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1 Introduction

The lab aims to reinforce aspects of structured and object-oriented programming covered in half
of the B16 Software Engineering course, as well as demystify the use of an integrated develop-
ment environment. You will design and implement some C++ classes, bring them together into
a full application. You will explore important notions in object-oriented programming, such as
inheritance and interfaces. You will learn how to include and link to your program third-party
libraries and how to use such a library to generate graphical output, including animations.

The lab is designed to take place in the Software Lab A, Windows section, using the Visual
Studio 2012 development environment. The latest version, Visual Studio 2015 Community, can
be downloaded for free from http://www.visualstudio.com to use with your own computer.
The code can also be used with the Linux (GCC and GNU Make) and Mac OS X (Xcode)
development environments, which can be obtained free of charge by anyone.

As all lab files are copied to the local drive C:, they will be deleted when you log out. Please
save your work before you log out by, for example, saving it to the cloud.

1.1 General instructions

The lab notes contain a refresher/introduction of several concepts of C/C++ programming.
The lab is divided in a number of Tasks, asking you to understand and answer theoretical
questions, experiment with the programming environment, and create your own code and pro-
grams. Annotate in your log book answers to the questions, empirical observations about the
outcome of the experiments, and any note taken during the development of your programs.

Once you are done coding and are satisfied with the results, print the source code of your
programs as well as a snapshot of the program results. In the case your program generates a
graphical output, press Alt + PrtSc (print screen) to capture a snapshot of the current window.
The snapshot is saved to the clipboard. You can then paste it into Microsoft Office and save it
to disk or print it.

1.2 Getting started

In order to get started with your Windows workstation in the Software Lab, please follow these
instructions:

1. Before you log on, make sure that you will log on to the ENG domain (this should be
shown in the last text box of the login dialog). Then log on using your lab username and
password. If successful, you should land in Windows.

∗This laboratory is derived from a former lab of Andrea Vedaldi, which in turn was dervied from one by Prof.
Ian Reid and Dr. E. Sommerlade .
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2. Use Windows Explorer find Documentation folder under the Computer group in the left
column browser. Open the Documentation folder and then the folder B16 therein. Find the
install.bat and double click it. This will copy the b16-lab package to your local Documents
folder (note: this is neither the Home Area folder, nor the Documentation folder). Before
you leave the installation window, take note of the installation location (something like
C:\Users\eng1234\Documents\b16-lab). In the rest of the notes, we will refer to this path as
<b16-lab-path>.1

3. Use Windows Explorer to navigate to the b16-lab package just installed. You can access
this folder from the left browser (Libraries → Documents → b16-lab), or by pasting <b16-

lab-path> into Windows Explorer address bar (see above). Inside you will find a copy of
these notes in PDF format (<b16-lab-path>\b16-lab.pdf).

4. Inside <b16-lab-path> locate the Visual Studio Solution file <b16-lab-path>\b16-lab.sln.
Double click it to open it in the Visual Studio Integrated Development Environment
(IDE).

5. If this is the first time you start Visual Studio, it will ask you to select an environment
setting. Since we are going to program in C++, select Visual C++ Development Settings
and then press the button Start Visual Studio. Wait for Visual Studio to start: the
fist time it will take a few minutes! Once the setup is done, you should see a window
similar to Figure 1.

Tip: If at any point during the lab you wish to discard your changes and start over you
can run install.bat again. Note, however, that this will delete all of your changes!

2 Program development

In contrast to MATLAB, C and C++ are compiled languages: before being executed by the
computer, the C/C++ code has first to be transformed into an executable format. First, a
compiler translates each source file (a text file with extension .cpp containing the C/C++
code) into an object file (a file with extension .o containing the corresponding machine instruc-
tions). Then, a linker combines the objects files, as well as a number of third-party libraries
(extension .lib), into a single executable program (extension .exe).

The traditional (some say archaic) way of performing these steps is to use a simple text
editor of preferred flavour to create the input source code files, and then to manually type
commands into a shell or command line interface to run the compiler and linker:

1 CC -c module1.cpp -o module1.o
2 CC -c module2.cpp -o module2.o
3 LINK module1.o module2.o -llib1 -llib2 -o program.exe

Here the first two lines invoke the compiler on two hypothetical source files named module1.cpp

and module2.cpp, and the last line combines the outputs of the compiler an two libraries lib1

and lib2 into a single program fittingly called program.exe. The iteration of editing, compiling,
linking and fixing errors is called a single development cycle, and can be repeated until you are
happy with the results.

As you can imagine, invoking these steps over and over to correct your own programming
mistakes is tedious, and many modern operating systems provide a integrated development
environment (IDE) in which this can be done fairly painlessly. An IDE usually comprises an
editor, a compiler, a linker, and a debugger (to find your mistakes in said executable).

On Windows, the most common IDE is Microsoft Visual Studio. Some useful features
of Visual Studio are:

1If you run this lab on your machine, download and unpack the lab package from http://www.robots.ox.ac.
uk/∼fwood/teaching/B16 OOP hilary 2015 2016/index.html.

http://www.robots.ox.ac.uk/~fwood/teaching/B16_OOP_hilary_2015_2016/index.html
http://www.robots.ox.ac.uk/~fwood/teaching/B16_OOP_hilary_2015_2016/index.html
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Figure 1: A screenshot of the Visual Studio integrated development environment. (1) The
integrated editor (2) The Project Explorer shows all projects contained in the solution, and
their accompanying files. (3) The output window for error messages.

1. A graphical debugging tool. Like any debugger, this tool enables you to step through
a compiled program line by line, examine the contents of variables at each stage, trap
errors, and set breakpoints where continuous execution will be paused. The debugger is
accessed through the Visual Studio GUI and is integrated in the text editor, which makes
its use particularly convenient.

2. A way of organising multiple related source files into a project, and multiple projects in
a solution. Projects enable compilation, linking and generation of an executable without
having to type all the command line gibberish; one nice related feature is that compiler
errors appear as clickable links which then transport you right to the offending bit of
source code. Within a solution, you can have several projects which share similar code.

3. It has an online help to obtain useful information such as descriptions of the functions
contained in system libraries. You can access this help by pressing F1 and search for
a specific term, or by highlighting text in your source code or error messages and then
pressing F1. The online help then searches for the highlighted text in the documentation
automatically.

The IDE then shows a list of projects which correspond to the first assignments in this course,
and should look similar to the screenshot in Figure 1. The project you are currently working
on is highlighted in bold in the solution explorer. To enable a different project, highlight this
project’s name and select Set as StartUp project from the Project menu (or, in short, Project
→ Set as StartUp project). Among other things, this tells the debugger to start the program
associated with the active project.
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3 A simple program

A small application to perform a dynamic simulation (a ball falling and bouncing under gravity)
has been written for you. We will know investigate in detail how this program works and learn
about object classes, their use in constructing a program, and compiling and debugging the
latter.

3.1 An overview

The bouncing ball application is implemented in the project named ball. This projects contains
four source files: simulation.h, ball.h, ball.cpp and test-ball.cpp. You can view these files by
clicking first on the ball project, which shows subfolders Header Files and Source Files (see
Figure 1). In each of these you will find required files which open in the editor environment if
double-clicked.

Start by inspecting the header file ball.h. As you will remember from lectures, a header file
contains a set of related function declarations and class definitions. By packing this information
together in a .h file, it is easy to include it in any source code file that may need to use the
module. In this example, the ball.h header file defines of a single class, called Ball. This is the
core of the bouncing ball simulation.

Examine now the way Ball class has been coded. The first thing you will notice are three
member functions:2 Ball(), step() and display() (we occasionally use the () suffix to emphasise
that a name refers to a function). These functions serve the following purposes:

� Ball() is a constructor, a function used to initialise objects of class Ball when they are
instantiated (created) in the program. In this case, the constructor specifies the initial
position and velocity of the ball, among other things.

� display() prints a line of text containing the position of the ball. In practice, this is a pair
of numbers x and y separated by a space. When the program runs, this output will be
printed to a console or terminal. You can identify the console as a window with a black
background that Windows opens when the program runs.

� step(dt) advances the simulation by dt seconds by taking the current state of the ball and
integrating the differential equations of the motion to obtain the state dt seconds later.
The integrator uses Euler method: if g ∈ R2 is the gravity vector, x(t) the position of the
ball at time t, and v(t) the velocity, the update is

x(t + dt) = x(t) + v(t) dt +
1

2
g dt2,

v(t + dt) = v(t) + g dt.

Still looking at the file ball.h, notice that, after declaring these three member functions, the
class defines a number of data members, variables of type double storing the position, velocity,
etc. of the bouncing ball simulation.

Task 1: Understand the implementation of the member functions. Look now at
the ball.cpp file, containing the implementation of the member functions Ball(), display() and
step(), and answer the following questions:

� What is the initial state of the ball when the object is created (instantiated)?

� How does display() prints information on the screen?

2A member function is a function that “belongs” to a class and can operate on instances of that class. In
other object-oriented languages member functions are known as methods.
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Figure 2: Slightly hidden, but there: The command line and redirection options. Observe the
> symbol before the file name.

� The ball is constrained to bounce in the box [−1, 1]× [−1, 1]. How is this handled by the
integrator implemented in step()? Is the total (kinetic + potential) energy of the ball
conserved by this integrator?

Now look at test-ball.cpp and answer the following question:

� What do you expect the output of your program to be?

Task 2: Running the program. The last question can be answered empirically, by com-
piling and running the program. In order to do so:

� Make sure that ball is the active project (see Sect. 2).

� Select Start Without Debugging in the Debug menu (Debug → Start Without Debugging,
or Ctrl+F5).

This will automatically compile and link the program to create and run the executable ball.exe

for you. A console window will pop up, displaying the output of the program.3 Does it look
reasonable?

3.2 Redirecting the output and visualising it in MATLAB

By inspecting a sequence of numbers it may not be obvious whether the program output is
reasonable or not. This can be answered more easily by viewing the output graphically. Later

3If you select Start Debugging instead of Start Without Debugging, the program will run, but the console
window will close immediately after the program ends, giving you the impression that nothing happened. If the
problem persists, see Appendix C.
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in the lab we will incorporate this functionality directly into the program; for now we will use
a “trick” to export the program output to MATLAB and use the latter to do the plotting.

Task 3: Use redirection to save the textual output to a file. A way to save the
textual output of the ball.exe program to a file is to redirect the output from the console to a
file on disk. This is a convenient trick as it does not require to change the program at all.

To use redirection, open the project properties (from the menu select Project → Properties
or press Alt+F7) and navigate to the Configuration Properties → Debugging submenu (see
Figure 2). Redirection is specified by appending to the Command arguments the > symbol
followed by the desired file name, e.g. > "$(OutDir)\ball.txt". Here the macro $(OutDir) is
replaced automatically by VisualStudio with the directory used to store the executable. This
directory is by default <b16-lab-path>\Debug.

Run the program again (Start Without Debugging). This time the output window is empty
because the output has been redirected to the ball.txt file. Locate the file with Windows
Explorer at <b16-lab-path>\Debug\ball.txt (in the same directory you will find the executable
ball.exe too). Double click the file to visualise it in a text editor.

Task 4: Load the output in MATLAB and visualise it. Now that the data is the
ball.txt file, it is easy to load it in MATLAB and plot it. Start MATLAB and issue the
instructions

1 >> cd ’<b16-lab-path>\Debug’
2 % OR: drag the Debug directory from Windows Explorer into MATLAB.
3 >> load ball.txt
4 >> plot(ball(:,1),ball(:,2))

Does the output seem reasonable?

3.3 Public, private, and protected class members

Now that you have a grasp of the basic structure of the program, we will investigate several
details of the implementation. Inspect again the file ball.h and notice the following:

� The declaration class Ball consists of the word class followed by the name of the class
being defined. The declaration tells the compiler that Ball is the name of a class. In this
case, the complete declaration class Ball : public Simulation tells the compilers some-
thing more: the Ball class inherits from the Simulation class (more on this later).

� In this particular example, the declaration is immediately followed by the class definition,
enclosed within { } and terminated with a semicolon ;. The definition is the blueprint of
the class and the compiler requires it to know: (i) which operations (member functions)
can be applied to objects of the class, and (ii) the list of data members comprising the
class, so that the correct amount of memory can be allocated to store objects of the class.
Note that the definition is divided into two parts, public and protected.

� In this example, the public section of the definition contains the member functions Ball(),
step() and display(). Together, these three member functions embody what a user can
do with objects of the class (namely, create a new object, advance the simulation, and
display the state). They have public scope, and can therefore be called by any part of the
program.

� In contrast, the scope of anything in the protected section is limited to functions that are
member of the class or one of its descendants. In the Ball example, the protected section
defines several data members of type double, representing the state of the ball (2D position
and velocity) as well as other parameters of the simulation. Since these are protected,
only Ball(), step() and display() can access them.
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� Class members can also be declared in the protected section. In this case, they can only
be accessed by members of the same class, or those of derived classes.

Task 5: Member functions and separation of concerns. By isolating data members
in the protected part of the class definition, the representation of the data (protected data
members) can be separated from the operations that apply to it (public member functions).
Answer the following questions:

� How should the class be changed so that a user could be able to get and set the position
of the ball?

� The member functions of a class are often said to encode its “behaviour”. Can you
find a practical example demonstrating why separating the data representation from its
behaviour is useful?

3.4 Implementing the class by defining the member functions

While the class Ball is defined in ball.h, the member functions are declared but not defined
there. Their definition is found in the ball.cpp file. This file should be self-explanatory, except
perhaps for the following facts:

� The compiler directive #include "ball.h" causes the compiler to insert on the fly the
content of the ball.h file into the ball.cpp file. In this manner, the definition of the Ball

class, contained in ball.h, is known during the compilation of ball.cpp. Similar directives
can be used to include and use system libraries. An example is the directive #include

<iostream> which includes the iostream module of the C++ Standard Template Library
(STL). The latter module provides input output functionalities (std::cout and similar).4

� All member function definitions are prefixed with the string Ball::. This tells the compiler
that the function being defined is a member of the class Ball as opposed to a “global”
function.

� The constructor Ball::Ball() is defined as

1 Ball::Ball()
2 : r(0.1), x(0), y(0), vx(0.3), vy(-0.1), g(9.8), m(1),
3 xmin(-1), xmax(1), ymin(-1), ymax(1)
4 { }

The long list of parenthesised expressions after the : symbol is known as an initialisation
list. Its purpose is to construct (initialise) the various data members, for example by
choosing an initial value. A similar effect could be obtained by assigning the variables
explicitly in the constructor body:

1 Ball::Ball() {
2 r = 0.1 ;
3 x = 0 ;
4 // etc.
5 }

For elementary data types like double using an initialisation list or multiple assignments
is roughly equivalent; however, if a data member is an instance of a user defined class,
the assignment operator = may not be defined for it. In this case, the only option is
to initialise the class in the initialisation list, as the latter can use the class constructor

4Note the slightly different syntax: when the filename is enclosed in quotes, as in #include "ball.h", the
file ball.h is searched in the same directory of the file ball.cpp which is including it. When the filename
is enclose in the angular brackets, as in #include <iostream>, the file iostream is searched in a number of
system directories which contain library header files.
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(always defined) instead of the assignment operator =. We will see an example of this fact
later.

� The statement std::cout<<x<<""<<y<<std::endl ; in the implementation of display() de-
serves some further attention. The operator x<<y is meant to pass the object y as input to
the object x. Here, the receiving object is std::cout, an output stream (it is defined in the
included file <iostream>). std::cout dumps its input to the system console or terminal,
and thus can be used to print information on the screen. The symbol std::endl represents
an end-of-the-line character.

Task 6: Initialization lists. In what order are the initializations performed in an initial-
ization list? Why would it be important to keep this in mind?

Task 7: Include guards. What is the purpose of the lines #ifndef __ball__ etc.? What
error could occur if they were omitted?

Task 8: Understanding constructors. The constructor Ball() does not allow the user
of the class to choose a custom initial position or velocity of the ball. Design an alternative
constructor that would allow one to do so upon class instantiation.

3.5 Using a class by instantiating it and calling its member functions

At this stage you should have a good understanding of the class Ball. It is now time to put it
to work. To this end, inspect the source code in test-ball.cpp.

After including the ball.h header file, test-ball.cpp defines a function called main. This is
the default entry point of the program, i.e. the function that the operating system calls when
the program is launched. Arguments from the operating system are passed to the program
through the variables argc (the number of arguments) and argv (the arguments as an array of
strings), making a program a black box to the operating system as a function definition is to a
programmer. The main function returns to the operating system an error code, in this case the
constant 0 (i.e. no error). In the implementation of main we note the following:

� The variable dt is defined to contain the simulation step size. By defining this as const,
the compiler knows that it is a hard coded parameter that cannot be changed during the
execution of the program.

� The statement Ball ball ; defines a local variable ball of type Ball. The compiler au-
tomatically creates an instance of class Ball, calling implicitly the constructor Ball() to
initialise the object. The variable ball can then be used to refer to this instance. This
variable has a local scope, i.e. it is visible only in the context of main().

� The class members are accessed via the . (dot) operator. For example, ball.step(dt)

calls the step member function in ball, advancing the simulation by the specified amount.
Data members can be accessed as well; for example ball.x would access the variable x

in Ball(). However, x was declared a protected member of the class, so in practice this
causes a compilation error.

� The for loop gets a fixed number (100) of iterations. At each iteration, the member
functions step and display are called to advance the simulation and dump the location
(x, y) of the ball on the screen.

Task 9: Programming principles. Answer the following question:

� What is the distinction between a declaration and a definition in C++?
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3.6 Compiling, testing, and debugging the program

Now that you have a full understanding of the source code, we will investigate in more detail
how to compile, run, and debug the code.

Task 10: Compiling the program. In order to compile the program:

� Select the ball project in the Visual Studio environment and set it as the StartUp project
to select that project as the active one (→ Project → Set as StartupProject). The name
of the project should be rendered bold.

� Build the project (Build → Build ball).

This runs the C++ compiler and linker on your program. After a few seconds translation will
be complete and should leave you with a summary of the process in the error window:

1 1>ball - 0 error(s), 0 warning(s)
2 ========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

Navigate once more to the output directory <b16-lab-path>\Debug with Windows Explorer; you
will see that a executable file ball.exe has been created. This is your program, ready to be
launched (try double clicking on it!). As we have seen before, the program can be run from the
IDE by selecting Debug → Start Without Debugging, or Ctrl+F5).

Task 11: Try the debugger. The debugger component of Visual Studio is very useful. It
enables a programmer to step through a program as it is running, pausing, examining variable
values, etc. To run the debugger on your executable ball:

� Place a breakpoint on the line where the Ball object is instantiated. Similar to MAT-
LAB, you click left to the start of the line. A red dot should appear.

� Select Debug → Start or hit F5.

� If you have changed the source, a small window will pop up, asking you whether you want
to build it. This is a good idea. Keeping this window from appearing is also a good idea;
tick the little Do not show this dialog again box.

� Placing the cursor over the icons either on the debugger toolbar will tell you briefly what
each does. The most important are summarised below (see Figure 3):

– Stop at: insert a breakpoint at the location of the cursor in the source code. Pro-
gram execution will stop at this point giving you the chance to examine variables,
etc.

– Step into: execute the current line of code, but if this involves a function call, then
stop at the first line of the function.

– Step over: execute the current line of code then stop again.

– Start/Continue: start debugging or continue execution from the current location
(until another breakpoint is met).

You can also halt the program mid-flow by hitting Control-Break, and this will bring you
into the debugger at the current line of execution.

Try out the various options. In particular try to discover how to display the value of a
variable (e.g. ball). Once you have done this, step through the program one line at a time
examining how it changes during the for loop. Also try inserting a breakpoint and continuing
execution to observe the program stopping at the breakpoint.
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Figure 3: The Debugger toolbar (see arrow) pops up only during debugging. (1) shows the
variables currently in scope, and (2) shows the current call stack, which can be navigated by
double clicks, similarly to the dbup and dbdown commands in MATLAB. The red dot marking
one of the line in the editor is the location of the breakpoint, and the yellow arrow the current
location (PC) in the program. To reach this particular state, the step into icon was pressed
once after the program stopped at the breakpoint.

3.7 Inheritance and virtual functions

Throughout the lab, we will not only define brand new classes, but also derive new ones from
existing ones through the mechanism of inheritance. Inheritance allows to specialise a given
class by extending or customising it for a given purpose. Consider the following example:

1 #include<iostream>
2 class Person {
3 public:
4 void wakeUp() { std::cout<<"Good morning!"<<std::endl; }
5 } ;
6 class Worker : public Person {
7 public:
8 void goToWork() { std::cout<<"Driving."<<std::endl; }
9 } ;

Here the derived class Worker has two member functions: goToWork, as given in its definition,
and wakeUp, inherited from the base class Person. An object of type Worker is also of type Person,
so it can be used whenever Person can. For example:

1 void ringBell(Person &aPerson) {
2 aPerson.wakeUp() ;
3 }
4 void main(int argc, char** argv) {
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5 Worker aWorker ;
6 ringBell(aWorker) ; // prints "Good morning!"
7 }

In addition of adding new members, inheritance can be used to override existing ones,
modifying the behaviour of the base class. For example:

1 class Person {
2 public:
3 void wakeUp() { std::cout<<"Good morning!"<<std::endl; }
4 void goToWork() { std::cout<<"No way!"<<std::endl; }
5 } ;
6 class Worker : public Person {
7 public:
8 void goToWork() { std::cout<<"Driving."<<std::endl; }
9 } ;

In this case, a Worker modifies the behaviour of the more generic Person by redefining the function
goToWork. However, the old behaviour is still associated to objects of class Worker when seen as
Person. For instance:

1 void timeToGo(Person &aPerson) {
2 aPerson.goToWork() ;
3 }
4 int main(int argc, char** argv) {
5 Worker aWorker ;
6 timeToGo(aWorker) ; // prints "No way!"
7 aWorker.goToWork() ; // prints "Driving."
8 return 0 ;
9 }

What happens is that the timeToGo function accepts a Worker as input, but treats it exactly as
it was of type Person. This can be modified by defining the functions in the base class to be
virtual:

1 #include<iostream>
2 class Person {
3 public:
4 virtual void wakeUp() { std::cout<<"Good morning!"<<std::endl; }
5 virtual void goToWork() { std::cout<<"No way!"<<std::endl; }
6 };
7 class Worker : public Person {
8 public:
9 void goToWork() { std::cout<<"Driving."<<std::endl; }
10 };
11 void timeToGo(Person &aPerson) {
12 aPerson.goToWork() ;
13 }
14 int main(int argc, char** argv) {
15 Worker aWorker ;
16 timeToGo(aWorker) ; // prints "Driving."
17 aWorker.goToWork() ; // prints "Driving."
18 return 0 ;
19 }

Now the new definition of the goToWork member function is used when the object is referred to
as a Worker or as a Person.
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3.8 Interfaces

A particularly important application of virtual member functions is the definition of interfaces.
An interface is an “empty class” that specifies a set of operations (virtual member functions)
without providing any implementation. Defining an implementation for those functions is left
to any particular class that derives the interface.

Task 12: Understanding interfaces. The class Ball (see ball.h) inherits from the inter-
face Simulation, whose definition (see simulation.h) is

1 class Simulation {
2 public:
3 virtual void step(double dt) = 0 ;
4 virtual void display() = 0 ;
5 } ;

Thus Simulation declares two virtual member functions step() and display(). The = 0 suffix
tells the compiler that it should not expect Simulation to provide a definition of these functions.
Rather, this is left to the compiler. Answer the following questions:

� Consider the function

1 void run(Simulation & s, double dt) {
2 for (int i = 0 ; i < 100 ; ++i) { s.step(dt) ; s.display() ; }
3 }

Can you replace the for loop in the main function defined in test-ball.cpp with the in-
struction run(ball, dt)?

� What would happen if Simulation did not declare step and display to be virtual? Would
run still work as expected? If not, what would happen?

4 Building your own application

The main task of the lab is to create another more complicated dynamic simulation; a mass-
spring system consisting of two masses and one spring (though we would like to bear in mind
how this could be extended to a system of several masses and springs). A skeleton project
springmass has been created for you to give you an idea of how the classes and files might be
organised. You will need to decide what responsibilities the classes will have, and how they
will interact. Before you proceed, do not forget to make the springmass project active (Set as
StartUp Project).

Task 13: Complete the Mass class. Start by completing the implementation Mass class
by implementing the member functions getEnergy() and step(). The following definition is given
to you in springmass.h:

1 class Mass
2 {
3 public:
4 Mass() ;
5 Mass(Vector2 position, Vector2 velocity, double mass, double radius) ;
6 void setForce(Vector2 f) ;
7 void addForce(Vector2 f) ;
8 Vector2 getForce() const ;
9 Vector2 getPosition() const ;
10 Vector2 getVelocity() const ;
11 double getMass() const ;
12 double getRadius() const ;
13 double getEnergy(double gravity) const ;
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14 void step(double dt) ;
15

16 protected:
17 double xmin ;
18 double xmax ;
19 double ymin ;
20 double ymax ;
21

22 Vector2 position ;
23 Vector2 velocity ;
24 Vector2 force ;
25 double mass ;
26 double radius ;
27 } ;

The Mass class is an improved version of Ball, where:

� setForce(f) and addForce(f) set/accumulate a force f in the internal force accumulator
variable force.

� step(dt) updates the position and velocity of the based on the current value of force and
the other parameters, similarly to the step function member of Ball.

Differently from Ball, the class is making use of the Vector2 class, also defined in springmass.h,
in order to simplify basic operations on 2-dimensional vectors. Note that Vector2 is provided
for the sake of the example only; in practice, you would use a fully-fledged off-the-shelf C++
math library instead, like Eigen (http://eigen.tuxfamily.org).

Most member functions of Mass have already been defined for you in springmass.cpp. Now
open that file and complete the implementation by writing the code of the step function.

Task 14: Complete the Spring class. Once you are satisfied with your implementation
of Mass, move to the implementation of Spring. In writing this implementation it is helpful to
think how Spring can be used in combination with Mass in the simulation.

� Start by the fact that a spring exerts two opposite forces F1 and F2 = −F1 at its two
extrema x1 and x2, where

F1 = k(l − l0)u12, l = ‖x2 − x1‖, u12 =
1

l
(x2 − x1).

Thus, the class Spring should have at the very least a member double naturalLength to
store l0 and a member double stiffness to store k.

� Add also a damping factor d (double damping). Similar to stiffness, damping also exerts
two opposite forces F2 = −F1 along the spring, but in this case the forces are proportional
to the elongation velocity:

F1 = dv12, v12 = ((v2 − v1) · u12)u12

where u12 is defined as before and · denotes the inner product (see dot(Vector2,Vector2)).

� Note that the Spring constructor takes two pointers to the masses connected to its extrema:

1 Spring::Spring(Mass * mass1, Mass * mass2, double length, double stiffness, double
damping)

2 : mass1(mass1), mass2(mass2), naturalLength(length), stiffness(stiffness), damping(
damping)

3 { }

Add suitable data members mass1 and mass2 to be able to store this information in the
class.

http://eigen.tuxfamily.org
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� Implement the member function getForce() to compute the spring force F1 (note that the
force F2 is the opposite). Since Spring contains pointers to the masses, it can use the Mass

member functions getPosition() and getVelocity() to obtain the information required of
this calculation.

Task 15: Design and implement SpringMass. Once Mass and Spring are complete, it
is time to implement the simulation by constructing a class SpringMass that represents the
simulated “world”. In this case you are expected to work out part of the design of a class itself.

The world contains two masses and a spring connecting them (or, more in general, n masses
and m springs). A minimal solution, therefore, must store Mass mass1, Mass mass2, and Spring

spring as data member of SpringMass. Similarly to the Ball class encountered earlier, fur-
thermore, SpringMass inherits from the Simulation class and must implement the step() and
display() methods.

� Start by implementing the interface necessary to setup the simulation. One way to do this
is to create two masses and a spring in the main program and then pass the latter to an
instance of SpringMass by pointer or reference. Design and implement suitable methods in
SpringMass or, alternatively, redesign the constructor to be able to initialise the simulation
in this manner.

� Implement the method step() to advance the simulation. To do this:

– Go through both masses and set the initial force to be gravity (or zero) by using the
setForce function of mass.

– Examine the spring and compute the forces F1 and F2 that it applies to the connected
masses. Accumulate these forces to the respective masses by using the addForce

function of Mass (by doing so, the spring forces will be summed to gravity).

– Go through all masses again and update their state (position and velocity) by calling
step() on them.

� Define the method display() to dump the sate of all mass locations.

� Optional. Think whether your design would easily extend to the case of more than two
masses and more than one spring in the simulation. If not, what could you change?

Task 16: Initialise and run the simulation. Modify the file test-springmass.cpp to run
your simulation. Write code to setup a new SpringMass instances with two masses and one spring
(or a more complex configuration) using the interface that you just designed and implemented.

Task 17: Redirect the program output to a file and visualise it in MATLAB.
Try the same trick we used for the Ball simulation in order to redirect your program output
to a file, load it in MATLAB, and visualise it. Note that in this case more than one mass per
line of output should be included.

5 Graphics

The dynamic simulation you have created would be much more interesting if it could be graph-
ically viewed in “real-time” rather than as a static plot. Displaying graphics on the screen
requires interfacing to the graphics subsystem built in your machine. At the core of this sub-
system there usually is a dedicated graphical processor unit (GPU), a specialised hardware
component that can execute graphical operations, such as drawing a line, very efficiently.

Rather than coding the GPU directly, programmers normally use an abstraction known as
a device driver, that lives in the operating system. Most graphic drivers support one or more
standard interfaces, made available to the C/C++ programmer as libraries. In this manner a
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program can work without modification with GPU of different vendors (e.g. nVidia, ATI, Intel,
or PowerVR).

The graphics library we will use is called OpenGL, an industry standard implemented in
many environments (e.g. Windows, Mac OS X, Linux, iOS and Android). By using OpenGL,
a program can use the powerful graphic accelerators built into modern computers and mobile
gadgets. Although we will focus on simple 2D drawing capabilities, OpenGL allow accessing
all the features required to generate complex 3D graphics as well. You can view the OpenGL
manual by going to http://www.opengl.org/sdk/docs/man2/ in Internet Explorer.

In general, it is very common to rely on system and third-party libraries when coding
complex programs. Knowing how to use them optimally is a key programming skill. This is
not always a simple matter. For example, using OpenGL requires dealing with several details,
such as opening a window to display the output, handling events such as a user resizing the
window, and updating the window content at a regular interval to generate an animation. We
shall approach this problem in an organised manner, using a few classes and inheritance to help
us along.

5.1 Understanding graphics and animations

OpenGL is a fairly complex library. In order to help you getting started with it, the lab
package provides a graphics.h module. This module contains a class Figure that simplifies
creating figures and drawing into them. Furthermore, the lab package contains an example
project ball-graphics that demonstrates using Figure to visualise the bouncing ball simulation
in real time.

Task 18: Understand how to open a window and draw in it. Make the ball-graphics

project active (Set as StartUp Project). Then navigate in Visual Studio to the file graphics.h

file and double click to inspect it. This module does a few things:

� It includes the OpenGL header files (glut.h). This means that, by including graphics.

h, your program will have access to the OpenGL functions as well. GLUT is an utility
library, companion to OpenGL, which handles windows and events — more on this later.

� It declares a function run() that takes as input an object of type Simulation and a timeStep.
This function never returns; instead, it enters a loop that handles the stream of events
from the graphical user interface (e.g. a window being resized). It also runs the simulation
by repeatedly calling the member functions step (to advance the simulation) and display

(to update a corresponding figure).

� It defines a class Figure which simplifies opening a window and drawing in it.

The class Figure handles the basic workflow of displaying a window on screen and updating
its content during an animation. It also provides a few functions to draw basic primitives that
are simpler to use than OpenGL directly (but you can still use OpenGL with it). The workflow
is summarised in Figure 4 and described next.

Upon creation of an instance, the class Figure opens a new window on the screen. It also
tells OpenGL to call the class member function draw() whenever the window content must be
drawn on screen. OpenGL decides to (re)draw the content in response to events such as: the
window is first displayed on the screen, the window is resized by the user, or the window is
occluded and then displayed again as the user manipulates other windows. While most of these
events are caused by the user, your program can also request the window to be redrawn, for
example because the content of the figure should be updated to reflect the new status of the
simulation. Explicitly requesting a window update is done by calling the update() function of
Figure.

Given that OpenGL calls draw() in Figure to draw the window, how does Figure knows
what should be drawn? By default, the draw() function in Figure starts by painting a white
background and a 10× 10 reference grid. It then goes through a list of other drawable objects

http://www.opengl.org/sdk/docs/man2/


B16 Software Engineering Lab Notes 16

timeStep passed
event

Simulation DrawableFigure

window resized
event

window needs 
redisplay event

draw()

drawCircle()

drawString()

drawLine()

step()

display()

draw()

Drawable

draw()

OpenGL (and GLUT)

display mouse/keyboard

update()

Figure 4: Overview of the graphical subsystem. Simulation, Figure and Drawable show instances
of objects of the corresponding classes. In practice, the same object can implement two or more
classes by multiple inheritance.

that the user has “attached” to the figure. Each such object inherits from the class Drawable

and as such has its own draw() member function, different from the one of Figure. An object is
attached to the figure list by using the addObject function of Figure. To summarise, you must:
define an object of class Drawable, define its function draw() (this does the actual work), and
add an instance of that object to the figure by calling addObject.

This leaves us with the design of the function draw() in the Drawable object. In order to
paint something on the screen, your program must use OpenGL function calls. While this
is not particularly difficult, Figure provides functions that simplify drawing basic primitives:
drawString, drawCircle and drawLine. The meaning and usage of these functions should be
obvious from their declaration in graphics.h. It is however very instructive to inspect their
implementation in graphics.cpp to know how to call OpenGL directly instead. You can then
refer to OpenGL reference manual or, preferably, to one of the many tutorials available online
to go past (see for example http://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG
Introduction.html).

Task 19: Understand how to generate an animation. So far, it was shown how to
use Figure and Drawable objects to draw figures on the screen. The last piece of the puzzle
is to understand how to generate an animation by iteratively calling the simulation code and
redrawing the window content. This is done by calling the function run declared in graphics.h.
This function takes a Simulation object implementing the step and display functions. It also
takes a time step timeStep as a parameter and tries to call the step and display functions with
that frequency. Here step will advance the simulation as before; however, display must be
changed to update the figure rather than printing a message on the screen. As seen above, the

http://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_Introduction.html
http://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_Introduction.html
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latter is done by calling figure.update().

Task 20: Understand how this is implemented by using inheritance. Once how to
solve the previous two tasks is clear, open test-ball-graphics.cpp and understand how this has
been done by defining a BallDrawable class, inheriting from Ball and Drawable. This is called
multiple inheritance, and can be used to create “hybrid” classes which combine more than
one parent classes. Look in particular at the implementation of the member functions draw()

and update(). Compare this with Figure 4 and answer the following questions:

1. Which objects are of type Simulation and which of type Drawable?

2. Which objects are creating an instance of Figure and when?

3. Which objects are added as Drawable to the figure and when?

4. Which objects implement respectively: display, draw, and update?

5. Which different purposes do these functions serve?

Note also that the very first line of the main function in test-ball-graphics.cpp contains a call
to glutInit(). This function initialises GLUT and OpenGL, making them ready for use. Do
not forget to use it in your code later!

Task 21: Compile and run code using the graphics library. Visual Studio must
be instructed to link your program to OpenGL before it can be compiled correctly. In fact,
this example code uses an additional utility library known as GLUT (http://www.opengl.org/
documentation/specs/glut/spec3/spec3.html) which adds to OpenGL functions to manipu-
late windows and user events. Linking to GLUT is sufficient, as the latter causes OpenGL to
be linked as well.

A further complication is that, differently from OpenGL, GLUT is not part of the standard
Windows SDK. This means that it has to be downloaded and installed as a third part library. In
practice, your <b16-lab-path> folder already contains a copy of GLUT (<b16-lab-path>\support
\GLUT). Furthermore, the project ball-graphics is already setup to correctly link to the latter,
so compiling and running the program should work without a problem (try this now). If you
are curious, the process is described in some detail in Appendix A.

5.2 Adding a graphical display to the mass-spring simulation

Now that you have seen how to add a graphical display to Ball, it should be straightforward to
do so for SpringMass. Do not forget to make the springmass-graphics project active.

Task 22: Create a graphic version of SpringMass. In the test-springmass-graphics

.cpp file, derive a SpringMassDrawable class from SpringMass in a manner similar to the way
BallDrawable was derived from Ball (see test-ball-graphics.cpp). In particular, override the
display() function to draw all the masses and all the springs (as simple sticks connecting the
masses). Then run the simulation physically by using the run function.

5.3 Further extensions

If all this was too easy and you have time left, try the following:

Task 23: Compute and display the energy of the spring-mass system. Design and
add getEnergy() member functions to your classes for the masses and the springs. Then modify
the step() function of the SpringMass simulation to compute and remember the energy of the
system, by summing the energy of all masses and springs. Make this value available to the
user by adding a function getEnergy() to this class as well. Finally, extend the draw() method
of SpringMassDrawabe to overlay this information on the figure (use the drawString function of
Figure to do so). Then answer the following questions:

http://www.opengl.org/documentation/specs/glut/spec3/spec3.html
http://www.opengl.org/documentation/specs/glut/spec3/spec3.html
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� What happens to the energy as the simulation progresses? Why?

� Now set the damping factor of the spring to zero. What happens now to the energy? Is
this result correct? If not, what may be the problem?

Task 24: Generalise the mass-spring simulation to multiple masses. Extend the
SpringMass simulation to handle multiple masses and springs, with an arbitrary topology. This
requires handling a graph of springs connecting the different masses, but it is otherwise a rather
simple task.

Task 25: Extend the simulation to a 3D world. The physics extends trivially to the
3D case by adding a third coordinate. Develop a Vector3 version of Vector2, then modify the
Spring, Mass, and SpringMass simulation to handle the third coordinate.

Task 26: Visualize a 3D simulation. OpenGL makes it very easy to draw three dimen-
sional graphics as well. Understand how to do so from the WWW, staring from the tutorial and
documentation pointers include before, and then using Google to fill in the remaining informa-
tion. Note: most programmers find the WWW an invaluable tool to extend their knowledge,
sometimes preferable to books. Learn how to use this tool best!
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Figure 5: Setting up Visual Studio to link to GLUT. In writing order: setting up the include
search path, the linker search path, the linked libraries, and the post-build rule to copy GLUT
to the output directory. See the text for details.

A Configuring Visual C to link to a third-party library
(GLUT)

This appendix shows hot to configure Visual Studio to do link to a third party library using
GLUT as an example. In this example, the following steps must be taken (Figure 5):

� Add GLUT to the #include search path, so that the compiler may correctly execute the
statement #include <GLUT/glut.h> (see graphics.h). This is done by adding the directory
$(SolutionDir)\support to Project → Properties → Configuration Properties → C/C++
→ Additional Include Directories. Here $(SolutionDir) is a variable that is automatically
expanded by Visual Studio to the directory containing the solution, which is in this case
equal to <b16-lab-path>.

� Add the directory containing the GLUT library to the linker search path, so that glut32.

lib can be successfully linked to your program. This directory is $(SolutionDir)\support\

GLUT and should be added to Project → Properties (Alt + F7) → Configuration Properties
→ Linker → Additional Library Directories.

� Add glut32.lib to the list of libraries to be linked in Project → Properties (Alt + F7)
→ Configuration Properties → Linker → Input → Additional Dependencies. Note that
there are seemingly two libraries in the <b16-lab-path>\support\GLUT\ folder: glut32.lib

and glut32.dll. The former is needed by the linker during compilation; the latter is the
actual library which is dynamically loaded and attached to your program by the operating
system when the executable is run. This is known as a dynamically linked library (DLL)
for this reason.
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� Finally, the GLUT DLL must be copied to a place that can be found by the operating
system (Windows) when the executable is run. While there are several standard places
where such DLLs are usually stored, here we do not want to permanently add software
to the Windows machine in the laboratory! The alternative is to copy glut32.dll in the
same directory of the executable ball-graphics.exe. As you should know by know, this
directory is <b16-lab-path>\Debug, or simply $(OutDir)$ using a Visual Studio macro. In
order to copy GLUT to this directory after the compilation is complete, we will add a
post-build rule, in this case the command

1 copy /y $(SolutionDir)\support\GLUT\glut32.dll $(OutDir)\

This string should be added to Project → Properties (Alt + F7) → Configuration Prop-
erties → Build Events → Post-Build Event → Command Line.

B References

� General programming questions

– Google. Seriously.

– Stack Exchange http://stackexchange.com and, in particular, Stack Overflow http:
//stackoverflow.com.

� OpenGL

– OpenGL 2 reference manual: http://ewww.opengl.org/sdk/docs/man2/.

– GLUT refernce manual: http://www.opengl.org/documentation/specs/glut/spec3/
spec3.html.

– OpenGL tutorial on 2D graphics: http://www3.ntu.edu.sg/home/ehchua/programming/
opengl/CG Introduction.html.

– OpenGL tutorial on 3D graphics: http://www.cs.uccs.edu/∼ssemwal/indexGLTutorial.
html.

� When all else fails:

– Demonstrator.

C Troubleshooting

� Disappearing console. Differently from Visual Studio 2008, in Visual Studio 2010 even
when running with Start Without Debugging the console may disappear quickly after the
program terminates. In this case set Project → Properties → Configuration Properties →
Linker → System → SubSystem to Console (/SUBSYSTEM:CONSOLE) (Figure 6).

http://stackexchange.com
http://stackoverflow.com
http://stackoverflow.com
http://ewww.opengl.org/sdk/docs/man2/
http://www.opengl.org/documentation/specs/glut/spec3/spec3.html
http://www.opengl.org/documentation/specs/glut/spec3/spec3.html
http://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_Introduction.html
http://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_Introduction.html
http://www.cs.uccs.edu/~ssemwal/indexGLTutorial.html
http://www.cs.uccs.edu/~ssemwal/indexGLTutorial.html
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Figure 6: The fix for a disappearing console.
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