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Introduction

Supervised machine learning

= regression/classification = conditional density/distrib. estimation
Requires training pairs; input/output
Sometimes “easier”

Lower dimensional parameter space (needn’t model inputs)

Unsupervised Machine Learning

= dimensionality reduction = joint density estimation
Requires data + model
Often harder

Must model inputs
Richer models

Many supervised models arrive from conditioning unsupervised models
on observed data

Conditioning on observed data = fixing values of some variables in joint

Inference techniques for unsupervised models automatically work for
supervised models

Wood (University of Oxford) Unsupervised Machine Learning January, 2015 2 / 6



Learning Goals

Understand connection between graphical models and joint
distributions (Bishop, Ch. 8; Murphy Ch. 10, 19)

Be able to “invent” graphical models for problems of interest

Understand sampling techniques (Bishop, Ch. 11; Murphy Ch. 24)

Basic sampling techniques
Markov chain Monte Carlo (MCMC)

Metropolis Hasting (MH)
Gibbs

Understand conjugacy and how to exploit it for analytic
marginalization (Bishop pg. 117; Murphy pg. 74)

Understand how to derive and implement MCMC samplers for
arbitrary graphical models

Understand Monte Carlo integration

Understand how to formulate inference questions in terms of integrals
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Resources

Lecture Notes and Problem Sheet :
http://www.robots.ox.ac.uk/~fwood/teaching/C19_hilary_2013_2014/

Books :

Pattern Recognition and Machine Learning [Bishop, 2007]
Bayesian data analysis [Gelman et al., 1995]
Machine Learning : a probabilistic perspective [Murphy, 2012]
Sequence Monte Carlo Methods in Practice [Doucet et al., 2001]
(free online) Information Theory, Inference, and Learning Algorithms
[MacKay, 2003]

Tutorials :

Probabilistic Inference using MCMC methods [Neal, 1993]
A Tutorial on particle Filters for Online Nonlinear/Non-Gaussian
Bayesian Tracking [Arulampalam et al., 2002]
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