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Inference

In probabilistic modelling a model corresponds to some specification of the
distribution of either the data given parameters (supervised) p(D|M) or
the joint distribution of the data and parameters
p(D,M) = p(D|M)p(M) (unsupervised).

In the the latter, learning, inference, and prediction can be uniformly cast
as “simple” probability calculations.

Bayes’ rule tells us that the posterior probability of a modelM
given a set of observations D is proportional to the likelihood of
the obervations under the model p(D|M) times the prior
probability of the modelM, p(M)
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Useful Calculations Using The Posterior / Joint

Learning

Maximum A Posteriori Model Selection

M∗ = argmax
M

p(M|D) = argmax
M

p(D|M)p(M)

Model Selection Via Bayes Factors

. . .

Prediction

Posterior Predictive

p(d ′|D) =

∫
p(d ′|M)p(M|D)dM
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Inspection / Hypothesis Testing

Inspection

If model family is parameterised by a single parameter θ ∈ R then

p(a ≤ θ ≤ b|D) ≡
∫

p(θ|D)I(a ≤ θ ≤ b)dθ
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Integration

Integration/marginalisation is in general hard

Simple analytic functions
High school maths

Low-dimensional, well-behaved functions
Quadrature

Nice functions
Dynamic programming, sum-product

Everything else
Pattern matching

Important : Bayesian statistics, particularly in the exponential family
exploiting conjugacy

Approximation
Important : Sampling (MCMC, SMC)

Learning and integrating against simple, surrogate approximating
functions

Variational inference
Bayesian quadrature
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Pattern Matching Integration Example

With

θ ∼ DirK (α~1)

zi ∼ Discrete(θ)

what is p(zi+1|{zi}Ni=1)?

Recall that if θ ∼ DirK (α) then

p(θ) =
Γ(
∑

i αi )

ΠiΓ(αi )
θα1−1

1 θα2−1
2 . . . θαK−1

K .
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Pattern Matching Integration Example

Note

p(zi+1|{zi}Ni=1) =

∫
p(zi+1|θ)p(θ|{zi}Ni=1)dθ

First let Nk =
∑N

i=1 I(zi = k) and note that

p(θ|{zi}Ni=1) ∝ p({zi}Ni=1|θ)p(θ)

∝

(∏
k

θNk
k

)
θα1−1

1 θα2−1
2 . . . θαK−1

K

=⇒ θ|{zi}Ni=1 ∼ DirK (α1 + N1, . . . , αK + NK )
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Pattern Matching Integration Example

So pattern matching with Dirichlet normalisation solves the integral

p(zi+1 = j |{zi}Ni=1)

=

∫
p(zi+1|θ)p(θ|{zi}Ni=1)dθ

=

∫
θzi+1

Γ(
∑

i (Ni + αi ))

ΠiΓ(Ni + αi )
θα1+N1−1

1 . . . θαK+NK−1
K dθ

=
Γ(
∑

i (Ni + αi ))

ΠiΓ(Ni + αi )

∫
θα1+N1−1

1 . . . θ
αj+Nj+1−1
j . . . θαK+NK−1

K dθ

=⇒ p(zi+1 = j |{zi}Ni=1) =
Γ(
∑

i (Ni + αi ))

ΠiΓ(Ni + αi )

ΠiΓ(Ni + I(i = j) + αi )

Γ(
∑

i (Ni + I(i = j) + αi ))

Quiz : Using facts about Γ function, this simplifies dramatically.
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Interpretation of Probability Computations

Example : Let θk represent the proportion of customers of age between
10k and 10(k + 1) with K = 15 that are served by an organisation. Then

α is the “prior” belief about what the proportions should be

zi is the age bracket of the ith observed customer

θ|{zi}Ni=1 is the “learned” customer age distribution distribution,
represented with uncertainty (variance) that shrinks as N →∞
zi+1|{zi}Ni=1 allows you to predict the next customer’s age whilst
taking into account uncertainty about the value of θ

Important

Learning, prediction, and inspection can all be expressed in terms of
analytic and computational manipulation of probability (marginalisation
and conditioning) within a model specified as a joint distribution of data
and parameters.
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Harder Problem

Assume that we would like to know whether or not two “instances” are of
the same class, or, equivalently, are “similar”

Unsupervised problem – no class+feature training data, only features

Quantity of interest not directly observable (called latent or hidden)

Requires explicit model
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Recall : Gaussian Mixture Model












 









ci |~π ∼ Discrete(~π)

~yi |ci = k ; Θ ∼ Gaussian(·|θk).

~π|α ∼ Dirichlet(·| α
K
, . . . ,

α

K
)

Θ ∼ G0

Joint

p(Y,Θ, C, ~π, α;G0)

=

(
K∏

k=1

p(θk ;G0)

)(
N∏
i=1

p(~yi |ci , θci )p(ci |~π)

)
P(~π|α)p(α)
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Mapping from Problem to Model

Assume that we would like to know whether or not two “instances” are of
the same class, or, equivalently, are “similar”

Features of instances ~yi

Latent classes ci

Characterised by per-class generative models parameterised by θk

Solution as integration

p(ci = cj |Y) ∝
∫ ∫ ∫ ∫ ∫

p(Y,Θ, C, ~π, α;G0)I(ci = cj)dΘdCd~πdα
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What Looks Horrible Often Is Not

While

p(ci = cj |Y) ∝
∫ ∫ ∫ ∫ ∫

p(Y,Θ, C, ~π, α;G0)I(ci = cj)dΘdCd~πdα

looks horrible, it is actually rather easy.

Quiz:

Show that you can analytically integrate out everything except the c’s

What choices for G0 make this possible?

Why can’t the sum over the c ’s be performed?
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Aside : How to Build a Model for Your Own Problem

From where do models like this come?

Statistics, machine learning, and other fields consist of the exploration and
characterisation the space of models. Most models you see are
“convenient” in that much integration is analytically possible and that
inference, inspection, and prediction are all known to work well and reliably
for a wide variety of problems. The design of new models involves equal
parts knowledge of a problem domain, familiarity with statistical model
building blocks, and mathematical/computational aesthetic. Often it is
possible to creatively map your specific inference problem onto an existing
model saving time and effort.
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Compressed Notation for Sampling

Generalizing

p(ci = cj |Y) ∝
∫ ∫ ∫ ∫ ∫

p(Y,Θ, C, ~π, α;G0)I(ci = cj)dΘdCd~πdα

Inference, prediction, and inspection can all be expressed as expectations

E[f ] ≡
∫

f (x)p(x)dx

Where x is all latent variables, f is a test function, and p is the
distribution against which we’re integrating.
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A Don’t Fix it If it Ain’t Broke Tool : Monte Carlo Integration

Recipe

1 Sample x(`) ∼ p(x) for ` = 1 . . . L

2 Estimate E[f ] ≈ f̂ = 1
L

∑L
`=1 f (x(`))

Claim (1) : f̂ is unbiased, i.e. E[f̂ ] = E[f ]

E[f̂ ] = E

[
1

L

L∑
`=1

f (x(`))

]
=

1

L

L∑
`=1

E[f (x(`))]

=
1

L

L∑
`=1

E[f (x)] E[f (x(j))] = E[f (x(k))] since x(`) iid

= E[f ]
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Monte Carlo Integration

Claim (2) : The variance of f̂ is independent of the dimensionality of x
and decreases at a rate of 1/L

Var[f̂ ] = Var

[
1

L

L∑
`=1

f (x(`))

]
=

1

L2

L∑
`=1

Var[f (x(`))] since x(`) iid

=
1

L

L∑
`=1

Var[f (x)] since x(`) iid

=
1

L
E[(f − E[f ])2]

If f is poorly behaved, L is small, or the x(`)s are correlated, the variance
of the estimator could be quite large. In sampling-based inference there is
usually a difficult practical trade-off between the latter two.
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It All Boils Down To Sampling

Monte Carlo integral approximation boils down to designing,
characterising, and running samplers.

Types of sampling we will cover include

Rejection Sampling

Conditioning via Rejection and Ancestral Sampling

Metropolis Hastings

Gibbs Sampling

Importance Sampling

Sequential Monte Carlo

Types of sampling we will not cover include

Random number generation, variable transformations, sampling from
standard distributions
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Rejection Sampling I

Assume

Want sample from p(x)

p(x) is easy to evaluate, but only up to an unknown normalising
constant, i.e.

p(x) =
1

Zp
p̃(x)

A proposal distribution q(x) s.t. kq(x) ≥ p̃(x) for all x can be
designed

Note x is, in general, a vector of random variables.
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Rejection Sampling II

z0 z

u0

kq(z0)
kq(z)

p̃(z)

Sampling x(τ) ∼ q and u(τ) ∼ Uniform(0, kq(x(τ))) yields a pair of values
uniformly distributed in the gray region.

If u0 ≤ p̃(x) then x(τ) is accepted, otherwise it is rejected and the process
repeats until a sample is accepted.

Accepted pairs are uniformly distributed in the white area; dropping u(τ)

yields a sample distributed according to p̃(x), and equivalently, p(x).

The efficiency of rejection sampling depends critically on the match
between the proposal distribution and the distribution of interest.
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Conditioning via Rejection and Ancestral Sampling I

Assume we have a model p(x), some variables of which are known, some
of which are not. Also let xobs be the “observed” variables and xlat be
latent variables such that xobs ∪ xlat = x.

We would like samples from p(xlat|xobs) = p(x)
p(xobs)

Equivalently we can write the conditional distribution of interest as an
unnormalised distribution p̃(xlat|xobs) = p(x)I[xobs = v] using an indicator
function that imposes the constraint that the observed variables are
constrained to take values v.

Rejection sampling with q(x) = p(x) (i.e. proposing via ancestral sampling
of the joint) can be used to generate samples distributed according to
p̃(xlat|xobs). Note that q(x) ≥ p̃(xlat|xobs) ∀x by construction.
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Conditioning via Rejection and Ancestral Sampling II

Following the rejection sampling recipe yields a posterior conditional
sampler via ancestral sampling and rejection

Conditioning via Rejection and Ancestral Sampling

1 Sample x(τ) ∼ q(x) (i.e. generate via ancestral sampling)

2 Sample u(τ) ∼ U(0, q(x))

3 Accept x(τ) only if u(τ) ≤ p(x)I[xobs = v]

4 Repeat

A sample will only ever be accepted when xobs = v and then it will always
be because q(x) = p(x)

Unless the prior and posterior are extremely well matched this will be an
extremely inefficient sampler.
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Study Suggestions

Conjugacy

Exponential family distributions

Bayes rule

Theory of statistical estimators

Sampling from common distributions

Practice phrasing an analysis in terms of an expectation
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