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Gaussian Mixture Model












 









Figure : Bayesian
GMM Graphical Model

ci |~π ∼ Discrete(~π)

~yi |ci = k ; Θ ∼ Gaussian(·|θk).

~π|α ∼ Dirichlet(·| α
K
, . . . ,

α

K
)

Θ ∼ G0

Kinds of questions :
What’s the probability mass in this region?

Is item i the same as item j?

How many classes are there (somewhat
dangerous).
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Gibbs Sampler for GMM I

A Gaussian mixture model is density constructed by mixing Gaussians

P(~yi ) =
K∑

k=1

P(ci = k)P(~yi |θk)

where K is the number of “classes,” ci is a class indicator variable (i.e.
ci = k means that the ith observation came from class k), P(ci = k) = πk
represents the a priori probability that the observation i was generated by
class k , and the likelihood P(~yi |θk) is the generative model of data from
class k parameterised by θk . The observation model is taken to be a
multivariate Gaussian with parameters θk for each class k
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Gibbs Sampler for GMM II

Notationally, C = {ci}Ni=1 is the collection of all class indicator variables,
Θ = {θk}Kk=1, is the collection of all class parameters, θk = {~µk ,Σk} are
the mean and covariance for class k , and ~π = {πk}Kk=1, πk = P(ci = k)
are the class prior probabilities.
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Gibbs Sampler for GMM III

To estimate the posterior distribution we first have to specify a prior for all
of the parameters of the model.

~π|α ∼ Dirichlet(·| α
K
, . . . ,

α

K
) (1)

Θ ∼ G0

where Θ ∼ G0 is shorthand for

Σk ∼ Inverse-Wishartυ0(Λ−1
0 ) (2)

~µk ∼ Gaussian(~µ0,Σk/κ0). (3)

These priors are chosen for mathematical convenience and interpretable
expressiveness. They are conjugate priors which will allow us to
analytically perform many of the marginalization steps (integrations)
necessary to derive a Gibbs sampler for this model.
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Gibbs Sampler for GMM IV

The parameters of the Inverse-Wishart prior, H = {Λ−1
0 , υ0, ~µ0, κ0}, are

used to encode our prior beliefs regarding class observation distribution
shape and variability. For instance ~µ0 specifies our prior belief about what
the mean of all classes should look like, where κ0 is the number of
pseudo-observations we are willing to ascribe to our belief (in a way similar
to that described above for the Dirichlet prior). The hyper-parameters Λ−1

0

and υ0 encode the ways in which individual observations are likely to vary
from the mean and how confident we are in our prior beliefs about that.
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Gibbs Sampler for GMM V

The joint distribution (from the graphical model) for a Gaussian mixture
mode is

P(Y,Θ, C, ~π, α;H)

=

 K∏
j=1

P(θj ;H)

( N∏
i=1

P(~yi |ci , θci )P(ci |~π)

)
P(~π|α)P(α).
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Gibbs Sampler for GMM VI

Applying Bayes rule and conditioning on the observed data we see that
posterior distribution is simply proportional to the joint (rewritten slightly)

P(C,Θ, ~π, α|Y;H)

∝ P(Y|C,Θ)P(Θ;H)

(
N∏
i=1

P(ci |~π)

)
P(~π |α)P(α).

where

P(Y|C,Θ) =
N∏
i=1

P(~yi |ci , θci )

and

P(Θ;H) =
K∏
j=1

P(θj ;H).
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Gibbs Sampler for GMM VII

Gibbs sampling, as developed in general by, is possible in this model.
Deriving Gibbs sampler for this model requires deriving an expression for
the conditional distribution of every latent variable conditioned on all of
the others.

To start note that ~π can be analytically marginalised out

P(C|α) =

∫
d~π

N∏
i=1

P(ci |~π)P(~π |α)

=

∏K
k=1 Γ(mk + α

K )

Γ( αK )K
Γ(α)

Γ(N + α)
. (4)
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Gibbs Sampler for GMM VIII

Continuing along this line, it is also possible to analytically marginalize out
Θ. In the following expression the joint over the data is considered and
broken into K parts, each corresponding to one class. We use H to denote
all hyper parameters.

P(C,Y;H) =

∫
dΘP(C,Θ,Y;H)

∝ P(C;H)

∫
· · ·

∫
dθ1 · · · dθK

 K∏
j=1

P(θj ;H)

 N∏
i=1

P(~yi |ci = j, θj )

∝ P(C;H)

∫
· · ·

∫
dθ1 · · · dθK

K∏
j=1

(
N∏
i=1

P(~yi |ci = j, θj )
I(ci =j))P(θj ;H)


∝ P(C;H)

K∏
j=1

∫
dθj (

N∏
i=1

P(~yi |ci = j, θj )
I(ci =j))P(θj ;H) (5)
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Gibbs Sampler for GMM IX

Focusing on a single cluster and dropping the class index j for now we see
that

P(Y|H) =

∫
dθ

N∏
i=1

P(~yi |θ)P(θ;H) (6)

is the standard likelihood conjugate prior integral for a MVN-IW where,
remembering that θ = {~µ,Σ} the expression for the MVN likelihood term,
P(~yi |θ) expands to the familiar MVN normal joint distribution for N i.i.d.
observations

N∏
i=1

P(~yi |θ) = (2π)−
Nd
2 |Σ|−

N
2 e−

1
2
tr(Σ−1S0) (7)

where S0 =
∑N

i=1(~yi − ~µ)(~yi − ~µ)T . Here, following convention, |X|
means the matrix determinant of X.
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Gibbs Sampler for GMM X

For ease of reference the MVN-IW prior P(Θ;H) is

P(θ;H) = P(~µ,Σ|~µ0, Λ0, ν0, κ0)

=
( 2π
κ0

)
− d

2 |Σ|−
1
2 e

−κ0
2

(~µ−~µ0)T Σ−1(~µ−~µ0)

2
ν0d

2 π
d(d−1)

4
∏d

j=1 Γ( νo+1−j
2

)

|Λ0|
ν0
2 |Σ|−

ν0+d+1
2 e

− 1
2

tr(Λ0Σ−1)
(8)
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Gibbs Sampler for GMM XI

Now, the choice earlier in this section of a conjugate prior for the MVN
class parameters helps tremendously. This seemingly daunting integral has
a simple analytical solution thanks to conjugacy. Following [Gelman et al.,
1995] pg. 87 in making the following variable substitutions

~µn =
κ0

κ0 + N
~µ0 +

N

κ0 + N
ȳ

κn = κ0 + N

νn = ν0 + N

Λn = Λ0 + S +
κ0n

κ0 + N
(ȳ − ~µ0)(ȳ − ~µ0)T

where

S =
N∑
i=1

(~yi − ȳ)(~yi − ȳ)T
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Gibbs Sampler for GMM XII

Now

P(Y;H) =
1

Z0

∫ ∫
d~µdΣ|Σ|−( νn+d

2
+1)e−

1
2
tr(ΛnΣ−1)−κn

2
(~µ−~µn)T Σ−1(~µ−~µn)

can be solved immediately by realizing that this is itself a MVN-IW
distribution and the integral is simply the inverse of its normalization
constant Z0

Z0 = (2π)
Nd
2 (

2π

κ0
)
d
2 2

ν0d
2 π

d(d−1)
4

d∏
j=1

Γ(
ν0 + 1− j

2
)|Λ0|−

ν0
2 . (9)

with the same variable substitutions applied, i.e.,
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Gibbs Sampler for GMM XIII

Zn =

∫ ∫
d~µdΣ|Σ|−( νn+d

2
+1)e−

1
2
tr(ΛnΣ−1)−κn

2
(~µ−~µn)T Σ−1(~µ−~µn)

= (2π)
Nd
2 (

2π

κn
)
d
2 2

νnd
2 π

d(d−1)
4

d∏
j=1

Γ(
νn + 1− j

2
)|Λn|−

νn
2

which yields

P(Y;H) =
Zn

Z0
(10)

= (
κ0

κn
)
d
2 2

d
2

(νn−ν0)
|Λ0|

ν0
2
∏d

j=1 Γ(νn+1−j
2 )

|Λn|
νn
2
∏d

j=1 Γ(ν0+1−j
2 )

(11)
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Gibbs Sampler for GMM XIV

Remembering that our derivation of P(Y;H) was for a single class, we
now have an analytic expression for

P(C,Y;H) =
K∏
j=1

P(Y(j)|C;H)P(C|H)

From which we can MH sample by modifying each ci and recomputing the
joint.
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Gibbs Sampler for GMM XV

In this model we can do better by deriving a Gibbs update for each class
indicator variable ci .

P(ci = j |C−i ,Y, α;H) ∝ P(Y|C;H)P(C|α)

∝
K∏
j=1

P(Y(j);H)P(ci = j |C−i , α)

∝ P(Y(j);H)P(ci = j |C−i , α)

∝ P(yi |Y(j)\yi ;H)P(ci = j |C−i , α) (12)

where Y(j)\yi is the set of observations currently assigned to class j except
yi (yi is “removed” from the class to which it belongs when sampling).
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Gibbs Sampler for GMM XVI

Because of our choice of conjugate prior we know that we know that
P(yi |Y(j)\yi ;H) is multivariate Student-t (Gelman et al. [1995] pg. 88)

yi |Y(j)\yi ;H ∼ tνn−D+1(~µn,Λn(κn + 1)/(κn(νn − D + 1))) (13)

where

~µn =
κ0

κ0 + N
~µ0 +

N

κ0 + N
ȳ

κn = κ0 + N

νn = ν0 + N

Λn = Λ0 + S +
κ0n

κ0 + N
(ȳ − ~µ0)(ȳ − ~µ0)T

and D is the dimensionality of yi . Note that N, ȳ , ~µn, κn, νn,Λn must all
be computing excluding yi .
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Gibbs Sampler for GMM XVII

Deriving P(ci = j |C−i , α) was covered in the first lecture and involves
simplifying a ratio of two Dirichlet normalising constants.

Its simplified form is

P(ci = j |C−i , α) =
mj + α

K

N − 1 + α
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Gibbs Sampler for GMM XVIII

Given

P(ci = j |C−i ,Y, α;H)

∝ P(yi |Y(j)\yi ;H)P(ci = j |C−i , α)

= P(yi |Y(j)\yi ;H)

(
mj + α

K

N − 1 + α

)
we can enumerate all K values ci could take and normalise then sample
from this discrete distribution.

Wood (University of Oxford) Unsupervised Machine Learning January, 2015 20 / 22



Study Suggestions

Implement this sampler

Write the following question as an integral : what’s the probability of
a datapoint falling in a particular region of space?

Given the Gibbs sampler described, how would you answer this
question efficiently?

Derive and implement a Gibbs sampler for LDA.

Derive and implement a sampler for PPCA.

How would you answer the question, how many classes are there?

Is it safe, in this model, to ask questions about the characteristics of
class i?
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