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Graphical Models

Correspond to a subset of probability models

Visualisation of structure of probability model

Useful for model design and development

Encode properties (some explicitly, others via inspection)

Conditional independence (inspection)

Inference and learning can be formulated in terms of computational
operations on the graph
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The Graphs of Graphical Models

Graphs consist of
Vertices

Correspond to random variables (and factors)
Have types
Can represent structured object like vectors, arrays, distributions,
infinite sequences, embedded graphical models, etc.

Edges

These will correspond to dependencies
Can be directed (arrow) or undirected
Usually are associated with conditional density functions or
compatibility functions
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Directed Graphical Models

Such models are known as
Generative graphical models

Bayes nets

Vertices

Variables

Edges

Conditional probabilities

Good for generative descriptions of
data. Conditional probability
statements of the form “if A then B
with some probability.”
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Undirected Graphical Models

Such models are known as
Markov random fields

Ising models

Vertices

Variables

Edges

“Compatibility functions”

Good for specifying constraints
between variables where generative
relationships aren’t obvious
(i.e. neighbouring pixel similarity in
images)
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Factor Graphs

Generalisation of the undirected and directed
graphical models.

Vertices
Circles : variables

Squares : “Compatibility functions”

Edges

Indicate variable is argument of
compatibility function

Good for writing down and thinking about
message-passing inference algorithms.
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Generative Models and Joint Distributions

Consider an arbitrary joint distribution over three variables a, b, and c ,
p(a, b, c). Recall that

p(a, b, c) = p(c |a, b)p(a, b) = p(c |a, b)p(b|a)p(a)

Note : This decomposition always holds

Also

Corresponds to a generative scheme

Generate (sample) a
Then generate (sample) b conditioned on a
...

Dropping conditioning terms restricts the expressivity of the model
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Directed Graphical Models

Graphical representation can directly be translated into joint

p(x) = p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5)

x1

x2 x3

x4 x5

x6 x7

More generally

There is a distribution (term)
for each vertex

The variables which appear in
each terms’ condition are
connected via inbound edges

In math

p(x) =
∏
k

p(xk |pak)
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Homework

If each term normalises (i.e. is a proper density or distribution), what
value does the following expression take?∫

p(x)dx =

∫ ∫ ∫ ∫ ∫ ∫ ∫
p(x1)p(x2)p(x3) . . . p(x7|x4, x5)dx1 . . . dx7

Note for discrete variables integrals may be interchanged for sums.

Wood (University of Oxford) Unsupervised Machine Learning January, 2015 9 / 19



Notational Shorthand for Products and Constants

tn

xn

N

w

α

σ2

Squares indicate multiplied
replication

Filled circles indicate “observed”
variables

Small dots (or no dots) indicate
fixed quantities

In math

p(t, x, σ2,w, α) =
N∏

n=1

p(tn|w, xn, σ2)p(w|α)
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Must Specify Conditional Densities

tn

xn

N

w

α

σ2

tn|w, xn, σ2 ∼ Normal(wT xn, σ
2)

w|α ∼
D∏

d=1

Normal(0, α) = Normal(0, αI)

Homework :

To what well known model does this correspond?

Is this a supervised or unsupervised model?
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Inference = Learning = Prediction = . . .

One Goal : Posterior distribution of parameters given data

p(w|t) ∝ p(w)
N∏

n=1

p(tn|w)

Fixed quantities often are dropped because they always appear on
conditioning side of equation(s)

Quiz :

Why is this a proportionality (∝)? (hint : use Bayes rule)

Can this be read from the directed graphical model? (hint : be very
careful and think about conditional independence)

Important concept! Why do we want p(w|t)? What are its uses?
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Prediction

Another goal : out of sample predictions

tn

xn

N

w

α

t̂
σ2

x̂

With

t̂|w, x̂ , σ2 ∼ Normal(wT x̂ , σ2)

then

p(t̂|x, t, α, σ2) =

∫
p(t̂,w|x, x̂ , t, α, σ2)dw

=

∫
p(t̂|w, x̂)p(w|t)dw

Quiz :

How do you compute this integral?

What does it mean to integrate out w?
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Hidden Markov Model

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

p(zn|zn−1,A) =
K∏

k=1

K∏
j=1

A
z(n−1)jznk
jk

p(z1|π) =
K∏

k=1

πz1k
k

xn|znk = 1 ∼ F(θk)
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Latent Dirichlet Allocation
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Figure 1. Graphical model for LDA model

Lecture LDA

LDA is a hierarchical model used to model text documents. Each document is modeled as
a mixture of topics. Each topic is defined as a distribution over the words in the vocabulary.
Here, we will denote by K the number of topics in the model. We use D to indicate the
number of documents, M to denote the number of words in the vocabulary, and Nd

. to
denote the number of words in document d. We will assume that the words have been
translated to the set of integers {1, . . . ,M} through the use of a static dictionary. This is
for convenience only and the integer mapping will contain no semantic information. The
generative model for the D documents can be thought of as sequentially drawing a topic

mixture ✓d for each document independently from a DirK(↵~1) distribution, where DirK(~�)
is a Dirichlet distribution over the K-dimensional simplex with parameters [�1,�2, . . . ,�K ].

Each of K topics {�k}K
k=1 are drawn independently from DirM (�~1). Then, for each of the

i = 1 . . . Nd. words in document d, an assignment variable zd
i is drawn from Mult(✓d).

Conditional on the assignment variable zd
i , word i in document d, denoted as wd

i , is drawn
independently from Mult(�zd

i
). The graphical model for the process can be seen in Figure 1.

The model is parameterized by the vector valued parameters {✓d}D
d=1, and {�k}K

k=1, the

parameters {Zd
i }d=1,...,D,i=1,...,Nd

.
, and the scalar positive parameters ↵ and �. The model

is formally written as:

✓d ⇠ DirK(↵~1)

�k ⇠ DirM (�~1)

zd
i ⇠ Mult(✓d)

wd
i ⇠ Mult(�zd

i
)

1

θd ∼ DirK (α~1)

βk ∼ DirM(γ~1)

zdi ∼ Discrete(θd)

wd
i ∼ Discrete(βzdi

)
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Gaussian Mixture Model
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Figure : From left to right: graphical models for a finite Gaussian mixture model
(GMM), a Bayesian GMM, and an infinite GMM

ci |~π ∼ Discrete(~π)

~yi |ci = k; Θ ∼ Gaussian(·|θk).

~π|α ∼ Dirichlet(·| α
K
, . . . ,

α

K
)

Θ ∼ G0
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Probabilistic Principal Component Analysis

xn

zn

N

µ

σ2

W

α

p(W|α) =
M∏
i=1

(αi

2π

)D/2
exp

{
−1

2
αiw

T
i w

}
p(z) = N (z|0, I)

p(xn|z)n) = N (xn|Wzn, σ
2I)
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Study Suggestions

Distributions, PDFs, Sampling

Dirichlet
Discrete / Multinomial
Multivariate Normal

Vector Algebra

Procedures for determining conditional independence(s) given a
graphical model
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