable xm,j

from the |x| random draws, and resampling its value
using a reversible kernel (x0

m,j |xm,j). Starting from
this initialization, the program is rerun to generate a
new set of variables x0 that correspond to a new valid
execution trace. In each instance where the random
procedure type remains the same, we reuse the exist-
ing value from the set x, rescoring its log probability
conditioned on the preceding variables where neces-
sary. When the random procedure type has changed,
or a new random variable is encountered, its value is
sampled in the usual manner. Finally, we compute
the probability p(y|x0) by rescoring each observe as
needed, and accept with probability

min

✓
1,

p(y|x0)p(x0)q(x|x0)

p(y|x)p(x)q(x0|x)

◆
. (3)

In order to calculate the ratio of the proposal proba-
bilities q(x0|x) and q(x|x0), we need to account for the
variables that were resampled in the course of con-
structing the proposal, as well as the fact that the sets
x0 and x may have di↵erent cardinalities |x0| and |x|.
We will use the (slightly inaccurate) notation x0\x to
refer to the set of variables that were resampled, and
let x0 \ x represent the set of variables common to
both execution traces. The proposal probability is now
given by

q(x0|x) =
(x0

m,j |xm,j)

|x|
p(x0\x | x0 \ x)

p(x0
m,j |x0 \ x)

. (4)

In our implementation, the initialization x

0
m,j is sim-

ply resampled conditioned on the preceding variables,
such that (x0

m,j |xm,j) = p(x0
m,j |x0 \ x). The reverse

proposal density can now be expressed in a similar
fashion in terms of x\x0 and x \ x0 = x0 \ x, allowing
the full acceptance probability to be written as

p(y|x0) p(x0) |x| p(x\x0 | x \ x0)

p(y|x) p(x) |x0| p(x0\x | x0 \ x)
. (5)

4 Testing

Programming probabilistic program interpreters is a
non-trivial software development e↵ort, involving both
the correct implementation of an interpreter and the
correct implementation of a general purpose sampler.
The methodology we employ to ensure correctness of
both involves three levels of testing; 1) unit tests, 2)
measure tests, and 3) conditional measure tests.

4.1 Unit and Measure Tests

In the context of probabilistic programming, unit test-
ing includes verifying that the interpreter correctly
interprets a comprehensive set of small deterministic
programs. Measure testing involves interpreting short
revealing programs consisting of assume and predict

statements (producing a sequence of ancestral, uncon-
ditioned samples, i.e. no observe’s). Interpreter out-
put is tested relative to ground truth, where ground
truth is computed via exhaustive enumeration, ana-
lytic derivation, or some combination, and always in
a di↵erent, well-tested independent computational sys-
tem like Matlab. Various comparisons of the empirical
distribution constructed from the accumulating stream
of output predicts’s and ground truth are computed;
Kulback-Leibler (KL) divergences for discrete sample
spaces and Kolmogorov Smirnov (KS) test statistics
for continuous sample spaces. While it is possible
to construct distribution equality hypothesis tests for
some combinations of test statistic and program we
generally are content to accept interpreters for which
there is clear evidence of convergence towards zero of
all test statistics for all measure tests. Anglican passed
all unit and measure tests.

4.2 Conditional Measure Tests

Measure tests involving conditioning provide addi-
tional information beyond that provided by measure
and unit tests. Conditioning involves endowing pro-
grams with observe statements which constrain or
weight the set of possible execution traces. Interpret-
ing observe statements engages the full inference ma-
chinery. Conditional measure test performance is mea-
sured in the same way as measure test performance.

Single stochastic
procedure (SP) output

Number of SP’s in
original trace

Probability of new SP return
value (sample) given trace prefix

Probability of new part of
proposed execution trace

RDB Implementation
Manuscript under review by AISTATS 2014

Note that there are more e�cient PMCMC algorithms
for probabilistic programming inference. In particular,
there is no reason to fork unless an observe has just
been interpreted. Alg. 1 is presented in this form for
expositional purposes.

3.2 Random Database

We refer to the MH approach to sampling over
the space of all traces proposed in [13] as “random
database” (RDB). A RDB sampler is a MH sampler
where a single variable drawn in the course of a partic-
ular interpretation of a probabilistic program is modi-
fied via a standard MH proposal, and this modification
is accepted by comparing the value of the joint distri-
bution of old and new program traces. For complete-
ness we review RDB here, noting a subtle correction to
the acceptance ratio proposed in the original reference
which is proper for a larger family of models.

The RDB sampler employs a data structure that holds
all random variables x associated with an execution
trace, along with the parameters and log probability
of each draw. Note that interpretation of a program
is deterministic conditioned on x. A new proposal
trace is initialized by picking a single variable xm,j

from the |x| random draws, and resampling its value
using a reversible kernel (x0

m,j |xm,j). Starting from
this initialization, the program is rerun to generate a
new set of variables x0 that correspond to a new valid
execution trace. In each instance where the random
procedure type remains the same, we reuse the exist-
ing value from the set x, rescoring its log probability
conditioned on the preceding variables where neces-
sary. When the random procedure type has changed,
or a new random variable is encountered, its value is
sampled in the usual manner. Finally, we compute
the probability p(y|x0) by rescoring each observe as
needed, and accept with probability

min

✓
1,

p(y|x0)p(x0)q(x|x0)

p(y|x)p(x)q(x0|x)

◆
. (3)

In order to calculate the ratio of the proposal proba-
bilities q(x0|x) and q(x|x0), we need to account for the
variables that were resampled in the course of con-
structing the proposal, as well as the fact that the sets
x0 and x may have di↵erent cardinalities |x0| and |x|.
We will use the (slightly inaccurate) notation x0\x to
refer to the set of variables that were resampled, and
let x0 \ x represent the set of variables common to
both execution traces. The proposal probability is now
given by

q(x0|x) =
(x0

m,j |xm,j)

|x|
p(x0\x | x0 \ x)

p(x0
m,j |x0 \ x)

. (4)

In our implementation, the initialization x

0
m,j is sim-

ply resampled conditioned on the preceding variables,
such that (x0

m,j |xm,j) = p(x0
m,j |x0 \ x). The reverse

proposal density can now be expressed in a similar
fashion in terms of x\x0 and x \ x0 = x0 \ x, allowing
the full acceptance probability to be written as

p(y|x0) p(x0) |x| p(x\x0 | x \ x0)

p(y|x) p(x) |x0| p(x0\x | x0 \ x)
. (5)

4 Testing

Programming probabilistic program interpreters is a
non-trivial software development e↵ort, involving both
the correct implementation of an interpreter and the
correct implementation of a general purpose sampler.
The methodology we employ to ensure correctness of
both involves three levels of testing; 1) unit tests, 2)
measure tests, and 3) conditional measure tests.

4.1 Unit and Measure Tests

In the context of probabilistic programming, unit test-
ing includes verifying that the interpreter correctly
interprets a comprehensive set of small deterministic
programs. Measure testing involves interpreting short
revealing programs consisting of assume and predict

statements (producing a sequence of ancestral, uncon-
ditioned samples, i.e. no observe’s). Interpreter out-
put is tested relative to ground truth, where ground
truth is computed via exhaustive enumeration, ana-
lytic derivation, or some combination, and always in
a di↵erent, well-tested independent computational sys-
tem like Matlab. Various comparisons of the empirical
distribution constructed from the accumulating stream
of output predicts’s and ground truth are computed;
Kulback-Leibler (KL) divergences for discrete sample
spaces and Kolmogorov Smirnov (KS) test statistics
for continuous sample spaces. While it is possible
to construct distribution equality hypothesis tests for
some combinations of test statistic and program we
generally are content to accept interpreters for which
there is clear evidence of convergence towards zero of
all test statistics for all measure tests. Anglican passed
all unit and measure tests.

4.2 Conditional Measure Tests

Measure tests involving conditioning provide addi-
tional information beyond that provided by measure
and unit tests. Conditioning involves endowing pro-
grams with observe statements which constrain or
weight the set of possible execution traces. Interpret-
ing observe statements engages the full inference ma-
chinery. Conditional measure test performance is mea-
sured in the same way as measure test performance.

Manuscript under review by AISTATS 2014

Note that there are more e�cient PMCMC algorithms
for probabilistic programming inference. In particular,
there is no reason to fork unless an observe has just
been interpreted. Alg. 1 is presented in this form for
expositional purposes.

3.2 Random Database

We refer to the MH approach to sampling over
the space of all traces proposed in [13] as “random
database” (RDB). A RDB sampler is a MH sampler
where a single variable drawn in the course of a partic-
ular interpretation of a probabilistic program is modi-
fied via a standard MH proposal, and this modification
is accepted by comparing the value of the joint distri-
bution of old and new program traces. For complete-
ness we review RDB here, noting a subtle correction to
the acceptance ratio proposed in the original reference
which is proper for a larger family of models.

The RDB sampler employs a data structure that holds
all random variables x associated with an execution
trace, along with the parameters and log probability
of each draw. Note that interpretation of a program
is deterministic conditioned on x. A new proposal
trace is initialized by picking a single variable xm,j

from the |x| random draws, and resampling its value
using a reversible kernel (x0

m,j |xm,j). Starting from
this initialization, the program is rerun to generate a
new set of variables x0 that correspond to a new valid
execution trace. In each instance where the random
procedure type remains the same, we reuse the exist-
ing value from the set x, rescoring its log probability
conditioned on the preceding variables where neces-
sary. When the random procedure type has changed,
or a new random variable is encountered, its value is
sampled in the usual manner. Finally, we compute
the probability p(y|x0) by rescoring each observe as
needed, and accept with probability

min

✓
1,

p(y|x0)p(x0)q(x|x0)

p(y|x)p(x)q(x0|x)

◆
. (3)

In order to calculate the ratio of the proposal proba-
bilities q(x0|x) and q(x|x0), we need to account for the
variables that were resampled in the course of con-
structing the proposal, as well as the fact that the sets
x0 and x may have di↵erent cardinalities |x0| and |x|.
We will use the (slightly inaccurate) notation x0\x to
refer to the set of variables that were resampled, and
let x0 \ x represent the set of variables common to
both execution traces. The proposal probability is now
given by

q(x0|x) =
(x0

m,j |xm,j)

|x|
p(x0\x | x0 \ x)

p(x0
m,j |x0 \ x)

. (4)

In our implementation, the initialization x

0
m,j is sim-

ply resampled conditioned on the preceding variables,
such that (x0

m,j |xm,j) = p(x0
m,j |x0 \ x). The reverse

proposal density can now be expressed in a similar
fashion in terms of x\x0 and x \ x0 = x0 \ x, allowing
the full acceptance probability to be written as

p(y|x0) p(x0) |x| p(x\x0 | x \ x0)

p(y|x) p(x) |x0| p(x0\x | x0 \ x)
. (5)

4 Testing

Programming probabilistic program interpreters is a
non-trivial software development e↵ort, involving both
the correct implementation of an interpreter and the
correct implementation of a general purpose sampler.
The methodology we employ to ensure correctness of
both involves three levels of testing; 1) unit tests, 2)
measure tests, and 3) conditional measure tests.

4.1 Unit and Measure Tests

In the context of probabilistic programming, unit test-
ing includes verifying that the interpreter correctly
interprets a comprehensive set of small deterministic
programs. Measure testing involves interpreting short
revealing programs consisting of assume and predict

statements (producing a sequence of ancestral, uncon-
ditioned samples, i.e. no observe’s). Interpreter out-
put is tested relative to ground truth, where ground
truth is computed via exhaustive enumeration, ana-
lytic derivation, or some combination, and always in
a di↵erent, well-tested independent computational sys-
tem like Matlab. Various comparisons of the empirical
distribution constructed from the accumulating stream
of output predicts’s and ground truth are computed;
Kulback-Leibler (KL) divergences for discrete sample
spaces and Kolmogorov Smirnov (KS) test statistics
for continuous sample spaces. While it is possible
to construct distribution equality hypothesis tests for
some combinations of test statistic and program we
generally are content to accept interpreters for which
there is clear evidence of convergence towards zero of
all test statistics for all measure tests. Anglican passed
all unit and measure tests.

4.2 Conditional Measure Tests

Measure tests involving conditioning provide addi-
tional information beyond that provided by measure
and unit tests. Conditioning involves endowing pro-
grams with observe statements which constrain or
weight the set of possible execution traces. Interpret-
ing observe statements engages the full inference ma-
chinery. Conditional measure test performance is mea-
sured in the same way as measure test performance.

Single site update = sample from the prior = run program forward

MH acceptance ratio simplifies
Number of SP applications
in original trace

Probability of regenerating current trace
continuation given proposal trace beginning

Number of SP applications
in new trace

Probability of generating proposal trace
continuation given current trace beginning

[assume poi-1 (beta 7 4)]

[assume poi-2 (+ 1 (poisson 8))]

[assume generative-model-part-1 (lambda (a b)

(if (flip a)

(+ (poisson b) 7)

(normal a b)))]

[assume generative-model-part-2 (lambda () (gamma poi-1 poi-2))]

[observe (normal (generative-model-part-1 poi-1 poi-2) 1) 18]

[observe (normal 0 (generative-model-part-2)) 6]

[predict (list poi-1 poi-2)]

x1,1 ⇠ Beta(7, 4)

x1,2|x1,1 = 0.4 ⇠ Poisson(8)

x1,3|x1,2 = 6, x1,1 = 0.4 ⇠ Binomial(0.4)

x1,4|x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Poisson(7)

y1 = 18|x1,4 = 7, x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Normal(14, 1)

x2,1| . . . ⇠ Gamma(0.4, 7)

y2 = 6|x2,1 = 6.92, . . . ⇠ Normal(0, 6.92)

p(x|y) / p̃(y = observes,x)

x1,1 ⇠ Beta(7, 4)

x1,2|x1,1 = 0.4 ⇠ Poisson(8)

x1,3|x1,2 = 6, x1,1 = 0.4 ⇠ Binomial(0.4)

x1,4|x1,3 = false, x1,2 = 6, x1,1 = 0.4 ⇠ Poisson(7)

y1 = 18|x1,4 = 7, x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Normal(14, 1)

x2,1| . . . ⇠ Gamma(0.4, 7)

y2 = 6|x2,1 = 6.92, . . . ⇠ Normal(0, 6.92)

3

[assume poi-1 (beta 7 4)]

[assume poi-2 (+ 1 (poisson 8))]

[assume generative-model-part-1 (lambda (a b)

(if (flip a)

(+ (poisson b) 7)

(normal a b)))]

[assume generative-model-part-2 (lambda () (gamma poi-1 poi-2))]

[observe (normal (generative-model-part-1 poi-1 poi-2) 1) 18]

[observe (normal 0 (generative-model-part-2)) 6]

[predict (list poi-1 poi-2)]

x1,1 ⇠ Beta(7, 4)

x1,2|x1,1 = 0.4 ⇠ Poisson(8)

x1,3|x1,2 = 6, x1,1 = 0.4 ⇠ Binomial(0.4)

x1,4|x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Poisson(7)

y1 = 18|x1,4 = 7, x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Normal(14, 1)

x2,1| . . . ⇠ Gamma(0.4, 7)

y2 = 6|x2,1 = 6.92, . . . ⇠ Normal(0, 6.92)

p(x|y) / p̃(y = observes,x)

x1,1 ⇠ Beta(7, 4)

x1,2|x1,1 = 0.4 ⇠ Poisson(8)

x1,3|x1,2 = 6, x1,1 = 0.4 ⇠ Binomial(0.4)

x1,4|x1,3 = false, x1,2 = 6, x1,1 = 0.4 ⇠ Poisson(7)

y1 = 18|x1,4 = 7, x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Normal(14, 1)

x2,1| . . . ⇠ Gamma(0.4, 7)

y2 = 6|x2,1 = 6.92, . . . ⇠ Normal(0, 6.92)

3

[assume poi-1 (beta 7 4)]

[assume poi-2 (+ 1 (poisson 8))]

[assume generative-model-part-1 (lambda (a b)

(if (flip a)

(+ (poisson b) 7)

(normal a b)))]

[assume generative-model-part-2 (lambda () (gamma poi-1 poi-2))]

[observe (normal (generative-model-part-1 poi-1 poi-2) 1) 18]

[observe (normal 0 (generative-model-part-2)) 6]

[predict (list poi-1 poi-2)]

x1,1 ⇠ Beta(7, 4)

x1,2|x1,1 = 0.4 ⇠ Poisson(8)

x1,3|x1,2 = 6, x1,1 = 0.4 ⇠ Binomial(0.4)

x1,4|x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Poisson(4)

y1 = 18|x1,4 = 7, x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Normal(7, 1)

x2,1| . . . ⇠ Gamma(0.4, 6)

y2 = 6|x2,1 = 6.92, . . . ⇠ Normal(0, 6.92)

p(x|y) / p̃(y = observes,x)

x1,1 ⇠ Beta(7, 4)

x1,2|x1,1 = 0.4 ⇠ Poisson(8)

x1,3|x1,2 = 6, x1,1 = 0.4 ⇠ Binomial(0.4)

x1,4|x1,3 = false, x1,2 = 6, x1,1 = 0.4 ⇠ Poisson(4)

y1 = 18|x1,4 = 7, x1,3 = true, x1,2 = 6, x1,1 = 0.4 ⇠ Normal(7, 1)

x2,1| . . . ⇠ Gamma(0.4, 6)

y2 = 6|x2,1 = 6.92, . . . ⇠ Normal(0, 6.92)

p(x1:N |y1:N) ⇡
LX

`=1

w

`
N�

x

`
1:N

(x1:N)

3

RDB Implementation Sketch

SMC for Prob. Prog. Inference
State-space-model-like decomposition

Suggests Sequential Importance Resampling (SIR)

Algorithm 1 Particle Gibbs Prob. Prog. Inference

L number of particles

S number of sweeps

{w̃(`)
N ,x

(`)
1:N} Run SMC

for s < S do

{·,x⇤
1:N} r(1, {1/L,x(`)

1:N})
{·,x(`)

0 = ;} initialize L� 1 interpreters

for d 2 ordered lines of program do

for ` < L� 1 do

¯

x

(`)
1:(n�1) fork(x

(`)
1:(n�1))

end for

if directive(d) == assume then

for ` < L� 1 do

¯

x

(`)
1:n interpret(d,

¯

x

(`)
1:(n�1))

end for

{x(`)
1:n} {¯x(`)

1:n} [x

⇤
1:n

else if directive(d) == predict then

for ` < L� 1 do

interpret(d,

¯

x

(`)
1:(n�1))

end for

interpret(d,x

⇤
1:(n�1))

else if directive(d) == observe then

for ` < L� 1 do

{w̄(`)
n ,

¯

x

(`)
1:n} interpret(d,

¯

x

(`)
1:(n�1))

end for

T r(L� 1, {w̄(`)
n ,

¯

x

(`)
1:n} [{w̃⇤

1:n,x
⇤
1:n})

{w̃(`)
n ,x

(`)
1:n} T [{w̃⇤

n,x
⇤
1:n}

end if

end for

end for

p(x1:n|y1:n) = g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

q(xn|x1:n�1, y1:n)

x

`
n ⇠ f(xn|x

a`
n�1

1:n�1)

w̃

`
n = g(y1:n,x

`
1:n)

4

q(x1:n|y1:n) = f(xn|x1:n�1)p(x1:n�1|y1:n�1)

x

`
n ⇠ f(xn|x

a`
n�1

1:n�1)

w̃

`
n = g(y1:n,x

`
1:n)

w

`
n =

w̃

`
nPL

`=1 w̃
`
n

p(x1:n|y1:n)
q(x1:n|y1:n)

=

g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

f(xn|x1:n�1)p(x1:n�1|y1:n�1)
= g(yn|x1:n)

5

Proposal Run program forward
until next observe directive

Weight of particle
Is observation likelihood

Fischer, Kiselyov, and Shan “Purely functional lazy non-deterministic programming” ACM Sigplan 2009
Wood, van de Meent, and Mansinghka “A New Approach to Probabilistic Programming Inference” AISTATS 2014
Paige and Wood “A Compilation Target for Probabilistic Programming Languages” ICML 2014

Review : Sequential Importance Resampling

A Compilation Target for Probabilistic Programming Languages

In this manner, any model with a generative process that
can be described in arbitrary C code can be represented
in this sequential form in the space of program execution
traces.

Each observe statement takes as its argument
ln g(yn|x1:n). Each quantity of interest in a predict

statement corresponds to some deterministic function h(·)
of all random choices x1:N made during the execution of
the program. Given a set of S posterior samples {x(s)

1:N},
we can approximate the posterior distribution of the
predict value as

h(x1:N) ⇡ 1

S

SX

s=1

h(x(s)
1:N). (10)

3.2. Sequential Monte Carlo

Forward simulation-based algorithms are a natural fit for
probabilistic programs: run the program and report execu-
tions that match the data. Sequential Monte Carlo (SMC,
sequential importance resampling) forms the basic building
block of other, more complex particle-based methods, and
can itself be used as a simple approach to probabilistic pro-
gramming inference. SMC approximates a target density
p(x1:N |y1:N) as a weighted set of L realized trajectories
x

`
1:N such that

p(x1:N |y1:N) ⇡
LX

`=1

w`
N�

x

`
1:N

(x1:N). (11)

For most probabilistic programs of interest, it will be in-
tractable to sample from p(x1:N |y1:N) directly. Instead,
noting that (for n > 1) we have the recursive identity

p(x1:n|y1:n) (12)
= p(x1:n�1|y1:n�1)g(yn|x1:n)f(xn|x1:n�1),

we sample from p(x1:N |y1:N) by iteratively sampling from
each p(x1:n|y1:n), in turn, from 1 through N . At each
n, we construct an importance sampling distribution by
proposing from some distribution q(xn|x1:n�1, y1:n); in
probabilistic programs we find it convenient to propose
directly from the executions of the program, i.e. each se-
quence of random variates xn is jointly sampled from the
program execution state dynamics

x

`
n ⇠ f(xn|x

a`
n�1

1:n�1) (13)

where a`n�1 is an “ancestor index,” the particle index
1, . . . , L of the parent (at time n�1) of x`

n. The unnormal-
ized particle importance weights at each observation yn are
simply the observe data likelihood

w̃`
n = g(y1:n,x

`
1:n) (14)

Algorithm 1 Parallel SMC program execution
Assume: N observations, L particles

launch L copies of the program (parallel)
for n = 1 . . . N do

wait until all L reach observe yn (barrier)
update unnormalized weights w̃1:L

n (serial)
if ESS < ⌧ then

sample number of offspring O1:L
n (serial)

set weight w̃1:L
n = 1 (serial)

for ` = 1 . . . L do
fork or exit (parallel)

end for
else

set all number of offspring O`
n = 1 (serial)

end if
continue program execution (parallel)

end for
wait until L program traces terminate (barrier)
predict from L samples from p̂(x1:L

1:N |y1:N) (serial)

which can be normalized as

w`
n =

w̃`
nPL

`=1 w̃
`
n

. (15)

After each step n, we now have a weighted set of execu-
tion traces which approximate p(x1:n|y1:n). As the pro-
gram continues, traces which do not correspond well with
the data will have weights which become negligibly small,
leading in the worst case to all weight concentrated on a
single execution trace. To counteract this deficiency, we
resample from our current set of L execution traces after
each observation yn, according to their weights w`

n. This
is achieved by sampling a count O`

n for the number of “off-
spring” of a given execution trace ` to be included at time
n + 1. Any sampling scheme must ensure E[O`

n] = w`
n.

Sampling offspring counts O`
n is equivalent to sampling

ancestor indices a`n. Program execution traces with no off-
spring are killed; program execution traces with more than
one offspring are forked multiple times. After resampling,
all weights w`

n = 1.

We only resample if the effective sample size

ESS ⇡ 1P
`(w

`
n)

2
(16)

is less than some threshold value ⌧ ; we choose ⌧ = L/2.

In probabilistic C, each observe statement forms a bar-
rier: parallel execution cannot continue until all particles
have arrived at the observe and have reported their cur-
rent unnormalized weight. As execution traces arrive at the
observe barrier, they take the number of particles which
have already reached the current observe as a (temporary)

SIR	
 Targets	

	

	

With	
 a	
 weighted	
 set	
 of	
 par*cles	

	

	

No*ng	
 the	
 iden*ty	

	

	

We	
 can	
 use	
 importance	
 sampling	
 to	
 generate	
 samples	
 from	
 	

	

	

Given	
 our	
 sample-­‐based	
 approxima*on	
 to	
 	

	
 	

	

	

A Compilation Target for Probabilistic Programming Languages

In this manner, any model with a generative process that
can be described in arbitrary C code can be represented
in this sequential form in the space of program execution
traces.

Each observe statement takes as its argument
ln g(yn|x1:n). Each quantity of interest in a predict

statement corresponds to some deterministic function h(·)
of all random choices x1:N made during the execution of
the program. Given a set of S posterior samples {x(s)

1:N},
we can approximate the posterior distribution of the
predict value as

h(x1:N) ⇡ 1

S

SX

s=1

h(x(s)
1:N). (10)

3.2. Sequential Monte Carlo

Forward simulation-based algorithms are a natural fit for
probabilistic programs: run the program and report execu-
tions that match the data. Sequential Monte Carlo (SMC,
sequential importance resampling) forms the basic building
block of other, more complex particle-based methods, and
can itself be used as a simple approach to probabilistic pro-
gramming inference. SMC approximates a target density
p(x1:N |y1:N) as a weighted set of L realized trajectories
x

`
1:N such that

p(x1:N |y1:N) ⇡
LX

`=1

w`
N�

x

`
1:N

(x1:N). (11)

For most probabilistic programs of interest, it will be in-
tractable to sample from p(x1:N |y1:N) directly. Instead,
noting that (for n > 1) we have the recursive identity

p(x1:n|y1:n) (12)
= p(x1:n�1|y1:n�1)g(yn|x1:n)f(xn|x1:n�1),

we sample from p(x1:N |y1:N) by iteratively sampling from
each p(x1:n|y1:n), in turn, from 1 through N . At each
n, we construct an importance sampling distribution by
proposing from some distribution q(xn|x1:n�1, y1:n); in
probabilistic programs we find it convenient to propose
directly from the executions of the program, i.e. each se-
quence of random variates xn is jointly sampled from the
program execution state dynamics

x

`
n ⇠ f(xn|x

a`
n�1

1:n�1) (13)

where a`n�1 is an “ancestor index,” the particle index
1, . . . , L of the parent (at time n�1) of x`

n. The unnormal-
ized particle importance weights at each observation yn are
simply the observe data likelihood

w̃`
n = g(y1:n,x

`
1:n) (14)

Algorithm 1 Parallel SMC program execution
Assume: N observations, L particles

launch L copies of the program (parallel)
for n = 1 . . . N do

wait until all L reach observe yn (barrier)
update unnormalized weights w̃1:L

n (serial)
if ESS < ⌧ then

sample number of offspring O1:L
n (serial)

set weight w̃1:L
n = 1 (serial)

for ` = 1 . . . L do
fork or exit (parallel)

end for
else

set all number of offspring O`
n = 1 (serial)

end if
continue program execution (parallel)

end for
wait until L program traces terminate (barrier)
predict from L samples from p̂(x1:L

1:N |y1:N) (serial)

which can be normalized as

w`
n =

w̃`
nPL

`=1 w̃
`
n

. (15)

After each step n, we now have a weighted set of execu-
tion traces which approximate p(x1:n|y1:n). As the pro-
gram continues, traces which do not correspond well with
the data will have weights which become negligibly small,
leading in the worst case to all weight concentrated on a
single execution trace. To counteract this deficiency, we
resample from our current set of L execution traces after
each observation yn, according to their weights w`

n. This
is achieved by sampling a count O`

n for the number of “off-
spring” of a given execution trace ` to be included at time
n + 1. Any sampling scheme must ensure E[O`

n] = w`
n.

Sampling offspring counts O`
n is equivalent to sampling

ancestor indices a`n. Program execution traces with no off-
spring are killed; program execution traces with more than
one offspring are forked multiple times. After resampling,
all weights w`

n = 1.

We only resample if the effective sample size

ESS ⇡ 1P
`(w

`
n)

2
(16)

is less than some threshold value ⌧ ; we choose ⌧ = L/2.

In probabilistic C, each observe statement forms a bar-
rier: parallel execution cannot continue until all particles
have arrived at the observe and have reported their cur-
rent unnormalized weight. As execution traces arrive at the
observe barrier, they take the number of particles which
have already reached the current observe as a (temporary)

Algorithm 1 Particle Gibbs Prob. Prog. Inference

L number of particles

S number of sweeps

{w̃(`)
N ,x

(`)
1:N} Run SMC

for s < S do

{·,x⇤
1:N} r(1, {1/L,x(`)

1:N})
{·,x(`)

0 = ;} initialize L� 1 interpreters

for d 2 ordered lines of program do

for ` < L� 1 do

¯

x

(`)
1:(n�1) fork(x

(`)
1:(n�1))

end for

if directive(d) == assume then

for ` < L� 1 do

¯

x

(`)
1:n interpret(d,

¯

x

(`)
1:(n�1))

end for

{x(`)
1:n} {¯x(`)

1:n} [x

⇤
1:n

else if directive(d) == predict then

for ` < L� 1 do

interpret(d,

¯

x

(`)
1:(n�1))

end for

interpret(d,x

⇤
1:(n�1))

else if directive(d) == observe then

for ` < L� 1 do

{w̄(`)
n ,

¯

x

(`)
1:n} interpret(d,

¯

x

(`)
1:(n�1))

end for

T r(L� 1, {w̄(`)
n ,

¯

x

(`)
1:n} [{w̃⇤

1:n,x
⇤
1:n})

{w̃(`)
n ,x

(`)
1:n} T [{w̃⇤

n,x
⇤
1:n}

end if

end for

end for

p(x1:N |y1:N) ⇡
LX

`=1

w

`
N�

x

`
1:N

(x1:N)

p(x1:n|y1:n) = g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

p(x1:n|y1:n) =
LX

`=1

w

`
n�1g(yn|x1:n)f(xn|x`

1:n�1)p(x
`
1:n�1|y1:n�1)

4

q(x1:n|y1:n) = f(xn|x1:n�1)p(x1:n�1|y1:n�1)

x

`
n ⇠ f(xn|x

a`
n�1

1:n�1)

w̃

`
n = g(y1:n,x

`
1:n)

w

`
n =

w̃

`
nPL

`=1 w̃
`
n

p(x1:n|y1:n)
q(x1:n|y1:n)

=

g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

f(xn|x1:n�1)p(x1:n�1|y1:n�1)
= g(yn|x1:n)

p(x1:N |y1:N) / p̃(y1:N ,x1:N) ⌘
NY

n=1

g(yn|x1:n)f(xn|x1:n�1)

5

Algorithm 1 Particle Gibbs Prob. Prog. Inference

L number of particles

S number of sweeps

{w̃(`)
N ,x

(`)
1:N} Run SMC

for s < S do

{·,x⇤
1:N} r(1, {1/L,x(`)

1:N})
{·,x(`)

0 = ;} initialize L� 1 interpreters

for d 2 ordered lines of program do

for ` < L� 1 do

¯

x

(`)
1:(n�1) fork(x

(`)
1:(n�1))

end for

if directive(d) == assume then

for ` < L� 1 do

¯

x

(`)
1:n interpret(d,

¯

x

(`)
1:(n�1))

end for

{x(`)
1:n} {¯x(`)

1:n} [x

⇤
1:n

else if directive(d) == predict then

for ` < L� 1 do

interpret(d,

¯

x

(`)
1:(n�1))

end for

interpret(d,x

⇤
1:(n�1))

else if directive(d) == observe then

for ` < L� 1 do

{w̄(`)
n ,

¯

x

(`)
1:n} interpret(d,

¯

x

(`)
1:(n�1))

end for

T r(L� 1, {w̄(`)
n ,

¯

x

(`)
1:n} [{w̃⇤

1:n,x
⇤
1:n})

{w̃(`)
n ,x

(`)
1:n} T [{w̃⇤

n,x
⇤
1:n}

end if

end for

end for

p(x1:N |y1:N) ⇡
LX

`=1

w

`
N�

x

`
1:N

(x1:N)

p(x1:n|y1:n) = g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

p(x1:n|y1:n) =
LX

`=1

w

`
n�1g(yn|x1:n)f(xn|x`

1:n�1)p(x
`
1:n�1|y1:n�1)

4

Algorithm 1 Particle Gibbs Prob. Prog. Inference

L number of particles

S number of sweeps

{w̃(`)
N ,x

(`)
1:N} Run SMC

for s < S do

{·,x⇤
1:N} r(1, {1/L,x(`)

1:N})
{·,x(`)

0 = ;} initialize L� 1 interpreters

for d 2 ordered lines of program do

for ` < L� 1 do

¯

x

(`)
1:(n�1) fork(x

(`)
1:(n�1))

end for

if directive(d) == assume then

for ` < L� 1 do

¯

x

(`)
1:n interpret(d,

¯

x

(`)
1:(n�1))

end for

{x(`)
1:n} {¯x(`)

1:n} [x

⇤
1:n

else if directive(d) == predict then

for ` < L� 1 do

interpret(d,

¯

x

(`)
1:(n�1))

end for

interpret(d,x

⇤
1:(n�1))

else if directive(d) == observe then

for ` < L� 1 do

{w̄(`)
n ,

¯

x

(`)
1:n} interpret(d,

¯

x

(`)
1:(n�1))

end for

T r(L� 1, {w̄(`)
n ,

¯

x

(`)
1:n} [{w̃⇤

1:n,x
⇤
1:n})

{w̃(`)
n ,x

(`)
1:n} T [{w̃⇤

n,x
⇤
1:n}

end if

end for

end for

p(x1:N |y1:N) ⇡
LX

`=1

w

`
N�

x

`
1:N

(x1:N)

p(x1:n|y1:n) = g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

p(x1:n|y1:n) =
LX

`=1

w

`
n�1g(yn|x1:n)f(xn|x`

1:n�1)p(x
`
1:n�1|y1:n�1)

4

Review : Importance Sampling

A Compilation Target for Probabilistic Programming Languages

In this manner, any model with a generative process that
can be described in arbitrary C code can be represented
in this sequential form in the space of program execution
traces.

Each observe statement takes as its argument
ln g(yn|x1:n). Each quantity of interest in a predict

statement corresponds to some deterministic function h(·)
of all random choices x1:N made during the execution of
the program. Given a set of S posterior samples {x(s)

1:N},
we can approximate the posterior distribution of the
predict value as

h(x1:N) ⇡ 1

S

SX

s=1

h(x(s)
1:N). (10)

3.2. Sequential Monte Carlo

Forward simulation-based algorithms are a natural fit for
probabilistic programs: run the program and report execu-
tions that match the data. Sequential Monte Carlo (SMC,
sequential importance resampling) forms the basic building
block of other, more complex particle-based methods, and
can itself be used as a simple approach to probabilistic pro-
gramming inference. SMC approximates a target density
p(x1:N |y1:N) as a weighted set of L realized trajectories
x

`
1:N such that

p(x1:N |y1:N) ⇡
LX

`=1

w`
N�

x

`
1:N

(x1:N). (11)

For most probabilistic programs of interest, it will be in-
tractable to sample from p(x1:N |y1:N) directly. Instead,
noting that (for n > 1) we have the recursive identity

p(x1:n|y1:n) (12)
= p(x1:n�1|y1:n�1)g(yn|x1:n)f(xn|x1:n�1),

we sample from p(x1:N |y1:N) by iteratively sampling from
each p(x1:n|y1:n), in turn, from 1 through N . At each
n, we construct an importance sampling distribution by
proposing from some distribution q(xn|x1:n�1, y1:n); in
probabilistic programs we find it convenient to propose
directly from the executions of the program, i.e. each se-
quence of random variates xn is jointly sampled from the
program execution state dynamics

x

`
n ⇠ f(xn|x

a`
n�1

1:n�1) (13)

where a`n�1 is an “ancestor index,” the particle index
1, . . . , L of the parent (at time n�1) of x`

n. The unnormal-
ized particle importance weights at each observation yn are
simply the observe data likelihood

w̃`
n = g(y1:n,x

`
1:n) (14)

Algorithm 1 Parallel SMC program execution
Assume: N observations, L particles

launch L copies of the program (parallel)
for n = 1 . . . N do

wait until all L reach observe yn (barrier)
update unnormalized weights w̃1:L

n (serial)
if ESS < ⌧ then

sample number of offspring O1:L
n (serial)

set weight w̃1:L
n = 1 (serial)

for ` = 1 . . . L do
fork or exit (parallel)

end for
else

set all number of offspring O`
n = 1 (serial)

end if
continue program execution (parallel)

end for
wait until L program traces terminate (barrier)
predict from L samples from p̂(x1:L

1:N |y1:N) (serial)

which can be normalized as

w`
n =

w̃`
nPL

`=1 w̃
`
n

. (15)

After each step n, we now have a weighted set of execu-
tion traces which approximate p(x1:n|y1:n). As the pro-
gram continues, traces which do not correspond well with
the data will have weights which become negligibly small,
leading in the worst case to all weight concentrated on a
single execution trace. To counteract this deficiency, we
resample from our current set of L execution traces after
each observation yn, according to their weights w`

n. This
is achieved by sampling a count O`

n for the number of “off-
spring” of a given execution trace ` to be included at time
n + 1. Any sampling scheme must ensure E[O`

n] = w`
n.

Sampling offspring counts O`
n is equivalent to sampling

ancestor indices a`n. Program execution traces with no off-
spring are killed; program execution traces with more than
one offspring are forked multiple times. After resampling,
all weights w`

n = 1.

We only resample if the effective sample size

ESS ⇡ 1P
`(w

`
n)

2
(16)

is less than some threshold value ⌧ ; we choose ⌧ = L/2.

In probabilistic C, each observe statement forms a bar-
rier: parallel execution cannot continue until all particles
have arrived at the observe and have reported their cur-
rent unnormalized weight. As execution traces arrive at the
observe barrier, they take the number of particles which
have already reached the current observe as a (temporary)

	

	

	

	

	
 	

	

	

x

`
n ⇠ f(xn|x

a`
n�1

1:n�1)

w̃

`
n = g(y1:n,x

`
1:n)

w

`
n =

w̃

`
nPL

`=1 w̃
`
n

p(x1:n|y1:n)
q(x1:n|y1:n)

=

g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

f(xn|x1:n�1)p(x1:n�1|y1:n�1)
= g(yn|x1:n)

p(x1:N |y1:N) / p̃(y1:N ,x1:N) ⌘
NY

n=1

g(yn|x1:n)f(xn|x1:n�1)

Ep(x1:n|y1:n)[h(x1:n)] =

Z
h(x1:n)p(x1:n|y1:n)dx1:n

=

Z
h(x1:n)

p(x1:n|y1:n)

q(x1:n|y1:n)
q(x1:n|y1:n)dx1:n

⇡ 1

L

LX

`=1

h(x

`
1:n)

p(x

`
1:n|y1:n)

q(x

`
1:n|y1:n)

x

`
1:n ⇠ q(x1:n|y1:n)

=

1

L

LX

`=1

h(x

`
1:n)w

`
n x

`
1:n ⇠ q(x1:n|y1:n), w

`
n =

p(x

`
1:n|y1:n)

q(x

`
1:n|y1:n)

Ep(x|y)[h(x)] =

Z
h(x)p(x|y)dx

=

Z
h(x)

p(x|y)
q(x|y)q(x|y)dx

⇡ 1

L

LX

`=1

h(x

`
)

p(x

`|y)
q(x

`|y) x

` ⇠ q(x|y)

=

1

L

LX

`=1

h(x

`
)w

`
n x

` ⇠ q(x|y), w`
n =

p(x

`|y)
q(x

`|y)

5

Review: Sequential Importance Resampling

Ep(x1:n|y1:n)[h(x1:n)] ⇡
1

L

LX

`=1

h(x

`
1:n)w

`
n x

`
1:n ⇠ q(x1:n|y1:n), w

`
n =

p(x

`
1:n|y1:n)

q(x

`
1:n|y1:n)

=

p(x1:n�1|y1:n�1) ⇡
LX

`=1

w

`
n�1�x`

1:n�1
(x1:n�1)

p(x1:n|y1:n) = g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

q(x1:n|y1:n) = f(xn|x1:n�1)p(x1:n�1|y1:n�1)

p(x1:n|y1:n) ⇡
LX

`=1

g(yn|x`
1:n)�x`

1:n
(x1:n), x

`
1:n = x

`
nx

a`
n�1

1:n�1 ⇠ f

p(x1:n|y1:n) ⇡
LX

`=1

g(yn|x`
1:n)w

`
n�1�x`

1:n
(x1:n), x

`
1:n = x

`
nx

a`
n�1

1:n�1 ⇠ f

p(y1:N |x1:N , ✓) = p(x0|✓)
NY

n=1

p(yn|xn, ✓)p(xn|xn�1, ✓)p(✓)

min

✓
1,

p(y1:N |✓0)p(✓0)q(✓|✓0)
p(y1:N |✓)p(✓)q(✓0|✓)

◆

min

1,

ˆ

Z

0
p(✓

0
)q(✓|✓0)

ˆ

Zp(✓)q(✓

0|✓)

!

ˆ

Z ⌘ p(y1:N |✓) ⇡
NY

n=1

"
1

N

LX

`=1

w

`
n

#

p(x1)

f(xn|x1:n�1)

g(yn|x1:n)

6

SMC Methods Discussed Require Only
Initialization

can be sampled

Forward Simulation

can be sampled (blackbox)

Observation Likelihood Weight Computation

can be point-wise evaluated up to constant multiple

Ep(x1:n|y1:n)[h(x1:n)] ⇡
1

L

LX

`=1

h(x

`
1:n)w

`
n x

`
1:n ⇠ q(x1:n|y1:n), w

`
n =

p(x

`
1:n|y1:n)

q(x

`
1:n|y1:n)

=

p(x1:n�1|y1:n�1) ⇡
LX

`=1

w

`
n�1�x`

1:n�1
(x1:n�1)

p(x1:n|y1:n) = g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

q(x1:n|y1:n) = f(xn|x1:n�1)p(x1:n�1|y1:n�1)

p(x1:n|y1:n) ⇡
LX

`=1

g(yn|x`
1:n)w

`
n�1�x`

1:n
(x1:n), x

`
1:n = x

`
nx

a`
n�1

1:n�1 ⇠ f

p(y1:N |x1:N , ✓) = p(x0|✓)
NY

n=1

p(yn|xn, ✓)p(xn|xn�1, ✓)p(✓)

min

✓
1,

p(y1:N |✓0)p(✓0)q(✓|✓0)
p(y1:N |✓)p(✓)q(✓0|✓)

◆

min

✓
1,

Z

0
p(✓

0
)q(✓|✓0)

Zp(✓)q(✓

0|✓)

◆

ˆ

Z ⌘ p(y1:N |✓) ⇡
NY

n=1

"
1

N

LX

`=1

w

`
n

#

p(x1)

f(xn|x1:n�1)

g(yn|x1:n)

6

Ep(x1:n|y1:n)[h(x1:n)] ⇡
1

L

LX

`=1

h(x

`
1:n)w

`
n x

`
1:n ⇠ q(x1:n|y1:n), w

`
n =

p(x

`
1:n|y1:n)

q(x

`
1:n|y1:n)

=

p(x1:n�1|y1:n�1) ⇡
LX

`=1

w

`
n�1�x`

1:n�1
(x1:n�1)

p(x1:n|y1:n) = g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

q(x1:n|y1:n) = f(xn|x1:n�1)p(x1:n�1|y1:n�1)

p(x1:n|y1:n) ⇡
LX

`=1

g(yn|x`
1:n)w

`
n�1�x`

1:n
(x1:n), x

`
1:n = x

`
nx

a`
n�1

1:n�1 ⇠ f

p(y1:N |x1:N , ✓) = p(x0|✓)
NY

n=1

p(yn|xn, ✓)p(xn|xn�1, ✓)p(✓)

min

✓
1,

p(y1:N |✓0)p(✓0)q(✓|✓0)
p(y1:N |✓)p(✓)q(✓0|✓)

◆

min

✓
1,

Z

0
p(✓

0
)q(✓|✓0)

Zp(✓)q(✓

0|✓)

◆

ˆ

Z ⌘ p(y1:N |✓) ⇡
NY

n=1

"
1

N

LX

`=1

w

`
n

#

p(x1)

f(xn|x1:n�1)

g(yn|x1:n)

6

Ep(x1:n|y1:n)[h(x1:n)] ⇡
1

L

LX

`=1

h(x

`
1:n)w

`
n x

`
1:n ⇠ q(x1:n|y1:n), w

`
n =

p(x

`
1:n|y1:n)

q(x

`
1:n|y1:n)

=

p(x1:n�1|y1:n�1) ⇡
LX

`=1

w

`
n�1�x`

1:n�1
(x1:n�1)

p(x1:n|y1:n) = g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

q(x1:n|y1:n) = f(xn|x1:n�1)p(x1:n�1|y1:n�1)

p(x1:n|y1:n) ⇡
LX

`=1

g(yn|x`
1:n)w

`
n�1�x`

1:n
(x1:n), x

`
1:n = x

`
nx

a`
n�1

1:n�1 ⇠ f

p(y1:N |x1:N , ✓) = p(x0|✓)
NY

n=1

p(yn|xn, ✓)p(xn|xn�1, ✓)p(✓)

min

✓
1,

p(y1:N |✓0)p(✓0)q(✓|✓0)
p(y1:N |✓)p(✓)q(✓0|✓)

◆

min

✓
1,

Z

0
p(✓

0
)q(✓|✓0)

Zp(✓)q(✓

0|✓)

◆

ˆ

Z ⌘ p(y1:N |✓) ⇡
NY

n=1

"
1

N

LX

`=1

w

`
n

#

p(x1)

f(xn|x1:n�1)

g(yn|x1:n)

6

Sequential Monte Carlo for Prob. Prog.

A Compilation Target for Probabilistic Programming Languages

In this manner, any model with a generative process that
can be described in arbitrary C code can be represented
in this sequential form in the space of program execution
traces.

Each observe statement takes as its argument
ln g(yn|x1:n). Each quantity of interest in a predict

statement corresponds to some deterministic function h(·)
of all random choices x1:N made during the execution of
the program. Given a set of S posterior samples {x(s)

1:N},
we can approximate the posterior distribution of the
predict value as

h(x1:N) ⇡ 1

S

SX

s=1

h(x(s)
1:N). (10)

3.2. Sequential Monte Carlo

Forward simulation-based algorithms are a natural fit for
probabilistic programs: run the program and report execu-
tions that match the data. Sequential Monte Carlo (SMC,
sequential importance resampling) forms the basic building
block of other, more complex particle-based methods, and
can itself be used as a simple approach to probabilistic pro-
gramming inference. SMC approximates a target density
p(x1:N |y1:N) as a weighted set of L realized trajectories
x

`
1:N such that

p(x1:N |y1:N) ⇡
LX

`=1

w`
N�

x

`
1:N

(x1:N). (11)

For most probabilistic programs of interest, it will be in-
tractable to sample from p(x1:N |y1:N) directly. Instead,
noting that (for n > 1) we have the recursive identity

p(x1:n|y1:n) (12)
= p(x1:n�1|y1:n�1)g(yn|x1:n)f(xn|x1:n�1),

we sample from p(x1:N |y1:N) by iteratively sampling from
each p(x1:n|y1:n), in turn, from 1 through N . At each
n, we construct an importance sampling distribution by
proposing from some distribution q(xn|x1:n�1, y1:n); in
probabilistic programs we find it convenient to propose
directly from the executions of the program, i.e. each se-
quence of random variates xn is jointly sampled from the
program execution state dynamics

x

`
n ⇠ f(xn|x

a`
n�1

1:n�1) (13)

where a`n�1 is an “ancestor index,” the particle index
1, . . . , L of the parent (at time n�1) of x`

n. The unnormal-
ized particle importance weights at each observation yn are
simply the observe data likelihood

w̃`
n = g(y1:n,x

`
1:n) (14)

Algorithm 1 Parallel SMC program execution
Assume: N observations, L particles

launch L copies of the program (parallel)
for n = 1 . . . N do

wait until all L reach observe yn (barrier)
update unnormalized weights w̃1:L

n (serial)
if ESS < ⌧ then

sample number of offspring O1:L
n (serial)

set weight w̃1:L
n = 1 (serial)

for ` = 1 . . . L do
fork or exit (parallel)

end for
else

set all number of offspring O`
n = 1 (serial)

end if
continue program execution (parallel)

end for
wait until L program traces terminate (barrier)
predict from L samples from p̂(x1:L

1:N |y1:N) (serial)

which can be normalized as

w`
n =

w̃`
nPL

`=1 w̃
`
n

. (15)

After each step n, we now have a weighted set of execu-
tion traces which approximate p(x1:n|y1:n). As the pro-
gram continues, traces which do not correspond well with
the data will have weights which become negligibly small,
leading in the worst case to all weight concentrated on a
single execution trace. To counteract this deficiency, we
resample from our current set of L execution traces after
each observation yn, according to their weights w`

n. This
is achieved by sampling a count O`

n for the number of “off-
spring” of a given execution trace ` to be included at time
n + 1. Any sampling scheme must ensure E[O`

n] = w`
n.

Sampling offspring counts O`
n is equivalent to sampling

ancestor indices a`n. Program execution traces with no off-
spring are killed; program execution traces with more than
one offspring are forked multiple times. After resampling,
all weights w`

n = 1.

We only resample if the effective sample size

ESS ⇡ 1P
`(w

`
n)

2
(16)

is less than some threshold value ⌧ ; we choose ⌧ = L/2.

In probabilistic C, each observe statement forms a bar-
rier: parallel execution cannot continue until all particles
have arrived at the observe and have reported their cur-
rent unnormalized weight. As execution traces arrive at the
observe barrier, they take the number of particles which
have already reached the current observe as a (temporary)

A Compilation Target for Probabilistic Programming Languages

In this manner, any model with a generative process that
can be described in arbitrary C code can be represented
in this sequential form in the space of program execution
traces.

Each observe statement takes as its argument
ln g(yn|x1:n). Each quantity of interest in a predict

statement corresponds to some deterministic function h(·)
of all random choices x1:N made during the execution of
the program. Given a set of S posterior samples {x(s)

1:N},
we can approximate the posterior distribution of the
predict value as

h(x1:N) ⇡ 1

S

SX

s=1

h(x(s)
1:N). (10)

3.2. Sequential Monte Carlo

Forward simulation-based algorithms are a natural fit for
probabilistic programs: run the program and report execu-
tions that match the data. Sequential Monte Carlo (SMC,
sequential importance resampling) forms the basic building
block of other, more complex particle-based methods, and
can itself be used as a simple approach to probabilistic pro-
gramming inference. SMC approximates a target density
p(x1:N |y1:N) as a weighted set of L realized trajectories
x

`
1:N such that

p(x1:N |y1:N) ⇡
LX

`=1

w`
N�

x

`
1:N

(x1:N). (11)

For most probabilistic programs of interest, it will be in-
tractable to sample from p(x1:N |y1:N) directly. Instead,
noting that (for n > 1) we have the recursive identity

p(x1:n|y1:n) (12)
= p(x1:n�1|y1:n�1)g(yn|x1:n)f(xn|x1:n�1),

we sample from p(x1:N |y1:N) by iteratively sampling from
each p(x1:n|y1:n), in turn, from 1 through N . At each
n, we construct an importance sampling distribution by
proposing from some distribution q(xn|x1:n�1, y1:n); in
probabilistic programs we find it convenient to propose
directly from the executions of the program, i.e. each se-
quence of random variates xn is jointly sampled from the
program execution state dynamics

x

`
n ⇠ f(xn|x

a`
n�1

1:n�1) (13)

where a`n�1 is an “ancestor index,” the particle index
1, . . . , L of the parent (at time n�1) of x`

n. The unnormal-
ized particle importance weights at each observation yn are
simply the observe data likelihood

w̃`
n = g(y1:n,x

`
1:n) (14)

Algorithm 1 Parallel SMC program execution
Assume: N observations, L particles

launch L copies of the program (parallel)
for n = 1 . . . N do

wait until all L reach observe yn (barrier)
update unnormalized weights w̃1:L

n (serial)
if ESS < ⌧ then

sample number of offspring O1:L
n (serial)

set weight w̃1:L
n = 1 (serial)

for ` = 1 . . . L do
fork or exit (parallel)

end for
else

set all number of offspring O`
n = 1 (serial)

end if
continue program execution (parallel)

end for
wait until L program traces terminate (barrier)
predict from L samples from p̂(x1:L

1:N |y1:N) (serial)

which can be normalized as

w`
n =

w̃`
nPL

`=1 w̃
`
n

. (15)

After each step n, we now have a weighted set of execu-
tion traces which approximate p(x1:n|y1:n). As the pro-
gram continues, traces which do not correspond well with
the data will have weights which become negligibly small,
leading in the worst case to all weight concentrated on a
single execution trace. To counteract this deficiency, we
resample from our current set of L execution traces after
each observation yn, according to their weights w`

n. This
is achieved by sampling a count O`

n for the number of “off-
spring” of a given execution trace ` to be included at time
n + 1. Any sampling scheme must ensure E[O`

n] = w`
n.

Sampling offspring counts O`
n is equivalent to sampling

ancestor indices a`n. Program execution traces with no off-
spring are killed; program execution traces with more than
one offspring are forked multiple times. After resampling,
all weights w`

n = 1.

We only resample if the effective sample size

ESS ⇡ 1P
`(w

`
n)

2
(16)

is less than some threshold value ⌧ ; we choose ⌧ = L/2.

In probabilistic C, each observe statement forms a bar-
rier: parallel execution cannot continue until all particles
have arrived at the observe and have reported their cur-
rent unnormalized weight. As execution traces arrive at the
observe barrier, they take the number of particles which
have already reached the current observe as a (temporary)

Paige and W. “A Compilation Target for Probabilistic Programming Languages.” ICML, 2014

Probabilistic-C A Compilation Target for Probabilistic Programming Languages

#include "probabilistic.h"

int main(int argc, char

**

argv) {

double var = 2;

double mu = normal_rng(1, 5);

observe(normal_lnp(9, mu, var));

observe(normal_lnp(8, mu, var));

p r e d i c t("mu,%f\n", mu);

return 0;

}

Figure 1. This program performs posterior inference over the un-
known mean mu of a Gaussian, conditioned on two data points.
The predict directive formats output using standard printf
semantics.

2. Probabilistic Programming
Any program that makes a random choice over the course
of its execution implicitly defines a prior distribution over
its random variables; running the program can be inter-
preted as drawing a sample from the prior. Inference in
probabilistic programs involves conditioning on observed
data, and characterizing the posterior distribution of the
random variables given data. We introduce probabilistic
programming capabilities into C by providing a library
with two primary functions: observewhich conditions the
program execution trace given the log-likelihood of a data
point, and predict which marks expressions for which
we want posterior samples. Any random number genera-
tor and sampling library can be used for making random
choices in the program, any numeric log likelihood value
can be passed to an observe, and any C expression which
can be printed can be reported using predict. The library
includes a single macro which renames main and wraps it
in another function that runs the original in an inner loop in
the forward inference algorithms to be described.

Although C is a comparatively low-level language, it can
nonetheless represent many well-known generative models
concisely and transparently. Figure 1 shows a simple prob-
abilistic C program for estimating the posterior distribution
for the mean of a Gaussian, conditioned on two observed
data points y1, y2, corresponding to the model

µ ⇠ N (1, 5), y1, y2
iid⇠ N (µ, 2). (1)

We observe the data y1, y2 and predict the poste-
rior distribution of µ. The functions normal rng and
normal lnp in Figure 1 return (respectively) a normally-
distributed random variate and the log probability density
of a particular value, with mean and variance parameters
mu and var. The observe statement requires only the log-
probability of the data points 8 and 9 conditioned on the
current program state; no other information about the like-
lihood function or the generative process. In this program
we predict the posterior distribution of a single value mu.

#include "probabilistic.h"

#define K 3

#define N 11

/* Markov transition matrix */
static double T[K][K] = { { 0.1, 0.5, 0.4 },

{ 0.2, 0.2, 0.6 },

{ 0.15, 0.15, 0.7 } };

/* Observed data */
static double data[N] = { NAN, .9, .8, .7, 0, -.025,

-5, -2, -.1, 0, 0.13 };

/* Prior distribution on initial state */
static double initial_state[K] = { 1.0/3, 1.0/3, 1.0/3 };

/* Per-state mean of Gaussian emission distribution */
static double state_mean[K] = { -1, 1, 0 };

/* Generative program for a HMM */
int main(int argc, char

**

argv) {

int states[N];

for (int n=0; n<N; n++) {

states[n] = (n==0) ? discrete_rng(initial_state, K)

: discrete_rng(T[states[n-1]], K);

if (n > 0) {

observe(normal_lnp(data[n], state_mean[states[n]], 1));

}

p r e d i c t("state[%d],%d\n", n, states[n]);

}

return 0;

}

Figure 2. A hidden Markov model (HMM) with 3 underlying
states and Gaussian emissions, observed at 10 discrete time-
points. We observe 10 data points and predict the marginal distri-
bution over the latent state at each time point.

A hidden Markov model example is shown in Figure 2,
in which N = 10 observed data points y1:N are drawn
from an underlying Markov chain with K latent states, each
with Gaussian emission distributions with mean µk, and a
(known) K ⇥K state transition matrix T , such that

z0 ⇠ Discrete([1/K, . . . , 1/K]) (2)
zn|zn�1 ⇠ Discrete(Tzn�1) (3)

yn|zn ⇠ N (µzn ,�
2). (4)

Bayesian nonparametric models can also be represented
concisely; in Figure 3 we show a generative program for an
infinite mixture of Gaussians. We use a Chinese restaurant
process (CRP) to sequentially sample non-negative integer
partition assignments zn for each data point y1, . . . , yN .
For each partition, mean and variance parameters µzn ,�

2
zn

are drawn from a normal-gamma prior; the data points yn
themselves are drawn from a normal distribution with these
parameters, defining a full generative model

zn ⇠ CRP(↵, z1, . . . , zn�1) (5)

1/�2
zn ⇠ Gamma(1, 1) (6)

µzn |�2
zn ⇠ N (0,�2

zn) (7)

yn|zn, µzn ,�
2
zn ⇠ N (µzn ,�

2
zn). (8)

This program also demonstrates the additional library func-
tion memoize, which can be used to implement stochastic
memoization as described in (Goodman et al., 2008).

Paige and Wood “A Compilation Target for Probabilistic Programming Languages” ICML 2014

Inverse Stochastic Simulation
•  Deterministic simulator exists as code
•  Parameter uncertainties exist

–  Varying parameters to simulator = stochastic
simulator

•  What to do with observations?
–  Update estimates of parameters
–  Posterior predictions

 Example : Jack-Up Units
60m	

Keppel	
 FELS	

Keppel	
 FELS	

Maersk	

Houlsby	

Slide	
 from	
 Houlsby	

Jack-up operations

Float	

to	
 site	

Lower	

legs	

Storm	
 Climb	
 to	

air-­‐gap	

and	

operate	

Dump	

preload	

Preload	
 Light	
 ship	

load	

sketches	
 ader	
 Poulos	
 (1988)	

Slide	
 from	
 Houlsby	

Spudcan Simulator + Probabilistic-C -> Inference

•  Deterministic simulator
–  ~750 lines of C code
–  10-100’s of parameters
–  Black-box
–  Not differentiable

•  Stochastic simulator
–  +150 lines of C code
–  Priors on parameters

•  Automatic inference
–  +15 lines of Probabilistic-C

•  ~1000 samples / second

Review : Inference In State Space Models
Consider	
 inference	
 in	
 a	
 state	
 space	
 model	
 that	
 depends	
 on	
 fixed	

parameters	

y1 yN

x0

✓

x1 x2

y2

xN

can’t	
 use	
 SMC	

single-­‐site	

updates	
 won’t	

mix	

“Ideal” Inference
Ideal	
 MH	

	

	

	

	

intractable.	

	

SMC	
 provides	
 unbiased	
 es*mate	

	

	

	

	
 	

y1 yN

x0

✓

x1 x2

y2

xN

Ep(x1:n|y1:n)[h(x1:n)] ⇡
1

L

LX

`=1

h(x

`
1:n)w

`
n x

`
1:n ⇠ q(x1:n|y1:n), w

`
n =

p(x

`
1:n|y1:n)

q(x

`
1:n|y1:n)

=

p(x1:n�1|y1:n�1) ⇡
LX

`=1

w

`
n�1�x`

1:n�1
(x1:n�1)

p(x1:n|y1:n) = g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

q(x1:n|y1:n) = f(xn|x1:n�1)p(x1:n�1|y1:n�1)

p(x1:n|y1:n) ⇡
LX

`=1

g(yn|x`
1:n)w

`
n�1�x`

1:n
(x1:n), x

`
1:n = x

`
nx

a`
n�1

1:n�1 ⇠ f

p(y1:N |x1:N , ✓) = p(x0|✓)
NY

n=1

p(yn|xn, ✓)p(xn|xn�1, ✓)p(✓)

min

✓
1,

p(y1:N |✓0)p(✓0)q(✓|✓0)
p(y1:N |✓)p(✓)q(✓0|✓)

◆

6

Del	
 Moral	
 “Feynman-­‐Kac	
 Formulae:	
 Genealogical	
 and	
 Interac*ng	
 Par*cle	
 Systems	
 with	
 Applica*ons”	

Ep(x1:n|y1:n)[h(x1:n)] ⇡
1

L

LX

`=1

h(x

`
1:n)w

`
n x

`
1:n ⇠ q(x1:n|y1:n), w

`
n =

p(x

`
1:n|y1:n)

q(x

`
1:n|y1:n)

=

p(x1:n�1|y1:n�1) ⇡
LX

`=1

w

`
n�1�x`

1:n�1
(x1:n�1)

p(x1:n|y1:n) = g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

q(x1:n|y1:n) = f(xn|x1:n�1)p(x1:n�1|y1:n�1)

p(x1:n|y1:n) ⇡
LX

`=1

g(yn|x`
1:n)w

`
n�1�x`

1:n
(x1:n), x

`
1:n = x

`
nx

a`
n�1

1:n�1 ⇠ f

p(y1:N |x1:N , ✓) = p(x0|✓)
NY

n=1

p(yn|xn, ✓)p(xn|xn�1, ✓)p(✓)

min

✓
1,

p(y1:N |✓0)p(✓0)q(✓|✓0)
p(y1:N |✓)p(✓)q(✓0|✓)

◆

min

✓
1,

Z

0
p(✓

0
)q(✓|✓0)

Zp(✓)q(✓

0|✓)

◆

ˆ

Z ⌘ p(y1:N |✓) ⇡
NY

n=1

"
1

N

LX

`=1

w

`
n

#

6

MH	
 with	
 unbiased	
 likelihood	
 es*mates	

	

	

	

	

computed	
 via	
 SMC	
 proposal	

	

	

	

	

	

targets	
 correct	
 distribu*on!	

Ep(x1:n|y1:n)[h(x1:n)] ⇡
1

L

LX

`=1

h(x

`
1:n)w

`
n x

`
1:n ⇠ q(x1:n|y1:n), w

`
n =

p(x

`
1:n|y1:n)

q(x

`
1:n|y1:n)

=

p(x1:n�1|y1:n�1) ⇡
LX

`=1

w

`
n�1�x`

1:n�1
(x1:n�1)

p(x1:n|y1:n) = g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

q(x1:n|y1:n) = f(xn|x1:n�1)p(x1:n�1|y1:n�1)

p(x1:n|y1:n) ⇡
LX

`=1

g(yn|x`
1:n)w

`
n�1�x`

1:n
(x1:n), x

`
1:n = x

`
nx

a`
n�1

1:n�1 ⇠ f

p(y1:N |x1:N , ✓) = p(x0|✓)
NY

n=1

p(yn|xn, ✓)p(xn|xn�1, ✓)p(✓)

min

✓
1,

p(y1:N |✓0)p(✓0)q(✓|✓0)
p(y1:N |✓)p(✓)q(✓0|✓)

◆

min

1,

ˆ

Z

0
p(✓

0
)q(✓|✓0)

ˆ

Zp(✓)q(✓

0|✓)

!

ˆ

Z ⌘ p(y1:N |✓) ⇡
NY

n=1

"
1

N

LX

`=1

w

`
n

#

p(x1)

f(xn|x1:n�1)

g(yn|x1:n)

6

Particle Marginal Metropolis Hastings

y1 yN

x0

✓

x1 x2

y2

xN

C.	
 Andrieu,	
 A.	
 Doucet,	
 R.	
 Holenstein	
 Par*cle	
 Markov	
 Chain	
 Monte	
 Carlo	
 methods	
 	

Ep(x1:n|y1:n)[h(x1:n)] ⇡
1

L

LX

`=1

h(x

`
1:n)w

`
n x

`
1:n ⇠ q(x1:n|y1:n), w

`
n =

p(x

`
1:n|y1:n)

q(x

`
1:n|y1:n)

=

p(x1:n�1|y1:n�1) ⇡
LX

`=1

w

`
n�1�x`

1:n�1
(x1:n�1)

p(x1:n|y1:n) = g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

q(x1:n|y1:n) = f(xn|x1:n�1)p(x1:n�1|y1:n�1)

p(x1:n|y1:n) ⇡
LX

`=1

g(yn|x`
1:n)w

`
n�1�x`

1:n
(x1:n), x

`
1:n = x

`
nx

a`
n�1

1:n�1 ⇠ f

p(y1:N |x1:N , ✓) = p(x0|✓)
NY

n=1

p(yn|xn, ✓)p(xn|xn�1, ✓)p(✓)

min

✓
1,

p(y1:N |✓0)p(✓0)q(✓|✓0)
p(y1:N |✓)p(✓)q(✓0|✓)

◆

min

✓
1,

Z

0
p(✓

0
)q(✓|✓0)

Zp(✓)q(✓

0|✓)

◆

ˆ

Z ⌘ p(y1:N |✓) ⇡
NY

n=1

"
1

N

LX

`=1

w

`
n

#

6

Conditional SMC for Prob. Prog. Inference

y1 yN

✓

y2

x1,1 x1,2 x2,1 x3,1 x3,2

y3

{{ ✓

xN,|xN |

•  No	
 fixed	
 parameter	

•  Program	
 generates	
 all	
 random	
 variables	

•  State	
 is	
 interpreter	
 memory	
 state	

•  Transi*on	
 is	
 stochas*c	
 procedure	
 applica*on	

•  Only	
 observes	
 need	
 be	
 indexed	

Lazy parameter
generation

Eager parameter
generation

PIMH For Probabilistic Programming
•  Run SMC Once
•  Compute marginal likelihood estimate

•  Do forever
•  Re-run SMC
•  Compute new marginal likelihood estimate

•  Accept particle set with probability

•  Emit predictions from all particles in next set (new and/or old)

A Compilation Target for Probabilistic Programming Languages

unique identifier. Program execution is then blocked as the
effective sample size is computed and the number of off-
spring are sampled. The number of offspring are stored in
a shared memory block; when the number of offspring are
computed, each particle uses the identifier assigned when
reaching the observe barrier to retrieve (asynchronously)
from shared memory the number of children to fork. Par-
ticles with no offspring wait for any child processes to com-
plete execution, and terminate; particles with only one off-
spring do not fork any children but continue execution as
normal.

The SMC algorithm is outlined in Algorithm 1, with anno-
tations for which steps are executed in parallel, serially, or
form a barrier. After a single SMC sweep is complete, we
sample values for each predict, and then (if desired) re-
peat the process, running a new independent particle filter,
to draw an additional batch of samples.

3.3. Particle Metropolis-Hastings

Particle Markov chain Monte Carlo, introduced in Andrieu
et al. (2010), uses sequential Monte Carlo to generate high-
dimensional proposal distributions for MCMC. The most
simple formulation is the particle independent Metropolis-
Hastings algorithm. After running a single particle filter
sweep, we compute an estimate of the marginal likelihood,

Ẑ ⌘ p(y1:N) ⇡
NY

n=1

"
1

N

LX

`=1

w`
n

#
. (17)

We then run another iteration of sequential Monte Carlo
which we use as a MH proposal; we estimate the marginal
likelihood Ẑ 0 of the new proposed particle set, and then
with probability min(1, Ẑ 0/Ẑ) we accept the new particle
set and output a new set of predict samples, otherwise
outputting the same predict samples as in the previous
iteration.

The inner loop of Algorithm 2 is otherwise substantially
similar to SMC.

3.4. Particle Gibbs

Particle Gibbs is a particle MCMC technique that has SMC
at its core as well. It has better theoretical statistical con-
vergence properties than PIMH, but may suffer due to de-
generacy concerns in some models, and requires additional
computational overhead. We initialize particle Gibbs by
running a single sequential Monte Carlo sweep, and then
alternate between

1. sampling a single execution trace x̂1:M from the set of
L weighted particles, and

2. running a “conditional” SMC sweep, in which we

Algorithm 2 Parallel PIMH program execution
Assume: M iterations, N observations, L particles

for m = 1 . . .M do
launch L copies of the program (parallel)
for n = 1 . . . N do

wait until all L reach an observe (barrier)
update unnormalized weights w̃1:L (serial)
if ESS < ⌧ then

update proposal evidence estimate Ẑ 0 (serial)
sample number of offspring O1:L

n (serial)
set weight w̃1:L

n = 1 (serial)
for ` = 1 . . . L do

fork or exit (parallel)
end for

else
set all number of offspring O`

n = 1 (serial)
end if
continue program execution (parallel)

end for
wait until L program traces terminate (barrier)
accept or reject new particle set (serial)
predict from L samples from p̂(x1:L

1:N |y1:N) (serial)
store current particle set x and evidence Ẑ (serial)
continue to next iteration (parallel)

end for

generate L�1 new particles in addition to the retained
x̂1:M .

The implementation based on operating system primitives
is described in algorithms 3 and 4. The challenge here is
that we must “retain” an execution trace, which we can later
revisit to resume and branch arbitrarily many times. This
is achieved by spawning off a “control” process at every
observation point, which from then on manages the future
of that particular execution state.

As before, processes arrive at an observe barrier, and
when all particles have reached the observe we compute
weights, and sample offspring counts O`

n. Particles with
O`

n = 0 terminate, but new child processes are no longer
spawned right away. Instead, all remaining particles fork
a new process whose execution path immediately diverges
from the main codebase and enters the retain and branch
loop in Algorithm 4. This new process takes responsibility
for actually spawning the O`

n new children. The spawned
child processes (and the original process which arrived at
the observe barrier) wait (albeit briefly) at a new barrier
marking the end of observe n, not continuing execution
until all new child processes have been launched.

Program execution continues to the next observe, during
which the retain / branch process waits until a full particle
set reaches the end of the program. Once final weights w̃1:L

N

A Compilation Target for Probabilistic Programming Languages

unique identifier. Program execution is then blocked as the
effective sample size is computed and the number of off-
spring are sampled. The number of offspring are stored in
a shared memory block; when the number of offspring are
computed, each particle uses the identifier assigned when
reaching the observe barrier to retrieve (asynchronously)
from shared memory the number of children to fork. Par-
ticles with no offspring wait for any child processes to com-
plete execution, and terminate; particles with only one off-
spring do not fork any children but continue execution as
normal.

The SMC algorithm is outlined in Algorithm 1, with anno-
tations for which steps are executed in parallel, serially, or
form a barrier. After a single SMC sweep is complete, we
sample values for each predict, and then (if desired) re-
peat the process, running a new independent particle filter,
to draw an additional batch of samples.

3.3. Particle Metropolis-Hastings

Particle Markov chain Monte Carlo, introduced in Andrieu
et al. (2010), uses sequential Monte Carlo to generate high-
dimensional proposal distributions for MCMC. The most
simple formulation is the particle independent Metropolis-
Hastings algorithm. After running a single particle filter
sweep, we compute an estimate of the marginal likelihood,

Ẑ ⌘ p(y1:N) ⇡
NY

n=1

"
1

N

LX

`=1

w`
n

#
. (17)

We then run another iteration of sequential Monte Carlo
which we use as a MH proposal; we estimate the marginal
likelihood Ẑ 0 of the new proposed particle set, and then
with probability min(1, Ẑ 0/Ẑ) we accept the new particle
set and output a new set of predict samples, otherwise
outputting the same predict samples as in the previous
iteration.

The inner loop of Algorithm 2 is otherwise substantially
similar to SMC.

3.4. Particle Gibbs

Particle Gibbs is a particle MCMC technique that has SMC
at its core as well. It has better theoretical statistical con-
vergence properties than PIMH, but may suffer due to de-
generacy concerns in some models, and requires additional
computational overhead. We initialize particle Gibbs by
running a single sequential Monte Carlo sweep, and then
alternate between

1. sampling a single execution trace x̂1:M from the set of
L weighted particles, and

2. running a “conditional” SMC sweep, in which we

Algorithm 2 Parallel PIMH program execution
Assume: M iterations, N observations, L particles

for m = 1 . . .M do
launch L copies of the program (parallel)
for n = 1 . . . N do

wait until all L reach an observe (barrier)
update unnormalized weights w̃1:L (serial)
if ESS < ⌧ then

update proposal evidence estimate Ẑ 0 (serial)
sample number of offspring O1:L

n (serial)
set weight w̃1:L

n = 1 (serial)
for ` = 1 . . . L do

fork or exit (parallel)
end for

else
set all number of offspring O`

n = 1 (serial)
end if
continue program execution (parallel)

end for
wait until L program traces terminate (barrier)
accept or reject new particle set (serial)
predict from L samples from p̂(x1:L

1:N |y1:N) (serial)
store current particle set x and evidence Ẑ (serial)
continue to next iteration (parallel)

end for

generate L�1 new particles in addition to the retained
x̂1:M .

The implementation based on operating system primitives
is described in algorithms 3 and 4. The challenge here is
that we must “retain” an execution trace, which we can later
revisit to resume and branch arbitrarily many times. This
is achieved by spawning off a “control” process at every
observation point, which from then on manages the future
of that particular execution state.

As before, processes arrive at an observe barrier, and
when all particles have reached the observe we compute
weights, and sample offspring counts O`

n. Particles with
O`

n = 0 terminate, but new child processes are no longer
spawned right away. Instead, all remaining particles fork
a new process whose execution path immediately diverges
from the main codebase and enters the retain and branch
loop in Algorithm 4. This new process takes responsibility
for actually spawning the O`

n new children. The spawned
child processes (and the original process which arrived at
the observe barrier) wait (albeit briefly) at a new barrier
marking the end of observe n, not continuing execution
until all new child processes have been launched.

Program execution continues to the next observe, during
which the retain / branch process waits until a full particle
set reaches the end of the program. Once final weights w̃1:L

N

A Compilation Target for Probabilistic Programming Languages

unique identifier. Program execution is then blocked as the
effective sample size is computed and the number of off-
spring are sampled. The number of offspring are stored in
a shared memory block; when the number of offspring are
computed, each particle uses the identifier assigned when
reaching the observe barrier to retrieve (asynchronously)
from shared memory the number of children to fork. Par-
ticles with no offspring wait for any child processes to com-
plete execution, and terminate; particles with only one off-
spring do not fork any children but continue execution as
normal.

The SMC algorithm is outlined in Algorithm 1, with anno-
tations for which steps are executed in parallel, serially, or
form a barrier. After a single SMC sweep is complete, we
sample values for each predict, and then (if desired) re-
peat the process, running a new independent particle filter,
to draw an additional batch of samples.

3.3. Particle Metropolis-Hastings

Particle Markov chain Monte Carlo, introduced in Andrieu
et al. (2010), uses sequential Monte Carlo to generate high-
dimensional proposal distributions for MCMC. The most
simple formulation is the particle independent Metropolis-
Hastings algorithm. After running a single particle filter
sweep, we compute an estimate of the marginal likelihood,

Ẑ ⌘ p(y1:N) ⇡
NY

n=1

"
1

N

LX

`=1

w`
n

#
. (17)

We then run another iteration of sequential Monte Carlo
which we use as a MH proposal; we estimate the marginal
likelihood Ẑ 0 of the new proposed particle set, and then
with probability min(1, Ẑ 0/Ẑ) we accept the new particle
set and output a new set of predict samples, otherwise
outputting the same predict samples as in the previous
iteration.

The inner loop of Algorithm 2 is otherwise substantially
similar to SMC.

3.4. Particle Gibbs

Particle Gibbs is a particle MCMC technique that has SMC
at its core as well. It has better theoretical statistical con-
vergence properties than PIMH, but may suffer due to de-
generacy concerns in some models, and requires additional
computational overhead. We initialize particle Gibbs by
running a single sequential Monte Carlo sweep, and then
alternate between

1. sampling a single execution trace x̂1:M from the set of
L weighted particles, and

2. running a “conditional” SMC sweep, in which we

Algorithm 2 Parallel PIMH program execution
Assume: M iterations, N observations, L particles

for m = 1 . . .M do
launch L copies of the program (parallel)
for n = 1 . . . N do

wait until all L reach an observe (barrier)
update unnormalized weights w̃1:L (serial)
if ESS < ⌧ then

update proposal evidence estimate Ẑ 0 (serial)
sample number of offspring O1:L

n (serial)
set weight w̃1:L

n = 1 (serial)
for ` = 1 . . . L do

fork or exit (parallel)
end for

else
set all number of offspring O`

n = 1 (serial)
end if
continue program execution (parallel)

end for
wait until L program traces terminate (barrier)
accept or reject new particle set (serial)
predict from L samples from p̂(x1:L

1:N |y1:N) (serial)
store current particle set x and evidence Ẑ (serial)
continue to next iteration (parallel)

end for

generate L�1 new particles in addition to the retained
x̂1:M .

The implementation based on operating system primitives
is described in algorithms 3 and 4. The challenge here is
that we must “retain” an execution trace, which we can later
revisit to resume and branch arbitrarily many times. This
is achieved by spawning off a “control” process at every
observation point, which from then on manages the future
of that particular execution state.

As before, processes arrive at an observe barrier, and
when all particles have reached the observe we compute
weights, and sample offspring counts O`

n. Particles with
O`

n = 0 terminate, but new child processes are no longer
spawned right away. Instead, all remaining particles fork
a new process whose execution path immediately diverges
from the main codebase and enters the retain and branch
loop in Algorithm 4. This new process takes responsibility
for actually spawning the O`

n new children. The spawned
child processes (and the original process which arrived at
the observe barrier) wait (albeit briefly) at a new barrier
marking the end of observe n, not continuing execution
until all new child processes have been launched.

Program execution continues to the next observe, during
which the retain / branch process waits until a full particle
set reaches the end of the program. Once final weights w̃1:L

N

No theta!

Particle Gibbs for Prob. Prog.
•  MH w/ accept prob. = 1
•  SMC “inner-loop” proposal
•  “Retained particle”
•  Non-local

•  Single “sweep” can propose
changes to many variable values at
once

Wood, van de Meent, Mansinghka “A New Approach to Probabilistic Programming Inference” AISTATS 2014
Paige and Wood “A Compilation Target for Probabilistic Programming Languages” ICML 2014

[Holenstein	
 2009;	
 Andrieu,	
 Doucet,	
 Holenstein	
 2010;	
 etc]	
 	

Algorithm 1 Particle Gibbs Prob. Prog. Inference

L number of particles

S number of sweeps

{w̃(`)
N ,x

(`)
1:N} Run SMC

for s < S do

{·,x⇤
1:N} r(1, {1/L,x(`)

1:N})
{·,x(`)

0 = ;} initialize L� 1 interpreters

for d 2 ordered lines of program do

for ` < L� 1 do

¯

x

(`)
1:(n�1) fork(x

(`)
1:(n�1))

end for

if directive(d) == assume then

for ` < L� 1 do

¯

x

(`)
1:n interpret(d,

¯

x

(`)
1:(n�1))

end for

{x(`)
1:n} {¯x(`)

1:n} [x

⇤
1:n

else if directive(d) == predict then

for ` < L� 1 do

interpret(d,

¯

x

(`)
1:(n�1))

end for

interpret(d,x

⇤
1:(n�1))

else if directive(d) == observe then

for ` < L� 1 do

{w̄(`)
n ,

¯

x

(`)
1:n} interpret(d,

¯

x

(`)
1:(n�1))

end for

T r(L� 1, {w̄(`)
n ,

¯

x

(`)
1:n} [{w̃⇤

1:n,x
⇤
1:n})

{w̃(`)
n ,x

(`)
1:n} T [{w̃⇤

n,x
⇤
1:n}

end if

end for

end for

4

PMCMC Prob. Prog. Example

Goals and Aims
(i)  Accelerate iteration over models

-  Inference is automatic
-  Writing generative code is easier than deriving model inverses
-  Lower technical barrier of entry to development of new models

(ii)  Accelerate iteration over inference procedures
-  Computer language is an abstraction barrier

-  Inference procedures can be tested against a library of models
-  Inference procedures become “compiler optimizations”

(iii)  Enable development of more expressive models

-  Probabilistic programs can express a superset of graphical
models

-  Modern machine learning models are tens of lines of code

Wrap-Up
•  Research

–  New paths to efficient, scalable probabilistic
programming inference

–  True hope for general purpose automatic inference
–  New models (soon)

•  Resources
–  http://www.robots.ox.ac.uk/~fwood/anglican/
–  http://www.robots.ox.ac.uk/~brooks/probabilistic-c/
–  http://probabilistic-programming.org/wiki/Home
–  http://forestdb.org/

Parameter Posterior vs. Expert Frank Wood Part B Section 2 (B2) DPP

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120

De
pt
h
(m

)

Undrained strength (kPa)

UU

Mini Vane

Torvane

Pocket penetrometer

Expert's fit

Probabilistic Programming

Figure 2: Automatic inversion via probabilistic programming of procedurally-specified forward
stochastic simulator of oil platform load capacity as a function of penetration depth.

namely the ability to express and then invert forward stochastic simulations as procedural code rather
than in declarative mathematical formalism. Equally important, the example also highlights the
innovative aspect of the kind of probabilistic programming I recently discovered, and here propose
to scale: the capacity to take any simulation code written in any language and compile it into a
meta-program that samples from the posterior of the latent variables of interest, given observations
in a massively parallel, scalable way (Paige and Wood, 2014). This opens up a groundbreaking path
to scaling probabilistic programming systems that leverages the whole body of operating systems,
computer architecture, virtual memory subsystem, and inference research.

The second panel of Fig. 2 shows the results of stochastically inverting this forward simulation via
our probabilistic-C programming system (Paige and Wood, 2014). In these results the blue quantiles
are the posterior distribution of simulations that best reflect the observed penetration data. The set
of simulations that predict the future performance of the platform can be understood as having been
concentrated as a result of the observed measurements. My students were able to achieve this by
adding fifteen lines of probabilistic-C code and then compiling as usual and running the resulting
meta-program. This approach generated samples from the posterior distribution of the uncertain
parameters, given these observations at a rate of approximately one thousand samples per second
(note that samplers run for models of any reasonable complexity usually run at rates better expressed
in terms of number of seconds required to generate a single sample).

As a confirming diagnostic, my students looked at the induced posterior distribution of uncertain
parameters in the program to see why, for instance, the rig may have initially penetrated more quickly
than the forward simulation predicted. Some of the input parameters to the stochastic simulation are
the material properties of the cores taken from where the legs drove in. These include accumulating
material strength at locations where the measurements of both strength and the depths of change
points in subsurface soil strata are quite uncertain. In the total absence of access to the depth and
strength measurements in Fig. 2 (right) (only the slope, intercepts, and position of material change-
points are provided to the forward simulator), stochastic inversion determined that the most likely
explanation for the observed penetrations was that the input strength versus depth slopes, intercepts,
and change points were probably slightly wrong. Comparing the probabilistic programming result to
the expert-picked slopes and intercepts suggests that the expert’s interpretation of the data wasn’t
appropriate for this particular site, a finding with which Houlsby agrees.

This case study illustrates just one example of a very common situation where there exists a model
specified as a forward simulator for a phenomenon of interest, written in procedural code. I propose
that this style of probabilistic programming applies to many such models, and thus has the potential
for high impact on a large number of fields.

4

Compiled PMCMC Algorithm
Performance

What if dirac Observes?
•  Show up as constraints in joint

§  dirac	
 observes	
 are	
 constraints	

§  =>	
 SMC	
 /	
 PMCMC	
 reduce	
 to	
 rejec*on	
 /	
 repeated	
 rejec*on	
 sampling	

if	
 all	
 observes	
 are	
 constraints	

g(yn|x1:n)

zi ⇠ ⇡ (1)

xi|zi,⇥ ⇠ F (✓zi) (2)

G ⇠ DP(c,H) , G =

1X

k=1

⇡k�✓k (3)

Vk ⇠ Beta(1� d, c+ kd) (4)

⇡k ⇠ Vk

k�1Y

i=1

(1� Vi) (5)

(6)

p(x1:N |y1:N) / p̃(y1:N ,x1:N) =

NY

n=1

I[yn = an(x1:n)]f(xn|x1:n�1)

= p(x1:N)I[y1:N = a1:N (x1:N)]

7

Opportunity : Optimizing Inference by Program Line Reordering

Manuscript under review by AISTATS 2014

[assume K (lambda () (count (unique (u))))]

[assume means (lambda (i c)

(if (= i c) (list (mean c))

(cons (mean i) (means (+ i 1) c))))]

[assume stds (lambda (i c)

(if (= i c) (list (sqrt (* 10 (var c))))

(cons (var i) (stds (+ i 1) c))))]

[observe (normal (mean (class 1)) (var (class 1))) 1.0]

[observe (normal (mean (class 2)) (var (class 2))) 1.1]

.

.

.

[observe (normal (mean (class 10)) (var (class 10))) 0]

[predict (u)]

[predict (K)]

[predict (means 1 (K))]

[predict (stds 1 (K))]

.

.

.

The DP mixture program corresponds to a clustering
with unknown mean and variance problem modelled
via a Dirichlet process mixture of one-dimensional
Gaussians with unknown mean and variance (normal-
gamma priors). The KL divergence reported is be-
tween the running sample estimate of the distribution
over the number of clusters in the data and the ground
truth distribution over the same. The ground truth
distribution over the number of clusters was computed
for this model and data by exhaustively enumerating
all partitions of the data (1.0, 1.1, 1.2, -10, -15, -20,
.01, .1, .05, 0), analytically computing evidence terms
by exploiting conjugacy, and conditioning on partition
cardinality. The fourth plot shows the posterior distri-
bution over the number of classes in the data computed
by both methods relative to the ground truth.

This program was written in a way that was intention-
ally antagonistic to PMCMC in that the continuous
class likelihood parameters were not marginalized out
and the observe statements were not organized in an
optimal ordering. Despite this, PMCMC outperforms
RDB per simulation, wall clock time, and apply count
as well.

5.3 Branching

[assume fib (lambda (n)

(cond ((= n 0) 1) ((= n 1) 1)

(else (+ (fib (- n 1)) (fib (- n 2))))))]

[assume r (poisson 4)]

[assume l (if (< 4 r) 6 (+ (fib (* 3 r)) (poisson 4)))]

[observe (poisson l) 6]

[predict r]

.

.

.

The branching program has no corresponding graph-
ical model. It was designed to test for correctness of
inference in programs with control logic and execution
paths that can vary in random procedure call cardi-
nality. It also illustrates mixing in a model where, as
shown in the fourth plot, there is a large mismatch
between the prior and the posterior. Because there is
only one observation and just a single named random
variable PMCMC and RDB should and does achieve
essentially indistinguishable performance normalized
to simulation, time and apply count.

5.4 Marsaglia

[assume (marsaglia-normal mean var)

(begin

(define x (uniform-continuous -1.0 1.0))

(define y (uniform-continuous -1.0 1.0))

(define s (+ (* x x) (* y y)))

(if (< s 1)

(+ mean (* (sqrt var)

(* x (sqrt (* -2 (/ (log s) s))))))

(marsaglia-normal mean var)))]

[assume sigma-squared 2]

[assume mu (marsaglia-normal 1 5)]

[observe (normal mu sigma-squared) 9]

[observe (normal mu sigma-squared) 8]

[predict mu]

.

.

.

Marsaglia is a test program included here for com-
pleteness. It is an example of a type of program for
which PMCMC sometimes may not be more e�cient.
Marsaglia is the name given to the rejection form of the
Box-Muller algorithm [3] for sampling from a Gaus-
sian [7]. The Marsaglia test program corresponds to
an inference problem in which observed quantities are
drawn from a Gaussian with unknown mean and this
unknown mean is generated by an Anglican implemen-
tation of the Marsaglia algorithm for sampling from a
Gaussian. The KS axis is a Kolmogorov-Smirnov test
statistic [6] computed by finding the maximum devia-
tion between the accumulating sample and analytically
derived ground truth cumulative distribution functions
(CDF). Equal-cost PMCMC, RDB, and ground truth
CDFs are shown in the fourth plot.

Because Marsaglia is a recursive rejection sampler it
may require many recursive calls to itself. We conjec-
ture that RDB may be faster than PMCMC here be-
cause, while PMCMC pays no statistical cost, it does
pay a computational cost for exploring program traces
that include many random procedure calls that lead to
rejections whereas RDB, due to the implicit geomet-
ric prior on program trace length, e↵ectively avoids
paying excess computational costs deriving from un-
necessarily long traces.

(a) HMM (b) DP Mixture

Figure 2: E↵ect of program line permutations

5.5 Line Permutation

Syntactically and semantically observe and predict’s
are mutually exchangeable (so too are assume’s up to

Anglican : Particle MCMC Inference

Wood, van de Meent, Mansinghka “A new approach to probabilistic programming inference.” AISTATS, 2014
Wingate et al “Lightweight implementations of probabilistic programming languages via transformational compilation” AISTATS, 2011

Frank Wood, Jan Willem van de Meent, Vikash Mansinghka

(a) HMM (b) DP Mixture

(c) Branching (d) Marsaglia

Figure 1: Comparative conditional measure test performance: PMCMC with 100 particles vs. RDB.

They are also how we compare di↵erent probabilistic
programming inference engines.

5 Inference Engine Comparison

We compare PMCMC to RDB measuring convergence
rates for an illustrative set of conditional measure test
programs. Results from four such tests are shown in

Figure 1 where the same program is interpreted using
both inference engines. PMCMC is found to converge
faster for conditional measure test programs that cor-
respond to expressive probabilistic graphical models
with rich conditional dependencies.

The four test programs are: 1) a program that corre-
sponds to state estimation in a hidden Markov model

