
Problem	Sheet	for	B16,	Operating	Systems,	Wood,	Hilary	2017	
	
0.)		Use	ssh	and	your	engineering	department	credentials	to	remotely	login	to	one	of	
engs-station41(42,	43,	44,…..77).eng.ox.ac.uk	machines.		Be	warned	that	for	some	crazy	
reason	it	appears	that	these	machines	are	turned	off	on	the	weekend	so	do	these	first	
questions	during	the	week	to	be	safe.	
	
1.)	Use	“df”	to	find	out	what	size	blocks	are	used	to	partition	the	nonvolatile	memory	
tracked	by	the	filesystem.	
	
2.)	Use	“man	getpagesize”	to	get	information	about	the	Linux	glibc	OS	command	such	
that	you	can	write	a	7-line	nicely-formatted	c	program	to	print-out	the	page	size	used	by	
the	operating	system	to	partition	volatile	memory.		What	is	the	pagesize	used	by	the	
installed	OS?	
	
3.)	Use	“free”	to	figure	out	what	the	total	volatile	storage	available	on	the	machine	is	in	
gigabytes.			
	
	
4.)	Use	“man	top”	to	learn	about	the	top	command	then	use	the	sort	field	ordering	of	
memory	to	list	the	top	5	memory	consuming	process	names	on	the	system.		Note	the	
user	responsible	for	said	application.	
	
5.)	Use	“echo	$$”	to	get	the	process	id	of	your	current	bash	shell.		Use	“pmap	–x	X”	
where	X	is	the	value	of	your	process	id	to	list	the	pagemap	used	by	the	shell	program.			
a)	Is	the	address	space	a	64	or	32	bit	address	space?	
b)	What	is	the	address	of	the	first	byte	of	machine	code?		Extra	credit:	Why?	
c)	Where	is	the	stack	and	which	direction	does	it	grow?	
	
6.)	If	the	executable	you	wrote	for	(2.)	is	called	“a.out”	use	“strace	./a.out”	to	count	the	
number	of	system	calls	made	when	“a.out”	is	executed.		Approximately	how	many	are	
executed?	
	
	
7.)	Recursion	can	be	used	to	compute	the	nth	Fibonacci	number	in	the	following	way:	
	

int fib(int n) {
 if(n==0)
 return 0;
 if(n==1)
 return 1;
 return fib(n-1) + fib(n-2);
}

	
a)	What	is	the	largest	value	of	n	that	could	be	computed	on	a	machine	with	1MB	

memory	if	the	OS	pushes,	including	function	parameters,	32	bytes	to	the	stack	for	every	
function	call?	
	

b)	Extra	credit	:	what	could	be	done	to	increase	the	largest	computable	value?	
	
8.)		Describe	the	various	mechanisms	OS’s	provide	to	support	interprocess	
communication.	(*)	
	
9.)	Suppose	a,	b	and	c	are	three	arrays	of	integers	in	a	C	program.	Why,	when	N	is	large,	
might	
	

for (j = 0; j < N; j++)
 for (i = 0; i < N; i++)

c[i][j] = a[i][j] + b[i][j];
	
take	a	thousand	times	longer	than	
	

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)

c[i][j] = a[i][j] + b[i][j];
	
on	the	same	machine?	(*)	
	
10.)	Use	semaphores	to	solve	the	producer	consumer	problem.		Assume	the	existence	
of	a	single	reader,	single	writer,	a	character	array	buffer,	and	two	semaphores;	one	
labeled	empty,	the	other	labeled	occupied.		Other	variables	may	be	instantiated	as	
needed.	
	
11.)	On	the	slide	titled	“Spin-Lock	Implementation	of	Blocking	Mutex	In	Hyp.	OS”	a	
subtle	thread	synchronization	problem	can	happen.		What	is	it?		
	
12.)	A	multithreaded	server	processes	web	requests	and	streams	audio	data	to	100	
clients	simultaneously.			

a)	Assuming	a	100Mb/sec	network	interface	card	what	is	the	maximum	
achievable	audio	stream	rate	to	each	client	assuming	a	3%	packet	header	network	
overhead	and	perfect	sharing	of	the	network	and	CPU?			

b)	Describe	using	diagrams	and	text	the	data	flow,	scheduling,	interrupt,	and	
switching	behavior	of	a	straight	threads	OS	running	on	a	single	core	CPU	required	to	
serve	each	of	these	clients.			

c)	Note	in	particular	the	OS	services	required	and	used.		Also,	compute	the	order	
of	magnitude	of	the	minimum	CPU	clock	speed	required	to	saturate	the	network	if	

memory	reads	and	writes	take	two	CPU	clock	ticks,	device	I/O	is	PIO-style,	and	saving	
context	including	register	state	takes	five	CPU	clock	ticks.	
	
13.)	Assume	8-Kb	pages,	how	big	is	a	page	table	for	a	64-bit	architecture?			What	are	
some	strategies	for	dealing	with	this	problem?	(*)	
		
14.)	Write	a	TCP/IP-based	client	server	application	that	runs	*nix	text	commands	on	a	
remote	host	and	streams	the	response	back	to	the	client.		The	client	command	should	
have	an	interface	like	“client	<ipaddr>	<textofcmd>”	where	ipaddr	is	the	ip	address	of	a	
machine,	something	like	“nslookup	engs-station60.eng.ox.ac.uk”	->	163.1.140.60	and	
<textofcmd>	is	the	command	to	run	on	the	server,	e.g.	“/usr/bin/uptime.”	Write	the	
server	side	such	that	there	is	a	single	thread	that	accepts	connections	and	creates	a	
thread	to	service	each	request.		This	thread	should	create	a	pipe,	fork,	close	stdout	and	
stderr,	use	dup	to	redirect	stdout	and	stderr	to	the	correct	end	of	the	pipe,	and	in	the	
parent	(of	the	forked	thread)	read	the	output	from	execl’ing	the	command	using	a	
buffer	to	intermediate	between	the	pipe	and	the	socket	connection	back	to	the	client.		
Note	that	you	can	use	gcc	and	any	of	the	linux	software	laboratory	machines,	e.g.	engs-
station60.eng.ox.ac.uk		to	as	the	server	in	this	task.		Note	that	ports	8889	and	above	are	
good	ports	to	use	as	they	have	user	bind	permissions.	
	

