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Markov Chain Monte Carlo (MCMC)

Rejection and importance sampling fail in high dimensions

MCMC works better in high dimensions

Various Algorithms

Metropolis Hastings
Gibbs
Metropolis-Hastings within Gibbs
Hamiltonian Monte Carlo (HMC)

Can mix and match

Remember : Inference is all about integration and Monte Carlo integration
is all about sampling

Important : MCMC works by constructing and simulating a Markov
chain whose equilibrium distribution is the distribution of interest
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Metropolis Hastings (MH)

Algorithm

Initialize τ ← 1,x(τ) ←?

Repeat Forever Yielding {x(1), x(2), . . . }
1 Propose x∗ ∼ q(x∗|x(τ))

2 Accept x∗ w.p. A(x∗, x(τ)) = min
(

1, p(x∗)q(x(τ)|x∗)
p(x(τ))q(x∗|x(τ))

)
3 If x∗ accepted set x(τ+1) ← x∗ else x(τ+1) ← x(τ)

4 Increment τ

Common choices of proposal include q(x∗|x(τ)) = N (x(τ)|σ2I)
(random-walk Metropolis) and/or q(x∗|x(τ)) = q(x∗) (independent MH).
Rules of thumb suggest aiming for acceptance rates of between 25% and
50% by tuning the proposal distribution.

http://www.stat.duke.edu/~km68/materials/214.7%20(MH).pdf
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Gibbs

Given a joint p(x) = p(x1, . . . , xM) s.t. x1 ∪ · · · ∪ xi ∪ · · · ∪ xM = x are
subsets of the dimensions of x consider the case where we can sample
exactly from p(xi |x \ xi )

Algorithm

Initialize τ ← 1,x(τ) ←?

Repeat Forever Yielding {x(1), x(2), . . . }
1 Sample x

(τ+1)
1 ∼ p(x1|x(τ) \ x1)

2 Sample x
(τ+1)
2 ∼ p(x2|x(τ+1)

1 ∪ x(τ) \ {x1 ∪ x2})
3 Sample x

(τ+1)
3 ∼ p(x3|x(τ+1)

2 ∪ x
(τ+1)
1 ∪ x(τ) \ {x1 ∪ x2 ∪ x3})

4
...

5 Sample x
(τ+1)
M ∼ p(xM |x

(τ+1)
M−1 ∪ · · · ∪ x

(τ+1)
1 )

6 Increment τ

Wood (University of Oxford) Unsupervised Machine Learning January, 2015 4 / 19



Understanding MCMC

MH and Gibbs are example MCMC sampling algorithms

MCMC sampling is based on simulating Markov chains with carefully
designed, special, “general purpose” transition operators

Understanding Markov chains and the design of such operators leads
to an understanding of sampling and Monte Carlo integration

MCMC = default choice for anytime inference algorithm

Warning

In the following we are very lazy mathematically. In much of what follows
the algorithms have been proved to be correct in general settings whereas
the arguments provided generally apply only to Markov chains defined on
discrete state spaces. One justification for this is that all Markov chain
simulation on digital computers is actually performed over discrete spaces;
however, deeper consideration must be given to proof and justification in
(common) situations where densities and continuous variables are used.
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Markov Chains for MCMC I

Markov Chain Review
A first order Markov chain is on which, for m ∈ 1, . . . ,M and for a
sequence of random variables x(1), . . . , x(M) the following conditional
independence property holds

p(x(m+1)|x(1), . . . , x(m)) ≡ p(x(m+1)|x(m))

Markov Chain review material largely from [Neal, 1993].
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Markov Chains for MCMC II

Such a Markov chain can be specified by the initial distribution p(x(0)) and
a stochastic transition function

Tm(x(m)|x(m+1)) ≡ p(x(m+1)|x(m))

Definition : Homogenous Markov Chain

A Markov chain is homogenous if

T1 = T2 = . . .TM = T

i.e. the transition functions are the same for all m.
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Markov Chains for MCMC III

The marginal distribution of a particular var can be expressed as

p(x(m+1)) =
∑
x(m)

p(x(m+1)|x(m))p(x(m))
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Markov Chains for MCMC IV

Definition : Invariant/Stationary Distribution

A distribution is said to be invariant or stationary w.r.t a Markov chain if
the transition function of that chain leaves that distribution unchanged.
For example, the distribution p∗(x) is the invariant distribution of the
Markov chain with transition operator T (x′, x) if

p∗(x) =
∑

x′

T (x′, x)p∗(x′)

Note :

Trivial transition distributions (identity) are not of interest.

Designing general purpose transition operators that can have any
distribution of interest be their stationary distribution is the key to
MCMC.
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Markov Chains for MCMC V

Definition : Detailed Balance

If a transition operator T satisfies detailed balance it means that

p∗(x)T (x, x′) = p∗(x′)T (x′, x)
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Markov Chains for MCMC VI

If a transition operator satisfies detailed balance w.r.t. a particular
distribution then that distribution will be invariant under T .

∑
x′

p∗(x′)T (x′, x) =
∑

x′

p∗(x)T (x, x′) def. detailed balance

= p∗(x)
∑

x′

p(x′|x) def. of T

= p∗(x)

So a Markov chain designed to satisfy detailed balance will have p∗(x) as
its stationary distribution.
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Markov Chains for MCMC VII

We must further restrict our choice of T to those that that for m→∞
the distribution p(x(m)|x(0)) converges to the invariant distribution p∗(x)
regardless of choice of p(x(0)). This Markov chain property is called
ergodicity.

Among other things, poorly designed T ’s could partition space (the “set of
states”) such that some subsets are unreachable from others.

Homework :

What do irreducible and aperiodic mean when applied to Markov
chains?
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Markov Chains for MCMC VIII

Fundamental Theorem

If a homogeneous Markov chain on a finite state space with transition
probability T (z , z ′) has π as an invariant distribution and

ν = min
z

min
z ′:π(z ′)>0

T (z , z ′)/π(z ′) > 0

then

1 that Markov chain is ergodic, i.e. for all z regardless of the initial
distribution p0(z)

lim
n→∞

pn(z) = π(z)

2 if g(z) is a real-valued function of the state, then the expectation of
g w.r.t. pn, denoted En[g ] =

∑
g(z)pn(z) converges to its

expectation w.r.t. π, i.e.
∑

g(z)π(z).

Sketch proof in [Neal, 1993]
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Markov Chains for MCMC IX

Towards designing general purpose MCMC transition operators we have

One way to ensure T the is ergodic, i.e. a way to ensure T avoids
traps and can visit everywhere in our state space

A sufficient condition to ensure that T has the equilibrium
distribution π∗ we want (via detailed balance)

We also need to know that averaging over simulations of / samples from a
Markov chain with such a T and stationary distribution π∗ average nicely.

A Paraphrase of the Strong LLN for Markov Chains

For z(0), z(1), . . . generated by simulating a “nice” Markov chain having
stationary distribution π∗(·).

lim
n→∞

I(z(n) = i)

n
= π∗(i)

See [Breiman, 1960] for a proper statement and proof. Neal [1993] discusses this more readably but less precisely
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Two Resulting Views on Computing Expectations

Computing expectations can be done via the

Fundamental theorem, sampling from pn(z) via“parallel chains” and
forward simulation

Strong LLN, sample by simulating a single Markov chain for a long
time, and use all samples from sequence

Problem

Don’t know when chains have “burned-in” (i.e. when the set of
samples is close-enough distributed according to p∗ rather than being
heavily dominated by initial choice of starting point)

Don’t know when to stop (i.e. when the expectation approximation to
the integral good enough, particularly if samples are not iid)

Worse : can’t parameterize stopping time n by quality of estimate
desired

Reality

Sometimes you don’t care

http://users.stat.umn.edu/~geyer/mcmc/one.html has an amusing take on this tension
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Metropolis Hastings as Markov Chain I

Remember

MH algorithm for sampling from p

Initialize τ ← 1,x(τ) ←?, repeat forever yielding {x(1), x(2), . . . }
1 Propose x∗ ∼ q(x∗|x(τ))

2 Accept x∗ w.p. A(x∗, x(τ)) = min
(

1, p(x∗)q(x(τ)|x∗)
p(x(τ))q(x∗|x(τ))

)
3 If x∗ accepted set x(τ+1) ← x∗ else x(τ+1) ← x(τ)

4 Increment τ

and

Detailed Balance

If a transition operator T satisfies detailed balance it means that

p(x)T (x, x′) = p(x′)T (x′, x)

Wood (University of Oxford) Unsupervised Machine Learning January, 2015 16 / 19



Metropolis Hastings as Markov Chain II

To show that the MH algorithm satisfies detailed balance note that
T (x, x′) = q(x′|x)A(x, x′) so

p(x)T (x, x′) = p(x)q(x′|x)A(x, x′)

= min
(
p(x)q(x′|x), p(x′)q(x|x′)

)
= min

(
p(x′)q(x|x′), p(x)q(x′|x)

)
= p(x′)q(x|x′)A(x′, x)

= p(x′)T (x′, x)

Which, provided q is chosen so that

min
x

min
x′:p(x′)>0

(
q(x′|x)A(x, x′)

)
/p(x′) > 0

means that MH is a general purpose Markov chain for simulating from and
thereby computing expectations against arbitrary distributions p.
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Study Suggestions

Show that Gibbs is MH with a transition operator that always accepts

Relate the invariant distribution statement to an eigenvector problem

Prove that the independent MH operator transition yields a valid
sampler

Implement the MH algorithm for sampling from a multivariate
Gaussian

Implement the Gibbs algorithm for sampling from a multivariate
Gaussian
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