B16 Operating Systems

Introduction

Computer Operating Systems As You Know Them

Hardware

oS Applications Peripherals
.

Windows 10 MATLAB |

(,,,

s el O _

ubﬁe;tu @

-~ e
ﬁ Frgsu Users

Mobile Phone Operating Systems As You Know Them

Hardware

0os

Peripherals

Applications

J
and>0I1d

E8/ Windows Phone

111

Learning Outcomes *

Familiarity with general operating system concepts and how to use them in code

— File

— Process

— Thread

— Synchronisation
— Memory

— Paging

— Socket

— Port

Datastructures / implementations and why they are important

— Page table
— Semaphore
— Mutex
— Socket

* Marks examinable material

2/7/17

Course Contents

User perspective — how you use and interact with OS'’s *

— We'll focus on Linux (posix compliant OS)

— You should understand system calls (fork, wait, open, printf, etc.)

— Be aware of and study using command line utilities (e.g. man <section>)
— Read C-pseudo code that uses operating system calls.

Operating system implementation perspective — how OS’s are
implemented

— Will talk about an Unix/Linux-like “Simple-OS” abstraction

— Discuss implementation of synchronization and threading in particular

* Marks examinable material

B16 Operating Systems

Lecture 1 : History and User Perspective

Material from
Operating Systems in Depth
(spec. Chapter 1
by

Thomas Doeppner

THIS BOOK HAS EVERYTHING IN IT!

What is an operating system?

Operating systems allow for sharing

* To do this operating systems provide software abstractions of

— Processors

— RAM (physical memory)
— Disks (secondary storage)
— Network interfaces

— Display

— Keyboards

— Mice

Some OS-provided abstractions are
— Processes

— Files

— Sockets

Intuition

Hardware oS Applications

< E

Windows 10

- | H

Mac 05 X ‘\ MATLAB
‘ <> @ 2
/\@ ubuntu Q

& o §<

111

2/7/17

Abstraction
Hardware oS Applications
Disk
“Memory”
Linux [
PN — Applications <> a
SimpleOS [Ly
[
1/0
CPU

More Precise Abstraction

Hardware oS Applications

Non-volatile
Memory

Volatile
Memory

l—>
> > Applications €<
SimpleOS [

1/0

Processor
Threads

Why should we study operating systems?

* “To a certain extent [building an operating system is] a solved
problem” — Doeppner

* “Sotoo is bridge building” — Wood
— History and its lessons
* Understand capacities and best practice usage
— OS improvements possible, along will come innovation in the form of
* New algorithms, new storage media, new peripherals
* New concerns : security
* New paradigms : the “cloud”

* Your actual computer use and programming touches OS’s
— Knowing about OS’s makes you a better software engineer

B16 structured programming quiz :
How exactly does malloc() work? Do you know?

Review : Computer = Von Neumann Architecture

Keyboard

Control Unit

Input

Memory
Devices

Registers S;/I‘J(Jndary '
— 3 emory
 — —
 — O — Storage Output
, Devi
Central Processing Unit Bus evices

Image from http://cse.iitkgp.ac.in/pds/notes/intro.html

2/7/17

Review : Computer = Von Neumann Architecture

Input
Devices

Outside the CPU

Secondary

Registers

|| | Memow
o —]

—1 Storage

Output
Devices

Central Processing Unit B
(CPU) .

Image from http://cse.iitkgp.ac.in/pds/notes/intro.html

A2 Review : Computers Execute Machine Code

* Machine code : instructions that are directly executed by the CPU

— From Wikipedia :
¢ “the instruction below tells an x86/IA-32 processor to move an immediate 8-bit
value into a register. The binary code for this instruction is 10110 followed by a 3-
bit identifier for which register to use. The identifier for the AL register is 000, so
the following machine code loads the AL register with the data 01100001.”

10110000 01100001

¢ Assembly language : one-to-one mapping to machine code (nearly)
— Mnemonics map directly to instructions (MOV AL = 10110 000)
— From Wikipedia :
* “Move a copy of the following value into AL, and 61 is a hexadecimal
representation of the value 01100001”

MOV AL, 61h ; Load AL with 97 decimal (61 hex)

B16 Struct. Prog. Review : Compilation and Linking

A compiler is a computer program that transforms source code
written in a programming language into another computer language
— Examples : GNU compiler collection: gcc, g++, etc.
A linker takes one or more object files generated by a compiler and
combines them into a single executable
— Gathers libraries, resolving symbols as it goes

— Arranges objects in a program’s address space
* B16 Structure programming quiz : what’s a program’s address space?

Programs run on shared hardware using OS system calls, libraries,
virtual memory, program address space specifications, etc.

— Note: modern OS’ provide dynamic linking, i.e. runtime resolution of
referred-to but run-time unresolved symbols

B16 Operating Systems In a Nutshell : Sharing

* Loading a single compiled program into memory and executing it
does not require an operating system (recall A2 L1-4)

* Operating systems are about sharing *
— One computer has
* Processor threads
 Disk space
* RAM
* 1/0
— Including peripherals
which must be efficiently shared between different programs and users

2/7/17

History : 1950’s
Earliest computers had no operating systems
1954 : OS for MIT’s “Whirlwind” computer
— Manage reading of paper tapes avoiding human intervention

1956 : OS General Motors

— Automated tape loading for an IBM 701 for sharing computer in 15 minute
time allocations

1959 : “Time Sharing in Large Fast Computers”
— Described multi-programming

1959 : McCarthy MIT-internal memo described “time-share” usage
of IBM 7090

— Modern : interactive computing by multiple concurrent users

Early OS Designs Were

Batch systems that
— Facilitated running multiple jobs sequentially
Suffered from 1/0O bottlenecks
— Computation stopped to for |/O operations
Led to interrupts being invented
— Allows notification of an asynchronous operation completion
— First machine with interrupts : DYSEAC 1954, standard soon thereafter
Multi-programming followed
— With interrupts, computation can take place concurrently with 1/0
— When one thread does I/O another can be computing

— Second generation OS’s were batch systems that supported multi-
programming

History : 1960’s, the golden age of OS R&D

Terminology that got invented then
— “Core” memory refers to magnetic cores each holding one bit (primary)
— Disks and drums (secondary)
1962 : Atlas computer (Manchester)
— “virtual memory” : programs were written as if machine had lots of primary
storage and the OS shuffled data to and from secondary
1962 : Compatible time-sharing system (CTSS, MIT)
— Helped prove sensibility of time-sharing (3 concurrent users)
1964 : Multics (GE, MIT, Bell labs; 1970 Honeywell)
— Stated desiderata
« Convenient remote terminal access
* Continuous operation
« Reliable storage (file system)
* Selective sharing of information (access control / security)
« Support for heterogeneous programming and user environments

— Key conceptual breakthrough : unification of file and virtual memory via
everything is a file *

History : 1960’s and 1970’s

IBM Mainframes 0S/360

DEC PDP-8/11

— Small, purchasable for research

1969 : UNIX

— Ken Thompson and Dennis Ritchie; Multics effort drop-outs
— WritteninC

— 1975 : 6th edition released to universities very inexpensively
— 1988 System V Release 4

1996 : BSD (Berkeley software distribution) v4.4

— Born from UNIX via DEC VAX-11/780 and virtual memory

2/7/17

1980’s : Rise of the Personal Computer (PC)
* 1970’s : CP/M

— One application at a time — no protection from application
— Three components
« Console command process (CCP)
* Basic disk operating system (BDOS)
< Basic input/output system (BIOS)
* Apple DOS (after CP/M)
— 1978 Apple DOS 3.1 = CP/M
* Microsoft
— 1975 : Basic interpreter
— 1979 : Licensed 7-th edition Unix from AT&T, named it Xenix
— 1980 : Microsoft sells OS to IBM and buys QDOS (no Unix royalties) to fulfill
* QDOS = “Quick and dirty 0S”
* Called PC-DOS for IBM, MS-DOS licensed by Microsoft

1980’s ‘til now.

Early 80’s state of affairs
— Minicomputer OS’s
* Virtual memory
¢ Multi-tasking
* Access control for file-systems
— PCOS’s
* None of the above (roughly speaking)
Workstations
— Sun (SunOS, Bill Joy, Berkeley 4.2 BSD)
* 1984 : Network file system (NFS)
1985 : Microsoft Windows
— 1.0: application in MS-DOS
* Allowed cooperative multi-tasking, where applications explicitly yield the processor to each other
1995 : Windows '95 to ME
— Preemptive multi-tasking (time-slicing), virtual memory (-ish), unprotected OS-space
Also
— 1993 : First release of Windows NT, subsequent Windows OS’s based on NT
— 1991 : Linus Torvalds ported Minix to x86 (LINUX!)

Using Operating Systems — The Basics

The Basics - Outline

Processes
Threads

Virtual memory
Address space
Files

Pipes

2/7/17

Key Concept : Processes *

OS abstraction that includes

— Address space (virtual memory *)
— Processors (threads of control *)

Processes are largely disjoint

— Processes cannot directly access each others” memory
* Exceptions exist for sharing memory; mmap etc.

Running a program
— Creates a “process”

— Causes the operating system to load machine code from a file into the

process’s address space

— The operating system creates a single thread of control that starts executing
the first instruction at a predefined address in the program’s virtual memory

Hardware

Non-volatile
Memory

Volatile
Memory

1/0

Processor
Threads

Processes

0os

Applications

0s User

Volatile Memory

Volatile Memory

e]| | [|,\
w1 |

/0

Process

Process.

| Volatile Memory |

Volatile Memory

Applications <> |

il H I

/0

Process

Process /

Process

Processes and Threads **** (fork_example_1.c)

Processes are created via a system call
named fork()
— fork() creates an exact copy of the
calling process is made
« Efficiently implemented via lazy, copy-
on-write marking of pages
— fork() returns twice!
* Once in the child (return value 0)

Once in the parent (return value the
process id (PID) of the child process)
Two “threads of control”, the parent
process thread and the child process
thread.
Processes report termination status via
the system call exit(ret_code)
Processes can wait() for the
termination of child processes
Example uses

— Terminal / Windows

— Apache cgi

short pid;

if ((pid = fork()) == 0)
/* some code is here for the child to execute */
exit(n);

) else (

int Returnc

while(pid != wait (&ReturnCode))

/* the child has terminated with ReturnCode as its

return code */

NE: You are required to download, read. comple and play with the source code exemples hat oan be found on the course website. The course
1

website for this year is hitp:/www.obot

6_OS hilary 2016 2017/index.html and fork_example_1.c can be viewed

and downloaded from there.

TR

Forking Makes a Tree : The Process Tree

Hardware

Non-volatile
Memory

Volatile
Memory

1/0

Processor
Threads

0os

Applications

Kernel-Mode

parent

deamon

e.g. kblockd

User-Mode
child

process
process

i

o
—
—"1
»
o
—
i

2/7/17

Starting Programs in Processes (fork_example_2.c)

execl() system call is used to do this
int pid; v
if ((pid = for! ?

/% take place before exec

execl ("/home/twd/bin/primes", "primes*, "300", 0);

exit(1l);

oxec prog, ares)
/* parent continues here */
Before
while(pid != wait(0)) /* ignore the return code */

; args
execl() replaces the entire contents of the v
processes address space and \

— the stack is initialized with the passed arguments orog's BSS
— a special start routine is called that itself calls main() o

prog’s data

— exec doesn’t return except if there is an error! prog's text
After

Virtual Memory = Address Space, i.e. 264 words

Text

— Program machine code
Data

— Initialized global variables
BSS (block started by symbol)

— Uninitialized global variables
Dynamic (Heap)

— Dynamically allocated storage
Stack (grows “downward”)

— Local variables

Arrows indicate variable
placement

malloc() claims space in
dynamic*

const int nprin 100;
int prime[nprime
int main() {
int i;
int current = 2;
prime[0] = current;
for (i=1; i<nprimes; i%+) {
int §;
NewCandidate:
current++;
for (j=0; prime(j]*prime(j] <= current; j++) {
if (current % prime[i] == 0)
goto NewCandidate; High address
} W
prime[i] = current; Stack
} v
return(0) ;
Dynamic
BSS
Data
Text

Should know this from B16 Structured Programming

Low address

Files = Named Byte Arrays *

Files are an operating systems’ primary abstraction for everything
— Keyboard

— Display

Non-volatile storage

— Other processes

Naming files

— Filesystems generally are tree-structured directory systems

— Namespaces are generally shared by all processes

Files = Byte Arrays, I/O = Byte Streams

0os

User

oo]

[|,\

Process.

Threads

Hardware
0s
Non-volatile [ovenmr |
Byte Array
[]
Volatile [onesueon]
Byte Array trocens
| []
[e]
Byte Stream [Coresvem |
Process
Processor
Threads

Process /

Process

Applications

Applications <>

2/7/17

Hardware 0os

Filesystems and Namespaces

Non-volatile
Memory

Volatile
Memory

* Filesystems are nonvolatile storage managed by the
operating system that contain organizational
information about its own contents — directories, etc.

* Namespaces are the convention for how to name
things, in this case, files. Here is

* ssh namespace : fwood@donna.robots.ox.ac.uk:/usr/lib/strace/darwin.d

* smb namespace (general) : \\<DOMAIN.NAME>\<dfsroot>\<path>

Files = Named Byte Arrays *

Files have two different interfaces

— Sequential access and

— Random-access

Files are opened with open() and return a file descriptor

read() sequentially takes the contents of the file and puts it into a
buffer in volatile memory and advances the “read pointer”
associated to the file descriptor.

int fd;
char buffer[1024];
int count;

if ((fd = open("/home/twd/file", O_RDWR) == -1) {

* the file couldn’t be opened */

perror ("/home/twd/file") ;
exit(1);

}

if ((count = read(fd, buffer, 1024)) == -1) {

ailed */

/* the re

perror ("xr
exit(1);
}

/* buffer now contains ¢ bytes read from the file */

* File descriptors survive exec()’s
* Default file descriptors
— Oread (keyboard)
— 1 write (primary, display)
— 2 error (display)
« Different associations can be
established before fork()
¢ This is how applications launched
by the operating system, whether
through a window interface or
from the command line, write
their stdout to reasonable places.

Using File Descriptors (fork_example_2.c)

if (fork() == 0) {
/* set up file descriptor 1 in the child process
if (open("/home/twd/Output", O_WRONLY) == -1) {
perror (" /home/twd/Output") ;
exit (1)
execl (" /home/twd/bin/primes", "primes", "300", 0);
exit(1);

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

File Random Access

Iseek() provides non-sequential access to files. The following code

fd = open("textfile", O_RDONLY) ;
/* go to last char in file */
fptr = lseek(fd, (off_t)-1, SEEK_END);
while (fptr != -1) {

read(fd, buf, 1);

write(1l, buf, 1);

fptr = lseek(fd, (off_t)-2, SEEK_CUR);
}

reverses a file with Iseek repositioning the “read pointer” to a given
offset position.

NB. you should be able to read code like this easily, interpreting it as pseudo-C code. *

2/7/17

A Different Kind of File: A Pipe * (pipe_example.c)

A pipe is a means for one process to send data to another directly

pipe() returns two nameless file descriptors that can be written to
and read from

int pl2]; /* array to hold pipe’s file descriptors */

/* creat no errors

2 pipe; assur

/* p[0] refers to the output end of the pipe */
/* p[1] refers to the input end of the pipe */
if (fork()

char

close(pl1]); /* not needed by the child */

while (read(p[0], buf, 80) > 0)

/* use data obtained from par

} else {

char buf

/* not needed by the parent */

data for child */

write(p[1], buf, 80);

What is a Directory?

A directory is a file
— that is interpreted as containing references to other files by the OS *

An example organization might include an array of (implementation
dependent)

— Component names and

— inode numbers

* aninode is a data structure on a filesystem on Linux and other Unix-like operating
systems that stores all the information about a file except its name and its actual
data.

* inodes are files too

Ditectblocks
‘ Component name ‘ Inode number
Dot nicect
Directory entry Indiect blocks Hocks
1
B 1
unix 117
etc 4
home 18
pro 36
dev 93

Keeping Stuff Around After the Computer Turns Off : Creating Files

creat() and open() (with flags) are used to create files

“man 2 open” (man is a Unix command for viewing manual entries
about commands — you should know about this in general)

OPEN(2) BSD System Calls Manual OPEN(2)

NAME
open, openat -- open or create a file for reading or writing

SYNOPSIS
#include <fcntl.h>
int
open(const char *path, int oflag, ...);
int
openat(int fd, const char *path, int oflag, ...);
DESCRIPTION
The file name specified by path is opened for reading and/or writing, as specified by the argument oflag;
the file descriptor is returned to the calling process.
The oflag argument may indicate that the file is to be created if it does not exist (by specifying the
O_CREAT flag). In this case, open() and openat() require an additional argument mode_t mode; the file is

created with mode mode as described in chmod(2) and modified by the process' umask value (see umask(2)).

The openat() function is equivalent to the open() function except in the case where the path specifies a..

Review : User Perspective on OS *

Traps / system calls

— exec()

— fork()

— open()

— pipe()

— exit()

— close()

— read()

— write()

— dup()

The operating system provides this interface that abstracts the
“computer” as a process and allows sharing.

Next lecture : more user basics.

Final two lectures : some key points in implementing an OS that provides
these functionalities

2/7/17

10

Lecture 2 : Basics; Processes, Threads, ...

Material from
Operating Systems in Depth
(spec. Chapters 2&3)
by
Thomas Doeppner

GET THIS BOOK AND READ IT!

Threads

Threads * (thread_example_1.c)

* Whatis a thread?

— Athread of control

— Abstraction of a processor thread within a process
* Property

— All threads in a process share the same address space with all other threads
in the process

* Why threads?
— Mechanism for concurrency in user-level programs
— Can dramatically simplify code, for instance writing code to
* Concurrently handle multiple database requests
* Run a server listening on a socket responding to simultaneous client requests

— Requires care
* Synchronization <- this is a major issue to provision

NB: Code examples will use POSIX (“portable operating system interface”) specification of threads and synchronization
primitives

}

Hardware 0sS Applications
Kernel-Mode User-Mode
Non-volatie
Memory
eg.sshd _chess
Volatile R _egvbash
Memory ip
N e.g.top
<> S~ P
r’ ~—
Iy
1/0
Processor
Threads
Thread Creation
void start_servers() {

pthread_t thread;

int i;

for (i=0; i<nr_of_server_threads; i++)

pthread_create (

&thread, // thread ID

0, // default attributes
server, // start routine
argument) ; // argument

void *server (void *arg) {

// perform service

return (0);

2/7/17

11

Passing Arguments to Threads
* Care must be taken with threads in general because of address

space sharing and ability to address the calling stack

typedef struct {

int first, second;

} two_ints_t;

void rlogind(int r_in, int r_out, int 1_in, int 1_out) {
pthread_t in_thread, out ad;
two_ints_t in={r_in, 1_out}, out={1_in, r_out};
pthread_create(&in_thread,

o,
incoming,
&in) ;
pthread_create (&out_thread,
0,
outgoing,

&out) ;

i.e. problem with this code in and out are /ocal variables thus leave scope when rlogind exits

Thread Termination (thread_example_2.c)

* Threads can modify any part of the shared address space, however

* A pointer to memory must be provided for thread to place explicit
return values, here &result

pthread_create(&createe, 0, CreateeProc, 0);

pthread_join(create, &result);

e pthread_exit() terminates thread whereas exit() terminates process
void *CreateeProc (void *arg) {

if (should_terminate_now)

pthread_exit ((void *)1);

return((void *)2);

Thread Attributes

* Forinstance threads must have their own stacks

* e.g. to specify the stack size for a thread one initializes an attributes
datastructure thr_attr

pthread_t thread;
pthread_attr_t thr_attr;

pthread_attr_init (&thr_attr);
pthread_attr_setstacksize (&thr_attr, 20*1024*1024);

pthread_create(&thread, &thr_attr, startroutine, arg);

NB: “man pthread_attr_init”

Synchronization *** (thread_example_3.c)
* Threads share access to common data structures
— Same address space

* We need something called mutual exclusion, a form of thread
synchronization, to make sure two things don’t happen at once

* Example, two threads each doing

X = X+1;

e Canresultin 1 or 2; adversarially reordering the assembly code
below shows what kind of bad things can happen

1d rl,x
add rl,1
st rl,x

2/7/17

12

POSIX Mutexes ***

0OS’s typically support thread synchronization mechanisms

POSIX defines a data type called a mutex (from “mutual exclusion”)
Mutexes can ensure

— Only one thread is executing a block of code (code locking)

— Only one thread is accessing a particular data structure (data locking)

A mutex either “belongs to ” or is “held by” a single thread or
belongs to no thread

POSIX Mutexes ***

e A mutex is created via pthread_mutex_init()

* Athread may “own” or “lock” a mutex by calling
pthread_mutex_lock()

e A mutex may be unlocked by calling pthread_mutex_unlock()

pthread mutex_t m = PTHREAD_MUTEX_INITIALIZER;
// shared by both threads
int x; // ditto

pthread_mutex_lock (&m) ;
x = xX+1;

pthread_mutex_unlock (&m) ;

Mutual exclusion can result in DEADLOCK!

Using threads in practice can be fraught with difficulty

Deadlock means that one or more threads are trying to own a set of
mutexes in a way that results in some subset of the threads can
never proceed *

In the following code example deadlock can occur, can you see it?

void procl() { void proc2() {

pthread_mutex_lock (&ml) ;
/* use object 1 */
pthread_mutex_lock (&m2) ;
/* use objects 1 and 2 */
pthread_mutex_unlock (&m2) ;

pthread_mutex_unlock (&ml) ;

pthread_mutex_lock (&m2) ;
/* use object 2 */
pthread_mutex_lock (&ml) ;
/* use objects 1 and 2 */
pthread_mutex_unlock (&ml) ;

pthread_mutex_unlock (&m2) ;

Deadlock is nasty, difficult to detect, and to be avoided at all cost

* One useful avoidance mechanism is pthread_mutex_trylock()

procl() { proc2() {
pthread_mutex_lock (&ml) ; while (1) {
/* use object 1 */ pthread_mutex_lock (&m2) ;

pthread_mutex_lock (&m2) ; if (!pthread_mutex_trylock(&ml))
ts 1 and 2 */ break;

pthread_mutex_unlock (&m2) ;

/* us

obje:
pthread_mutex_unlock (&m2) ;
pthread_mutex_unlock (&ml) ; }

/* use objects 1 and 2 */

pthread_mutex_unlock (&ml) ;

pthread_mutex_unlock (&m2) ;

2/7/17

13

Semaphores

* Asemaphore is a nonnegative integer with two atomic operations

— P (try to decrease) : thread waits until semaphore is positive then subtracts 1

« [I’s are notation for guards; that which happens between them is atomic, instantaneous,
and no other operation that might take interfere with it can take place while it is executing
when (semaphore > 0) [

semaphore = semaphore - 1;

— V (increase)

[semaphore = semaphore + 1]

* Mutexes can be implemented as semaphores

semaphore S = 1;

void OneAtATime() {

B(S);
.

/* code executed mutually exclusively */

v(s);

POSIX Semaphores
Interface

sem_t semaphore;

int err;

err = sem_init (&semaphore, pshared, init);
err = sem_destroy (&semaphore) ;
err = sem_wait (&semaphore) ; // P operation
err = sem_trywait (&semaphore) ; // conditional P operation

err = sem_post (&semaphore) ; // V operation

Note : Mac’s use a different naming scheme for semaphores, a
Mach spec. named-semaphore via sem_open()

Why Do We Need Synchronization?

* Image that you have a multi-threaded webserver that handles
parallel ticket-window selling of a finite supply of tickets with each
web request handled by one of the threads in a thread pool.

* The number of tickets is critical, shared data that must be
atomically decremented.

Canonical Data Sharing Problem : Producer-Consumer *

A first peek at the kind of thing that has to happen inside the OS

When you write to network socket there will be a kernel thread that
intermediates between your requests and other requests
Your producer thread write() will go into a buffer with a finite
number of slots
Two Threads

— Producer (you) : puts things in the buffer

— Consumer (os) : removes things from the buffer

Producer must wait if buffer is full; consumer if buffer is empty

Consumer Producer

T ity

2/7/17

14

Semaphore sol’n to the producer-consumer problem

* Example sheet (don’t cheat by looking at this solution)

Semaphore empty B;
Semaphore occupied = 0;
int nextin = 0;
int nextout = 0;
void Produce(char item) { char Consume() {
P(empty) ; char item;
buf [nextin] item; P(occupied) ;
nextin = nextin + 1; item = buf[nextout];
if (nextin == B) nextout = nextout + 1;
nextin = 0; if (nextout == B)
V(occupied) ; nextout = 0;
} V(empty) ;
return (item) ;
}

Deviations

* Signals *

— Forces a user thread to put aside current activity

— Call a pre-arranged handler

— Go back to what it was doing

— Similar to interrupt handling inside the OS
* Examples

— Typing special characters on the keyboard (*c)

— Signals sent by other threads (kill)

— Program exceptions (divide by zero, addressing exceptions)
* Background

— Graceful termination via ~c and SIGINT

Signals and Handled by Handlers
* Setting up a handler to be invoked upon receipt of a ~c signal
int main()

void handler (int);

sigset (SIGINT, handler);

/* long-running buggy code */

void handler (int sig) {

/* perform some cleanup actions */

exit(1);

* Signals can be used to communicate with a process

* Signals are processed by a single thread of

¢ Communication at right not problem-free

¢ POSIX compliant OS’s implement 60+ async-

Async-signal safe routines (OS implementation perspective)

R computation_state_t state;
execution

int main() {
because of asynchronous access to state

void handler (int) ;
— Displayed state could be incoherent ()

* Making routines async-signal safe requires

sigset (SIGINT, handler);
making them so that the controlling thread - (5)

cannot be interrupted by a signal at certain
times (i.e. in update_state)
— Signal handling turned on and off by
sigemptyset()
sigaddset() long_running_procedure()
Sigprocmask()

}

while (a_long_time) {
update_state (&state) ;

signal safe routines!
compute_more();

}

void handler (int sig) {

display (&state) ;

long_running_procedure();

2/7/17

15

Review

New OS usages essentials
— Threads

— Mutexes

— Semaphores

— Signals

From Lecture 1

— Processes

— Memory allocation
— Files

— Pipes

- 1/0

Pretty much all the system calls you actually use except

— Networking
— Window-creating and Ul

Lecture 3 :

Inside the OS; Booting, System Calls,
Interrupts, Threading,
Processor & Memory Management
(A very-high-level OS Implementation
Perspective)

Material from

Operating Systems in Depth
47

sec. Chapters 5 a

Thomas Doeppner

GET THIS BOOK AND READ IT!

Some Definitions

Our terminology comes from from “Operating
Systems in Depth” by Thomas Doeppner which
describes the “Simple 0S”

— A hypothetical OS based-on Unix (6" edition) that is
simplified to be

* Monolithic

— i.e. the OS s a single file loaded into memory at boot
time

* And with interfaces called
— Traps which originate from user programs and
— Interrupts that originate largely from hardware

* and having two modes

— User-mode in which parts of the OS run as if they were
normal user programs and

— Privileged / System-mode in which parts of the OS have
access to everything

— Terminology : Kernel *
« The subset of an OS that runs in privileged mode

Traps

Interrupts

Booting

Thought to be derived from “to pull yourself up by your bootstraps”
Modern computers boot from BIOS read only memory (ROM)
— Last 64K of the first MB of address space

When the computer is powered on it starts executing instructions at
OxffffO
Looks for a boot device

— Loads a master boot record (MBR)
* Cylinder 0, head 0, sector 1 (hard disc)

Loads boot program

446 bytes Boot program

Transfers control to boot program
Boot progam (lilo, grub, etc.) loads OS

Partition 1

Partition 2

Transfers control sabytes { | paniontable

2 bytes Magic number
Master boot record

Partition 3

Partition 4

2/7/17

16

L e

Forking Makes a Tree : The Process Tree

Hardware

Non-volatile
Memory

Volatile
Memory

1/0

Processor
Threads

oS

Applications

Kernel-Mode

parent

child

User-Mode

process
process

Traps and System Calls (largely from user)

Traps are the general means for invoking the kernel from user code

Type of traps include
— System calls *
* Example: writing to a filedescriptor the contents of a buffer

if (write(FileDescriptor, BufferAddress, BufferLength) == -1) {
/* an error has occurred: do something appropriate */
printf("error: %d\n", errno) /* print error message */
}
requests of the OS to “send data” to a file. “How write actually invokes the operating-system
kernel depends on the underlying hardware. What typically happens is that write itself is a
normal procedure that contains a special machine instruction causing a trap. This trap
transfers control to the kernel, which then figures out why it was invoked and proceeds to
handle the invocation. “

— And unintended requests for kernel service (traps) Treps
* Page faults (will define)
 Dividing by zero
— Signals allow the kernel to call user-code in an “upcall”
Interrupts

NB: There is a wide variation in the nomenclature. On some computers the term trap refers to any interrupt, on some machines to any
synchronous interrupt, on some machines to any interrupt not associated with inputioutput, on some machines only to interrupts caused by
instructions with trap in their names, etc.

System calls

Transfer control from user to system code and back
— Need not involve a thread switch, just a “stack switch”
— Trap (OS code) typically switches to a kernel stack frame

prog (

write (fd, buffer, size);

User

)

{

write(

trap (write_code) ;

prog frame

write

v

User stack

Kernel

trap_handler (code) {

if (code == write_code)

write_handler();

trap_handler
frame

write_handler
frame

v

Kernel stack

Context Switching and stack frames

“Context” is the setting in which execution is currently taking place
— Processor mode

Address space po.
Register contents
— Thread or interrupt state

obp Stack frame

Saved registers.

Local variables

Intel x86 Stack Frames wop —

— Subroutine context Saved regsters
* Instruction pointer (reg. eip)
— Address to which control should

return when subroutine is
complete

* Frame pointer (reg. ebp)
— Link to stack frame of caller

Local variables e

Remember; the stack grows down

2/7/17

17

Interrupts (largely from hardware)

Request from an external device for a response from the processor
— Handled independently of any program

Examples
— Keyboard input
— Data available in a network or disk buffer

Traps.

Interrupts

Interrupts
* Oninterrupt occurrence wser
— Processor frames
* Puts aside current context of i

thread or other interrupt
* Switches to interrupt context
* Interrupts require stacks
— 0S's differ Current thread’s

user stack

— Common choice : kernel stack

Kernel
stack
frames

Interrupt
handler
1's frame

Interrupt
handler
2's frame

!

Current thread’s
kernel stack

Threads Implementations

OS goal is to transparently support user-level application programs
running on a single set of shared hardware
OS implementation and design issues largely related to how to
switch running threads in support of traps and interrupts
This brings up two major implementation concerns, how to
implement

— Scheduling

— Synchronization
And how to organize the operating system in terms of how to assign
and organize actual processor threads to user-process threads
through the OS

— One-level model

— Two-level model

OS Thread Implementation Strategies

* One-level model
— Each user thread is mapped to a kernel thread

* Two-level model
— Single kernel thread (e.g. 1-core CPU but not necessarily)
* Each process gets one kernel thread
* Threads multiplexed on this kernel thread
* Synchronization primitives implemented via thread queue datastructures and
yielding strategies
— Multiple kernel threads (e.g. multi-core CPU but not necessarily)
* Many kernel threads. User-level threads distributed across them
* Avoids blocking problem of single-kernel thread model but introduced
complications

¢ Other approaches exist ...

2/7/17

18

One Hypothetical Thread and Synchronization Implementation

User-level simple thread package
“straight-threads” implementation
Assume
— One processor thread
— No interrupts
Assert
— Thread object datastructure which
has
* Stack
. etc
— Current thread pointer
— Run queue datastructure
 threads waiting to run
— Mutex queue datastructure

« threads waiting to own mutexes,
one for every mutex

Current thread

[vsaraimie

Yielding the Processor

Assume that threads must voluntarily yield by calling system call,
e.g. imagine an OS that, for instance, requires explicit yielding if
trying to own a mutex fails. Such a yield call would look like

void thread_switch() {

thread_t NextThread, OldCurrent;
Context

NextThread = dequeue (RunQueue) ;

Stack
OldCurrent = CurrentThread;
CurrentThread = NextThread; Tl

swapcontext (&0ldCurrent->context, &NextThread->context);

// We're now in the new thread’s context

¥

Here swapcontext, saves the caller’s register context in its thread
object, then restores that of the target thread from its thread object

Implementing Mutexes

Because our hypothetical OS does not have interrupts by
assumption and all threads run until voluntarily yielding,
mutex_lock doesn’t need to do anything special to make its action
atomic
void mutex_lock (mutex_t *m) {
if (m->locked) {
engueue (m->gueue, CurrentThread) ;
thread_switch() ;
} else
m->locked = 1;
)

void mutex_unlock (mutex t *m) {
if (queue_empty (m->queue))
m->locked = 0;
else

enqueue (runqueue, dequeue (m->gueue)) ;

What about Multiple Processor Threads?

thread _switch() now insufficient because mutex_lock() and
mutex_unlock() could be called simultaneously

Actual concurrent threads like this require actual thread
synchronization
— Synchronization implementation has big OS performance impact

Types of actual implementation
— Spin lock (hardware supported)
— Futexes

2/7/17

19

Spin-locks

* Qperation provided by some processors (e.g. x86) with hardware
guaranteed atomicity (compare and swap)

int CAS(int *ptr, int old, int new) {
int tmp = *ptr;
if (*ptr == old)
*ptr = new
return tmp;
}

* With CAS spin-locks (actual synchronization) can be implemented

— Note mutex with zero-value means unlocked

void spin_lock (int *mutex) {

while (!CAS (mutex, 0, 1))

void spin_unlock(int *mutex) {

*mutex = 0;

Faster Spinlock

Providing atomicity guarantees slows down processors
Unsafe checks result in overall speedup

void spin_lock (int *mutex) {
while (1) {
if (*mutex == 0) {
// the mutex was at least momentarily unlocked
if (!CAS(mutex, 0, 1)
break; // we have locked the mutex

// some other thread beat us to it, so try again

Spin-Lock Implementation of Blocking Mutex In Hyp. OS
* Spin-locks consume processor resource and thus should be used sparingly

* blocking_lock works as before — threads waiting on mutex queue

void blocking_unlock (mutex_t *mut) {
11ock) ;

void blocking_lock (mutex_t *mut) {
spin_lock (mut-

spin_lock (mut->s
if (mut->holder != 0) if (queue_empty (mut->wait_queue))
= 0;

enqueue (mut->wait_queue, CurrentThread); mut->holder

spin_unlock (mut->spinlock) ; } else {
thread. tch(); mut->holder = dequeue(mut->wait_queue)

} else { engueue (RunQueue, mut->holder);
mut->holder = CurrentThread;

spin_unlock (mut->spinlock) ; spin_unlock (mut->spinlock) ;

¢ Use of spin-lock prevents collisions on mut->holder
— e.g. holder unlocking at exact instance empty queue is being joined
* Thereis still a subtle bug arising on true multiprocessor systems

— Left for example sheet

Scheduling — Sharing in a Transparent Way

* 0S’s manage resources
— Processor time is apportioned to threads
— Primary memory is apportioned to processes
— Disk space is apportioned to users
— 1/0 bandwidth may be apportioned to processes
* Scheduling concerns the sharing of processors
— Dynamic scheduling is the task
— Objectives
* Good response to interactive threads
* Deterministic response to real-time threads
* Maximize process completions per hour
 All of the above?

2/7/17

20

Approaches to Scheduling

* Simple batch systems
— Onejob atatime
* Multi-programmed batch systems
— Multiple jobs concurrent
— Scheduling decisions
* How many jobs?
* How to apportion the processor between them?
* Time-sharing systems
— How to apportion processor to threads ready to execute
— Optimization criteria : time between job submission and completion
* Shared servers

— Single computer, many clients, all wanting “fair” share

* Real-time systems

Time-Sharing Systems

Primary scheduling concern is the appearance of responsiveness to
interactive users
Threads assigned user-level priority “importance” (UNIX nice())
OS assigned thread priority rises and falls based on

— Length of bursts of computation (before yielding)

— Length of time between bursts

Sensible strategy

— Decay priority while thread is running
— Increase priority while thread is waiting

Real-Time Systems

* Real-time system scheduling must be dependable
— Music
— Video
— Nuclear power plant data processing
* Approximate real-time by adding very-high real-time priorities
— Interrupt processing still preempts threads

— Synchronized access to kernel resources can cause priority-inversion
* Low-priority threads locks a resource a real-time thread needs

Memory Sharing

Efficient implementations require deep understanding of hardware
capabilities and software requirements
Involves
— Memory abstraction
— Optimizing against available physical resources
* High-speed cache
* Moderate-speed primary storage
* Low-speed secondary storage
Security
— Protect OS from user processes
— Keep user processes apart
Scalability
— Fit processes into available physical memory

2/7/17

21

2/7/17

Virtual Memory Provisioned via Per-Process Page Table * Forward-Mapped (FM) Page Tables
* Operating system maintains a page table for each Page tables take a lot of memory, FM page tables off lower-overhead
running process that maps virtual memory pages h
to real memory pages. approac
* Every memory access in a thread is intercepted by _ i f
the OS/hardware and translated to a real memory il 32 bit r.nachlne, 4M.B per process . . X
address * e.g. solution: each virtual address divided into two 10-bit numbers
* This is extremely important to high performance
and relies upon large amounts of hardware MM‘“‘ (R ‘ REHETDE — L1 page number
acceleration _ L2 page number ‘ L1 page # ‘ L2p/age¢0 ‘ Offset ‘
* Assume — Offset 1 ‘
— 32-bit virtual address /: — -
— Page size 4096 bytes
« Implies 37
— 12 bit offset (2712 = 4096) BN N
— 20-bit page number (2432 / 212) L L
Y osee rame s s Whrder bt of s e 11 page table | h
R:—re'e':“n:;:g?atge—hu\lmwvsagndmeDslxakesover(oa\\o:axeor\o?ﬁapage + Advantages L2 page tables Page frame
M}mJ"«."Z;?.i""“":“:”'"'“" On a 32-bit arch. the page table — Lower overhead — e.g. not all L2 pages need be in memory at once
prot. = page rtection s is 2720 * 4 bytes = AMB. — Pages can be lazily allocated on demand
) * Disadvantages
What about a 64-bit — More lookups
architecture? * p
Note : memory access is slow; caching is imperative 64-Bit Issues
* Hardware supports address translation via “translation lookaside * Assume 8-Kb pages, how big is a page table for a 64-bit arch?
buffers” — HUGE! (Example sheet)
— Fast processor-based memory containing some entries of address translation — One solution, don’t use entire address range and use forward mapping
table aggressively
— Automatic translation in hardware
63 47 38 29 20 11 0
] ‘\
£ 2 ‘\
R ‘\
|
Page map |
table
Page
directory

i Physical page
X64 virtual address format

22

Operating-System Memory Management

* OSresponsible for ensuring programs execute at reasonable speed
* 0OS must determine which pages should be in primary memory

* 0OS virtual memory policy decisions
— Fetch
— Placement
— Replacement

* Simple approaches
— Demand paging
* Fetch only when a thread references something in that page
— Placement
* Anywhere
— Replacement

« When full, eject page in memory longest (FIFO)
— Problem?

OS Response to a Page Fault *

An interrupt that occurs when a program requests data that is not
currently in real memory. The interrupt triggers the operating system to
fetch the data from a virtual memory and load it into RAM. An

invalid page fault or page fault error occurs when the operating system
cannot find the data in virtual memory.

Steps
— Detect page fault
— Find a free page frame (in real memory)
— Write a page out to secondary storage if none free (swapping)
— Fetch desired page from secondary storage
— Return from trap
Latter steps very costly
— Read in extra pages
* Prepaging — How? Why?
— Write-out pages preemptively
* Dedicate a page-out thread

Page Caching Implementation Strategy

* Optimal replacement strategies are impractical
* Least-recently-used (LRU) good in practice
— Except counting references is impractical
* Two-handed clock algorithm used in practice
— OS uses a dediciated page-out thread (e.g.linux: kswapd)

* One hand sets reference bit to 0
* Other hand triggers page flush if another thread hasn’t set reference bit to 1

Back hand:
if (reference bit == 0)
remove page

]

Front hand:
reference bit = 0

Efficient Fork via Copy-on-Write

Can fork() be made less expensive to implement?
— Remember fork() copies a process’ entire memory space

Lazy evaluation
— Let copies share address space, in particular page tables

Mark all pages read only

On write() make copies unique to each process, update individual process
page tables appropriately

0OS bookkeeping requires care

2/7/17

23

2/7/17

Shared Memory and mmap() *** (mmap_shared_memory_example.c)

mmap () maps files to contiguous virtual memory

Files may be mapped to address space shared across processes!
— Shared

* Modifications seen by all forked processes (shared memory parallel processing!)
— Private

* Modifications remain private to each forked process (copy on write)

* OS Sharing of processor and memory

— Threads implementation

* Entails multiplexing threads to available processors

— Memory management

* Virtual memory allows large
primary storage

runtime

Virtual memory allows co-existence of multiple programs
Page tables entail translating between virtual and real memory addresses at

Review

programs to run on systems with small amounts of

Lecture 4 : File Systems & Networking

Material from
Operating Systems in Depth

Chay

(spec and 9)

Thomas Doeppner

GET THIS BOOK AND READ IT!

I/O Architecture Types (Simplified Overview)

* Memory-mapped
— Each device has a controller
— Each controller has registers

physical memory
— Actually attached via a bus
* Categories of 1/0 devices

— Programmed I/O (PIO)
* One word per read/write
* e.g. terminal

— Direct memory access (DMA)

* Controller directly manipulates

physical memory in location
specified by processor

e e.g.disk

[[[
Registers appear to processor as [(conoter | [[comoter | [conier |

Processor

If an OS were written in C++ a device

driver would be a class with
instances for each device.

24

PIO and DMA Example

PIO (terminal) DMA (disk)
[oon[on e [] |] |] conolregistr ool] 0 o | contolrogister
Pol [[T T T T] setsgser
[ronfron] [[[[T Jsutsmoser LT T T T T 11
e e e e e s e
| Fess ot I o
T T T 1 ‘ I ‘ I ‘ I
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Write register ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Device address register
Lo G Cored s o P
© 10 write Start @ wrte operation) ode eration code (identifies the operation)
IER Enable read-completion interrupts E” Cod ;:m; m‘e":m:“ ifles the operation)

IEW Enable write-completion interrupts Ry Controlleris ready
RdyR Ready to read
RdyW Ready to write

Usage: Usage:

1. Store byte in write register 1. Setdisk address in device register

2. Set GoW bit in control register 2. Set memory address in memory address register
3. Wait for RdyW in status register 3. Set Op Code, Go, IE in control register

4. Can request an interrupt

File Systems

Purpose
— Provide easy-to-use permanent (with respect to process lifetime) storage
with modest functionality

— Performance of file system critical to system performance
— Crash tolerance a function of file system capabilities
— Security a major concern
Criteria
— Easy
* File abstraction should be easy to use
— High performance
* No waste of space, maximum utilization of resource
— Permanence
* Dependable
— Security
* Access control should be strict

Basics

* Pedagogical review of Unix system 5 File System (S5FS)
* Revolutionary, simplifying Unix file abstraction

— Afile is an array of bytes, period.
* File system layout

— Boot block
* First-level boot program that reads OS into memory

Superblock Data egion
* Describes layout of remaining filesystem

— i-list
it

* Array of index nodes (inodes)

Superblock

Data region Boot bock
« Disk blocks holding file contents

Unix’s S5FS

Each file is described by an inode Device

Inode number

Directories are files containing oo
names and inode numbers ik cour

Diskmap
— Maps logical blocks numbered
relative to the beginning of the file
to physical blocks numbered relative
to the beginning of the file system
— Assume
* Block length = 1024 bytes
¢ 13 pointers
— First 10 point directly to disk blocks
— Next singly indirect
— Doubly
— Triply
— 0 pointer counts as block of all zeros
« Efficient for sparse files

Owner, Group

Size

Diskmap

Disk map.
(in inode)

Triple indirect
P! Double indirect

blocks Data blocks

Indirect blocks

2/7/17

25

Organizing Free Storage on Disk

Free disk blocks are represented as

a linked list
Superblock
— Contains addresses of up to 100 free ™
disk blocks = /\
— Last pointer points to another block T &
containing free disk blocks Superbiock
— Contains cache of indices of free
inodes
Inodes

— Simply marked as free or not on disk
— Disk writes required for allocation and
frees

* Aids crash tolerance — inode updates
are immediate

Disk Architecture

* File systems optimize performance
by being aware of disk
architecture

* Architecture

— Many platters (top and bottom)
— Many tracks per platter Dk et om

— Tracks divided into equal length of each plater
sectors

— Read a write heads per surface

— One head active at a time

— Set of tracks selected by heads at
one moment calls a cylinder

* Nomenclature

— Seek time : time to position the
heads over the correct cylinder

— Rotational latency : time ‘til desired
sector is underneath head

— Transfer time : time for sector to
pass under head

2013 Disk Performance

i Rotation speed 10,000 RPM
Tricks of the trade Rotansoed__{1
_ P Sector size S12bytes
Maximizing throughput Sectostvack s00-1005 50 mvrege
* Head skewing Tracks/surace 100000
Storage capacity __| 307.2 billon bytes

— Sectors offset on each head by some Average seck time | 4 miliseconds

number of sectors to account for head One-track seok tme _| 2 milseconds

Lo Maximum sesk ime | 10 millseconds
switch time

* Cylinder skewing

— Sectors offset by some amount to
account for one track seek time

S5FS Problems and Improvements

* File allocation strategy results in slow file access
¢ Small block size results in slow file access
* Lack of resilience in the face of crashes is a killer

* Possible improvements
— Increase block size
* Fragmentation becomes an issue

— Rearrange disk layout to optimize performance

2/7/17

26

Dynamic Inodes

* S5FSinode table is a fixed array
— Requires predicting number of files the system will have
— Can’t add more disk space to the file system

* Solution
— Treat inode array as a file

— Keep inode for the inode file at a fixed location on disk
* Backup

Crash Resiliency

To recover from a crash means to bring the file system’s metadata into a
consistent state

Some operations (rename()) require many steps, requiring multiple
writes
Approaches

— Consistency preserving

— Transactional

Transaction support common in databases
— Journaling
* New value — modification steps are recorded in a journal first, then applied
* Old value — old blocks are recorded in a journal, then filesystem updated
— Shadow-paging
« Original versions of modified items retained

* New versions not integrated into the file system until the transaction is committed
(single write)

Shadow-Paged File Systems

* Also called copy-on-write file
systems oot
— e.g. WAFL and ZFS s

blocks

* Filesystem updates result in e
entirely new inode indirect
reference tree

Regular file
indirect blocks.

Regular file

* Snapshot root always allows
recovery of a consistent
filesystem

Snapshot root

Directories and Naming

Opening a file requires

— Following its pathname

— Opening directory files
Creating a file

— Verifying pathname

— Inserting component in last

S5FS
— Linear sequence of fixed length names and inode numbers
— Deleting entries involved marking slots as free
— No directory space ever given back to filesystem!
— Sequential search!
Subsequent generation directory structure
— Variable length names
— First fit replacement

Directory operations were a major bottleneck!

2/7/17

27

(Dynamic) Storage Allocation

Storage allocation is very
important in OS’s
— Disk Memory / File

Start

Pool of Free storage 1300
1200

— Memory
Example
— 1000, 1100, 250 bytes in order

. Allocation through finish
Competmg approaches

— First-fit First fit Best it
— Bestfit o0 1000 bytes 1300
. . 1200 200
Knuth simulations revealed N
. g . . 200
(non-intuitively) first-fit was 0o T100bYtes 00
best .
* Intuition : best-fit leaves too 100 250bytes Stuck!

many small gaps

Freeing Storage Is More Complex
¢ Knuth : ref; “boundary-tag”

method and algorithm

— Combines free segments greedily - oaa
upon release

“Diffies,
1ifina

— Requires datastructure that

v LENGTHZ

represents free or not-free [T ——

T&G

TAG (cheed)

* Helps avoid “fragmentation” e

— External -

Tas
* Free spaces too small
ALtocaTeD
— Internal =

y

) Th
* Allocated memory unnecessarily
too large (this situation arises in Fre

different, not-covered allocation a5

TAG (chmeed)

approaches like the “slab”
approach)

(® Costescence of ajscent ssgments

FIGURE C-2. THE BOUNDARY TAG METHOD

Data Structures for Nonvolatile Storage : B Trees

Balanced tree
— Node-degree requirement : each node fits in a block

— Node-size requirement : each block must be at least half full
— Leaves are linked together

Example tree with block size 3

— Consider inserting Lucy
— Consider deletion

B
uoisen

I
2|z

Wrap - Up

* Covered a lot of ground, major points include:

* Using an OS effectively
— Process
— Thread
« Synchronization
— Virtual memory
File
— System calls

* Implementing an OS if you had to
— Page tables
— Filesystems
— Thread switching
— Synchronization

2/7/17

28

B16 What’s Next? -- Networking

Definition
— A way to interconnect computers so that they can exchange information
Types
— Circuit (old phone networks)
* Actual circuit between devices established
— Packet switching (currently most common)
« Data is divided into marked packets that are transported independently
Challenges
— Data can be lost or reordered
— To much traffic can clog network
— Base / Home networks are heterogenous

OS Perspective — Stream File-based interface.

2/7/17

29

