B16 SOFTWARE ENGINEERING: OPERATING SYSTEMS 9

2 Programs and processes

A program is its code; a process is an instance of a program, together with its state:
its data. There may be several copies of the same program running simultaneously,
several processes sharing the same code. Choosing to share code requires that
a program does not modify it code. Different processes will require segregated
memory for their data.

Code must be able to refer to data by some form of relative addressing, where
a base register refers to the data area of the current process and a constant in the
code represents an address calculated by adding that constant to the base register.

Multitasking (multiprogramming) allows a number of processes to be run inter-
leaved with each other on a single processor. Parallel slackness makes more efficient
use of resources, for example by occupying the processor with a compute-intensive
task while it would otherwise be waiting for slow input or output.

2.1 Multitasking

On a single processor, the program of a process executes until either it starts some
slow I/O (by a system call), or it is interrupted. If there were nothing else to do,
the process would then have to wait until it could resume, but multitasking allows
for other process to be ready and waiting to take up the slack. When the kernel
has dealt with the call, it can store the identity of the process (the state of the
processor registers), and revive a hibernating process.

A process can be in one of three states:

running at most one process is current: its identity is in the processor registers;

blocked suspended and waiting for I/O: its identity may be stored in registers
associated with the device; and

ready processes which are suspended but available to run if selected: their identity
is stored in a data structure owned by the operating system.

The mechanism for multitasking allows processes to change state in these ways:

10:45AM 17TH JANUARY 2012 PROCESSES



10 2 PROGRAMS AND PROCESSES

process start

completion

timeout

request
termination
The step of process creation involves allocating spaces to be occupied by a process,

loading a program into its code space, and setting up the descriptor of a ready
process. In UNIX this is factored into two distinct activities:

int p = fork();

if (p == 0) { /* I am the child */
execve(command, path, args); /* run ‘command’ */
} else { /* I am the parent of p */
waitpid(p, &status, 0); /* wait for p to exit */
}

The call to fork() returns twice: once in the calling (parent) process, and once in
a brand new (child) process which is an almost identical copy of its parent. In
the parent it returns the identity of the child; in the child it returns zero. The
running processes in UNIX are usually kept in an array, and the process identity
is an index into that array.

As a result of the subsequent call to execve or one of the many variants of exec
the operating system overwrites the program running in the child process with the
new program.

2.2 Scheduling

In contrast to the mechanism, the policy selects which ready process (of potentially
many) is selected to become the running process. The mechanism makes things
safe, the policy makes things fair. A pre-emptive policy will interrupt running pro-
cesses that might otherwise not surrender control, so that even compute-intensive
processes can be run whilst simultaneously guaranteeing a maximum period when
other processes are not allowed to run.

PROCESSES 10:45AM 17TH JANUARY 2012



2.3 Threads 11

The policy will choose next process to be run with the intention of optimising
some aspect of performance. This might be throughput, or fairness, or (interac-
tive) response time, or (batch) turnaround time. Particularly important might be
graceful degradation under conditions of overload.

The policy might depend on parameters set when a process is created, such as
a user-assigned priority, a class of process (batch/on-line/real-time), declared re-
source requirements (such as expected run-time). It might equally depend on mea-
sured history, such as whether the process is I/O bound or CPU bound (measured
by frequency of I/O requests), resources consumed so far (such as accumulated
run time), or the extent of delay so far.

Obvious policies include first-come first served, shortest job first, shortest ex-
pected remaining time, highest response ratio next, round robin. Real time sys-
tems in which there is a deadline by which a task must be completed will generally
schedule processes by earliest deadline first.

2.3 Threads

Processes will generally be well insulated from each other, for example with distinct
address spaces so that they cannot (inadvertently) alter each other’s variables.
Threads, in contrast, although they have their own process registers and stack
and so on will share address spaces and are open to (presumably deliberately)
interfering with each other’s variables.

Threads have the advantage of cheaper context switching, and cheaper commu-
nications with each other (through shared variables) at the expense of considerably
less protection from each other. The advantage is clearest in those operating sys-
tems (and machine architectures) which made process context switching unduly
expensive.

Hyperthreading extends the idea of running several threads in a single address
space by sharing as much as possible of the architecture of a machine between
threads. Essentially only the registers are distinct, and two (or more) copies of
the registers are used by as many threads, which execute instructions on the same
processor. This provides parallel slackness inside the deepest levels of caching,
which hides some of the (small) costs of missing even the fastest of caches in an
architecture with several levels of caching.

Most of these descriptions are based on the assumption of a single processor, but
the ideas are the same in multiple processor computers, or processors with multiple
cores. The difference between those two is one of scale: how much of the memory
system, how many caches (including virtual memory) are shared by processors.
One significant difference between single processors and multiprocessor/multicore
machines is the cost of implementing atomic operations, to which we will return.

10:45AM 17TH JANUARY 2012 PROCESSES



12 2 PROGRAMS AND PROCESSES

Exercises

2.1 Suppose that a machine has to complete n jobs in sequence, and job i takes
time t;. Show that the total over all jobs of the time spent waiting for comple-
tion is minimised by running the jobs in ascending order of t;.

2.2 Suppose that a machine has to complete n jobs in sequence, and job ¢ which
takes time ¢; has to be completed by deadline d;. Show that if this is possible
at all, it is possible if the jobs are scheduled in order of increasing d;.

2.4 Interprocess communication

The point of the process abstraction is to give the current program the impression
that it has exclusive use of a machine. However, that protection from interfer-
ence limits its usefulness to running entirely independent programs. In order for
several processes to co-operate they need to be able to communicate, and such
communication interferes with that interprocess protection.

The obvious way to communicate between processes is for one to alter the
variables of another. However, shared mutable state is dangerous. It is no longer
true that:

if =0 then {z =0} ... end

because some other process might alter x immediately after it is tested. Moreover
it is no longer the case that x :=x + 1 increments x: two assignments in different
processes might interleave reading and writing of x so that the effect of two parallel
assignments might be x:=x+2 or z:=x+ 1. Reading the value of a variable which
does not fit into a single machine word is not guaranteed to return a consistent
value which that variable ever had.

Assuming only atomic read and atomic write of small integers, there are some
cunning algorithms which will allow two (but often no more than two) processes to
co-operate, often waiting busily for each other to agree. They are generally difficult
to understand and hard to scale. Some more significant operations on shared data
need to be atomic in order to make progress. Significantly more powerful atomic
primitives are necessary.

In single processor machines, it was usual to provide a test-and-set instruction
which guaranteed that two memory cycles would be consecutive, with no interven-
ing interference. With multiple processors and highly structured memories with
distributed caches this sort of thing becomes too expensive to provide. Modern
processors provide such things as conditional store instructions, which will write
a location only if this write is the first since a read by the same processor. Given

PROCESSES 10:45AM 17TH JANUARY 2012



2.4 Interprocess communication 13

The upper red semaphore is raised (safe to pass) and the yellow (distant)
semaphore is at danger.

some such small atomic primitive, it is possible to build up higher level atomic
actions which can be used by a programmer.

Historically, the first of these is the semaphore, invented by Dijkstra for the
THE operating system.! Semaphores combine the testing and setting of a value
with a queue of processes that have failed to pass a test, have been suspended,
and need to be resumed when the test can be passed.

A semaphore is a non-negative integer variable with two atomic operations,
signal and wait.? The signal operation increases the value of the semaphore, and
the wait operation decreases it. Of course, if the semaphore cannot have a negative
value wait on a semaphore already equal to zero cannot decrease it immediately.
It is required to suspend the execution until a corresponding signal operation
makes it possible. The suspended processes are kept in a queue associated with
the semaphore.

Binary semaphores are restricted to the values zero and one, and provide a
means to implement mutual exclusion between processes. Suppose some resource
r is to be shared between several processes. Atomic access to r can be ensured by
associating with it a binary semaphore, also shared by these processes. Suppose
we call this r.mutezr, and initialise it to one. If every process which uses r does so
only after waiting on this semaphore and subsequently signals the semaphore

IEdsger W Dijkstra 1930-2002, in a paper Co-operating sequential processes. Technische
Hogeschool Eindhoven, September 1965

2The word ‘semaphore’ is railway jargon for the traditional form of mechanical signalling
device, colloquially a signal. The operations wait and signal were originally called P and V', for
the Dutch probeer te verlagen (try to reduce) and verhogen (increase), but are also often known
as down and up, acquire and release, pend and post, procure and vacate.

10:45AM 17TH JANUARY 2012 PROCESSES



14 2 PROGRAMS AND PROCESSES

wait(r.mutex);
. code using r ...
signal(r.mutezx);

then no other of these processes can be executing code which touches r while this
process is doing so.

This generalises a little, to managing pools of resources. For example if we
have n equivalent resources, such as printers, each to be allocated for exclusive use
of one of a number of processes, this might be done with a semaphore initialised
to n and an array of bits indicating whether a particular resource is allocated or
not.

These resources could just be storage: for example the locations in an array
being used to implement a buffer. A reader and a writer might use an array a of
n variables as a circular buffer, with w as a write pointer and r as a read pointer,
and c as a count of the number of elements present.

var a : array n;
var w =0, r = 0, ¢ = 0; — invariant: (r +¢) modn = w

proc write(val x) — precondition: ¢ <n
begin a[w] :=z; w:=(w + 1) mod n; ¢c:=c+ 1 end,;

proc read(var x) — precondition: 0 < ¢
begin z :=a[r]; r:=(r+1)modn; c:=c—1 end

Of course, write should only be called when ¢ < n, and read should only be called
when ¢ > 0. It would be better to use a pair of semaphores full and empty, with
the value of full being ¢, and that of empty being n — c.

var a : array n;
sema full =0, empty = n; — invariant: full + empty =n
var w =0, r =0, ¢ = 0; — invariant: (r +¢) modn = w

proc write(val x)
begin wait(empty);
alw] :==x; w:=(w+ 1) mod n; c:=c+ 1;
signal(full)
end;

proc read(var )
begin wait(full);
r:=a[r];r:=(r+1)modn; c:=c—1;
signal(empty)
end

PROCESSES 10:45AM 17TH JANUARY 2012



2.4 Interprocess communication 15

We can now remove the variable ¢, which is equal to full and this pair of processes
can now safely be used by a single writing process and a single reading process.
This is because r and w are not shared, and the two semaphores guarantee that
any particular element of @ is only accessed by one of the two processes at any
one time. The semaphores manage the handing over of rights of access from one
process to the other.

However if two writers (or two readers) try to use the queue concurrently, they
will interfere. These problems of mutual exclusion can be solved by another pair
of semaphores.

var a : array n;

sema readable = 1, writable = 1;

sema full =0, empty = n; — invariant: full + empty = n
var w = 0, r = 0; — invariant: (r + full) mod n = w

proc write(val x)
begin wait(empty);
wait(writable);
alw] :==z; w:= (w+ 1) mod n;
signal (writable);
signal (full)
end;

proc read(var x)
begin wait(full);
wait(readable);
x:=alr]; r:=(r+1) modn;
signal(readable);
signal(empty)
end

The order of the wait(empty) and the wait(writable) turns out not to matter in
this code, but supposeing we had chosen to achieve mutual exclusion by having a
single semaphore mutex guaranteeing at most one of a reader and a writer at any
one time, then

var a : array n;

sema mutexr = 1;

sema full =0, empty = n; — invariant: full + empty =n
var w = 0, r = 0; — invariant: (r + full) mod n = w

10:45AM 17TH JANUARY 2012 PROCESSES



16 2 PROGRAMS AND PROCESSES

proc write(val x)
begin wait(empty);
wait(mutex);
alw] :==z; w:= (w+ 1) mod n;
signal(mutez);
signal(full)
end;

proc read(var )
begin wait(full);
wait(mutex);
x:=a[r]; r:=(r+1) modn;
signal(mutezx);
signal(empty)
end

would work, but

proc write(val x)
begin wait(mutex);
wait(empty);
alw] :==z; w:= (w+ 1) mod n;
signal(full);
signal(mutex)
end;

proc read(var )
begin wait(mutez);
wait(full);
x:=a[r]; r:=(r+1) modn;
signal(empty);
signal(mutex)
end

would not. (It can lead to a deadlock: exercise 2.4.)

Semaphores are the goto of concurrent programming: whilst small examples
are straightforward, it becomes more difficult when trying to write something
larger. Proper operation relies on all the pieces of code that are involved obeying
what can become an intricate protocol of signalling and waiting. Although these
examples involve locally matched brackets of calls to wait and signal, in general
this is not the case. It is easy to make small mistakes in the design which can
lead to processes being left waiting on a semaphore which will never be signalled.
Worse, it is remarkably easy to write code which is superficially convincing but
has subtle failures of atomicity.

PROCESSES 10:45AM 17TH JANUARY 2012



2.5 Deadlock 17

More structured synchronisation primitives can in turn be constructed from
semaphores, forcing them to be used in more disciplined ways. Tony Hoare first
published the idea of a monitor which is essentially a module only one of whose
interface procedures can be being called at any given time. Similar ideas appear
in more recent programming languages, for example the synchronised classes in
Java.

In particular in cases where a resource is passed from process to process and
eventually comes back by another route, a more natural synchronisation idea is the
passing of a message. If the passing of a message is an atomic operation which in-
volves a rendezvous between two processes, then anything which happened before
that rendezvous in either processes is guaranteed to have happened strictly before
anything that happened in the other. That guarantee can be used to manage in-
teractions between processes. Buffered communication eliminates the rendezvous,
and gives a weaker guarantee (that earlier events in the sender precede later ones
in the receiver) but can also be used. If necessary, buffered messages can be used
to arrange a rendezvous by returning acknowledgements.

Exercises

2.3 Write an outline (in some sort of pseudo-code) of procedures which can be
called from several concurrent processes to allocate and release one of a pool
of n equivalent resources as described in the notes.

sema nfree = n;
bool free[n|; — initially all true
proc allocate(var 1)
— waits for a free resource and return its index in ¢
proc release(1)
— releases resource ¢, which it had previously been allocated

You will need another binary semaphore for a correct implementation.

2.4 Explain how a sequence of calls to incorrect code for the circular buffer (on
page 16), using a single mutual exclusion semaphore, can lead to deadlock;
an give an argument that the correct code using a single mutual exclusion
semaphore cannot deadlock so long as there are some readers and some writers
(and n > 0).

2.5 Deadlock

Whenever there is a need for synchronisation between concurrent agents the pos-
sibility exists that a number of agents may be prevented from making progress

10:45AM 17TH JANUARY 2012 PROCESSES



18 2 PROGRAMS AND PROCESSES

because they cannot agree on that synchronisation. For example, if each of two
processes requires simultaneous exclusive access to each of two resources, but the
processes request the resources in opposite orders, it is possible that each process
will pick up one resource and that both processes will then be trapped waiting
for the other resource to become available. In this diagram the axes represent the
passage of time in each process:

free A
Resource A
free B
safe
req A
deadlock Resource B
req B
safe
req A req B free A free B

Possible trajectories are those that do not go left and do not go down; the boxes
represent mutual exclusion on each of the resources, and the safe trajectories are
those that can pass around the pair of boxes, but there is an unsafe area in the
reflex corner in the bottom left. Once the system has entered this state, it is
impossible to leave it, and these two processes become deadlocked.

A straightforward solution to this particular instance of the problem would
be to prioritise the resources, insisting that each process should acquire resource
A before resource B. This sort of solution works in some cases, although it is
both expensive because it causes too much synchronisation, and can destroy the
symmetry of a problem. Asymmetric solutions to symmetric problems, as well as
being bigger, may lead to unfair distribution of resources.

Deadlock requires four things: mutual exclusion; holding and waiting; no pre-
emption; and a cycle of processes each waiting for the next. Insidiously, the
possibility of deadlock or the guarantee of deadlock freedom is a property of a
whole system. The relevant cycle of dependency may involve all of the parts of
any decomposition.

The deadlock in this instance depends, for example on each process holding on
to its first resource. One approach might be to detect the deadlock somehow, and
let a process release its resource before trying again later. There are problems with
this too: deadlock is in general hard to distinguish from a long wait, but worse the

PROCESSES 10:45AM 17TH JANUARY 2012



2.5 Deadlock 19

solution may lead to repeated backing off and subsequent collision. Even if the
processes are not starved by deadlock, starvation can still be caused by indefinitely
many failed attempts to make progress. Fair solutions to conflicts like this are
also expensive and difficult to implement in a distributed way:.

The graphic in this instance suggests a way of preventing deadlock. All that is
requires is to exclude any trajectory that enters the danger zone:

free A
Resource A
free B
safe
req A
excluded Resource B
req B
-~ gafe
req A req B free A free B

The banker’s algorithm implements this exclusion by making each process declare
what its maximum future resource requirements might be. Processes are only
scheduled at times when the available resources are adequate to cover possible
future requests from that process. In the small example, when a process requests
its first resource it declares that it will need both A and B. If the one of these is
already booked out, this process can make no further progress until that resource
is returned.

Of course, the banker’s ledger is now a centralised resource which must be
accessed by all processes, and even this solution can lead to too much synchroni-
sation.

Sometimes the best thing to do about the possibility of deadlock is to ignore
it. Most operating systems, for example, are rife with ignored possible deadlock.
In UNIX there is a table mapping process identifiers to their descriptors, and this
table has a fixed size. If two or more processes between them require to create
more children than will fit in the table, no serious attempt is made to prevent this.
It just does not happen very often, so it is not worth worrying about.

Deadlock is a global property: a system is deadlocked when every component of
a system is unable to make progress because it is waiting for some other component.
In a deadlocked system, every component is waiting (for another). In general it
cannot be detected by a local test, but it might be that it can be avoided by

10:45AM 17TH JANUARY 2012 PROCESSES



20 2 PROGRAMS AND PROCESSES

local tactics which conspire to make a global strategy. In contrast to deadlock,
a process can also be held up indefinitely in a busy system (sometimes called
‘livelock’) because resources are never allocated to that particular process. The
system is making progress, but some particular component is starved because
others are always consuming all of a resource. Livelock can only happen when
there is an infinite amount of work being done by other components: there must
(at some level of description) be an infinite stream of requests from elsewhere in
the system.

Exercises

2.5 At traffic roundabouts in the UK and most of the civilised world, traffic already
on the roundabout has priority over traffic joining the roundabout from a feeder
road. In the absence of signs to the contrary in France the general rule of
priorité a droite would give priority to traffic joining over that already on
the roundabout. (Place Charles de Gaulle is notoriously like this.) When
congested, each of these schemes can lead to starvation; explain how, and decide
whether they are deadlock or livelock. Suggest ways of preventing starvation
in each case.

2.6 The dining philosophers problem is a parable of Tony Hoare’s based on a
symmetric allocation problem posed by Edsger Dijkstra in 1965. For some
large odd n, say five, each of n processes needs both of two resources at the
same time, originally tape drives; process i needs resources ¢ and (i+ 1) modn.

In the parable the processes are called philosophers, and — between bouts of
thinking — they sit at places at a round table to eat. They each require both
of a pair of adjacent forks (which the share in an unhygenic way) to be able to
eat an otherwise unmanageable shared bowl of spaghetti.

1. Show that deadlock is possible if all processes run the same determinstic
program, requesting the resources one at a time.

2. Show that a system in which exactly one of the processes is left-handed
(requesting its resources in the opposite order) is deadlock-free (for n > 0).

3. Show that there is a deadlock-free solution for even values of n if processes
are alternately right-handed and left-handed.

4. Show that there is a deadlock-free solution even for odd n in which all of
the processes are the same, but sharing a single shared counting semaphore
initialised to n — 1.

PROCESSES 10:45AM 17TH JANUARY 2012



