B16 SOFTWARE ENGINEERING: OPERATING SYSTEMS 31

4 Files

Persistent file stores allow for more data than will fit into the address space of a
process; for data to survive the termination of the process; and for several processes
to access the data concurrently. It must be possible to create and delete files, access
them for reading and writing, identify them by symbolic names; prevent accidental
sharing but permit deliberate sharing; manage secondary storage space to contain
the files; and in particular protect files against system failures. The problems are
very much the same as those of memory management, but with the additional
cost of ensuring that the files are undamaged even by the failure of their (current)
owner.

In UNIX a file is just a byte stream. Any higher-level organisation is a user-
level problem. In consequence pretty much every program can operate unchanged
on pretty much any file, wherever it happens to be stored. Other systems might
provide special files, perhaps indexed for random access; so it is not necessary for
every user program to implement its own indexing.

4.1 Directories

Directories provide device independence by mapping file names to files. This
independence is not very well implemented in MS-DOS! The simplest of directories
(e.g. in CP/M) are tables, one per disk, mapping a file name to a location on the
device, a file size, perhaps some indication of type, access control information, and
other administrative administration such as time of access.

As file systems get larger, there is a need for a tree (not usually a general
graph) of directories. Directories are files, and one directory is identified as the
root. MS-DOS gets this from UNIX, UNIX got it from MULTICS. File names are
now paths from the root of the tree to a file.

In UNIX the directory tree is an index for files; the files are separate. Each
directory maps a name (the last component of the path name) to the identity of
a file; nothing else appears in the directory. A file can appear several times in the
directory tree. The UNIX implementation of this idea probably comes from the
contemporary OSPub.?

5Joe Stoy and Christopher Strachey, OS6 — an experimental operating system for a small
computer, Comp. J. 15, No8. 2 and 3, 1972. Strachey (1916-1975) was at the time the only
Oxford academic computer scientist, and Joe Stoy was his research officer; they and a handful
of students were the computer science department.

10:45AM 17TH JANUARY 2012 FILES

32 4 FILES

/ Jusr

root — usr

home

/home /home/geraint/ds
geraint ds notes.tex] ———
notes.dvi

Directory entries contain i-numbers, which are indexes to a table of i-nodes® on
the disk alongside the data in the files. Each i-node contains the properties of a
file which in other systems would have been in the directory entry, including the
location of its contents.

UNIX directories are marked as being of a special type, essentially so that it is
possible to identify the directory tree as distinct from the files entered in it. This
allows file system maintenance utilities to do things like visiting every file. Apart
from that they are ordinary files.

Creating a (temporary) file amounts to creating an i-node for it, but giving it
a name and making it persistent involved entering it into a directory. The two are
logically distinct operations. In particular a file can be re-entered under another
name, or in another directory, by the system call link. The two entries created
are entirely equivalent, the file is the same one, there is no subsequent sense of the
‘original’ entry being special.

4.2 Special entries

Every directory in a UNIX file system has an entry for itself, with name *.’, and
its parent in the tree with name ‘... (By convention the root of the filesystem is
its own parent.) Since they are essential for the integrity of the file system, making
and changing these special entries is a privileged operation, and they are normally
created by the system call that makes a new directory.

A single file system in UNIX has to be stored on a single block device, but
the files of an operating system be spread over several file systems. The root of a
filsystem can be substituted for a directory anywhere in another file system. This
is called mounting one file system on a mount point in the other. In that case the

SNobody knows why they are called i-nodes, though it seems likely that they are index nodes;
the corresponding structure in OSPub was called a header.

FILES 10:45AM 17TH JANUARY 2012

4.3 File contents 33

‘..7 entry of the root of the mounted file system is made to appear to refer to the
parent of the mount point.

A convention has grown up that files with names that begin with a dot are
used for ‘internal workings’ of programs and operating systems, rather thyat the
user’s own files. So it is conventional that they do not appear in directory listsings.
(1s does not show them, but 1s -a does.) There is however nothing special about
them, except for ‘.7 and‘ ..".

4.3 File contents

Contiguous files would be easy to describe, and are fast to access but suffer
from disk fragmentation. They are fine for read-only file systems (like big sta-
ble databases and audio CDs).

In CP/M the directory contained up to 16 block numbers; bigger files have a
second fake directory entry. In MS-DOS the directory points at the first block,
subsequent blocks are in a file allocation table which is a mapping from current
block to next block number for the whole disk. In OSPub each block contained
the number of the next block (and the previous block).

UNIX files are more deeply structured, in the way outlined in figure 1. Each
i-node contains the number of the first few (ten) blocks of the file. If that is
not enough it contains the number of a single indirect block which contains the
numbers of the next n blocks. The number n is determined by the block size and
the number of bytes in a block number, which in turn depends on the size of the
space occupied by the file system. If that is not enough it contains the number
of a double indirect block which contains the numbers of up to n further single
indirect blocks. If that is not enough, it contains the number of a triple indirect
block which contains the numbers of up to n further double indirect blocks. This
makes random access to the file reasonably quick, whilst making small files very
efficient.

4.4 Disk space management

The problems of managing space in a disk file system are essentially similar to
those of memory management. Disk file system space comes in blocks because
disks are efficiently accessed in blocks, and so that disk addresses can be efficient.
However the size of blocks is (as always) a compromise. Blocks that are too big
suffer from internal fragmentation.

When is a block free to be allocated for use in a file? Essentially when it is
not in a file already. This can be determined by walking over the directory tree;
however that is both inefficient and difficult to do atomically. For efficiency one
keeps a redundant representation of the free space: for example a file containing

10:45AM 17TH JANUARY 2012 FILES

34 4 FILES

data blocks

/ 1
I
\

N—O

indirect
double indirect \

i—no&

10

11

266

65801

Figure 1: Outline of the structure of a UNIX file.

FILES 10:45AM 17TH JANUARY 2012

4.5 UNIX files 35

all the free blocks; or a file listing all the free block numbers; or a bitmap of the
blocks on the disk showing which are free.

The existence of a redundant representation makes it possible (and necessary)
to check for compatibility between reality and the free list. For example, after
crash it is possible that the free list is wrong because several file system operations
will be non-atomic. Deleting a file, for example, must remove it from the file
system and subsequently release the freed space. Each of these will involve disk
writes. A crash between these two will cause a space leak.

A file system check will walk over the structure of the directory tree and of all
of the files in the tree, establishing the consistency of the tree and the structures of
the files. In the course of doing so it can establish which i-nodes and which blocks
are actually in use, and so construct accurate free lists. This is a time-consuming
task: UNIX used to do call fsck whenever it was booted. As an optimisation, it
would only happen if the file system was not marked as ‘clean’, or if it had not
been checked for some long time. However, as file systems grow larger it can take
quite substantial times to run a file system check a large system.

Modern file systems usually incorporate journalling to speed up recovery. At
the expense of potentially doubling disk write traffic, the journal records the se-
quence of disk operations which make up a transaction. The real transaction is not
written until the journal has been written. After a crash it is possible to restore
the file system to a consistent state by running through the last few journalled
disk writes.

4.5 UNIX files

Most programs in UNIX reading a file would use calls to library routines like fopen
and fread which manage reads from the file through a buffer in the process itself.
These library routines call system calls, the essential ones of which are

fd = open("/home/geraint/ds/notes.tex", 0_READ)
returns a small integer fd called the file descriptor;

nread = read(fd, buffer, n)
reads up to b bytes from the described file;

close(fd)
closes the file and makes the descriptor invalid.

Each process contains a file descriptor table that maps file descriptors to file point-
ers. The file pointer table contains, for each open file, a current offset in the file
and an ¢-number. The i-node cache maps i-numbers to i-nodes that contain block
numbers. Why so many levels of indirection? The idea is to manage the interac-

10:45AM 17TH JANUARY 2012 FILES

36 4 FILES

file table file pointer table i-node cache block cache

/

per process per system per file system per disk

Figure 2: The data structures corresponding to open files.

FILES 10:45AM 17TH JANUARY 2012

4.6 Write-back caching 37

tion of several processes reading or writing the same file. If two processes write a
file in sequence, for example in the shell script

(echo "The end is nigh" > doom);
(date > doom)

the shell forks two process in sequence. The first opens the file doom for writing,
truncating it to length zero and then writes the slogan; when that terminates and
closes the file, the second opens the file again, again truncating it to empty, and
writes the date. When it terminates and closes the file it contains only the date.
Conversely

(echo "The end is nigh" ; date) > doom

opens the file in the shell itself, truncating it. It then forks a new process which
is given a copy of the file descriptor table containing the descriptor of the open
file. This process then forks in turn processes which write the slogan, and then
the date, to that same file. And finally the file is closed.

Entries in the i-node cache correspond to tapes, and those in the the file-pointer
table to read or write heads at a given position on the tape. The file descriptor
table identifies which of these heads corresponds to a file identified by its function
in the program. Descriptors that refer to the same file pointer can be traced back to
the same call of open, and reading or writing one will move the position of the next
read or write of the other. Descriptors that refer to different file pointers but the
same i-number derive from two different calls of open and reads are independent
(but writes will conflict, of course).

4.6 Write-back caching

The block cache reduces disk traffic: it will tend to hold the blocks of frequently
read files, such as perhaps the root directory and the current directory. Addition-
ally UNIX makes this a write-back cache. That is, when file is changed the block
in the cache is written, and the block is marked as dirty, but the write to the disk
does not happen until later. This creates an obligation to write back any dirty
blocks before they are evicted from the cache.

The system call sync writes back all the dirty blocks from the block cache.
Until this happens there is a high probability that the disk contains an inconsistent
image of the file system. Most UNIX systems will have a process running whose
sole task is to call sync every few seconds.

In contrast, in some other systems the block cache would be write-through: disk
writes would always go directly to disk as well as updating the cache. This results
in many more disk accesses, but a smaller window of vulnerability to crashes.
Latterly even Microsoft systems use write-back for hard disks.

10:45AM 17TH JANUARY 2012 FILES

38 4 FILES

4.7 When is a UNIX file deleted?

When a file is deleted, its space becomes free and should be entered in the free list.
When does this happen? A file is not deleted until all links to it from the directory
structure have been removed. Again, this could be determined by walking over
the directory tree, but each i-node contains a reference count.

Additionally, if a file is currently open its space must not be freed! In partic-
ular the file containing the code of a currently executing process must be kept in
existence. Accordingly the reference count of the i-node must be increased by the
number of open file pointers which refer to it. Only when this reference count be-
comes zero is the file deleted. Similarly each file pointer may be shared by several
processes, and needs to keep a reference count.

4.8 Permissions

One of the more important services of a file system is to protect files against
accidental or malicious access, whilst simultaneously permitting legitimate access.
Permissions have to be granted to users, so we need some sense of the identity of
a user. UNIX identifies users by two small numbers (the user identifier, uid, and
group identifier, gid) which can only be changed by privileged system calls that
(conventionally) demand a password. Again, UNIX offers separate read, write
and execute permissions, with some extra conventions about what these mean for
a directory. Read permission to a directory allows one to see which file names
appear in it; execute permission for a directory allows one to look up an entry;
and these are independently controlled forms of access.

In general, the rights of access to a system of files which are granted to a set
of users constitute a matrix: is user u permitted access to file f7

One style of representing this matrix is the access control list, representing a
file-wise column of the matrix. An access control list attached to a file f gives an
algorithm for determining whether a given user has permission. The list may be
simply a list of users with access. Or it may be a list of classes of users paired
with whether they have access or not; permission is granted according to rights of
the first set containing the user.

One of the fields of a UNIX i-node contains the file access permission bits,
which to a first approximation are a nine-bit representation of an access control
list; the i-node also identifies an owner and a group. The nine bits represent read,
write and execute rights for each of three classes of user: those with uid matching
the owner, those entitled to have a gid matching the group, and others.

In physically distributed systems, this scheme is open to abuse. The meaning
of a wid on one machine may not match its meaning on another. The ability to
restrict changes to uid on one machine may not be enforceable on another. This

FILES 10:45AM 17TH JANUARY 2012

4.9 Special files 39

makes the restrictions indicated by access control lists difficult to enforce when a
file system on one machine is accessed by process running on another.

An alternative representation of the rights matrix is capabilities, which are
properties of a file that are granted to users, so that a user’s rights depend not
on his identity by on list of cababilities which he holds. These sets of cababilities
form a user-wise row of the rights matrix. A capability is an essentially unforgeable
token (a cryptographically secure bit string) created by the filesystem which must
be handed over by a user when requesting access to a file.

4.9 Special files

The byte stream interface provided by a file descriptor makes it easy to provide
access to other byte-stream like things through the same interface. The system
call pipe allocates a buffer and creates two file descriptors, one of which writes into
a buffer and the other of which reads from it. By calling pipe before a call to fork
it is possible to connect two processes together in a pipeline.

UNIX also exploits the hierarchical structure of file names to provide access to
device drivers. Special i-nodes, usually but not necessarily those entered in /dev,
carry parameters that refer to device drivers and device numbers. This makes it
easy to parametrise a program by which device it uses.

Many modern versions of UNIX provide a file system whose i-nodes give access
not to disk space but to kernel data structures. In Linux this is usually /proc,
which presents as a directory containing various files which when read show the
state of the system. In particular there will be a subdirectory for each current
process, so that reading /proc/11803/cmdline will return the command line of
process number 11803. This scheme has the advantage over providing system calls
to read every structure that any utility that operates on files can operate on the
contents of one of these reports on the state of the system.

Exercises

4.1 Each UNIX i-node contains a link-count, which is a count of the number of
times the i-node number appears in a directory entry. This information is
redundant: why is it there?

4.2 One of the observations made (on page 35) about the redundant representation
of the UNIX file system is that it is possible (and periodically necessary) to
check that redundant information is correct.

Compare the file system with the memory management of ‘heap’ storage used
to keep non-stack variables in programming languages like Oberon and Java,
or the implementations of languages like HASKELL. Similar efficiency concerns

10:45AM 17TH JANUARY 2012 FILES

40 4 FILES

mean that there is probably a redundant representation of the free store. Why
is there no equivalent to the file system check (fsck)?

4.3 Describe the succession of disk accesses involved in opening and reading a
file with a given name, such as /home/geraint/ds/notes.tex. Roughly how
many disk accesses would you expect this to take?

4.4 Tt is possible to enquire of a file descriptor which i-number (if any) to which
it relates. Given the i-number of the current directory, explain how to find the
name of the current directory.

Suppose a process is reading from a certain file descriptor attached to a disk
file. Why is it not sensible to ask for the name of the file which it is reading?

4.5 The system call fork creates a new process with a file descriptor table that
contains a copy of all of the open file descriptors in the parent. What does fork
have to do to other structures relating to file descriptors?

4.6 Most UNIX file systems allow directories to contain symbolic links. These are
entries which map a name not to an i-number but to a replacement (path)
name. If when you look up a file name in a directory tree you find a symbolic
link, the result should be the result of looking up the replacement name.

What differences are there between the ‘hard’ links described on page 32 and
symbolic links? What are the advantages of symbolic links, and their disad-
vantages?

4.7 OSPub allowed there to be a special entry, predecessor, in any directory.” The
predecessor was logically (if not physically) the last entry, and was always a
directory. If you looked up a name in a directory and that name was not there,
but there was a predecessor entry, the lookup continued in that predecessor
directory.

A new version of some project could be made by creating a new empty directory,
and entering the directory of the current version as its predecessor. Any changes
that were to be made to files could be made to new versions of those files in
the new directory, but other files could be shared unchanged.

What would you do in UNIX to get the same effect, without having to make
a copy of all of the files of the project? What are the differences between the
two schemes?

"Actually it was called PREDECESSOR INDEX, because OSPub directories were called indexes,
the keys in directories were pairs of strings, and OSPub had a character set with underlined
characters in it.

FILES 10:45AM 17TH JANUARY 2012

4.9 Special files 41

4.8 UNIX comes from an environment in which mini-computers had fixed hard
disks, and DOS was built for microcomputers with removable floppy disks.
Floppy disks were comparatively slow, and the penalty for a disk write on a
floppy would be much greater than that for a write to a hard disk.

Why might it be that DOS block caches were write-through but UNIX has
always used write-back?

4.9 Suppose that a certain UNIX file system occupies a terabyte divided into one
kilobyte blocks, with ten direct blocks mentioned in the i-nodes, and single,
double and triple indirect blocks. Exactly how big a file could you have in this
system? How many bits would you need for the file-length entry in the i-node?

Is this big enough for practical purposes? What would you do if it were not?
What about bigger file systems?

4.10 How much disk space would be consumed by the FAT (of a MS-DOS style
file system) on a disk with blocks like those mentioned in question 4.97 How
does this compare with the amount of disk consumed by the indexing in the
UNIX file system?

How would your answer be affected if there were more or less than ten direct
block pointers in the i-node?

4.11 The bulk storage of the ‘hierarchical file store’® in OUCS consists of a large
number of cassette-mounted magnetic tapes, a smaller number of tape drives
and a robot that can carry tapes between the drives and some racks.

Suggest a likely design for the computer system which makes the library of
tapes appear to be a large (but very slow) file store. Do any parts of your
design require special hardware support?

4.12 Three different protection mechanisms that were discussed are capabilities,
access control lists, and the UNIX rwz bits. For each of the following protection
problems; tell which of these mechanisms can be used.

1. Dave wants his files readable by everyone except Nick.

2. Dave and Nick want to share some secret files.

3. Dave wants some of his files to be public.

The force of this question is in the meaning of everyone except. You can assume

that everyone who is granted access to a file will co-operate in keeping secrets
which are shared with them.

8http://www.oucs.ox.ac.uk/hfs/

10:45AM 17TH JANUARY 2012 FILES

42 4 FILES

4.13 Suppose a file’s protection bits are ——---- r—- (so the owner has no permis-
sions, but ‘others’ have read permission). Find out whether the owner can read
the file. Deduce the order in which file permissions are checked.

FILES 10:45AM 17TH JANUARY 2012

