
2/7/17

1

Introduction

B16	Operating	Systems

Computer	Operating	Systems	As	You	Know	Them	
Hardware OS Applications Peripherals

Users

Hardware OS Peripherals

Mobile	Phone	Operating	Systems	As	You	Know	Them	
Applications

Learning	Outcomes	*
• Familiarity	with	general	operating	system	concepts	and	how	to	use	them	in	code

– File
– Process
– Thread
– Synchronisation
– Memory
– Paging
– Socket
– Port

• Datastructures /	implementations	and	why	they	are	important
– Page	table
– Semaphore
– Mutex
– Socket

*	Marks	examinable	material

2/7/17

2

Course	Contents
• User	perspective	– how	you	use	and	interact	with	OS’s	*

– We’ll focus	on	Linux	(posix compliant	OS)
– You	should	understand	system	calls	(fork,	wait,	open,	printf,	etc.)
– Be	aware	of	and	study	using	command	line	utilities	(e.g.	man	<section>)
– Read	C-pseudo	code	that	uses	operating	system	calls.

• Operating	system	implementation perspective	– how	OS’s	are	
implemented
– Will	talk	about	an	Unix/Linux-like	“Simple-OS”	abstraction
– Discuss	implementation	of	synchronization	and	threading	in	particular

*	Marks	examinable	material

Lecture	1 :	History and	User	Perspective

Material	from	
Operating	Systems	in	Depth

(spec.	Chapter	1)	
by

Thomas	Doeppner

THIS	BOOK	HAS	EVERYTHING	IN	IT!

B16	Operating	Systems

What	is	an	operating	system?
• Operating	systems	allow	for	sharing
• To	do	this	operating	systems provide	software	abstractions	of

– Processors
– RAM (physical	memory)
– Disks	(secondary	storage)
– Network	interfaces	
– Display
– Keyboards
– Mice
– …

• Some	OS-provided	abstractions are
– Processes
– Files
– Sockets

Intuition
Hardware OS Applications

2/7/17

3

Abstraction
Hardware OS Applications

Disk

“Memory”

Linux

SimpleOS
Applications

I/O

CPU

More	Precise	Abstraction
Hardware OS Applications

Non-volatile
Memory

Volatile
Memory

I/O

Processor
Threads

Linux

SimpleOS
Applications

Why	should	we	study	operating	systems?
• “To	a	certain	extent	[building an	operating system	is]	a	solved	

problem”	– Doeppner
• “So	too	is	bridge	building”	– Wood

– History	and	its	lessons
• Understand	capacities	and	best	practice	usage

– OS	improvements possible,	along	will	come	innovation	in	the	form	of
• New	algorithms, new	storage	media,	new	peripherals
• New	concerns	:	security
• New	paradigms	:	the	“cloud”

• Your	actual	computer	use	and	programming	touches	OS’s	
– Knowing	about	OS’s	makes	you	a	better	software	engineer

B16 structured	programming	quiz	:
How	exactly	does	malloc()	work?		Do	you	know?

Review	:	Computer	≈	Von	Neumann	Architecture	

Image	from	http://cse.iitkgp.ac.in/pds/notes/intro.html

2/7/17

4

Review	:	Computer	≈	Von	Neumann	Architecture	

Image	from	http://cse.iitkgp.ac.in/pds/notes/intro.html

2/2 LECTURE 2. THE CPU, INSTRUCTION FETCH & EXECUTE

CPU

Outside the CPU

SETalu

Address Bus

Data Bus

CLKmem

SP

MAR

AC

IR(opcode) IR(address)

Status

MBR
IR

ALUCU

Memory

Control Lines

PC
INCpc/LOADpc

to Registers, ALU, Memory, etc

Figure 2.1: Our Bog Standard Architecture

2.1.1 CPU Registers

K MAR The Memory Address Register is used to store the address to access
memory.

K MBR The Memory Buffer Register stores information that is being sent to, or
received from, the memory along the bidirectional data bus.

K AC The Accumulator is used to store data that is being worked on by the ALU,
and is the key register in the data section of the cpu. Notice that the memory
can’t access the AC directly. The MBR is an intermediary.

K PC Connected to the internal address bus, the Program Counter holds the
address in memory of the next program instruction. Notice that it doesn’t connect
directly to the memory, but must go via the the MAR. (The PC is special in that
it is both a register and a counter. More later.)

K IR When memory is read, the data first goes to the MBR. If the data is an
instruction it gets moved to the Instruction Register. The IR has two parts:

1. IR (opcode) The most significant bits of the instruction make up the opcode.
This the genuine instruction part of the instruction, that tells the cpu what to

A2!

A2	Review	:	Computers	Execute	Machine	Code
• Machine	code	:	instructions	that	are	directly	executed	by	the	CPU

– From	Wikipedia	:	
• “the	instruction	below	tells	an	x86/IA-32	processor	to	move	an	immediate	8-bit	
value	into	a	register.		The	binary	code	for	this	instruction	is	10110	followed	by	a	3-
bit	identifier	for	which	register	to	use.		The	identifier	for	the	AL	register	is	000,	so	
the	following	machine	code	loads	the	AL	register	with	the	data	01100001.”

• Assembly	language	:	one-to-one	mapping	to	machine	code	(nearly)
– Mnemonics	map	directly	to	instructions	(MOV	AL	=	10110	000)
– From	Wikipedia	:	

• “Move	a	copy	of	the	following	value	into	AL,	and	61	is	a	hexadecimal	
representation	of	the	value	01100001”

10110000	01100001

MOV	AL,	61h							;	Load	AL	with	97	decimal	(61	hex)

B16	Struct.	Prog.	Review	:	Compilation	and	Linking
• A	compiler	is	a	computer	program	that	transforms	source	code	

written	in	a	programming	language	into	another	computer	language
– Examples	:	GNU	compiler	collection:	gcc,	g++,	etc.

• A	linker	takes	one	or	more	object	files	generated	by	a	compiler	and	
combines	them	into	a	single	executable
– Gathers	libraries,	resolving	symbols	as	it	goes
– Arranges	objects	in	a	program’s	address	space

• B16	Structure	programming	quiz	:	what’s	a	program’s	address	space?

• Programs	run	on	shared hardware	using	OS	system	calls,	libraries,	
virtual	memory,	program	address	space	specifications,	etc.
– Note:	modern	OS’	provide	dynamic	linking,	i.e.	runtime	resolution	of	

referred-to	but	run-time	unresolved	symbols

B16	Operating	Systems	In	a	Nutshell	:	Sharing
• Loading	a	single compiled	program	into	memory	and	executing	it	

does	not	require	an	operating	system	(recall	A2	L1-4)
• Operating	systems	are	about	sharing	*

– One	computer	has
• Processor	threads
• Disk	space
• RAM
• I/O	

– Including	peripherals

which	must	be	efficiently	shared	between	different	programs	and	users

2/7/17

5

History	:	1950’s
• Earliest	computers had	no	operating	systems
• 1954	:	OS	for	MIT’s	“Whirlwind”	computer	

– Manage	reading	of	paper	tapes	avoiding	human	intervention

• 1956	:	OS	General	Motors
– Automated	tape	loading	for	an	IBM	701	for	sharing	computer	in	15	minute	

time	allocations

• 1959	:	“Time	Sharing	in	Large	Fast	Computers”
– Described	multi-programming

• 1959	:	McCarthy	MIT-internal memo	described	“time-share”	usage	
of	IBM	7090
– Modern	:	interactive	computing	by	multiple	concurrent	users

Early	OS Designs	Were
• Batch	systems	that

– Facilitated running	multiple	jobs	sequentially

• Suffered	from	I/O	bottlenecks
– Computation stopped	to	for	I/O	operations

• Led	to	interrupts	being	invented
– Allows notification	of	an	asynchronous operation	completion
– First	machine	with	interrupts	:	DYSEAC	1954,	standard	soon	thereafter

• Multi-programming followed
– With interrupts,	computation	can	take	place	concurrently	with	I/O
– When	one	thread	does	I/O	another	can	be	computing
– Second	generation	OS’s	were	batch	systems	that	supported	multi-

programming

History	:	1960’s,	the	golden age	of	OS	R&D
• Terminology	that	got	invented	then

– “Core”	memory	refers	to	magnetic	cores	each	holding	one	bit	(primary)
– Disks	and	drums	(secondary)

• 1962	:	Atlas	computer	(Manchester)	
– “virtual	memory”	:	programs	were	written	as	if	machine	had	lots	of	primary	

storage	and	the	OS	shuffled	data	to	and	from	secondary	
• 1962	:	Compatible	time-sharing	system	(CTSS,	MIT)

– Helped	prove	sensibility	of	time-sharing	(3	concurrent	users)
• 1964	:	Multics (GE,	MIT,	Bell	labs;	1970	Honeywell)	

– Stated	desiderata
• Convenient	remote	terminal	access	
• Continuous	operation
• Reliable	storage	(file	system)
• Selective	sharing	of	information	(access	control	/	security)
• Support	for	heterogeneous	programming	and	user	environments

– Key	conceptual	breakthrough	:	unification	of	file	and	virtual	memory	via	
everything	is	a	file	*

History	:	1960’s	and	1970’s
• IBM	Mainframes	OS/360
• DEC	PDP-8/11

– Small,	purchasable	for	research

• 1969	:	UNIX
– Ken	Thompson	and	Dennis	Ritchie;	Multics effort	drop-outs
– Written	in	C
– 1975	:	6th	edition	released	to	universities	very	inexpensively
– 1988	System	V	Release	4	

• 1996	:	BSD	(Berkeley	software	distribution)	v4.4
– Born	from	UNIX	via	DEC	VAX-11/780	and	virtual	memory

2/7/17

6

1980’s	:	Rise	of	the	Personal	Computer	(PC)
• 1970’s	:	CP/M

– One	application	at	a	time	– no	protection	from	application
– Three	components

• Console	command	process	(CCP)
• Basic	disk	operating	system	(BDOS)
• Basic	input/output	system	(BIOS)

• Apple	DOS	(after	CP/M)
– 1978	Apple	DOS	3.1	≈	CP/M

• Microsoft	
– 1975	:	Basic	interpreter
– 1979	:	Licensed	7-th	edition	Unix	from	AT&T,	named	it	Xenix
– 1980	:	Microsoft	sells	OS	to	IBM	and	buys	QDOS	(no	Unix	royalties)	to	fulfill

• QDOS	=	“Quick	and	dirty	OS”
• Called	PC-DOS	for	IBM,	MS-DOS	licensed	by	Microsoft

1980’s	‘til	now.
• Early	80’s	state	of	affairs

– Minicomputer	OS’s
• Virtual	memory
• Multi-tasking
• Access	control	for	file-systems

– PC	OS’s
• None	of	the	above	(roughly	speaking)

• Workstations
– Sun	(SunOS,	Bill	Joy,	Berkeley	4.2	BSD)

• 1984	:	Network	file	system	(NFS)

• 1985	:	Microsoft	Windows
– 1.0	:	application	in	MS-DOS

• Allowed	cooperative	multi-tasking,	where	applications	explicitly	yield	the	processor	to	each	other

• 1995	:	Windows	’95	to	ME
– Preemptive	multi-tasking	(time-slicing),	virtual	memory	(-ish),	unprotected	OS-space

• Also
– 1993	:	First	release	of	Windows	NT,	subsequent	Windows	OS’s	based	on	NT
– 1991	:	Linus	Torvalds	ported	Minix to	x86	(LINUX!)

Using	Operating	Systems	– The	Basics

The	Basics	- Outline
• Processes
• Threads
• Virtual	memory
• Address	space
• Files
• Pipes

2/7/17

7

Key	Concept	:	Processes	*
• OS	abstraction	that	includes

– Address	space	(virtual	memory	*)
– Processors	(threads of	control	*)

• Processes	are	largely	disjoint
– Processes	cannot	directly	access	each	others’	memory

• Exceptions	exist	for	sharing	memory;	mmap etc.

• Running	a	program
– Creates	a	“process”
– Causes	the	operating	system	to	load	machine	code	from	a	file	into	the	

process’s	address	space
– The	operating	system	creates	a	single	thread of	control	that	starts	executing	

the	first	instruction	at	a	predefined	address	in	the	program’s	virtual	memory

Processes
Hardware OS Applications

Non-volatile
Memory

Volatile
Memory

I/O

Processor
Threads

Applications

Volatile	Memory

I/O

Threads

Volatile	Memory

I/O

Threads

Volatile	Memory

I/O

Threads

Volatile	Memory

I/O

Threads

Volatile	Memory

I/O

Threads

UserOS

Process

Process

Process

Process

Process

Processes	and	Threads	****	(fork_example_1.c)
• Processes	are	created	via	a	system	call	

named	fork()
– fork()	creates	an	exact	copy	of	the	

calling	process	is	made	
• Efficiently	implemented	via	lazy,	copy-

on-write	marking	of	pages
– fork()	returns	twice!

• Once	in	the	child	(return	value	0)
• Once	in	the	parent	(return	value	the	

process	id	(PID)	of	the	child	process)
• Two	“threads	of	control”,	the	parent	

process	thread	and	the	child	process	
thread.

• Processes	report	termination	status	via	
the	system	call	exit(ret_code)

• Processes	can	wait()	for	the	
termination	of	child	processes

• Example	uses
– Terminal	/	Windows
– Apache	cgi

18 CHAPTER 1 Introduction

Since a process’s return code actually means something, it’s important for other processes
to fi nd out what it is. This is done via the wait system call, which allows a parent process to wait
until one of its children terminates:

short pid;

if ((pid = fork()) == 0) {

/* some code is here for the child to execute */

exit(n);

} else {

int ReturnCode;

while(pid != wait(&ReturnCode))

;

/* the child has terminated with ReturnCode as its

 return code */

}

Here the parent process creates a child, then waits for it to terminate. Note that wait returns
the process ID of the child that’s terminated, which might not be the one most recently created
(the parent might have created others). Thus it calls wait repeatedly until the child it’s interested
in terminates. The wait call returns the child process’s return code via its argument, which points
to storage provided by the caller.

A process can wait only for its children to terminate: it has no means for waiting for the
termination of other processes. This implies that the operating system must keep track of the par-
ent-child relationships among processes.

While a process is waiting for a child to terminate, it’s said to be in the “sleeping state”: it
won’t be able to execute any further instructions until a terminating child wakes it up.

The act of termination is a bit tricky. One concern is the process ID. These are 16-bit val-
ues and thus must occasionally be reused. Suppose that when a process terminates (i.e., calls
exit), its ID is immediately made available for assignment to new processes. It might happen
that before the process’s parent calls wait, the process ID is actually assigned to a new process.
Thus there could be some ambiguity about which process is being referred to by the ID.

Another termination concern is the return code: where is it stored between the moments
when a process terminates and when the code is picked up by the parent via wait? If all storage
associated with the process is released on termination, we could have a problem.

These concerns are handled as follows. When a process calls exit it doesn’t completely
disappear, but goes into what’s called the zombie state: it’s no longer active and its address space
can be relinquished, but its process ID and return value are preserved in the operating system.
Thus the process still exists, though the only meaningful data associated with it are its ID and
return value. When the parent eventually calls wait, these values are fi nally released and all traces
of the process disappear.

But what happens if the parent terminates before the child? This could mean that, since
the parent is no longer around to perform the wait, the child will remain forever a zombie. To
deal with this problem, process number 1 (the process whose ID is 1 and which is the ancestor
of all other processes with greater IDs) inherits the children (including zombies) of terminated
processes. It executes a loop, continually calling wait and fi nishing the termination of all its (step)
children.

As shown in Figure 1.4, a process’s return code is kept in its process control block. Nothing
is of course stored there until the process terminates. But when the process does terminate, its
return code is copied to the PCB, which is linked to its parent’s queue of terminated children. By

Ch001.indd 18Ch001.indd 18 8/5/10 11:26:26 AM8/5/10 11:26:26 AM

NB: You are required to download, read, compile and play with the source code examples that can be found on the course website. The course
website for this year is http://www.robots.ox.ac.uk/~fwood/teaching/B16_OS_hilary_2016_2017/index.html and fork_example_1.c can be viewed
and downloaded from there.

Forking	Makes	a	Tree	:	The	Process	Tree
Hardware OS

Non-volatile
Memory

Volatile
Memory

I/O

Processor
Threads

User-ModeKernel-Mode

init

e.g.	kblockd

deamon

deamon

deamon

e.g.	sshd

process

process

e.g.	bash

e.g.	top

Applications

parent child

2/7/17

8

Starting	Programs	in	Processes	(fork_example_2.c)
• execl()	system	call	 is	used	to	do	this

• execl()	replaces	the	entire	contents	of	the	
processes	address	space	and	
– the	stack	is	initialized	with	the	passed	arguments
– a	special	start	routine	is	called	that	itself	calls	main()
– exec doesn’t	return	except	if	there	is	an	error!

executing the wait system call, the parent selects the fi rst process from this queue, returning both
the PID and return-code fi elds.

1.3.4 LOADING PROGRAMS INTO PROCESSES

We’ve briefl y discussed setting up an address space to contain a program; now let’s look at the
user-level mechanism for doing so. A family of system calls known as exec is provided for this.
Execs are typically used shortly after fork creates a new process to replace the program with a
new one. Here’s an example of their use:

int pid;

if ((pid = fork()) == 0) {

/* we’ll soon discuss what might take place before exec

 is called */

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

Here we call execl, which takes a variable number of arguments — the “command-line”
arguments mentioned above — and passes them to the program. The fi rst argument is the name
of the fi le containing the program to be loaded. The second argument is the name of the program
(while this seems a bit redundant, it allows one program to do different things depending on the
name by which it is called). The remaining arguments are the remaining command-line argu-
ments, terminating with 0.

The effect of the exec call, as shown in Figure 1.5, is to replace the entire contents of the
current process’s address space with the new program: the text region is replaced with the text of
primes. The BSS and data regions are replaced with those supplied by primes. The dynamic area
is replaced with an empty region. The stack is replaced with the arguments that are to be passed to
main: the total number of arguments (two in this case), followed by a vector referring to their values
(“primes” and “300”). The process’s thread continues execution by calling a special start routine
(loaded with the primes program), which then calls main (so that on return from main it calls exit).

Note that since the prior contents of the address space are removed, there is no return from
a successful call to exec: there’s nothing to return to! However, if exec does return, then (since
the prior contents clearly weren’t removed) there must have been an error. What we do in such a
case is simply call exit with a return code indicating an error. (This is certainly not a very helpful
response, but our focus for the moment is on successful outcomes.)

The parent process waits until the child has completed (calling wait with an argument of
zero means that the caller does not want the return code). The above code fragment shows what
a command shell does in response to the command:

% primes 300

In other words, it creates a new process to run the command and waits for that process to
terminate.

1.3 A Simple OS 19

exec(prog, args)

Before

FIGURE 1 .5 The effect
of exec.

After

prog’s text

prog’s data

prog’s BSS

args

Ch001.indd 19Ch001.indd 19 8/5/10 11:26:26 AM8/5/10 11:26:26 AM

executing the wait system call, the parent selects the fi rst process from this queue, returning both
the PID and return-code fi elds.

1.3.4 LOADING PROGRAMS INTO PROCESSES

We’ve briefl y discussed setting up an address space to contain a program; now let’s look at the
user-level mechanism for doing so. A family of system calls known as exec is provided for this.
Execs are typically used shortly after fork creates a new process to replace the program with a
new one. Here’s an example of their use:

int pid;

if ((pid = fork()) == 0) {

/* we’ll soon discuss what might take place before exec

 is called */

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

Here we call execl, which takes a variable number of arguments — the “command-line”
arguments mentioned above — and passes them to the program. The fi rst argument is the name
of the fi le containing the program to be loaded. The second argument is the name of the program
(while this seems a bit redundant, it allows one program to do different things depending on the
name by which it is called). The remaining arguments are the remaining command-line argu-
ments, terminating with 0.

The effect of the exec call, as shown in Figure 1.5, is to replace the entire contents of the
current process’s address space with the new program: the text region is replaced with the text of
primes. The BSS and data regions are replaced with those supplied by primes. The dynamic area
is replaced with an empty region. The stack is replaced with the arguments that are to be passed to
main: the total number of arguments (two in this case), followed by a vector referring to their values
(“primes” and “300”). The process’s thread continues execution by calling a special start routine
(loaded with the primes program), which then calls main (so that on return from main it calls exit).

Note that since the prior contents of the address space are removed, there is no return from
a successful call to exec: there’s nothing to return to! However, if exec does return, then (since
the prior contents clearly weren’t removed) there must have been an error. What we do in such a
case is simply call exit with a return code indicating an error. (This is certainly not a very helpful
response, but our focus for the moment is on successful outcomes.)

The parent process waits until the child has completed (calling wait with an argument of
zero means that the caller does not want the return code). The above code fragment shows what
a command shell does in response to the command:

% primes 300

In other words, it creates a new process to run the command and waits for that process to
terminate.

1.3 A Simple OS 19

exec(prog, args)

Before

FIGURE 1 .5 The effect
of exec.

After

prog’s text

prog’s data

prog’s BSS

args

Ch001.indd 19Ch001.indd 19 8/5/10 11:26:26 AM8/5/10 11:26:26 AM

• Text
– Program	machine	code

• Data
– Initialized	global	variables

• BSS	(block	started	by	symbol)
– Uninitialized	global	variables

• Dynamic	(Heap)
– Dynamically	allocated	storage

• Stack	(grows	“downward”)
– Local	variables

• Arrows	indicate	variable	
placement

• malloc()	claims	space	in	
dynamic*

Virtual	Memory	=	Address	Space,	i.e.	2^64	words

stored in a fi le in the fi le system. When we run the program, a process is created and the program
is loaded from the fi le into the process’s address space. The process’s single thread of control then
executes the program’s code.

But how is the address space organized? The program consists of executable code and
data. The code, once loaded, is never modifi ed. Since much of the data, on the other hand, can be
modifi ed, it makes sense to segregate the two, putting the code in a special region of the address
space that’s protected from modifi cation. We could simply put all the data in another readable and
writable region, but we need to consider other issues too.

The variables nprimes and prime are both global, while i, j, and current are local. We know
that the scope of global variables is the entire program, while the scope of local variables is just
the block (delineated by curly braces in C) that contains them. In other words, the “lifetime” of
global variables is the same as the lifetime of the program, while the lifetime of a local variable
is only from when the thread enters its block to when it exits. So, we must set things up so that
the portion of the address space allocated for global variables remains allocated for the lifetime
of the program, but that portion allocated for a local variable remains allocated only while the
thread is in the variable’s scope.

Thus when the program is loaded into the address space, we’ll permanently allocate space
for the global variables, just beyond the space allocated for code. But there’s another useful
distinction to make: nprimes has an initial value of 100, but prime has no initial value, though
C semantics states that its initial value is thus zero. If we group all such uninitialized variables
together, we can represent them effi ciently in the copy of the program stored in the fi le system by
simply stating that we have n bytes of uninitialized data, which will actually be fi lled with zeros.
For many programs, this will save a lot of space. We of course have to instantiate these variables
when we load them into the address space, but there are ways to optimize this instantiation (we
discuss them in Chapter 7).

The local variables can be allocated effi ciently by use of a run-time stack: each time our
thread enters a new block, it pushes a frame on the stack containing space for local variables and
perhaps procedure-linkage information. Such frames are popped off the stack when the thread
exits the block. So what we’ll do is set up a region of the address space for the stack to reside. On
most architectures, stacks range from high memory addresses to low memory addresses and thus
stacks typically grown downwards.

Unix structures the address space as shown in Figure 1.2. The executable code, known as
text, occupies the lower-addressed regions. The initialized data, known simply as data, follows
the text. The uninitialized data is known, cryptically, as BSS (for “block started by symbol,” a
mnemonic from an ancient IBM 704 assembler) and comes next, followed by a dynamic region
that we explain shortly. Then comes a large hole in the address space and fi nally a region, starting
at the top and growing downwards, containing the stack.

Let’s now modify the program a bit so that the number of primes we want to compute is
passed as a parameter. Space is allocated for the primes dynamically, based on this parameter.

int nprimes;

int *prime;

int main(int argc, char *argv[]) {

int i;

int current = 2;

nprimes = atoi(argv[1]);

prime = (int *)malloc(nprimes*sizeof(int));

prime[0] = current;

for (i=1; i<nprimes; i++) {

int j;

Text

Data

BSS

Dynamic

Stack

FIGURE 1 .2 Unix
address space.

1.3 A Simple OS 15

Ch001.indd 15Ch001.indd 15 8/5/10 11:26:22 AM8/5/10 11:26:22 AM

14 CHAPTER 1 Introduction

from a disk controller may or may not have an indirect effect on the currently running program
and defi nitely has no direct effect (other than slowing it down a bit as the processor deals with
the interrupt).

1.3.2 PROCESSES, ADDRESS SPACES, AND THREADS

Probably the most important abstraction from the programmer’s point of view is the process. We
think of it both as an abstraction of memory — as an address space — and as the abstraction of
one or more processors — as threads (or threads of control). The term “address space” covers
both the set of all addresses that a program can generate and the storage associated with these
addresses. In modern operating systems, address spaces are usually disjoint (they are always dis-
joint in Sixth-Edition Unix): processes generally have no direct access to one another’s address
spaces. How this is made to work has to do with address-translation hardware and its operating-
system support, subjects we discuss in Chapter 7.

A single thread per process provides a straightforward programming model and was all
that most operating systems supported until the early 1990s. We cover multithreaded processes
in considerable detail in Chapter 2, but for now we use the simple model of single-threaded
processes.

Note that the meaning of the term “process” has evolved over the years. The term origi-
nally meant the same thing as the current meaning of “thread” — see (Dennis and Van Horn
1966), who use the term “computation” to refer to what we now mean by “process.” Though
some authors still use “process” in its original sense, few if any operating systems do.

What else is there to a process? To get an idea, consider the following simple C program
that implements the “Sieve of Eratosthenes” to compute the fi rst one hundred primes. In its
current form it’s not very useful since, after computing these primes, it immediately terminates
without doing anything with them. We’ll make it more useful later.

const int nprimes = 100;

int prime[nprimes];

int main() {

int i;

int current = 2;

prime[0] = current;

for (i=1; i<nprimes; i++) {

int j;

NewCandidate:

current++;

for (j=0; prime[j]*prime[j] <= current; j++) {

if (current % prime[j] == 0)

goto NewCandidate;

}

prime[i] = current;

}

return(0);

}

Our concern here is not prime numbers, but what the operating system must do to make
this program work. The program is compiled and linked (we explain linking in Chapter 3) and

Ch001.indd 14Ch001.indd 14 8/5/10 11:26:22 AM8/5/10 11:26:22 AM
Should	know	this	from	B16	Structured	Programming

High	address

Low	address

Files	=	Named	Byte	Arrays	*
• Files	are	an	operating	systems’	primary	abstraction for	everything

– Keyboard
– Display
– Non-volatile	storage
– Other	processes

• Naming	files
– Filesystems generally	are	tree-structured	directory	systems	
– Namespaces are	generally	shared	by	all	processes

Files	=	Byte	Arrays,	I/O	=	Byte	Streams
Hardware OS Applications

Non-volatile
Byte	Array

Volatile
Byte	Array

Byte	Stream

Processor
Threads

Applications

Byte	Array

Byte	Stream

Threads

Byte	Array

Byte	Stream

Threads

Byte	Array

Byte	Stream

Threads

Byte	Array

Byte	Stream

Threads

Byte	Array

Byte	Stream

Threads

UserOS

Process

Process

Process

Process

Process

2/7/17

9

Filesystems	and	Namespaces
Hardware

Non-volatile
Memory

Volatile
Memory

OS

• ssh namespace	:	fwood@donna.robots.ox.ac.uk:/usr/lib/strace/darwin.d
• smb namespace	(general)	:	\\<DOMAIN.NAME>\<dfsroot>\<path>

• Filesystems are	nonvolatile	storage	managed	by	the	
operating	system	that	contain	organizational	
information	about	its	own	contents	– directories,	etc.

• Namespaces are	the	convention	for	how	to	name	
things,	in	this	case,	files.		Here	is	

Files	=	Named	Byte	Arrays	*
• Files	have	two	different	interfaces

– Sequential	access	and
– Random-access

• Files	are	opened	with	open()	and	return	a	file	descriptor
• read()	sequentially	takes	the	contents	of	the	file	and	puts	it	into	a	

buffer	in	volatile	memory	and	advances	the	“read	pointer”	
associated	to	the	file	descriptor.

20 CHAPTER 1 Introduction

1.3.5 FILES

As we’ve pointed out, our primes example isn’t very useful since it doesn’t leave the results
of its computation where others (programs or people) can use them. What’s needed is access
to someplace outside the process that’s shared with others. The notion of a fi le is our Unix
system’s sole abstraction for this concept of “someplace outside the process” (modern
Unix systems have additional abstractions). Unix uses fi les both as the abstraction of persistent
data storage (such as on disks) and also as the means for fetching and storing data outside a
 process, whether that data is stored on disk, in another process, or in some other device, such
as a keyboard or display.

1.3.5.1 Naming Files
For our current discussion we’re concerned about both how to refer to such “places” outside
the process and how programs transfer data to and from such places. Since the place is outside the
process, we need a different space from the process’s address space. The nature of such spaces
was an issue a number of decades ago, but pretty much all systems today use tree- structured
directory systems for naming fi les and similar objects. These should be familiar to everyone
with enough computer experience to have gotten this far in this text: a fi le is named by stringing
together the names assigned to the edges forming a path from the root of the tree to the fi le.

Unix uses forward slashes as separators between the names; Windows uses back slashes.
That the path starts at the root is indicated by starting the name with the separators. Such path
names generally have the beginning (such as the root) at the left, though the Internet’s naming
scheme (Domain Name System — DNS) has it on the right.

The name space provided by the directory system is generally shared by all processes
running on a computer (and perhaps by all processes running on a number of computers). Unix
provides a means to restrict a process to a subtree: one simply redefi nes what “root” means for
the process. Thus fi les are identifi ed by their path names in the directory system.

Since the directory-system name space is outside the process, special means are required
to access it. The usual model is that one provides the name of the desired fi le to the operating
system, and the operating system returns a handle to be used to access the fi le. What’s going on
behind the scenes is that the operating system, somewhat laboriously, follows the path provided
by the name, checking to make certain that the process is allowed appropriate access along the
path. The returned handle provides a direct reference to the fi le so that such expensive path-
 following and access verifi cation isn’t required on subsequent accesses.

This use of a handle to refer to an object managed by the kernel is fairly important. We’ll
later see it generalized to the notion of a capability (Chapter 8). In abstract terms, possession
of a handle gives the holder not only a reference to an object in the kernel, but also certain lim-
ited rights for using the object. In the case of fi les, as we discuss, a handle allows the holder to
 perform certain actions on a fi le.

The following code uses the open system call to obtain a fi le’s handle, then uses the handle
to read the fi le:

int fd;

char buffer[1024];

int count;

if ((fd = open("/home/twd/fi le", O_RDWR) == -1) {

/* the fi le couldn’t be opened */

perror("/home/twd/fi le");

exit(1);

}

Ch001.indd 20Ch001.indd 20 8/5/10 11:26:27 AM8/5/10 11:26:27 AM

if ((count = read(fd, buffer, 1024)) == -1) {

/* the read failed */

perror("read");

exit(1);

}

/* buffer now contains count bytes read from the fi le */

Here we use the open system call to access the directory name space to get a handle for
the fi le whose path name is “/home/twd/fi le”. We’ve indicated by the second argument that
we want both read and write access to the fi le: if for some reason such access is not permitted,
the open call fails. If it succeeds, fd contains the handle (known in Unix as a fi le descriptor) for
the fi le.

We then use this handle as an argument to the read system call to identify the fi le and
attempt to transfer its fi rst 1024 bytes into buffer. Read returns the number of bytes that were
actually transferred: it could be less than what was asked for because, for example, the fi le might
not be that large. The perror routine prints, to fi le descriptor 2, its argument followed by a mes-
sage explaining the error number currently in the global variable errno (recall that that’s how
failing system calls leave the error number).

1.3.5.2 Using File Descriptors
These handles (or fi le descriptors) form what is essentially an extension to the process’s address
space, allowing the process unhindered access to the associated fi les. This address-space exten-
sion survives execs. Thus fi les open before an exec takes place are open afterwards. This property
is exploited as a way to pass the open fi les as additional parameters to the exec. File descriptors
are small nonnegative integers that are allocated lowest-available-number fi rst. By convention,
programs expect to read their primary input from fi le descriptor 0, to write their primary output
to fi le descriptor 1, and to write error messages to fi le descriptor 2. By default, input from fi le
descriptor 0 comes from the keyboard and output to fi le descriptors 1 and 2 goes to the display
(or current window).

However, as shown in the following code, different associations can be established in a
process before an exec:

if (fork() == 0) {

/* set up fi le descriptor 1 in the child process */

close(1);

if (open("/home/twd/Output", O_WRONLY) == -1) {

perror("/home/twd/Output");

exit(1);

}

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

1.3 A Simple OS 21

Ch001.indd 21Ch001.indd 21 8/5/10 11:26:27 AM8/5/10 11:26:27 AM

Using	File	Descriptors	(fork_example_2.c)
• File	descriptors	survive	exec()’s
• Default	file	descriptors

– 0	read	(keyboard)
– 1	write	(primary,	display)
– 2	error	(display)

• Different	associations	can	be	
established	before	fork()

• This	is	how	applications	launched	
by	the	operating	system,	whether	
through	a	window	interface	or	
from	the	command	line,	write	
their	stdout to	reasonable	places.

if ((count = read(fd, buffer, 1024)) == -1) {

/* the read failed */

perror("read");

exit(1);

}

/* buffer now contains count bytes read from the fi le */

Here we use the open system call to access the directory name space to get a handle for
the fi le whose path name is “/home/twd/fi le”. We’ve indicated by the second argument that
we want both read and write access to the fi le: if for some reason such access is not permitted,
the open call fails. If it succeeds, fd contains the handle (known in Unix as a fi le descriptor) for
the fi le.

We then use this handle as an argument to the read system call to identify the fi le and
attempt to transfer its fi rst 1024 bytes into buffer. Read returns the number of bytes that were
actually transferred: it could be less than what was asked for because, for example, the fi le might
not be that large. The perror routine prints, to fi le descriptor 2, its argument followed by a mes-
sage explaining the error number currently in the global variable errno (recall that that’s how
failing system calls leave the error number).

1.3.5.2 Using File Descriptors
These handles (or fi le descriptors) form what is essentially an extension to the process’s address
space, allowing the process unhindered access to the associated fi les. This address-space exten-
sion survives execs. Thus fi les open before an exec takes place are open afterwards. This property
is exploited as a way to pass the open fi les as additional parameters to the exec. File descriptors
are small nonnegative integers that are allocated lowest-available-number fi rst. By convention,
programs expect to read their primary input from fi le descriptor 0, to write their primary output
to fi le descriptor 1, and to write error messages to fi le descriptor 2. By default, input from fi le
descriptor 0 comes from the keyboard and output to fi le descriptors 1 and 2 goes to the display
(or current window).

However, as shown in the following code, different associations can be established in a
process before an exec:

if (fork() == 0) {

/* set up fi le descriptor 1 in the child process */

close(1);

if (open("/home/twd/Output", O_WRONLY) == -1) {

perror("/home/twd/Output");

exit(1);

}

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

1.3 A Simple OS 21

Ch001.indd 21Ch001.indd 21 8/5/10 11:26:27 AM8/5/10 11:26:27 AM

File	Random	Access	
• lseek()	provides	non-sequential	access	to	files.		The	following	code

reverses	a	file	with	lseek repositioning	the	”read	pointer”	to	a	given	
offset	position.

NB.	you	should	be	able	to	read	code	like	this	easily,	interpreting	it	as	pseudo-C	code.	*

28 CHAPTER 1 Introduction

1.3.5.3 Random Access
As we’ve seen, the normal mode of access to fi les is sequential: successive reads or writes to a fi le
are to successive locations in the fi le. Though this is probably what’s desired in most situations,
sometimes we’d like to access a fi le randomly, reading or writing arbitrary locations within it.
This turns out to be easily done, since the read and write system calls simply look at the contents
of the fi le-location fi eld of the context structure and increment it after the operation.

Thus to read or write starting at an arbitrary location, all we have to do is provide a means
for setting this fi le-location fi eld. This is done with the lseek system call. The example below
shows using lseek to print the contents of a fi le backwards:11

fd = open("textfi le", O_RDONLY);

/* go to last char in fi le */

fptr = lseek(fd, (off_t)–1, SEEK_END);

while (fptr != –1) {

read(fd, buf, 1);

write(1, buf, 1);

fptr = lseek(fd, (off_t)–2, SEEK_CUR);

}

The fi rst argument to lseek is the fi le descriptor, the second and third arguments (of type
off_t, an integer type) indicate the value that goes into the fi le-location fi eld. The third argument
specifi es where we are measuring the offset from (SEEK_SET indicates the offset is interpreted
as from the beginning of the fi le, SEEK_CUR means from the current position in the fi le, and
SEEK_END means from the end of the fi le). Note that lseek does no actual I/O; all it does is set
the fi le-location fi eld.

What we’ve done in the example above is to start with the fi le location set to point to the
last character in the fi le. After reading a byte, the location is advanced by one, so to get the previ-
ous character, we subtract two from it.

1.3.5.4 Pipes
An interesting construct based on the fi le notion is the pipe. A pipe is a means for one process to
send data to another directly, as if it were writing to a fi le (see Figure 1.11). The process sending data
behaves as if it has a fi le descriptor to a fi le that has been opened for writing. The process receiving
data behaves as if it has a fi le descriptor referring to a fi le that has been opened for reading.

A pipe and the two fi le descriptors referring to it are set up using the pipe system call.
This creates a pipe object in the kernel and returns, via an output parameter, the two fi le descrip-
tors that refer to it: one, set for write-only, referring to the input side and the other, set for read-
only, referring to the output end. Since this pipe object, though it behaves somewhat like a fi le,
has no name, the only way for any process to refer to it is via these two fi le descriptors. Thus only the
process that created it and its descendants (which inherit the fi le descriptors) can refer to the pipe.

FIGURE 1 .11 Communication via a pipe

pipesender receiver

11 This is defi nitely not a good way to print a fi le backwards! It simply illustrates what you can do with lseek.

Ch001.indd 28Ch001.indd 28 8/5/10 11:26:32 AM8/5/10 11:26:32 AM

2/7/17

10

A	Different	Kind	of	File:	A	Pipe	*	(pipe_example.c)
• A	pipe	is	a	means	for	one	process	to	send	data	to	another	directly
• pipe()	returns	two	nameless	file	descriptors	that	can	be	written	to	

and	read	from
Here’s a simple pipe example:

int p[2]; /* array to hold pipe’s fi le descriptors */

pipe(p); /* create a pipe; assume no errors */

/* p[0] refers to the output end of the pipe */

/* p[1] refers to the input end of the pipe */

if (fork() == 0) {

char buf[80];

close(p[1]); /* not needed by the child */

while (read(p[0], buf, 80) > 0) {

/* use data obtained from parent */

…

}

} else {

char buf[80];

close(p[0]); /* not needed by the parent */

for (;;) {

/* prepare data for child */

…

write(p[1], buf, 80);

}

}

1.3.5.5 Directories
A directory is essentially a fi le like the others we’ve been discussing, except that it is inter-
preted by the operating system as containing references to other fi les (some of which may
well be other directories). From a logical perspective, a directory consists of an array of pairs
of component name and inode number, where the latter identifi es the target fi le’s inode to the
operating system (recall that an inode is a data structure maintained by the operating system
to represent a fi le).

Every directory contains two special entries, “.” and “..”. The former refers to the directory
itself, the latter to the directory’s parent. In Figure 1.12, the directory is the root directory and has
no parent, and thus its “..” entry is a special case that refers to the directory itself.

1.3 A Simple OS 29

FIGURE 1 .12 Sample directory

Component name Inode number

Directory entry

unix 117

etc 4

home 18

pro 36

dev 93

. 1

.. 1

Ch001.indd 29Ch001.indd 29 8/5/10 11:26:33 AM8/5/10 11:26:33 AM

What	is	a	Directory?
• A	directory	is	a	file	

– that	is	interpreted	as	containing	references	to	other	files	by	the	OS	*

• An	example	organization	might	include	an	array	of	(implementation	
dependent)
– Component	names	and
– inode numbers

• an	inode is	a	data	structure	on	a	filesystem	on	Linux	and	other	Unix-like	operating	
systems	that	stores	all	the	information	about	a	file	except	its	name	and	its	actual	
data.

• inodes are	files	too

Here’s a simple pipe example:

int p[2]; /* array to hold pipe’s fi le descriptors */

pipe(p); /* create a pipe; assume no errors */

/* p[0] refers to the output end of the pipe */

/* p[1] refers to the input end of the pipe */

if (fork() == 0) {

char buf[80];

close(p[1]); /* not needed by the child */

while (read(p[0], buf, 80) > 0) {

/* use data obtained from parent */

…

}

} else {

char buf[80];

close(p[0]); /* not needed by the parent */

for (;;) {

/* prepare data for child */

…

write(p[1], buf, 80);

}

}

1.3.5.5 Directories
A directory is essentially a fi le like the others we’ve been discussing, except that it is inter-
preted by the operating system as containing references to other fi les (some of which may
well be other directories). From a logical perspective, a directory consists of an array of pairs
of component name and inode number, where the latter identifi es the target fi le’s inode to the
operating system (recall that an inode is a data structure maintained by the operating system
to represent a fi le).

Every directory contains two special entries, “.” and “..”. The former refers to the directory
itself, the latter to the directory’s parent. In Figure 1.12, the directory is the root directory and has
no parent, and thus its “..” entry is a special case that refers to the directory itself.

1.3 A Simple OS 29

FIGURE 1 .12 Sample directory

Component name Inode number

Directory entry

unix 117

etc 4

home 18

pro 36

dev 93

. 1

.. 1

Ch001.indd 29Ch001.indd 29 8/5/10 11:26:33 AM8/5/10 11:26:33 AM

Keeping	Stuff	Around	After	the	Computer	Turns	Off	:	Creating	Files

• creat()	and	open()	(with	flags)	are	used	to	create	files

• “man	2	open”	(man	is	a	Unix	command	for	viewing	manual	entries	
about	commands	– you	should	know	about	this	in	general)
OPEN(2) BSD System Calls Manual OPEN(2)

NAME
open, openat -- open or create a file for reading or writing

SYNOPSIS
#include <fcntl.h>

int
open(const char *path, int oflag, ...);

int
openat(int fd, const char *path, int oflag, ...);

DESCRIPTION
The file name specified by path is opened for reading and/or writing, as specified by the argument oflag;
the file descriptor is returned to the calling process.

The oflag argument may indicate that the file is to be created if it does not exist (by specifying the
O_CREAT flag). In this case, open() and openat() require an additional argument mode_t mode; the file is
created with mode mode as described in chmod(2) and modified by the process' umask value (see umask(2)).

The openat() function is equivalent to the open() function except in the case where the path specifies a…

Review	:	User	Perspective	on	OS	*
• Traps	/	system	calls

– exec()
– fork()
– open()
– pipe()
– exit()
– close()
– read()
– write()
– dup()
– …

• The	operating	system	provides	this	interface	that	abstracts	the	
“computer”	as	a	process	and	allows	sharing.

• Next	lecture	:	more	user	basics.		
• Final	two	lectures	:	some	key	points	in	implementing	an	OS	that	provides	

these	functionalities

2/7/17

11

Lecture	2	:	Basics;	Processes, Threads,	…	

Material	from	
Operating	Systems	in	Depth

(spec.	Chapters	2&3)		
by

Thomas	Doeppner

GET	THIS	BOOK	AND	READ	IT!

Threads
Hardware OS

Non-volatile
Memory

Volatile
Memory

I/O

Processor
Threads

User-ModeKernel-Mode

init

e.g.	kblockd

deamon

deamon

deamon

e.g.	sshd

process

process

e.g.	bash

e.g.	top

Applications

Threads	*	(thread_example_1.c)
• What	is	a	thread?

– A	thread	of	control
– Abstraction	of	a	processor	thread	within	a	process

• Property
– All	threads	in	a	process	share	the	same	address	space	with	all	other	threads	

in	the	process
• Why	threads?

– Mechanism	for	concurrency	in	user-level	programs
– Can	dramatically	simplify	code,	for	instance	writing	code	to	

• Concurrently	handle	multiple	database	requests
• Run	a	server	listening	on	a	socket	responding	to	simultaneous	client	requests

– Requires	care
• Synchronization	<- this	is	a	major	issue	to	provision

NB:	Code	examples	will	use	POSIX	(“portable	operating	system	interface”)	specification	of	threads	and	synchronization	
primitives

Thread	Creation

44 CHAPTER 2 Multithreaded Programming

Despite the advantages of programming with threads, only relatively recently have standard APIs
for multithreaded programming been developed. The most important of these APIs in the Unix
world is the one developed by a group originally called POSIX 1003.4a. This multi-year effort
resulted in 1995 in an approved standard, now known by the number 1003.1c.

Microsoft produced as part of its Win-32 interface a threads package whose interface has
little in common with that of POSIX. Moreover, there are signifi cant differences between the
Microsoft and POSIX approaches — some of the constructs of one cannot be easily implemented
in terms of the constructs of the other, and vice versa. Despite these incompatibilities, both
approaches are useful for multithreaded programming.

2.2.1 THREAD CREATION AND TERMINATION

Creating a thread should be a pretty straightforward operation: in response to some sort of directive,
a new thread is created and proceeds to execute code independently of its creator. There are, of
course, a few additional details. We may want to pass parameters to the thread. A stack of some
size must be created to be the thread’s execution context. Also, we need some mechanism for
the thread to terminate and to make a termination value available to others.

2.2.1.1 Creating POSIX Threads
POSIX and Win-32 have similar interfaces for creating a thread. Suppose we wish to create a
bunch of threads, each of which will execute code to provide some service. In POSIX, we do this
as follows:

void start_servers() {

pthread_t thread;

int i;

for (i=0; i<nr_of_server_threads; i++)

pthread_create(

 &thread, // thread ID

 0, // default attributes

 server, // start routine

 argument); // argument

}

void *server(void *arg) {

// perform service

return (0);

}

Thus a thread is created by calling pthread_create. If it returns successfully (returns 0), a
new thread has been created that is now executing independently of the caller. This thread’s ID
is returned via the fi rst parameter (an output parameter that, in standard C programming style, is
a pointer to where the result should be stored). The second parameter is a pointer to an attributes
structure that defi nes various properties of the thread. Usually we can get by with the default
properties, which we specify by supplying a null pointer. The third parameter is the address of
the routine in which our new thread should start its execution. The last argument is the argument
that is actually passed to the fi rst procedure of the thread.

If pthread_create fails, it returns a positive value indicating the cause of the failure.

2.2
PROGRAMMING
WITH THREADS

2.2
PROGRAMMING
WITH THREADS

CH002.indd 44CH002.indd 44 8/2/10 8:26:13 PM8/2/10 8:26:13 PM

2/7/17

12

Passing	Arguments	to	Threads
• Care	must	be	taken	with	threads	in	general	because	of	address	

space	sharing	and	ability	to	address	the	calling	stack

2.2 Programming with Threads 45

2.2.1.2 Creating Win-32 Threads
An equivalent program written for Windows using the Win-32 interface is:

void start_servers() {

HANDLE thread;

DWORD id;

int i;

for (i=0; i<nr_of_server_threads; i++)

thread = CreateThread(

 0, // security attributes

 0, // default # of stack pages allocated

 server, // start routine

 0, // argument

 0, // creation fl ags

 &id); // thread ID

}

DWORD WINAPI server(void *arg) {

// perform service

return(0);

}

Calls to CreateThread are used rather than pthread_create. A handle for the new thread is
returned. A handle, as we discussed in Chapter 1, is similar to a Unix fi le descriptor: it refers to
information belonging to the user process but maintained in the operating system. In this case, as
we’ll see, the handle allows the holder to perform operations on the thread.

An ID is returned via the last (output) argument. It is a means of identifying the thread that
gives the holder no ability to control that thread. Thus one process can make a thread ID available to
another process so as to identify the thread but not give the second process any control over it.

The fi rst parameter is a pointer to the security attributes to be associated with the thread;
we use 0 for this for now and discuss other possibilities later. The next parameter is the number
of stack pages (in bytes) to allocate physical resources for (one megabyte of virtual memory is
allocated; the parameter indicates how much of this initially has real memory and stack space
supporting it); 0 means to use the default. The third parameter is the address of the fi rst routine
our thread executes; the next parameter is the argument that’s passed to that routine. The next to
the last parameter specifi es various creation fl ags; we don’t supply any here.

If CreateThread fails, indicated by returning a null handle, GetLastError can be used to
determine the cause of the failure.

2.2.1.3 Handling Multiple Arguments
A problem comes up with both pthread_create and CreateThread when you want to pass
more than one argument to a thread. Suppose you are creating threads for use with our two-
threaded implementation of rlogind (Section 2.1 above). One might be tempted to use the
trick outlined below:

typedef struct {

int fi rst, second;

} two_ints_t;

CH002.indd 45CH002.indd 45 8/2/10 8:26:14 PM8/2/10 8:26:14 PM

46 CHAPTER 2 Multithreaded Programming

void rlogind(int r_in, int r_out, int l_in, int l_out) {

pthread_t in_thread, out_thread;

two_ints_t in={r_in, l_out}, out={l_in, r_out};

pthread_create(&in_thread,

0,

incoming,

&in);

pthread_create(&out_thread,

0,

outgoing,

&out);

}

Here we pack two arguments into a structure, then pass a pointer to it to pthread_create.
This is an example of something that works in single-threaded programs but can cause disastrous
failures in multithreaded programs. The variables in and out are local variables and thus are allo-
cated on the stack of the thread that called rlogind. When this fi rst thread returns from rlogind,
these variables go out of scope — the stack locations might be used for other things. Thus when
pthread_create is called, the addresses of in and out point to useful information. But by the time
the threads created by the calls to pthread_create reference the data pointed to by their arguments
(in and out), this data might no longer exist, since the fi rst thread is no longer in their scope. Thus
our approach works only if we can be certain that fi rst thread does not leave the scope of the
arguments while they are in use.

Is there a safe way to pass multiple arguments to a thread that works in all cases? Ideally,
we’d like to copy all of a thread’s arguments onto its stack. But since neither pthread_create
nor CreateThread provides a means for doing this for more than one argument, we need some
other technique. (Other threads packages, for example (Doeppner 1987), did provide a way to
put multiple arguments on a thread’s stack.) Whatever approach we use, it must involve passing
a pointer or some sort of pointer-sized identifi er to the thread, which then uses this identifi er
to refer to the actual arguments (which must reside in storage that is available while the thread
is executing).

One approach might be to use static or global storage for the arguments, so that there’s not
a problem with them going out of scope. While this would work in some cases, suppose that in
our example multiple threads are calling rlogind concurrently. All would use the same locations
for storing the arguments to pthread_create, and the result would be chaos.

We might allocate storage dynamically for the arguments, using malloc in C or new in C++.
This might seem to solve our problems, but who frees the storage, and when? The creating thread
can do so safely only if the created thread is certain not to access the arguments at any point in
the future. We can’t expect the created thread to free the storage unless its arguments are always
in dynamically allocated storage.

In summary, we have four approaches for passing multiple arguments to a thread:

 1. copy all arguments to the thread’s stack: this always works, but isn’t supported in either
POSIX or Win-32

 2. pass a pointer to local storage containing the arguments: this works only if we are certain
this storage doesn’t go out of scope until the thread is fi nished with it

 3. pass a pointer to static or global storage containing the arguments: this works only if only
one thread at a time is using the storage

CH002.indd 46CH002.indd 46 8/2/10 8:26:14 PM8/2/10 8:26:14 PM

i.e.	problem	with	this	code	in	and	out	are	local variables	thus	leave	scope	when	rlogind exits

Thread	Termination	(thread_example_2.c)
• Threads	can	modify	any	part	of	the	shared	address	space,	however
• A	pointer	to	memory	must	be	provided	for	thread	to	place	explicit	

return	values,	here	&result

• pthread_exit()	terminates	thread	whereas	exit()	terminates	process

48 CHAPTER 2 Multithreaded Programming

pthread_create(&createe, 0, CreateeProc, 0);

…

pthread_join(create, &result);

…

}

void *CreateeProc(void *arg) {

…

if (should_terminate_now)

pthread_exit((void *)1);

…

return((void *)2);

}

There is a big difference between pthread_exit and exit. The former terminates just the
calling thread. The latter terminates the entire process, including all threads running in it. Note
that if a thread returns from a program’s main procedure, it calls exit (it actually returns to
code that then calls exit). So, consider the following code:

int main(int argc, char *argv[]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

return(0);

}

What happens here is that ten threads are created but the creating thread immediately
returns from main, calls exit, and thus terminates the entire process. On a uniprocessor system,
none of the ten child threads are likely to get a chance to run at all.

To create a bunch of threads and then terminate innocuously, one might do something like:

int main(int argc, char *argv[]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

pthread_exit(0);

return(0);

}

Here the fi rst thread again creates ten threads, but then quietly goes away (the call to return
is required even though it won’t be executed, since main is defi ned as returning an int). The process
terminates once all its component threads have terminated (or if one of them calls exit).

CH002.indd 48CH002.indd 48 8/2/10 8:26:14 PM8/2/10 8:26:14 PM

48 CHAPTER 2 Multithreaded Programming

pthread_create(&createe, 0, CreateeProc, 0);

…

pthread_join(create, &result);

…

}

void *CreateeProc(void *arg) {

…

if (should_terminate_now)

pthread_exit((void *)1);

…

return((void *)2);

}

There is a big difference between pthread_exit and exit. The former terminates just the
calling thread. The latter terminates the entire process, including all threads running in it. Note
that if a thread returns from a program’s main procedure, it calls exit (it actually returns to
code that then calls exit). So, consider the following code:

int main(int argc, char *argv[]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

return(0);

}

What happens here is that ten threads are created but the creating thread immediately
returns from main, calls exit, and thus terminates the entire process. On a uniprocessor system,
none of the ten child threads are likely to get a chance to run at all.

To create a bunch of threads and then terminate innocuously, one might do something like:

int main(int argc, char *argv[]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

pthread_exit(0);

return(0);

}

Here the fi rst thread again creates ten threads, but then quietly goes away (the call to return
is required even though it won’t be executed, since main is defi ned as returning an int). The process
terminates once all its component threads have terminated (or if one of them calls exit).

CH002.indd 48CH002.indd 48 8/2/10 8:26:14 PM8/2/10 8:26:14 PM

Thread	Attributes	
• For	instance	threads	must	have	their	own	stacks
• e.g.	to	specify	the	stack	size	for	a	thread	one	initializes	an	attributes	

datastructure thr_attr

2.2 Programming with Threads 51

happen, for example, if the thread places a call to a procedure with large local variables that aren’t
immediately referenced. So we must be careful to give each thread a suffi ciently large stack (how
large is large enough depends on the program and the architecture).

To specify the stack size for a thread, one sets up an attributes structure using pthread_attr_
setstacksize and supplies it to pthread_create:

pthread_t thread;

pthread_attr_t thr_attr;

pthread_attr_init(&thr_attr);

pthread_attr_setstacksize(&thr_attr, 20*1024*1024);

...

pthread_create(&thread, &thr_attr, startroutine, arg);

In this case we’ve created a thread with a twenty-megabyte stack.
How large is the default stack? This is not specifi ed in POSIX threads. Different implementa-

tions use different values, ranging from around 20 KB in Tru64 Unix to one megabyte in Solaris
and eight megabytes in some Linux implementations.

Win-32 uses a different approach to stack size: the amount of address space allocated for
each thread’s stack is a link-time parameter, not a run-time parameter. The “stacksize” argument
to CreateThread indicates how many pages of primary memory are allocated to hold the stack
when the thread starts execution. Additional pages of primary memory are allocated as neces-
sary as the thread runs, up to the maximum stack size. One cannot affect this level of detail using
POSIX threads.

2.2.1.6 Example
Here is a simple complete multithreaded program that computes the product of two matrices. Our
approach is to create one thread for each row of the product and have these threads compute the
necessary inner products. (This isn’t a good way to compute the product of two matrices — it’s
merely an example of a multithreaded program!)

#include <stdio.h>

#include <pthread.h> /* all POSIX threads declarations */

#include <string.h> /* needed to use strerror below */

#defi ne M 3

#defi ne N 4

#defi ne P 5

int A[M][N]; /* multiplier matrix */

int B[N][P]; /* multiplicand matrix */

int C[M][P]; /* product matrix */

void *matmult(void *);

int main() {

int i, j;

CH002.indd 51CH002.indd 51 8/2/10 8:26:15 PM8/2/10 8:26:15 PM

NB: “man pthread_attr_init”

Synchronization	***	(thread_example_3.c)	
• Threads	share	access	to	common	data	structures	

– Same	address	space

• We	need	something	called	mutual	exclusion,	a	form	of	thread	
synchronization,	to	make	sure	two	things	don’t	happen	at	once

• Example,	two	threads	each	doing

• Can	result	in	1	or	2;	adversarially reordering	the	assembly	code	
below	shows	what	kind	of	bad	things	can	happen

2.2 Programming with Threads 57

2.2.3.1 Mutual Exclusion
The mutual-exclusion problem involves making certain that two things don’t happen at once. A
dramatic example arose in the fi ghter aircraft of World War I, as illustrated in Figure 2.4. Due to
a number of constraints (e.g., machine guns tended to jam frequently and thus had to be near peo-
ple who could unjam them), machine guns were mounted directly in front of the pilot. However,
blindly shooting a machine gun through a whirling propeller was not a good idea. At the begin-
ning of the war, pilots, being gentlemen, politely refrained from attacking fellow pilots. A bit later
in the war, however, the Germans developed the tactic of gaining altitude on an opponent, diving
at him, turning off the engine, then fi ring — without hitting the now-stationary propeller. Today
this would be called coarse-grained synchronization. Later, the Germans developed technology
that synchronized the fi ring of the gun with the whirling of the propeller, so that shots were fi red
only when the propeller blades would not be in the way. This could well be the fi rst example of a
mutual-exclusion mechanism providing fi ne-grained synchronization!

For a more computer-oriented example of the need for mutual exclusion, consider two
threads, each performing the following operation:

x = x+1;

If the two threads perform the operation at the same time, what’s the fi nal value of x if its initial
value was zero? We’d very much like the answer to be 2. However, consider the assembly-language
version of the statement. It probably looks something like this:

ld r1,x

add r1,1

st r1,x

Thus to add 1 to the variable x, the machine must fi rst load the current contents of location x into
a register, add 1 to the contents of the register, then store those contents back into the location contain-
ing x. If both threads do this at more or less the same time, the fi nal result stored in x is likely to be 1!

For the concurrent execution of the two assignment statements to behave as we want it to,
we somehow have to insure that the effect of executing the three assembler instructions is atomic,
i.e., that all three instructions take place at once without interference.

FIGURE 2 .4 World War I fi ghter aircraft. (Copyright © iStockphoto.)

CH002.indd 57CH002.indd 57 8/2/10 8:26:16 PM8/2/10 8:26:16 PM

2.2 Programming with Threads 57

2.2.3.1 Mutual Exclusion
The mutual-exclusion problem involves making certain that two things don’t happen at once. A
dramatic example arose in the fi ghter aircraft of World War I, as illustrated in Figure 2.4. Due to
a number of constraints (e.g., machine guns tended to jam frequently and thus had to be near peo-
ple who could unjam them), machine guns were mounted directly in front of the pilot. However,
blindly shooting a machine gun through a whirling propeller was not a good idea. At the begin-
ning of the war, pilots, being gentlemen, politely refrained from attacking fellow pilots. A bit later
in the war, however, the Germans developed the tactic of gaining altitude on an opponent, diving
at him, turning off the engine, then fi ring — without hitting the now-stationary propeller. Today
this would be called coarse-grained synchronization. Later, the Germans developed technology
that synchronized the fi ring of the gun with the whirling of the propeller, so that shots were fi red
only when the propeller blades would not be in the way. This could well be the fi rst example of a
mutual-exclusion mechanism providing fi ne-grained synchronization!

For a more computer-oriented example of the need for mutual exclusion, consider two
threads, each performing the following operation:

x = x+1;

If the two threads perform the operation at the same time, what’s the fi nal value of x if its initial
value was zero? We’d very much like the answer to be 2. However, consider the assembly-language
version of the statement. It probably looks something like this:

ld r1,x

add r1,1

st r1,x

Thus to add 1 to the variable x, the machine must fi rst load the current contents of location x into
a register, add 1 to the contents of the register, then store those contents back into the location contain-
ing x. If both threads do this at more or less the same time, the fi nal result stored in x is likely to be 1!

For the concurrent execution of the two assignment statements to behave as we want it to,
we somehow have to insure that the effect of executing the three assembler instructions is atomic,
i.e., that all three instructions take place at once without interference.

FIGURE 2 .4 World War I fi ghter aircraft. (Copyright © iStockphoto.)

CH002.indd 57CH002.indd 57 8/2/10 8:26:16 PM8/2/10 8:26:16 PM

2/7/17

13

POSIX	Mutexes ***
• OS’s	typically	support	thread	synchronization	mechanisms
• POSIX	defines	a	data	type	called	a	mutex (from	“mutual	exclusion”)
• Mutexes can	ensure

– Only	one	thread	is	executing	a	block	of	code	(code	locking)
– Only	one	thread	is	accessing	a	particular	data	structure	(data	locking)

• A	mutex either	“belongs	to	”	or	is	“held	by”	a	single	thread	or	
belongs	to	no	thread	

POSIX	Mutexes ***
• A	mutex is	created	via	pthread_mutex_init()
• A	thread	may	“own”	or	“lock”	a	mutex by	calling	

pthread_mutex_lock()
• A	mutex may	be	unlocked	by	calling	pthread_mutex_unlock()

58 CHAPTER 2 Multithreaded Programming

We’re not going to show how to solve this problem right away. Instead, we introduce
functionality from POSIX threads and Win-32 and show how we can use it to solve the problem.
In Chapter 5 we show how this functionality is implemented.

POSIX threads defi nes a new data type called a mutex, which stands for mutual exclusion.
A mutex is used to insure either that only one thread is executing a particular piece of code at
once (code locking) or that only one thread is accessing a particular data structure at once (data
locking). A mutex belongs either to a particular thread or to no thread (i.e., it is either locked
or unlocked). A thread may lock a mutex by calling pthread_mutex_lock. If no other thread has
the mutex locked, then the calling thread obtains the lock on the mutex and returns. Otherwise it
waits until no other thread has the mutex, and fi nally returns with the mutex locked. There may,
of course, be multiple threads waiting for the mutex to be unlocked. Only one thread can lock
the mutex at a time; there is no specifi ed order for which thread gets the mutex next, though the
ordering is assumed to be at least somewhat fair.

To unlock a mutex, a thread calls pthread_mutex_unlock. It is considered incorrect to
unlock a mutex that is not held by the caller (i.e., to unlock someone else’s mutex). However,
checking for this is costly, so most implementations, if they check at all, do so only when certain
degrees of debugging are turned on.

Like any other data structure, mutexes must be initialized. This can be done via a call to
pthread_mutex_init or can be done statically by assigning PTHREAD_MUTEX_INITIALIZER
to a mutex. The initial state of such initialized mutexes is unlocked. Of course, a mutex should be
initialized only once! (That is, make certain that, for each mutex, no more than one thread calls
pthread_mutex_init.) If a mutex is dynamically initialized, a call should be made to pthread_
mutex_destroy when it is no longer needed.

Using mutexes, we can solve the problem of atomically adding 1 to a variable.

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

 // shared by both threads

int x; // ditto

pthread_mutex_lock(&m);

x = x+1;

pthread_mutex_unlock(&m);

Using a mutex to provide mutually exclusive access to a single data structure at a time is
easy. Things get a bit more involved if we need to arrange for such access to multiple data struc-
tures at once. Consider the following example in which one thread is executing proc1 and another
is executing proc2:

void proc1() {

pthread_mutex_lock(&m1);

/* use object 1 */

pthread_mutex_lock(&m2);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m2);

 pthread_mutex_unlock(&m1);

}

void proc2() {

pthread_mutex_lock(&m2);

/* use object 2 */

pthread_mutex_lock(&m1);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m1);

 pthread_mutex_unlock(&m2);

}

CH002.indd 58CH002.indd 58 8/2/10 8:26:17 PM8/2/10 8:26:17 PM

Mutual	exclusion	can	result	in	DEADLOCK!
• Using	threads	in	practice	can	be	fraught	with	difficulty	
• Deadlockmeans	that	one	or	more	threads	are	trying	to	own	a	set	of	

mutexes in	a	way	that	results	in	some	subset	of	the	threads	can	
never	proceed	*

• In	the	following	code	example	deadlock	can	occur,	can	you	see	it?

58 CHAPTER 2 Multithreaded Programming

We’re not going to show how to solve this problem right away. Instead, we introduce
functionality from POSIX threads and Win-32 and show how we can use it to solve the problem.
In Chapter 5 we show how this functionality is implemented.

POSIX threads defi nes a new data type called a mutex, which stands for mutual exclusion.
A mutex is used to insure either that only one thread is executing a particular piece of code at
once (code locking) or that only one thread is accessing a particular data structure at once (data
locking). A mutex belongs either to a particular thread or to no thread (i.e., it is either locked
or unlocked). A thread may lock a mutex by calling pthread_mutex_lock. If no other thread has
the mutex locked, then the calling thread obtains the lock on the mutex and returns. Otherwise it
waits until no other thread has the mutex, and fi nally returns with the mutex locked. There may,
of course, be multiple threads waiting for the mutex to be unlocked. Only one thread can lock
the mutex at a time; there is no specifi ed order for which thread gets the mutex next, though the
ordering is assumed to be at least somewhat fair.

To unlock a mutex, a thread calls pthread_mutex_unlock. It is considered incorrect to
unlock a mutex that is not held by the caller (i.e., to unlock someone else’s mutex). However,
checking for this is costly, so most implementations, if they check at all, do so only when certain
degrees of debugging are turned on.

Like any other data structure, mutexes must be initialized. This can be done via a call to
pthread_mutex_init or can be done statically by assigning PTHREAD_MUTEX_INITIALIZER
to a mutex. The initial state of such initialized mutexes is unlocked. Of course, a mutex should be
initialized only once! (That is, make certain that, for each mutex, no more than one thread calls
pthread_mutex_init.) If a mutex is dynamically initialized, a call should be made to pthread_
mutex_destroy when it is no longer needed.

Using mutexes, we can solve the problem of atomically adding 1 to a variable.

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

 // shared by both threads

int x; // ditto

pthread_mutex_lock(&m);

x = x+1;

pthread_mutex_unlock(&m);

Using a mutex to provide mutually exclusive access to a single data structure at a time is
easy. Things get a bit more involved if we need to arrange for such access to multiple data struc-
tures at once. Consider the following example in which one thread is executing proc1 and another
is executing proc2:

void proc1() {

pthread_mutex_lock(&m1);

/* use object 1 */

pthread_mutex_lock(&m2);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m2);

 pthread_mutex_unlock(&m1);

}

void proc2() {

pthread_mutex_lock(&m2);

/* use object 2 */

pthread_mutex_lock(&m1);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m1);

 pthread_mutex_unlock(&m2);

}

CH002.indd 58CH002.indd 58 8/2/10 8:26:17 PM8/2/10 8:26:17 PM

Deadlock	is	nasty,	difficult	to	detect,	and	to	be	avoided	at	all	cost

• One	useful	avoidance	mechanism	is	pthread_mutex_trylock()

60 CHAPTER 2 Multithreaded Programming

Thread 1

Thread 2

Mutex 1 Mutex 2

FIGURE 2 .5 Thread/mutex graph.

can’t possibly exist in the graph. This is easy to do: we simply arrange our mutexes in some order
(for example, by assigning unique integers to them) and insist that all threads attempting to lock
multiple resources do so in ascending order.

In most applications it is fairly easy to set things up so that all threads lock mutexes in
ascending order. However, in some situations this is impossible, often because it is not known
which mutex should be locked second until the fi rst one is locked. An approach that often works
in such situations is to use conditional lock requests, as in:

proc1() {

pthread_mutex_lock(&m1);

/* use object 1 */

pthread_mutex_lock(&m2);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m2);

 pthread_mutex_unlock(&m1);

}

proc2() {

while (1) {

pthread_mutex_lock(&m2);

if (!pthread_mutex_trylock(&m1))

break;

 pthread_mutex_unlock(&m2);

}

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m1);

 pthread_mutex_unlock(&m2);

}

Here thread 1, executing proc1, obtains the mutexes in the correct order. Thread 2, executing
proc2, must for some reason take the mutexes out of order. If it is holding mutex 2, it must be care-
ful about taking mutex 1. So, rather than call pthread_mutex_lock, it calls pthread_mutex_trylock,
which always returns without blocking. If the mutex is available, pthread_mutex_trylock locks
the mutex and returns 0. If the mutex is not available (that is, if it is locked by another thread),
then pthread_mutex_trylock returns a nonzero error code (EBUSY). In the example above, if

CH002.indd 60CH002.indd 60 8/2/10 8:26:18 PM8/2/10 8:26:18 PM

2/7/17

14

Semaphores
• A	semaphore	is	a	nonnegative	integer	with	two	atomic	operations

– P	(try	to	decrease)	:	thread	waits	until	semaphore	is	positive	then	subtracts	1	
• []’s	are	notation	for	guards;	that	which	happens	between	them	is	atomic,	instantaneous,	

and	no	other	operation	that	might	take	interfere	with	it	can	take	place	while	it	is	executing

– V	(increase)

• Mutexes can	be	implemented	as	semaphores

62 CHAPTER 2 Multithreaded Programming

on native Dutch speakers. According to (Dijkstra undated: early 1960s), P stands for prolagen,
a made-up word derived from proberen te verlagen, “try to decrease” in Dutch. V stands for
verhogen, “increase” in Dutch.) The P operation is somewhat complicated: a thread waits until it
fi nds the value of the semaphore positive, then subtracts one from it. What’s really important is
that when the active part of the operation starts, the semaphore’s value is defi nitely positive, and
when this active part fi nishes, the value is exactly one less than when the operation started. It’s
often described as an atomic or indivisible operation: it has no component parts and takes place
as if it were happening instantaneously.

We use the following notation to describe the semantics of P:

when (semaphore > 0) [

semaphore = semaphore – 1;

]

This notation means that the operations in square brackets take place only when the expression
following “when,” known as the guard, is true; the statements in square brackets, known as
the command sequence, are effectively executed instantaneously: no other operation that might
interfere with it can take place while it is executing. We call the entire construct a guarded
command.

The V operation is simpler: a thread atomically adds one to the value of the semaphore.
We write this as

[semaphore = semaphore + 1]

There is no other means for manipulating the value of the semaphore (other than initializing
its value in the fi rst place). Thus if the semaphore’s value is initially one and two threads concur-
rently execute P and V operations on it, the resulting value of the semaphore is guaranteed to be
one. If its value is initially zero and the two threads concurrently execute P and V operations, the
P operation must wait until the V operation makes the semaphore’s value positive. Then the P
operation can complete, reducing the semaphore’s value to zero.

We can easily implement mutexes using semaphores:

semaphore S = 1;

void OneAtATime() {

P(S);

…

/* code executed mutually exclusively */

…

V(S);

}

If two threads call the OneAtATime routine, the fi rst one to execute the P operation fi nds S to
be one, and so subtracts one from it, making it zero. If the second thread now attempts to execute
the P operation, it fi nds S to be zero and thus must wait. Eventually the fi rst thread performs the V
operation, adding one back to S, which enables the second thread to continue. It subtracts one from
S and eventually executes the V and adds one back to it. When semaphores are used in such a way
that their values are only zero and one, as here, they are known as binary semaphores.

When multiple threads attempt to execute a P operation, the effect must be as if they execute
it one at a time while the semaphore’s value is positive. If its value is zero, they are queued up
and, one at a time, they complete the P operation in response to V operations by other threads.

CH002.indd 62CH002.indd 62 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

62 CHAPTER 2 Multithreaded Programming

on native Dutch speakers. According to (Dijkstra undated: early 1960s), P stands for prolagen,
a made-up word derived from proberen te verlagen, “try to decrease” in Dutch. V stands for
verhogen, “increase” in Dutch.) The P operation is somewhat complicated: a thread waits until it
fi nds the value of the semaphore positive, then subtracts one from it. What’s really important is
that when the active part of the operation starts, the semaphore’s value is defi nitely positive, and
when this active part fi nishes, the value is exactly one less than when the operation started. It’s
often described as an atomic or indivisible operation: it has no component parts and takes place
as if it were happening instantaneously.

We use the following notation to describe the semantics of P:

when (semaphore > 0) [

semaphore = semaphore – 1;

]

This notation means that the operations in square brackets take place only when the expression
following “when,” known as the guard, is true; the statements in square brackets, known as
the command sequence, are effectively executed instantaneously: no other operation that might
interfere with it can take place while it is executing. We call the entire construct a guarded
command.

The V operation is simpler: a thread atomically adds one to the value of the semaphore.
We write this as

[semaphore = semaphore + 1]

There is no other means for manipulating the value of the semaphore (other than initializing
its value in the fi rst place). Thus if the semaphore’s value is initially one and two threads concur-
rently execute P and V operations on it, the resulting value of the semaphore is guaranteed to be
one. If its value is initially zero and the two threads concurrently execute P and V operations, the
P operation must wait until the V operation makes the semaphore’s value positive. Then the P
operation can complete, reducing the semaphore’s value to zero.

We can easily implement mutexes using semaphores:

semaphore S = 1;

void OneAtATime() {

P(S);

…

/* code executed mutually exclusively */

…

V(S);

}

If two threads call the OneAtATime routine, the fi rst one to execute the P operation fi nds S to
be one, and so subtracts one from it, making it zero. If the second thread now attempts to execute
the P operation, it fi nds S to be zero and thus must wait. Eventually the fi rst thread performs the V
operation, adding one back to S, which enables the second thread to continue. It subtracts one from
S and eventually executes the V and adds one back to it. When semaphores are used in such a way
that their values are only zero and one, as here, they are known as binary semaphores.

When multiple threads attempt to execute a P operation, the effect must be as if they execute
it one at a time while the semaphore’s value is positive. If its value is zero, they are queued up
and, one at a time, they complete the P operation in response to V operations by other threads.

CH002.indd 62CH002.indd 62 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

62 CHAPTER 2 Multithreaded Programming

on native Dutch speakers. According to (Dijkstra undated: early 1960s), P stands for prolagen,
a made-up word derived from proberen te verlagen, “try to decrease” in Dutch. V stands for
verhogen, “increase” in Dutch.) The P operation is somewhat complicated: a thread waits until it
fi nds the value of the semaphore positive, then subtracts one from it. What’s really important is
that when the active part of the operation starts, the semaphore’s value is defi nitely positive, and
when this active part fi nishes, the value is exactly one less than when the operation started. It’s
often described as an atomic or indivisible operation: it has no component parts and takes place
as if it were happening instantaneously.

We use the following notation to describe the semantics of P:

when (semaphore > 0) [

semaphore = semaphore – 1;

]

This notation means that the operations in square brackets take place only when the expression
following “when,” known as the guard, is true; the statements in square brackets, known as
the command sequence, are effectively executed instantaneously: no other operation that might
interfere with it can take place while it is executing. We call the entire construct a guarded
command.

The V operation is simpler: a thread atomically adds one to the value of the semaphore.
We write this as

[semaphore = semaphore + 1]

There is no other means for manipulating the value of the semaphore (other than initializing
its value in the fi rst place). Thus if the semaphore’s value is initially one and two threads concur-
rently execute P and V operations on it, the resulting value of the semaphore is guaranteed to be
one. If its value is initially zero and the two threads concurrently execute P and V operations, the
P operation must wait until the V operation makes the semaphore’s value positive. Then the P
operation can complete, reducing the semaphore’s value to zero.

We can easily implement mutexes using semaphores:

semaphore S = 1;

void OneAtATime() {

P(S);

…

/* code executed mutually exclusively */

…

V(S);

}

If two threads call the OneAtATime routine, the fi rst one to execute the P operation fi nds S to
be one, and so subtracts one from it, making it zero. If the second thread now attempts to execute
the P operation, it fi nds S to be zero and thus must wait. Eventually the fi rst thread performs the V
operation, adding one back to S, which enables the second thread to continue. It subtracts one from
S and eventually executes the V and adds one back to it. When semaphores are used in such a way
that their values are only zero and one, as here, they are known as binary semaphores.

When multiple threads attempt to execute a P operation, the effect must be as if they execute
it one at a time while the semaphore’s value is positive. If its value is zero, they are queued up
and, one at a time, they complete the P operation in response to V operations by other threads.

CH002.indd 62CH002.indd 62 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

POSIX	Semaphores
• Interface

• Note	:	Mac’s	use	a	different	naming	scheme	for	semaphores,	a	
Mach	spec.	named-semaphore	via	sem_open()

2.2 Programming with Threads 63

We can easily generalize our above example to allow up to N threads to execute a block of
code (or access a data structure) simultaneously:

semaphore S = N;

void NAtATime() {

P(S);

…

/* No more than N threads here at once */

…

V(S);

}

Semaphores used this way are known as counting semaphores.
A more interesting example of counting semaphores involves using them to solve the

producer-consumer problem (see Figure 2.6 above). To keep things simple, let’s assume we
have one producer and one consumer. We have a buffer with B slots. We use two semaphores:
empty, representing the number of empty slots, and occupied, representing the number of occupied
slots. Our solution is:

Semaphore empty = B;

Semaphore occupied = 0;

int nextin = 0;

int nextout = 0;

void Produce(char item) {

P(empty);

buf[nextin] = item;

nextin = nextin + 1;

if (nextin == B)

nextin = 0;

V(occupied);

}

char Consume() {

char item;

P(occupied);

item = buf[nextout];

nextout = nextout + 1;

if (nextout == B)

nextout = 0;

V(empty);

return(item);

}

The fi rst P operation of Produce causes the thread to wait until there is at least one empty
slot in the buffer; at this point the slot is “taken” and empty’s value is reduced by one. The producer
puts its item in the buffer, then indicates there is one more occupied slot by performing a V operation
on occupied. Similar actions take place inside of Consume.

POSIX provides an implementation of semaphores, but, strangely, it’s not part of POSIX
threads (POSIX 1003.1c) but part of the POSIX real-time specifi cation (POSIX 1003.1b). This
matters only because, depending on the system, you may need to include an additional library
when you use semaphores.

The POSIX interface for semaphores is given below.

sem_t semaphore;

int err;

CH002.indd 63CH002.indd 63 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

64 CHAPTER 2 Multithreaded Programming

err = sem_init(&semaphore, pshared, init);

err = sem_destroy(&semaphore);

err = sem_wait(&semaphore); // P operation

err = sem_trywait(&semaphore); // conditional P operation

err = sem_post(&semaphore); // V operation

Thus semaphores are of type sem_t. All operations on them return an integer error code.
They must be dynamically initialized using sem_init (there is no static initialization such as
is provided for mutexes). They take two arguments in addition to the semaphore itself: a fl ag,
pshared, indicating whether the semaphore is to be used by threads of just one process (pshared =
0) or by threads of multiple processes (pshared = 1). We assume the former for now, and discuss
the latter later. Once a semaphore is no longer used, sem_destroy should be called to free whatever
storage was allocated by sem_init.

The sem_wait operation is the P operation described above. What’s new is the sem_trywait
operation, which is similar to pthread_mutex_trylock: if the semaphore’s value is positive and
thus no waiting is required, it behaves just like sem_wait (the value of the semaphore is immediately
reduced by one). However, if the semaphore’s value is zero, then, rather than waiting, the caller
returns immediately with an error code (the value EAGAIN).

We discuss the Win-32 version of semaphores in the section on Win-32 Events, below.

POSIX Condition Variables Semaphores are a convenient way to express solutions to a
number of synchronization problems, but using them can force amazingly complex solu-
tions for other problems. Thus most operating systems provide additional synchronization
constructs. Here we describe POSIX’s condition variables; later we discuss the events of
Win-32.

We described the semantics of semaphores using guarded commands. A general implementation
of our guarded-command construct is, however, a rather tall order. Somehow we’d have to moni-
tor the values of all variables appearing in the guard (i.e., the expression following the when) so
as to fi nd out when the guard becomes true. Then we’d have to make certain it remains true when
we start executing the command sequence (the code in square brackets that follows), and make
certain that this execution is indivisible.

Condition variables give programmers the tools needed to implement guarded commands.
A condition variable is a queue of threads waiting for some sort of notifi cation. Threads waiting
for a guard to become true join such queues. Threads that do something to change the value of a
guard from false to true can then wake up the threads that were waiting.

The following code shows the general approach:

Guarded command POSIX implementation

when (guard) [

statement 1;

…

statement n;

]

pthread_mutex_lock(&mutex);

while(!guard)

pthread_cond_wait(

&cond_var, &mutex));

statement 1;

…

statement n;

pthread_mutex_unlock(&mutex);

CH002.indd 64CH002.indd 64 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

Why	Do	We	Need	Synchronization?
• Image	that	you	have	a	multi-threaded	webserver	that	handles	

parallel	ticket-window	selling	of	a	finite	supply	of	tickets	with	each	
web	request	handled	by	one	of	the	threads	in	a	thread	pool.		

• The	number	of	tickets	is	critical,	shared	data	that	must	be	
atomically	decremented.		

Canonical	Data	Sharing	Problem	:	Producer-Consumer	*
• A	first	peek	at	the	kind	of	thing	that	has	to	happen	inside	the	OS
• When	you	write	to	network	socket	there	will	be	a	kernel	thread	that	

intermediates	between	your	requests	and	other	requests
• Your	producer	thread	write()	will	go	into	a	buffer	with	a	finite	

number	of	slots
• Two	Threads

– Producer	(you)	:	puts	things	in	the	buffer
– Consumer	(os)	:	removes	things	from	the	buffer

• Producer	must	wait	if	buffer	is	full;	consumer	if	buffer	is	empty

2.2 Programming with Threads 61

mutex 1 is not available, this is probably because it is currently held by thread 1. If thread 2 were
to block waiting for the mutex, we have an excellent chance for deadlock. So, rather than block,
thread 1 not only quits trying for mutex 1 but also unlocks mutex 2 (since thread 1 could well be
waiting for it). It then starts all over again, fi rst taking mutex 2, then mutex 1.

Thread 2 thus repeatedly tries to lock both mutexes (in the wrong order) until it can do so
without causing any problems. This could, of course, require a fair number of iterations. When
this approach is used, the assumption (which must be validated) is that contention for locks is low
and thus even two iterations are unlikely to occur. If lock contention is high, another solution is
necessary, perhaps one that requires all threads to honor the locking order.

2.2.3.2 Beyond Mutual Exclusion
Though mutual exclusion is the most common form of synchronization, there are numerous
situations that it cannot handle. One obvious extension to mutual exclusion is what’s known as
the readers-writers problem: rather than requiring mutual exclusion for all accesses to a data
structure, we can relax things a bit and insist on mutual exclusion only if the data structure is
being modifi ed. Thus any number of threads (readers) may be just looking at the data structure at
once, but any thread intending to modify it must have mutually exclusive access.

Another common (at least in texts such as this) synchronization problem is the pro-
ducer-consumer problem (sometimes called the bounded-buffer problem). Here we have a
buffer containing a fi nite number of slots. As shown in Figure 2.6, a producer is a thread that
wishes to put an item into the next empty slot of the buffer. A consumer is a thread that wishes
to remove an item from the next occupied slot. The synchronization issue for producers is that
if all slots in the buffer are occupied, then producer threads must wait until empty slots are
available. Similarly, if all slots are empty, consumer threads must wait until occupied slots
are available.

The next synchronization problem might seem a bit mundane, but it’s particularly important
in many operating systems. It doesn’t have a common name; here we call it the event problem.
A number of threads are waiting for a particular event to happen. Once the event has happened,
we’d like to release all of the waiting threads. For example, a number of threads might be waiting
for a read operation on a disk to complete. Once it’s completed, all threads are woken up and can
use the data that was just read in.

Semaphores These problems, and many others, were fi rst identifi ed in the 1960s. The per-
son who did much of the early work in identifying and elegantly solving these problems was
Edsger Dijkstra. The semaphore, a synchronization operation (Dijkstra undated: early 1960s) he
described and used in an early system (Dijkstra 1968), has proven so useful that it continues to
be used in most modern operating systems.

A semaphore is a nonnegative integer on which there are exactly two operations, called by
Dijkstra P and V. (What P and V stand for isn’t obvious. While Dijkstra was Dutch and based
his terminology on Dutch words, the mnemonic signifi cance of P and V seems to be lost even

ProducerConsumer

FIGURE 2 .6 Producer-consumer problem.

CH002.indd 61CH002.indd 61 8/2/10 8:26:18 PM8/2/10 8:26:18 PM

2/7/17

15

Semaphore	sol’n to	the	producer-consumer	problem		
• Example	sheet	(don’t	cheat	by	looking	at	this	solution)	

2.2 Programming with Threads 63

We can easily generalize our above example to allow up to N threads to execute a block of
code (or access a data structure) simultaneously:

semaphore S = N;

void NAtATime() {

P(S);

…

/* No more than N threads here at once */

…

V(S);

}

Semaphores used this way are known as counting semaphores.
A more interesting example of counting semaphores involves using them to solve the

producer-consumer problem (see Figure 2.6 above). To keep things simple, let’s assume we
have one producer and one consumer. We have a buffer with B slots. We use two semaphores:
empty, representing the number of empty slots, and occupied, representing the number of occupied
slots. Our solution is:

Semaphore empty = B;

Semaphore occupied = 0;

int nextin = 0;

int nextout = 0;

void Produce(char item) {

P(empty);

buf[nextin] = item;

nextin = nextin + 1;

if (nextin == B)

nextin = 0;

V(occupied);

}

char Consume() {

char item;

P(occupied);

item = buf[nextout];

nextout = nextout + 1;

if (nextout == B)

nextout = 0;

V(empty);

return(item);

}

The fi rst P operation of Produce causes the thread to wait until there is at least one empty
slot in the buffer; at this point the slot is “taken” and empty’s value is reduced by one. The producer
puts its item in the buffer, then indicates there is one more occupied slot by performing a V operation
on occupied. Similar actions take place inside of Consume.

POSIX provides an implementation of semaphores, but, strangely, it’s not part of POSIX
threads (POSIX 1003.1c) but part of the POSIX real-time specifi cation (POSIX 1003.1b). This
matters only because, depending on the system, you may need to include an additional library
when you use semaphores.

The POSIX interface for semaphores is given below.

sem_t semaphore;

int err;

CH002.indd 63CH002.indd 63 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

Deviations
• Signals	*

– Forces	a	user	thread	to	put	aside	current	activity	
– Call	a	pre-arranged	handler
– Go	back	to	what	it	was	doing
– Similar	to	interrupt	handling	inside	the	OS

• Examples
– Typing	special	characters	on	the	keyboard	(^c)
– Signals	sent	by	other	threads	(kill)
– Program	exceptions	(divide	by	zero,	addressing	exceptions)

• Background
– Graceful	termination	via	^c	and	SIGINT

Signals	and	Handled	by	Handlers
• Setting	up	a	handler	to	be	invoked	upon	receipt	of	a	^c	signal

• Signals	can	be	used	to	communicate	with	a	process

80 CHAPTER 2 Multithreaded Programming

A process might set up a handler to be invoked when such a signal is delivered, as shown
below:

int main() {

void handler(int);

sigset(SIGINT, handler);

/* long-running buggy code */

…

}

void handler(int sig) {

/* perform some cleanup actions */

…

exit(1);

}

The call to sigset in main causes handler to be registered as the signal handler for the
SIGINT signal. Thus if you run this program and decide to terminate it early by typing Ctrl-C, a
SIGINT signal is delivered to the process, causing it to put aside its current state and call handler;
handler performs some cleanup actions (perhaps writing some key data to a fi le) and then terminates
the process.

Signals can also be used as a means for communicating with a process, perhaps requesting
it to do something:

computation_state_t state;

int main() {

void handler(int);

sigset(SIGINT, handler);

long_running_procedure();

}

long_running_procedure() {

while (a_long_time) {

update_state(&state);

compute_more();

}

}

void handler(int sig) {

display(&state);

}

In this code the main procedure establishes a handler for SIGINT, and then calls
long_running_procedure, which might execute for several days. Occasionally the user of the

CH002.indd 80CH002.indd 80 8/2/10 8:26:23 PM8/2/10 8:26:23 PM

• Signals	are	processed	by	a	single	thread	of	
execution

• Communication	at	right	not	problem-free	
because	of	asynchronous	access	to	state

– Displayed	state	could	be	incoherent

• Making	routines	async-signal	safe	requires	
making	them	so	that	the	controlling	thread	
cannot	be	interrupted	by	a	signal	at	certain	
times	(i.e.	in	update_state)

– Signal	handling	turned	on	and	off	by
• sigemptyset()
• sigaddset()
• Sigprocmask()

• POSIX	compliant	OS’s	implement	60+	async-
signal	safe	routines!

Async-signal	safe	routines	(OS	implementation	perspective)

80 CHAPTER 2 Multithreaded Programming

A process might set up a handler to be invoked when such a signal is delivered, as shown
below:

int main() {

void handler(int);

sigset(SIGINT, handler);

/* long-running buggy code */

…

}

void handler(int sig) {

/* perform some cleanup actions */

…

exit(1);

}

The call to sigset in main causes handler to be registered as the signal handler for the
SIGINT signal. Thus if you run this program and decide to terminate it early by typing Ctrl-C, a
SIGINT signal is delivered to the process, causing it to put aside its current state and call handler;
handler performs some cleanup actions (perhaps writing some key data to a fi le) and then terminates
the process.

Signals can also be used as a means for communicating with a process, perhaps requesting
it to do something:

computation_state_t state;

int main() {

void handler(int);

sigset(SIGINT, handler);

long_running_procedure();

}

long_running_procedure() {

while (a_long_time) {

update_state(&state);

compute_more();

}

}

void handler(int sig) {

display(&state);

}

In this code the main procedure establishes a handler for SIGINT, and then calls
long_running_procedure, which might execute for several days. Occasionally the user of the

CH002.indd 80CH002.indd 80 8/2/10 8:26:23 PM8/2/10 8:26:23 PM

2/7/17

16

Review
• New	OS	usages	essentials

– Threads
– Mutexes
– Semaphores
– Signals

• From	Lecture	1
– Processes
– Memory	allocation
– Files
– Pipes
– I/O

• Pretty	much	all	the	system	calls	you	actually	use except
– Networking
– Window-creating	and	UI

Lecture	3 :
Inside	the	OS;	Booting,	System	Calls,	

Interrupts,	Threading,	
Processor	&	Memory	Management	
(A	very-high-level	OS	Implementation	

Perspective)
Material	from	

Operating	Systems	in	Depth
(spec.	Chapters	5	and	7)	

by

Thomas	Doeppner

GET	THIS	BOOK	AND	READ	IT!

• Our	terminology	comes	from	from	“Operating	
Systems	in	Depth”	by	Thomas	Doeppner which	
describes	the	“Simple	OS”
– A	hypothetical	OS	based-on	Unix	(6th edition)	that	is	

simplified	to	be
• Monolithic

– i.e.	the	OS	is	a	single	file	loaded	into	memory	at	boot	
time

• And	with	interfaces	called
– Traps which	originate	from	user	programs	and
– Interrupts that	originate	largely	from	hardware

• and	having	two	modes
– User-mode	in	which	parts	of	the	OS	run	as	if	they	were	

normal	user	programs	and
– Privileged	/	System-mode	in	which	parts	of	the	OS	have	

access	to	everything

– Terminology	:	Kernel	*
• The	subset	of	an	OS	that	runs	in	privileged	mode

Some	Definitions

12 CHAPTER 1 Introduction

In 2003 SCO,10 which had acquired the rights to Unix, sued IBM, claiming that SCO’s code
was in Linux and thus SCO was owed royalties. (Suing someone with lots of money may be a
good idea. Suing someone who employs really good lawyers probably isn’t.) In August 2007 the
judge ruled that SCO was not the rightful owner of the Unix copyright, Novell is. Novell then
stated that there is no Unix source code in Linux.

Two other free versions of Unix also began development in the early 1990s (and continue
to be developed): FreeBSD and NetBSD. Both are derived from the BSD project at Berkeley and
are highly thought of, but neither has achieved the success of Linux.

Apple, in the meantime, was still selling a system whose operating system was derived from
the original MacOS. Finally, in 2000, they released MacOS X, a Unix system. Its implementation
was similar to that of OSF/1, combining both Mach and BSD Unix (in the form of NetBSD and
FreeBSD) in the kernel. Apple fi nally had an operating system that supports virtual memory and
multitasking and provides a protected fi le system, something it had almost achieved with Lisa OS
in the early 1980s. Apple’s version of Unix is now the prevalent Unix operating system.

In this section we examine the abstractions provided by a relatively simple operating system and
delve a bit into how they are implemented. Choosing an operating system, even one to discuss
in a course, is fraught with controversy. What we discuss here is an early version of Unix, as it
existed in the early 1970s. We choose this partly because of its simplicity and elegance, partly
because (as we saw above) it had a major infl uence on modern operating systems, such as mod-
ern versions of Unix (Solaris, Linux, MacOS X, etc.) as well as Windows, and primarily because
it is the earliest operating system whose later versions are still in common use. (Although the
descendants of IBM’s OS/360 are still in use, few students in operating systems courses have
direct access to them.) We call it simply Unix for now, though strictly speaking it is Sixth-Edition
Unix (see Section 1.2.3 for why it is called this).

1.3.1 OS STRUCTURE

Many early operating systems were amazingly small: Sixth-Edition Unix, for instance, had to
fi t into 64 KB of memory. Thus it made reasonable sense to structure it as a single executable in
which all parts are stored as a single fi le from which they are loaded into the computer’s memory
when it boots. This sort of structuring is known as the monolithic approach. As sketched in
Figure 1.1, application programs call upon the operating system via traps; external devices, such
as disks and clocks, call upon it via interrupts.

Almost all computers have at least two modes of execution, user mode (with the fewest
privileges) and privileged mode (with the most). To limit the damage that errant programs can do
to other programs and the system as a whole, the only code that runs in privileged mode is that
which is part of the operating system. In simple systems such as Sixth-Edition Unix, we gener-
ally think of the whole operating system as running in privileged mode. Everything else is an
application and runs in user mode. In other systems, such as modern Windows, major subsystems
providing operating-system functionality run in user mode. We discuss this in Chapter 4.

We often use the word kernel, as in “operating-system kernel.” This generally means that
portion of the operating system that runs in privileged mode, but sometimes it means a subset of
this — some relatively small, key portion of the privileged-mode operating-system code. We will
try to make it clear which defi nition we’re using.

10 SCO nominally stands for “Santa Cruz Operation,” but the original company of that name sold its Unix business to Caldera.
SCO then changed its name to Tarantella, the name of the product it was now focusing on. Caldera subsequently changed its
name to SCO.

1.3
A SIMPLE OS
1.3
A SIMPLE OS

OS

Traps

Interrupts

FIGURE 1 .1 Simple
OS structure.

Ch001.indd 12Ch001.indd 12 8/5/10 11:26:20 AM8/5/10 11:26:20 AM

Booting

• Thought	to	be	derived	from	“to	pull	yourself	up	by	your	bootstraps”
• Modern	computers	boot	from	BIOS	read	only	memory	(ROM)	

– Last	64K	of	the	first	MB	of	address	space

• When	the	computer	is	powered	on	it	starts	executing	instructions	at	
0xffff0

• Looks	for	a	boot	device
– Loads	a	master	boot	record	(MBR)

• Cylinder	0,	head	0,	sector	1	(hard	disc)

• Loads	boot	program
• Transfers	control	to	boot	program
• Boot	progam (lilo,	grub,	etc.)	loads	OS
• Transfers	control

122 CHAPTER 3 Basic Concepts

The provider of the computer system supplies a BIOS chip residing on the “motherboard” con-
taining everything necessary to perform the three functions. Additional BIOS functions might
reside on chips on add-on boards, providing access to additional devices.

The BIOS ROM is mapped into the last 64K of the fi rst megabyte of address space
(starting at location 0xf0000). When the system is powered on, the processor starts executing
instructions at location 0xffff0 — the last sixteen bytes of this mapped region. At this location is
a branch instruction that transfers control to the beginning of the BIOS code. The fi rst thing the
code does is the power-on self test, during which it initializes hardware, checks for problems,
and computes the amount of primary storage.

The next step is to fi nd a boot device. This is probably a hard disk, but could be a fl oppy or
diskette. The list of possibilities and the order to search are in the settings stored in non-volatile
RAM.

Once the boot device is found, the master boot record (MBR) is loaded from the fi rst sector
of a fl oppy or diskette, or from cylinder 0, head 0, sector 1 of a hard disk (see Chapter 6 for an
explanation of these terms). The MBR (Figure 3.20) is 512 bytes long and contains:

a “magic number” identifying itself

a partition table listing up to four regions of the disk (identifying one as the active or boot
partition)

executable boot program

The BIOS code transfers control to the boot program. What happens next depends, of
course, on the boot program. In the original version (for MS-DOS), this program would fi nd
the one active partition, load the fi rst sector from it (containing the volume boot program), and
pass control to that program. This program would then load the operating system from that
partition.

More recent boot programs allow more fl exibility. For example, both lilo (Linux Loader)
and grub (Grand Unifi ed Boot Manager), allow one to choose from multiple systems to boot,
so that, for example, one can choose between booting Linux or Windows. Lilo has the sector
number of the kernel images included within its code and thus must be modifi ed if a kernel
image moves. Grub understands a number of fi le systems and can fi nd the image given a
path name.

•

•

•

Boot program

Partition table

Magic number

446 bytes

64 bytes

2 bytes

Partition 1

Partition 2

Partition 3

Partition 4
Master boot record

FIGURE 3 .20 The mas-
ter boot record, residing
in the fi rst sector of a
bootable disk.

CH003.indd 122CH003.indd 122 8/2/10 8:31:33 PM8/2/10 8:31:33 PM

2/7/17

17

Forking	Makes	a	Tree	:	The	Process	Tree
Hardware OS

Non-volatile
Memory

Volatile
Memory

I/O

Processor
Threads

User-ModeKernel-Mode

init

e.g.	kblockd

deamon

deamon

deamon

e.g.	sshd

process

process

e.g.	bash

e.g.	top

Applications

parent child

Traps	and	System	Calls	(largely	from	user)
• Traps	are	the	general	means	for	invoking	the	kernel	from	user	code	
• Type	of	traps	include

– System	calls	*
• Example:	writing	to	a	filedescriptor the	contents	of	a	buffer

requests	of	the	OS	to	“send	data”	to	a	file.		“How	write	actually	invokes	the	operating-system	
kernel	depends	on	the	underlying	hardware.	What	typically	happens	is	that	write	itself	is	a	
normal	procedure	that	contains	a	special	machine	instruction	causing	a	trap.	This	trap	
transfers	control	to	the	kernel,	which	then	figures	out	why	it	was	invoked	and	proceeds	to	
handle	the	invocation.	“

– And	unintended	requests	for	kernel	service	(traps)
• Page	faults	(will	define)
• Dividing	by	zero

– Signals	allow	the	kernel	to	call	user-code	in	an	”upcall”

1.3.1.1 Traps
Traps are the general means for invoking the kernel from user code. We usually think of a trap as
an unintended request for kernel service, say that caused by a programming error such as using
a bad address or dividing by zero. However, for system calls, an important special kind of trap
discussed below, user code intentionally invokes the kernel.

Traps always elicit some sort of response. For page faults, the operating system determines
the status of the faulted page and takes appropriate action (such as fetching it from secondary
storage). For programming errors, what happens depends upon what the program has previ-
ously set up. If nothing, then the program is immediately terminated. A program may establish
a handler to be invoked in response to the error; the handler might clean up after the error and
then terminate the process, or perhaps perform some sort of corrective action and continue with
normal execution.

The response to faults caused by errors is dealt with in Unix via a mechanism called sig-
nals (which is also used in response to other actions; see Chapter 2). Signals allow the kernel to
invoke code that’s part of the user program, a mechanism known as an upcall.

1.3.1.2 System Calls
We’ve already discussed the multiple layers of abstraction used in all systems. For layers imple-
mented strictly in user code, the actual invocation of functionality within a layer is straightfor-
ward: a simple procedure call or the like. But invocation of operating-system functionality in
the kernel is more complex. Since the operating system has control over everything, we need
to be careful about how it is invoked. What Unix and most other operating systems do is to
provide a relatively small number of system calls through which user code accesses the kernel.
This way any necessary checking on whether the request should be permitted can be done at
just these points.

A typical example of a system call is the one used to send data to a fi le, the write system call:

if (write(FileDescriptor, BufferAddress, BufferLength) == -1) {

/* an error has occurred: do something appropriate */

printf("error: %d\n", errno) /* print error message */

}

Here we call write to request the operating system to write data to the fi le (we discuss later
the meaning of the parameters). If the call fails for some reason, write returns −1, and an integer
identifying the cause of the error is stored in the global variable errno. Otherwise it returns a non-
negative value: the number of bytes that were actually written to the fi le.

How write actually invokes the operating-system kernel depends on the underlying hard-
ware. What typically happens is that write itself is a normal procedure that contains a special
machine instruction causing a trap. This trap transfers control to the kernel, which then fi gures
out why it was invoked and proceeds to handle the invocation.

1.3.1.3 Interrupts
An interrupt is a request from an external device for a response from the processor. We discuss
the mechanism in more detail in Chapter 3. Unlike a trap, which is handled as part of the program
that caused it (though within the operating system in privileged mode), an interrupt is handled
independently of any user program.

For example, a trap caused by dividing by zero is considered an action of the currently
running program; any response directly affects that program. But the response to an interrupt

1.3 A Simple OS 13

Ch001.indd 13Ch001.indd 13 8/5/10 11:26:21 AM8/5/10 11:26:21 AM

NB: There is a wide variation in the nomenclature. On some computers the term trap refers to any interrupt, on some machines to any
synchronous interrupt, on some machines to any interrupt not associated with input/output, on some machines only to interrupts caused by
instructions with trap in their names, etc.

12 CHAPTER 1 Introduction

In 2003 SCO,10 which had acquired the rights to Unix, sued IBM, claiming that SCO’s code
was in Linux and thus SCO was owed royalties. (Suing someone with lots of money may be a
good idea. Suing someone who employs really good lawyers probably isn’t.) In August 2007 the
judge ruled that SCO was not the rightful owner of the Unix copyright, Novell is. Novell then
stated that there is no Unix source code in Linux.

Two other free versions of Unix also began development in the early 1990s (and continue
to be developed): FreeBSD and NetBSD. Both are derived from the BSD project at Berkeley and
are highly thought of, but neither has achieved the success of Linux.

Apple, in the meantime, was still selling a system whose operating system was derived from
the original MacOS. Finally, in 2000, they released MacOS X, a Unix system. Its implementation
was similar to that of OSF/1, combining both Mach and BSD Unix (in the form of NetBSD and
FreeBSD) in the kernel. Apple fi nally had an operating system that supports virtual memory and
multitasking and provides a protected fi le system, something it had almost achieved with Lisa OS
in the early 1980s. Apple’s version of Unix is now the prevalent Unix operating system.

In this section we examine the abstractions provided by a relatively simple operating system and
delve a bit into how they are implemented. Choosing an operating system, even one to discuss
in a course, is fraught with controversy. What we discuss here is an early version of Unix, as it
existed in the early 1970s. We choose this partly because of its simplicity and elegance, partly
because (as we saw above) it had a major infl uence on modern operating systems, such as mod-
ern versions of Unix (Solaris, Linux, MacOS X, etc.) as well as Windows, and primarily because
it is the earliest operating system whose later versions are still in common use. (Although the
descendants of IBM’s OS/360 are still in use, few students in operating systems courses have
direct access to them.) We call it simply Unix for now, though strictly speaking it is Sixth-Edition
Unix (see Section 1.2.3 for why it is called this).

1.3.1 OS STRUCTURE

Many early operating systems were amazingly small: Sixth-Edition Unix, for instance, had to
fi t into 64 KB of memory. Thus it made reasonable sense to structure it as a single executable in
which all parts are stored as a single fi le from which they are loaded into the computer’s memory
when it boots. This sort of structuring is known as the monolithic approach. As sketched in
Figure 1.1, application programs call upon the operating system via traps; external devices, such
as disks and clocks, call upon it via interrupts.

Almost all computers have at least two modes of execution, user mode (with the fewest
privileges) and privileged mode (with the most). To limit the damage that errant programs can do
to other programs and the system as a whole, the only code that runs in privileged mode is that
which is part of the operating system. In simple systems such as Sixth-Edition Unix, we gener-
ally think of the whole operating system as running in privileged mode. Everything else is an
application and runs in user mode. In other systems, such as modern Windows, major subsystems
providing operating-system functionality run in user mode. We discuss this in Chapter 4.

We often use the word kernel, as in “operating-system kernel.” This generally means that
portion of the operating system that runs in privileged mode, but sometimes it means a subset of
this — some relatively small, key portion of the privileged-mode operating-system code. We will
try to make it clear which defi nition we’re using.

10 SCO nominally stands for “Santa Cruz Operation,” but the original company of that name sold its Unix business to Caldera.
SCO then changed its name to Tarantella, the name of the product it was now focusing on. Caldera subsequently changed its
name to SCO.

1.3
A SIMPLE OS
1.3
A SIMPLE OS

OS

Traps

Interrupts

FIGURE 1 .1 Simple
OS structure.

Ch001.indd 12Ch001.indd 12 8/5/10 11:26:20 AM8/5/10 11:26:20 AM

System	calls
• Transfer	control	from	user	to	system	code	and	back

– Need	not	involve	a	thread	switch,	just	a	“stack	switch”	
– Trap	(OS	code)	typically	switches	to	a	kernel	stack	frame 3.1 Context Switching 103

The fi rst technique, allocating a stack, is ruled out for a number of reasons, not least that it
is too time-consuming, though a variant is used in Solaris, as discussed below. Both the latter two
approaches are used. A single system-wide interrupt stack was used on DEC’s VAX computers;2
in most other architectures the interrupt handler borrows a stack (the kernel stack) from the thread
that was interrupted (see Figure 3.6). If another interrupt handler was interrupted, its context is
saved on the current stack, and that stack continues to be used for the new interrupt handler.

On those systems on which multiple interrupt handlers use the same stack, perhaps one
borrowed from a thread, interrupt handlers must execute differently from normal thread execu-
tion. Because there is just one shared stack, there is just one interrupt context. We cannot suspend
the execution of one handler and resume the execution of another: the handler of the most recent
interrupt must run to completion. Then, when it has no further need of the stack, the handler of
the next-most-recent interrupt completes its execution, and so forth.

That the execution of an interrupt handler cannot be suspended is signifi cant because it
means that interrupt handling cannot yield to anything other than higher-priority interrupts. For
example, on a uniprocessor system, if interrupt handler 2 interrupts interrupt handler 1 and then
wakes up a high-priority thread that must immediately respond to an event, the thread cannot run
until all interrupt handling completes, including that of interrupt handler 1.

If we could somehow give each interrupt handler its own stack, we wouldn’t have this
problem. Solaris, as well as some real-time systems, has preallocated stacks for each possible
interrupt level. Thus each has its own independent context and can yield to other processing, just
as threads can. We discuss this in greater detail in Chapter 5. Most other general-purpose systems
do not support this style of architecture.

Another approach to getting interrupt handlers to yield to other execution is that the handler
places a description of the work that must be done on a queue of some sort, then arranges for it
to be done in some other context at a later time. This approach, which is used in many systems
including Windows and Linux, is also discussed in Chapter 5.

2 Multiprocessor versions of the VAX had one interrupt stack per processor.

FIGURE 3 .5 System-call fl ow.

prog() {

. . .

write(fd, buffer, size); trap(write_code);

. . .

}

write() {

. . .

. . .

}

prog frame

write

User stack

User
Kernel

trap_handler(code) {

. . .

if(code == write_code)

write_handler();

. . .

}

trap_handler
frame

write_handler
frame

Kernel stack

FIGURE 3 .6 Interrupt
handlers and stacks.

User
stack

frames

Current thread’s
user stack

Kernel
stack

frames

Interrupt
handler

1’s frame

Interrupt
handler

2’s frame

Current thread’s
kernel stack

CH003.indd 103CH003.indd 103 8/2/10 8:31:21 PM8/2/10 8:31:21 PM

Context	Switching	and	stack	frames
• “Context”	is	the	setting	in	which	execution	is	currently	taking	place

– Processor	mode
– Address	space
– Register	contents
– Thread	or	interrupt	state

• Intel	x86	Stack	Frames
– Subroutine	context

• Instruction	pointer	(reg.	eip)
– Address	to	which	control	should	

return	when	subroutine	is	
complete

• Frame	pointer	(reg.	ebp)
– Link	to	stack	frame	of	caller

3.1 Context Switching 95

The picture above is idealized: not all portions of the stack frame are always used. For exam-
ple, registers are not saved if the subroutine doesn’t modify them, the frame pointer is not saved
if it’s not used, etc. For more details, see the Intel architecture manuals (http://www.intel.com/
design/processor/manuals/253665.pdf).

Here’s possible unoptimized assembler code for the above C code:1

main:

 ; enter main, creating a new stack frame

 pushl %ebp ; Push frame pointer onto the stack;

 ; this means that the contents of the

 ; stack-pointer register (esp) are

 ; reduced by 4 so that esp points to

 ; next lower word in the stack, then

 ; the contents of the frame-pointer

 ; register (ebp) are stored there.

 movl %esp, %ebp ; Set frame pointer to point to new

 ; frame: the address of the current end

 ; of the stack (in register esp) is

 ; copied to the frame-pointer register.

 pushl %esi ; Save esi register: its contents are

 ; pushed onto the stack.

 pushl %edi ; Save edi register: its contents are

 ; pushed onto the stack.

 subl $8, %esp ; Create space for local variables (i

1 We use the syntax of the Gnu assembler. It’s similar to that of the Microsoft assembler (masm) except in the order of arguments:
in the Gnu assembler, the fi rst argument is the source and the second is the destination; in the Microsoft assembler, the order is
reversed.

FIGURE 3 .1 Intel x86 stack frames.

args

eip

Saved registers

Local variables

ebp

args

eip

Saved registers

Local variables

ebp

esp

ebp

Stack frame

CH003.indd 95CH003.indd 95 8/2/10 8:31:19 PM8/2/10 8:31:19 PM

Remember;	the	stack	grows	down

2/7/17

18

Interrupts	(largely	from	hardware)
• Request	from	an	external	device	for	a	response	from	the	processor

– Handled	independently	of	any	program

• Examples
– Keyboard	input
– Data	available	in	a	network	or	disk	buffer

12 CHAPTER 1 Introduction

In 2003 SCO,10 which had acquired the rights to Unix, sued IBM, claiming that SCO’s code
was in Linux and thus SCO was owed royalties. (Suing someone with lots of money may be a
good idea. Suing someone who employs really good lawyers probably isn’t.) In August 2007 the
judge ruled that SCO was not the rightful owner of the Unix copyright, Novell is. Novell then
stated that there is no Unix source code in Linux.

Two other free versions of Unix also began development in the early 1990s (and continue
to be developed): FreeBSD and NetBSD. Both are derived from the BSD project at Berkeley and
are highly thought of, but neither has achieved the success of Linux.

Apple, in the meantime, was still selling a system whose operating system was derived from
the original MacOS. Finally, in 2000, they released MacOS X, a Unix system. Its implementation
was similar to that of OSF/1, combining both Mach and BSD Unix (in the form of NetBSD and
FreeBSD) in the kernel. Apple fi nally had an operating system that supports virtual memory and
multitasking and provides a protected fi le system, something it had almost achieved with Lisa OS
in the early 1980s. Apple’s version of Unix is now the prevalent Unix operating system.

In this section we examine the abstractions provided by a relatively simple operating system and
delve a bit into how they are implemented. Choosing an operating system, even one to discuss
in a course, is fraught with controversy. What we discuss here is an early version of Unix, as it
existed in the early 1970s. We choose this partly because of its simplicity and elegance, partly
because (as we saw above) it had a major infl uence on modern operating systems, such as mod-
ern versions of Unix (Solaris, Linux, MacOS X, etc.) as well as Windows, and primarily because
it is the earliest operating system whose later versions are still in common use. (Although the
descendants of IBM’s OS/360 are still in use, few students in operating systems courses have
direct access to them.) We call it simply Unix for now, though strictly speaking it is Sixth-Edition
Unix (see Section 1.2.3 for why it is called this).

1.3.1 OS STRUCTURE

Many early operating systems were amazingly small: Sixth-Edition Unix, for instance, had to
fi t into 64 KB of memory. Thus it made reasonable sense to structure it as a single executable in
which all parts are stored as a single fi le from which they are loaded into the computer’s memory
when it boots. This sort of structuring is known as the monolithic approach. As sketched in
Figure 1.1, application programs call upon the operating system via traps; external devices, such
as disks and clocks, call upon it via interrupts.

Almost all computers have at least two modes of execution, user mode (with the fewest
privileges) and privileged mode (with the most). To limit the damage that errant programs can do
to other programs and the system as a whole, the only code that runs in privileged mode is that
which is part of the operating system. In simple systems such as Sixth-Edition Unix, we gener-
ally think of the whole operating system as running in privileged mode. Everything else is an
application and runs in user mode. In other systems, such as modern Windows, major subsystems
providing operating-system functionality run in user mode. We discuss this in Chapter 4.

We often use the word kernel, as in “operating-system kernel.” This generally means that
portion of the operating system that runs in privileged mode, but sometimes it means a subset of
this — some relatively small, key portion of the privileged-mode operating-system code. We will
try to make it clear which defi nition we’re using.

10 SCO nominally stands for “Santa Cruz Operation,” but the original company of that name sold its Unix business to Caldera.
SCO then changed its name to Tarantella, the name of the product it was now focusing on. Caldera subsequently changed its
name to SCO.

1.3
A SIMPLE OS
1.3
A SIMPLE OS

OS

Traps

Interrupts

FIGURE 1 .1 Simple
OS structure.

Ch001.indd 12Ch001.indd 12 8/5/10 11:26:20 AM8/5/10 11:26:20 AM

• On	interrupt	occurrence
– Processor	

• Puts	aside	current	context	of	
thread	or	other	interrupt

• Switches	to	interrupt	context

• Interrupts	require	stacks
– OS’s	differ
– Common	choice	:	kernel	stack

Interrupts

3.1 Context Switching 103

The fi rst technique, allocating a stack, is ruled out for a number of reasons, not least that it
is too time-consuming, though a variant is used in Solaris, as discussed below. Both the latter two
approaches are used. A single system-wide interrupt stack was used on DEC’s VAX computers;2
in most other architectures the interrupt handler borrows a stack (the kernel stack) from the thread
that was interrupted (see Figure 3.6). If another interrupt handler was interrupted, its context is
saved on the current stack, and that stack continues to be used for the new interrupt handler.

On those systems on which multiple interrupt handlers use the same stack, perhaps one
borrowed from a thread, interrupt handlers must execute differently from normal thread execu-
tion. Because there is just one shared stack, there is just one interrupt context. We cannot suspend
the execution of one handler and resume the execution of another: the handler of the most recent
interrupt must run to completion. Then, when it has no further need of the stack, the handler of
the next-most-recent interrupt completes its execution, and so forth.

That the execution of an interrupt handler cannot be suspended is signifi cant because it
means that interrupt handling cannot yield to anything other than higher-priority interrupts. For
example, on a uniprocessor system, if interrupt handler 2 interrupts interrupt handler 1 and then
wakes up a high-priority thread that must immediately respond to an event, the thread cannot run
until all interrupt handling completes, including that of interrupt handler 1.

If we could somehow give each interrupt handler its own stack, we wouldn’t have this
problem. Solaris, as well as some real-time systems, has preallocated stacks for each possible
interrupt level. Thus each has its own independent context and can yield to other processing, just
as threads can. We discuss this in greater detail in Chapter 5. Most other general-purpose systems
do not support this style of architecture.

Another approach to getting interrupt handlers to yield to other execution is that the handler
places a description of the work that must be done on a queue of some sort, then arranges for it
to be done in some other context at a later time. This approach, which is used in many systems
including Windows and Linux, is also discussed in Chapter 5.

2 Multiprocessor versions of the VAX had one interrupt stack per processor.

FIGURE 3 .5 System-call fl ow.

prog() {

. . .

write(fd, buffer, size); trap(write_code);

. . .

}

write() {

. . .

. . .

}

prog frame

write

User stack

User
Kernel

trap_handler(code) {

. . .

if(code == write_code)

write_handler();

. . .

}

trap_handler
frame

write_handler
frame

Kernel stack

FIGURE 3 .6 Interrupt
handlers and stacks.

User
stack

frames

Current thread’s
user stack

Kernel
stack

frames

Interrupt
handler

1’s frame

Interrupt
handler

2’s frame

Current thread’s
kernel stack

CH003.indd 103CH003.indd 103 8/2/10 8:31:21 PM8/2/10 8:31:21 PM

Threads	Implementations
• OS	goal	is	to	transparently	support	user-level	application	programs	

running	on	a	single	set	of	shared	hardware
• OS	implementation	and	design	issues	largely	related	to	how	to	

switch	running	threads	in	support	of	traps	and	interrupts
• This	brings	up	two	major	implementation	concerns,	how	to	

implement
– Scheduling
– Synchronization

• And	how	to	organize	the	operating	system	in	terms	of	how	to	assign	
and	organize	actual	processor	threads	to	user-process	threads	
through	the	OS
– One-level	model
– Two-level	model

OS	Thread	Implementation	Strategies
• One-level	model

– Each	user	thread	is	mapped	to	a	kernel	thread

• Two-level	model
– Single	kernel	thread	(e.g.	1-core	CPU	but	not	necessarily)

• Each	process	gets	one	kernel	thread
• Threads	multiplexed	on	this	kernel	thread
• Synchronization	primitives	implemented	via	thread	queue	datastructures and	
yielding	strategies	

– Multiple	kernel	threads	(e.g.	multi-core	CPU	but	not	necessarily)
• Many	kernel	threads.		User-level	threads	distributed	across	them
• Avoids	blocking	problem	of	single-kernel	thread	model	but	introduced	
complications

• Other	approaches	exist	…

2/7/17

19

One	Hypothetical	Thread	and	Synchronization		Implementation

• User-level	simple	thread	package	
“straight-threads”	implementation

• Assume
– One	processor	thread
– No	interrupts

• Assert
– Thread	object	datastructure which	

has
• Stack
• etc.

– Current	thread	pointer
– Run	queue	datastructure

• threads	waiting	to	run
– Mutex queue	datastructure

• threads	waiting	to	own	mutexes,	
one	for	every	mutex

5.1 Threads Implementations 171

Run queue

Thread object

Stack

Thread object

Stack
Thread object

Stack

Thread object

Stack

Mutex queue

Thread object

Stack
Thread object

Stack

Thread object

Stack

Current thread

FIGURE 5 .8 A collec-
tion of threads: one is
currently running, three
are ready to run, and
three are in a queue
waiting to lock a
particular mutex.

Figure 5.8 shows a collection of threads. Assuming a uniprocessor system, at most one
thread is currently running and its thread object is pointed to by the global variable Current-
Thread. Those threads that are ready to run are organized into a run queue. In our simple system,
each mutex has an associated queue of threads waiting to lock it.

The context of a thread is a rather nebulous concept, but, as explained in Sections 3.1.2 and
4.1.3, it contains, at the least, a copy of whatever register points to the thread’s current stack frame.
This stack frame contains the thread’s current register state. This information is not necessarily
valid while the thread is running, but must be made valid when the thread is suspended so that it
can be resumed. See Figure 5.9.

In Section 3.1.2 we discussed how one thread can yield the processor, switching to another
thread. Here is a variation of the code presented there; this time we assume the existence of
swapcontext, which saves the caller’s register context in its thread object, then restores that of the
target thread from its thread object:

void thread_switch() {

thread_t NextThread, OldCurrent;

NextThread ! dequeue(RunQueue);

OldCurrent ! CurrentThread;

CurrentThread ! NextThread;

swapcontext(&OldCurrent->context, &NextThread->context);

// We’re now in the new thread’s context

}

The dequeue routine performs the role of a scheduler in this simple system: it selects the next
thread to run from the run queue. Note that we haven’t dealt with the case when the run queue is
empty — we take this up in Exercise 5.

Context

Stack

Stack frame

FIGURE 5 .9 A thread’s
context refers to its
current stack frame.

CH005.indd 171CH005.indd 171 8/2/10 8:42:58 PM8/2/10 8:42:58 PM

Yielding	the	Processor
• Assume	that	threads	must	voluntarily	yield	by	calling	system	call,	

e.g.	imagine	an	OS	that,	for	instance,	requires	explicit	yielding	if	
trying	to	own	a	mutex fails.		Such	a	yield	call	would	look	like

• Here	swapcontext,	saves	the	caller’s	register	context	in	its	thread	
object,	then	restores	that	of	the	target	thread	from	its	thread	object

5.1 Threads Implementations 171

Run queue

Thread object

Stack

Thread object

Stack
Thread object

Stack

Thread object

Stack

Mutex queue

Thread object

Stack
Thread object

Stack

Thread object

Stack

Current thread

FIGURE 5 .8 A collec-
tion of threads: one is
currently running, three
are ready to run, and
three are in a queue
waiting to lock a
particular mutex.

Figure 5.8 shows a collection of threads. Assuming a uniprocessor system, at most one
thread is currently running and its thread object is pointed to by the global variable Current-
Thread. Those threads that are ready to run are organized into a run queue. In our simple system,
each mutex has an associated queue of threads waiting to lock it.

The context of a thread is a rather nebulous concept, but, as explained in Sections 3.1.2 and
4.1.3, it contains, at the least, a copy of whatever register points to the thread’s current stack frame.
This stack frame contains the thread’s current register state. This information is not necessarily
valid while the thread is running, but must be made valid when the thread is suspended so that it
can be resumed. See Figure 5.9.

In Section 3.1.2 we discussed how one thread can yield the processor, switching to another
thread. Here is a variation of the code presented there; this time we assume the existence of
swapcontext, which saves the caller’s register context in its thread object, then restores that of the
target thread from its thread object:

void thread_switch() {

thread_t NextThread, OldCurrent;

NextThread ! dequeue(RunQueue);

OldCurrent ! CurrentThread;

CurrentThread ! NextThread;

swapcontext(&OldCurrent->context, &NextThread->context);

// We’re now in the new thread’s context

}

The dequeue routine performs the role of a scheduler in this simple system: it selects the next
thread to run from the run queue. Note that we haven’t dealt with the case when the run queue is
empty — we take this up in Exercise 5.

Context

Stack

Stack frame

FIGURE 5 .9 A thread’s
context refers to its
current stack frame.

CH005.indd 171CH005.indd 171 8/2/10 8:42:58 PM8/2/10 8:42:58 PM

5.1 Threads Implementations 171

Run queue

Thread object

Stack

Thread object

Stack
Thread object

Stack

Thread object

Stack

Mutex queue

Thread object

Stack
Thread object

Stack

Thread object

Stack

Current thread

FIGURE 5 .8 A collec-
tion of threads: one is
currently running, three
are ready to run, and
three are in a queue
waiting to lock a
particular mutex.

Figure 5.8 shows a collection of threads. Assuming a uniprocessor system, at most one
thread is currently running and its thread object is pointed to by the global variable Current-
Thread. Those threads that are ready to run are organized into a run queue. In our simple system,
each mutex has an associated queue of threads waiting to lock it.

The context of a thread is a rather nebulous concept, but, as explained in Sections 3.1.2 and
4.1.3, it contains, at the least, a copy of whatever register points to the thread’s current stack frame.
This stack frame contains the thread’s current register state. This information is not necessarily
valid while the thread is running, but must be made valid when the thread is suspended so that it
can be resumed. See Figure 5.9.

In Section 3.1.2 we discussed how one thread can yield the processor, switching to another
thread. Here is a variation of the code presented there; this time we assume the existence of
swapcontext, which saves the caller’s register context in its thread object, then restores that of the
target thread from its thread object:

void thread_switch() {

thread_t NextThread, OldCurrent;

NextThread ! dequeue(RunQueue);

OldCurrent ! CurrentThread;

CurrentThread ! NextThread;

swapcontext(&OldCurrent->context, &NextThread->context);

// We’re now in the new thread’s context

}

The dequeue routine performs the role of a scheduler in this simple system: it selects the next
thread to run from the run queue. Note that we haven’t dealt with the case when the run queue is
empty — we take this up in Exercise 5.

Context

Stack

Stack frame

FIGURE 5 .9 A thread’s
context refers to its
current stack frame.

CH005.indd 171CH005.indd 171 8/2/10 8:42:58 PM8/2/10 8:42:58 PM

Implementing	Mutexes
• Because	our	hypothetical	OS	does	not	have	interrupts	by	

assumption	and	all	threads	run	until	voluntarily	yielding,	
mutex_lock doesn’t	need	to	do	anything	special	to	make	its	action	
atomic

172 CHAPTER 5 Processor Management

Implementing mutexes in our straight-threads package is easy:

void mutex_lock(mutex_t *m) {

if (m->locked) {

enqueue(m->queue, CurrentThread);

thread_switch();

} else

m->locked ! 1;

}

void mutex_unlock(mutex_t *m) {

if (queue_empty(m->queue))

m->locked ! 0;

else

enqueue(runqueue, dequeue(m->queue));

}

Note that the mutex_lock code doesn’t do anything special to make its actions atomic. This is
because in our straight-threads system there are no interrupts and all actions are performed by
threads, which run until they voluntarily relinquish the processor.

5.1.3 MULTIPLE PROCESSORS

We continue with our straight-threads implementation, but we now allow processors. Thus, say
that in Figure 5.8 there are possibly a number of running threads, threads, each on a different pro-
cessor. Our thread_switch routine is no longer suffi cient for managing the now multiple processors;
we need additional mechanisms to ensure all processors are utilized.

A simple approach is to invent special idle threads, one for each processor. Such threads
run only on designated processors (one per processor). The intent is that they run only when no
other thread is available to run. To accomplish this, we use the following program:

void idle_thread() {

while(1)

thread_switch();

}

Thus once a normal thread is in the run queue, if there is an idle processor (i.e., one running an
idle thread), that processor will soon switch to running the non-idle thread.

How synchronization constructs are implemented has a big impact on a system’s performance.
There is the cost of just checking to see if the current thread should continue. Such checks, say
in the form of locking mutexes, happen so frequently that they are often carefully coded in assembler
language to be as fast as possible. Synchronization is important both inside the kernel, where
there is direct access to thread-scheduling functionality, and in user-level code as part of threads
packages — performing a system call as part of every synchronization operation is usually much
too costly.

As an example of the problems faced, let’s consider two very simple approaches to implement-
ing a mutex. The fi rst is known as the spin lock, in which a mutex is represented simply as a bit
indicating whether it is locked or not. So that multiple threads can safely use it concurrently,

CH005.indd 172CH005.indd 172 8/2/10 8:42:59 PM8/2/10 8:42:59 PM

What	about	Multiple Processor Threads?
• thread_switch() now	insufficient	because	mutex_lock()	and	

mutex_unlock()	could	be	called	simultaneously	

• Actual	concurrent	threads	like	this	require	actual	thread	
synchronization	
– Synchronization	implementation	has	big	OS	performance	impact

• Types	of	actual	implementation
– Spin	lock	(hardware	supported)
– Futexes

2/7/17

20

Spin-locks
• Operation	provided	by	some	processors	(e.g.	x86)	with	hardware	

guaranteed	atomicity	(compare	and	swap)

• With	CAS	spin-locks	(actual	synchronization)	can	be	implemented
– Note	mutex with	zero-value	means	unlocked

5.1 Threads Implementations 173

some sort of interlocked instruction is used to lock the mutex. A typical such instruction is the
compare and swap (CAS) instruction,2 defi ned as follows but executed atomically:

int CAS(int *ptr, int old, int new) {

int tmp ! *ptr;

if (*ptr !! old)

*ptr ! new

return tmp;

}

Though CAS is a single machine instruction, it does two loads from memory and one store with
the guarantee that, if executed on a multiprocessor system, the effect of concurrent execution of
it and an operation on another processor is as if one operation completely takes place before the
other. Assuming that a zero value means unlocked and a one value means locked, mutex operations
can be implemented as follows:

void spin_lock(int *mutex) {

while(!CAS(mutex, 0, 1))

;

}

void spin_unlock(int *mutex) {

*mutex ! 0;

}

The invocation of the CAS instruction within the spin_lock routine checks to see if the mutex was
unlocked and, if so, sets its state to locked. It returns what the state of the mutex was just prior
to the invocation to CAS. The spin_lock routine repeatedly invokes the CAS instruction until it
reports that the mutex was unlocked (but is now locked by the caller). The spin_unlock routine
simply clears the mutex, setting its state to unlocked.

Providing the atomicity guarantees of CAS slows down the processors considerably, so
spin_lock is usually implemented by repeatedly checking the mutex’s state using normal instructions,
then confi rming and taking the mutex with CAS, as follows:

void spin_lock(int *mutex) {

while (1) {

if (*mutex !! 0) {

// the mutex was at least momentarily unlocked

if (!CAS(mutex, 0, 1)

break; // we have locked the mutex

// some other thread beat us to it, so try again

}

}

}

2 On the x86 architecture, this instruction is cmpxchg (compare and exchange), which actually does more than what is shown for
CAS. See the Intel documentation for details (http://www.intel.com/Assets/PDF/manual/253666.pdf).

CH005.indd 173CH005.indd 173 8/2/10 8:42:59 PM8/2/10 8:42:59 PM

5.1 Threads Implementations 173

some sort of interlocked instruction is used to lock the mutex. A typical such instruction is the
compare and swap (CAS) instruction,2 defi ned as follows but executed atomically:

int CAS(int *ptr, int old, int new) {

int tmp ! *ptr;

if (*ptr !! old)

*ptr ! new

return tmp;

}

Though CAS is a single machine instruction, it does two loads from memory and one store with
the guarantee that, if executed on a multiprocessor system, the effect of concurrent execution of
it and an operation on another processor is as if one operation completely takes place before the
other. Assuming that a zero value means unlocked and a one value means locked, mutex operations
can be implemented as follows:

void spin_lock(int *mutex) {

while(!CAS(mutex, 0, 1))

;

}

void spin_unlock(int *mutex) {

*mutex ! 0;

}

The invocation of the CAS instruction within the spin_lock routine checks to see if the mutex was
unlocked and, if so, sets its state to locked. It returns what the state of the mutex was just prior
to the invocation to CAS. The spin_lock routine repeatedly invokes the CAS instruction until it
reports that the mutex was unlocked (but is now locked by the caller). The spin_unlock routine
simply clears the mutex, setting its state to unlocked.

Providing the atomicity guarantees of CAS slows down the processors considerably, so
spin_lock is usually implemented by repeatedly checking the mutex’s state using normal instructions,
then confi rming and taking the mutex with CAS, as follows:

void spin_lock(int *mutex) {

while (1) {

if (*mutex !! 0) {

// the mutex was at least momentarily unlocked

if (!CAS(mutex, 0, 1)

break; // we have locked the mutex

// some other thread beat us to it, so try again

}

}

}

2 On the x86 architecture, this instruction is cmpxchg (compare and exchange), which actually does more than what is shown for
CAS. See the Intel documentation for details (http://www.intel.com/Assets/PDF/manual/253666.pdf).

CH005.indd 173CH005.indd 173 8/2/10 8:42:59 PM8/2/10 8:42:59 PM

Faster	Spinlock
• Providing	atomicity	guarantees	slows	down	processors
• Unsafe	checks	result	in	overall	speedup

5.1 Threads Implementations 173

some sort of interlocked instruction is used to lock the mutex. A typical such instruction is the
compare and swap (CAS) instruction,2 defi ned as follows but executed atomically:

int CAS(int *ptr, int old, int new) {

int tmp ! *ptr;

if (*ptr !! old)

*ptr ! new

return tmp;

}

Though CAS is a single machine instruction, it does two loads from memory and one store with
the guarantee that, if executed on a multiprocessor system, the effect of concurrent execution of
it and an operation on another processor is as if one operation completely takes place before the
other. Assuming that a zero value means unlocked and a one value means locked, mutex operations
can be implemented as follows:

void spin_lock(int *mutex) {

while(!CAS(mutex, 0, 1))

;

}

void spin_unlock(int *mutex) {

*mutex ! 0;

}

The invocation of the CAS instruction within the spin_lock routine checks to see if the mutex was
unlocked and, if so, sets its state to locked. It returns what the state of the mutex was just prior
to the invocation to CAS. The spin_lock routine repeatedly invokes the CAS instruction until it
reports that the mutex was unlocked (but is now locked by the caller). The spin_unlock routine
simply clears the mutex, setting its state to unlocked.

Providing the atomicity guarantees of CAS slows down the processors considerably, so
spin_lock is usually implemented by repeatedly checking the mutex’s state using normal instructions,
then confi rming and taking the mutex with CAS, as follows:

void spin_lock(int *mutex) {

while (1) {

if (*mutex !! 0) {

// the mutex was at least momentarily unlocked

if (!CAS(mutex, 0, 1)

break; // we have locked the mutex

// some other thread beat us to it, so try again

}

}

}

2 On the x86 architecture, this instruction is cmpxchg (compare and exchange), which actually does more than what is shown for
CAS. See the Intel documentation for details (http://www.intel.com/Assets/PDF/manual/253666.pdf).

CH005.indd 173CH005.indd 173 8/2/10 8:42:59 PM8/2/10 8:42:59 PM

Spin-Lock	Implementation	of	Blocking	Mutex In	Hyp.	OS
• Spin-locks	consume	processor	resource	and	thus	should	be	used	sparingly
• blocking_lock works	as	before	– threads	waiting	on	mutex queue

• Use	of	spin-lock	prevents	collisions	on	mut->holder
– e.g.	holder	unlocking	at	exact	instance	empty	queue	is	being	joined

• There	is	still	a	subtle	bug	arising	on	true	multiprocessor	systems	
– Left	for	example	sheet

174 CHAPTER 5 Processor Management

Spin locks are useful only on multiprocessors and, even then, only if locks are held for brief periods
— otherwise too much processor time is wasted waiting for the lock to be released. An alternative
approach is to use a blocking lock: threads wait by having their execution suspended. This involves a
thread’s explicitly yielding the processor and joining a queue of waiting threads, then being explic-
itly resumed at some later time. The code below works on uniprocessor systems. It keeps track of
which thread has a mutex locked. This is not strictly necessary, but is useful for debugging.

void blocking_lock(mutex_t *mut) {

if (mut->holder !! 0)

enqueue(mut->wait_queue, CurrentThread);

thread_switch();

} else

mut->holder ! CurrentThread;

}

void blocking_unlock(mutex_t *mut) {

if (queue_empty(mut->wait_queue))

mut->holder ! 0;

else {

mut->holder ! dequeue(mut->wait_queue);

enqueue(RunQueue, mut->holder);

}

}

This code does not always work correctly on a multiprocessor: there is a potential problem if a
mutex is currently locked but its wait queue is empty, the holder of the mutex is unlocking it, and
another thread is attempting to lock it. It is possible that the thread locking the mutex will fi nd it
locked and be about to queue itself on the wait queue when the other thread unlocks the mutex,
fi nds the wait queue empty, and then marks the mutex unlocked (by setting its holder to zero).
Thus the fi rst thread will then join the wait queue, but will be there forever since no thread will
ever call the unlock code again.

An attempt at solving this problem is:

void blocking_lock(mutex_t *mut) {

spin_lock(mut->spinlock);

if (mut->holder !! 0)

enqueue(mut->wait_queue, CurrentThread);

spin_unlock(mut->spinlock);

thread_switch();

} else {

mut->holder ! CurrentThread;

spin_unlock(mut->spinlock);

}

}

void blocking_unlock(mutex_t *mut) {

spin_lock(mut->spinlock);

if (queue_empty(mut->wait_queue)) {

CH005.indd 174CH005.indd 174 8/2/10 8:42:59 PM8/2/10 8:42:59 PM

174 CHAPTER 5 Processor Management

Spin locks are useful only on multiprocessors and, even then, only if locks are held for brief periods
— otherwise too much processor time is wasted waiting for the lock to be released. An alternative
approach is to use a blocking lock: threads wait by having their execution suspended. This involves a
thread’s explicitly yielding the processor and joining a queue of waiting threads, then being explic-
itly resumed at some later time. The code below works on uniprocessor systems. It keeps track of
which thread has a mutex locked. This is not strictly necessary, but is useful for debugging.

void blocking_lock(mutex_t *mut) {

if (mut->holder !! 0)

enqueue(mut->wait_queue, CurrentThread);

thread_switch();

} else

mut->holder ! CurrentThread;

}

void blocking_unlock(mutex_t *mut) {

if (queue_empty(mut->wait_queue))

mut->holder ! 0;

else {

mut->holder ! dequeue(mut->wait_queue);

enqueue(RunQueue, mut->holder);

}

}

This code does not always work correctly on a multiprocessor: there is a potential problem if a
mutex is currently locked but its wait queue is empty, the holder of the mutex is unlocking it, and
another thread is attempting to lock it. It is possible that the thread locking the mutex will fi nd it
locked and be about to queue itself on the wait queue when the other thread unlocks the mutex,
fi nds the wait queue empty, and then marks the mutex unlocked (by setting its holder to zero).
Thus the fi rst thread will then join the wait queue, but will be there forever since no thread will
ever call the unlock code again.

An attempt at solving this problem is:

void blocking_lock(mutex_t *mut) {

spin_lock(mut->spinlock);

if (mut->holder !! 0)

enqueue(mut->wait_queue, CurrentThread);

spin_unlock(mut->spinlock);

thread_switch();

} else {

mut->holder ! CurrentThread;

spin_unlock(mut->spinlock);

}

}

void blocking_unlock(mutex_t *mut) {

spin_lock(mut->spinlock);

if (queue_empty(mut->wait_queue)) {

CH005.indd 174CH005.indd 174 8/2/10 8:42:59 PM8/2/10 8:42:59 PM

5.1 Threads Implementations 175

mut->holder ! 0;

} else {

mut->holder ! dequeue(mut->wait_queue);

enqueue(RunQueue, mut->holder);

}

spin_unlock(mut->spinlock);

}

Here we have associated a spin lock with the blocking lock, and use it to synchronize access to
the data structures associated with the mutex. This solves the problem described above, but it
turns out there is yet another problem.

Suppose a thread calling blocking_lock has just enqueued itself on the mutex’s wait queue,
and is just about to call thread_switch. The holder of the mutex now calls blocking_unlock, fi nds
the fi rst thread in the wait queue, and moves it to the run queue. This thread is now assigned to an
idle processor, even though it is still running on its original processor!

There are a number of ways of solving (or perhaps avoiding) this problem. One approach
is for blocking_lock, rather than unlocking the mutex’s spin lock itself, to pass the address of the
spin lock to thread_switch and have the spin lock released after the thread has given up its proces-
sor. Doing this requires a bit of work — we take it up in Exercise 6.

The blocking approach to mutexes has the obvious advantage over spin locks that
waiting threads do not consume processor time. However, it has the disadvantage that suspending
a thread, then waking it up are typically somewhat time-consuming operations. This is particu-
larly so for user-level threads that must execute system calls both to suspend themselves and to
resume others.

If it is usually the case that lock operations on mutexes succeed, then it makes sense to
optimize the lock operation for the case of the mutex being unlocked, at the possible expense of
the case in which the mutex is currently locked. Microsoft does this for their implementation
of critical sections in Windows, and some implementations of POSIX threads do it for mutexes as
well. The basic idea is simple: check if the mutex is unlocked. If it is, then simply lock it and go
on. If it’s not, then a system call is required to lock it. However, the details are anything
but simple. We describe here how it is implemented on Linux, using futexes (fast user-mode
mutexes). Our approach is based on that of Ulrich Drepper.3

A futex is implemented as a simple data structure, accessible to both user-mode code and
kernel code. Contained in it is an unsigned-integer state component called value and a queue of
waiting threads. Two system calls are provided to support futexes:4

futex_wait(futex_t *futex, unsigned int value) {

if (futex->value !! value)

sleep();

}

futex_wake(futex_t *futex) {

// wake up one thread from futex’s wait queue,

// if there is any

…

}

3 http://people.redhat.com/drepper/futex.pdf.
4 The Linux implementation uses just one system call, with an additional argument to indicate its function.

CH005.indd 175CH005.indd 175 8/2/10 8:42:59 PM8/2/10 8:42:59 PM

Scheduling	– Sharing	in	a	Transparent	Way
• OS’s	manage	resources

– Processor	time	is	apportioned	to	threads
– Primary	memory	is	apportioned	to	processes
– Disk	space	is	apportioned	to	users
– I/O	bandwidth	may	be	apportioned	to	processes

• Scheduling	concerns	the	sharing	of	processors
– Dynamic	scheduling	is	the	task
– Objectives

• Good	response	to	interactive	threads
• Deterministic	response	to	real-time	threads
• Maximize	process	completions	per	hour
• All	of	the	above?

2/7/17

21

Approaches	to	Scheduling
• Simple	batch	systems

– One	job	at	a	time

• Multi-programmed	batch	systems
– Multiple	jobs	concurrent
– Scheduling	decisions

• How	many	jobs?
• How	to	apportion	the	processor	between	them?

• Time-sharing	systems
– How	to	apportion	processor	to	threads	ready	to	execute
– Optimization	criteria	:	time	between	job	submission	and	completion

• Shared	servers
– Single	computer,	many	clients,	all	wanting	“fair”	share

• Real-time	systems

Time-Sharing	Systems
• Primary	scheduling	concern	is	the	appearance	of	responsiveness	to	

interactive	users
• Threads	assigned	user-level	priority	“importance”	(UNIX	nice())
• OS	assigned	thread	priority	rises	and	falls	based	on

– Length	of	bursts	of	computation	(before	yielding)
– Length	of	time	between	bursts

• Sensible	strategy
– Decay	priority	while	thread	is	running
– Increase	priority	while	thread	is	waiting

Real-Time Systems
• Real-time	system	scheduling	must	be	dependable

– Music
– Video
– Nuclear	power	plant	data	processing

• Approximate	real-time	by	adding	very-high	real-time	priorities
– Interrupt	processing	still	preempts	threads
– Synchronized	access	to	kernel	resources	can	cause	priority-inversion

• Low-priority	threads	locks	a	resource	a	real-time	thread	needs

Memory	Sharing
• Efficient	implementations	require	deep	understanding	of	hardware	

capabilities	and	software	requirements
• Involves

– Memory	abstraction
– Optimizing	against	available	physical	resources

• High-speed	cache
• Moderate-speed	primary	storage
• Low-speed	secondary	storage

• Security	
– Protect	OS	from	user	processes
– Keep	user	processes	apart

• Scalability
– Fit	processes	into	available	physical	memory

2/7/17

22

Virtual	Memory	Provisioned	via	Per-Process	Page	Table	*
• Operating	system	maintains	a	page	table	for	each	

running	process	that	maps	virtual	memory	pages
to	real	memory	pages.

• Every	memory	access	in	a	thread	is	intercepted	by	
the	OS/hardware	and	translated	to	a	real	memory	
address

• This	is	extremely	important	to	high	performance	
and	relies	upon	large	amounts	of	hardware	
acceleration

• Assume	
– 32-bit	virtual	address
– Page	size	4096	bytes

• Implies
– 12	bit	offset	(2^12	=	4096)
– 20-bit	page	number	(2^32	/	2^12)

• V	=	validity	bit
– If	set,	page	frame	no.	is	high-order	bits	of	address	in	real	memory
– If	not	a	page-fault	occurs	and	the	OS	takes	over	to	allocate	or	load	a	page

• R	=	referenced	bit
– If	page	is	referenced	by	a	thread

• M	=	modified	bit
– set	if	page	is	modified

• Prot.	=	page-protection	bits
– user,	os.,	exec,	data,	etc.

290 CHAPTER 7 Memory Management

Segment-based schemes were popular in the ’60s and ’70s but are less so today, primarily
because the advantages of segmentation have turned out not to outweigh the extra costs of the
complexity of the hardware and software used to manage it.

There is also a compromise approach, paged segmentation, in which each segment is divided
into pages. This approach makes segmentation a more viable alternative, but not viable enough.
Few if any systems use it today. We restrict our discussion to strictly page-based schemes.

So, we assume our virtual-memory systems are based on paging. Somehow we must map
virtual addresses into real addresses. The most straightforward way of providing such a map-
ping is via a page table. A page table consists of one entry per page of the virtual address space.
Suppose we have a 32-bit virtual address and a page size of 4096 bytes. The 32-bit address is
thus split into two parts: a 20-bit page number and a 12-bit offset within the page. When a thread
generates an address, the hardware uses the page-number portion as an index into the page-table
array to select a page-table entry, as shown in Figure 7.4.

If the page is in primary storage (i.e. the translation is valid), then the validity bit in the
page-table entry is set, and the page-frame-number portion of the page-table entry is the high-
order bits of the location in primary memory where the page resides. (Primary memory is thought
of as being subdivided into pieces called page frames, each exactly big enough to hold a page; the
address of each of these page frames is at a “page boundary,” so that its low-order bits are zeros.)
The hardware then appends the offset from the original virtual address to the page-frame number
to form the fi nal, real address.

If the validity bit of the selected page-table entry is zero, then a page fault occurs and the
operating system takes over. Other bits in a typical page-table entry include a reference bit, which
is set by the hardware whenever the page is referenced by a thread, and a modifi ed bit, which
is set whenever the page is modifi ed. We will see how these bits are used in Section 7.3 below.
The page-protection bits indicate who is allowed access to the page and what sort of access is
allowed. For example, the page can be restricted for use only by the operating system, or a page
containing executable code can be write-protected, meaning that read accesses are allowed but
not write accesses.

Page no. Offset

Virtual
address

V M R Prot Page frame no.

FIGURE 7 .4 A simple
page table, showing
the validity bit (V),
modifi ed bit (M),
reference bit (R), page
protection bits (Prot),
and page frame number.

CH007.indd 290CH007.indd 290 8/6/10 12:19:44 PM8/6/10 12:19:44 PM

On	a	32-bit	arch.	the	page	table	
is	2^20	*	4	bytes	=	4MB.

What	about	a	64-bit	
architecture?	*

Forward-Mapped	(FM)	Page	Tables
• Page	tables	take	a	lot	of	memory,	FM	page	tables	off	lower-overhead	

approach	
– 32	bit	machine,	4MB	per	process

• e.g.	solution:	each	virtual	address	divided	into	two	10-bit	numbers
– L1	page	number
– L2	page	number
– Offset

• Advantages
– Lower	overhead	– e.g.	not	all	L2	pages	need	be	in	memory	at	once	
– Pages	can	be	lazily	allocated	on	demand

• Disadvantages
– More	lookups

Before we get too excited about page tables, we need to determine what they cost. One
measure is how much memory is used merely to hold the page table. In our example, the page
table must have 220 entries, each 4 bytes long. Thus the size of the table is 222 bytes — 4 mega-
bytes. Though today this is an almost trivial amount,2 in the not-too-distant past it was far more
than could be afforded, particularly for such a per-process overhead function. If we consider
64-bit architectures (see Section 7.2.5), the cost of memory to hold a complete page table again
becomes prohibitive (to put it mildly).

7.2.1 FORWARD-MAPPED PAGE TABLES

Rather than having a complete page table in primary memory, we might have just those pieces of
it that are required to map the portion of the address space currently being used. One approach
for doing this is the forward-mapped or multilevel scheme in which the page tables form a tree,
as shown in Figure 7.5. Here the virtual address is divided into three pieces: a level-1 (L1) page
number, a level-2 (L2) page number, and an offset. Each valid entry in the L1 page table refers
to an L2 page table, and each valid entry of the L2 page tables refers to a page frame. Thus a
virtual-to-real translation consists of using the L1-page-number fi eld of the virtual address as an
index into the L1 page table to select an L2 page table. Then the L2-page-number fi eld is used as
an index into the L2 page table to select a page frame. Finally, the offset is used to select a loca-
tion within the page frame.

The advantage of this scheme is that not all L2 page tables need to be in real memory at
once, just those mapping portions of the address space in current use. If the L1 and L2 page
numbers are each 10 bits long (as in the most commonly used address-translation scheme of the
Intel x86 architecture), then each page table requires 4 kilobytes of storage. Since each page
table contains 1024 (! 210) entries, each L2 page table maps 4 megabytes (! 210 " 212 bytes) of
virtual memory. A simple Unix or Windows process would require one L2 page table to map the
low-address portion of its address space (text, BSS, data, and dynamic in Unix, assuming they
require less than 4 megabytes) and another one to map the high-address portion (containing the
stack, also assuming it requires less than 4 megabytes). Thus the total overhead is 12 kilobytes
(one L1 and two L2 page tables) — an appreciable savings over the 4 megabytes of overhead
required for one-level paging.

2 At $12/gigabyte, a reasonable price at the time of this writing, four megabytes is 5 cents’ worth of memory — hardly worth wor-
rying about. However, in the early 1980s it was around $40,000 worth of memory and totally out of the question.

L1 page # L2 page # Offset

L1 page table

L2 page tables Page frame

FIGURE 7 .5 Forward-mapped page table.

7.2 Hardware Support for Virtual Memory 291

CH007.indd 291CH007.indd 291 8/6/10 12:19:45 PM8/6/10 12:19:45 PM

Note	:	memory	access	is	slow;	caching	is	imperative
• Hardware	supports	address	translation	via	“translation	lookaside

buffers”
– Fast	processor-based	memory	containing	some	entries	of	address	translation	

table
– Automatic	translation	in	hardware

64-Bit	Issues
• Assume	8-Kb	pages,	how	big	is	a	page	table	for	a	64-bit	arch?

– HUGE!	(Example	sheet)
– One	solution,	don’t	use	entire	address	range	and	use	forward	mapping	

aggressively
298 CHAPTER 7 Memory Management

of the architecture are limited to no more that 48-bit addresses. With this limitation, four levels of
page tables are used with 4KB pages (Figure 7.13) and three levels are used with 2MB pages
(Figure 7.14). The small page size minimizes internal fragmentation, at the expense of an extra
level of page tables. The large page size reduces the number of levels, at the expense of internal
fragmentation. It also reduces the number of TLB entries needed for a range of addresses. An
operating system might use the larger page size for its own address space, so as to leave more of
the TLB for user processes. Both Linux and Windows do this, and they also let user processes
specify the use of the larger page size when mapping fi les into their address spaces.

unused

0112029384763

Page map
table

Page
directory

pointer table Page
directory table

Page table

Physical page

FIGURE 7 .13 x64 virtual address format (4KB pages).

Physical
page

unused

02029384763

Page map
table

Page
directory

pointer table Page
directory table

FIGURE 7 .14 x64 virtual address format (2MB pages).

CH007.indd 298CH007.indd 298 8/6/10 12:19:49 PM8/6/10 12:19:49 PM

X64	virtual	address	format

2/7/17

23

Operating-System Memory	Management
• OS	responsible	for	ensuring	programs	execute	at	reasonable	speed
• OS	must	determine	which	pages	should	be	in	primary	memory
• OS	virtual	memory	policy	decisions

– Fetch
– Placement
– Replacement

• Simple	approaches
– Demand	paging

• Fetch	only	when	a	thread	references	something	in	that	page
– Placement

• Anywhere	
– Replacement

• When	full,	eject	page	in	memory	longest	(FIFO)
– Problem?

OS	Response	to	a	Page	Fault	*
• An	interrupt	that	occurs	when	a	program	requests	data	that	is	not	

currently	in	real	memory.	The	interrupt	triggers	the	operating	system	to	
fetch	the	data	from	a	virtual	memory	and	load	it	into	RAM.	An	
invalid page	fault or page	fault error	occurs	when	the	operating	system	
cannot	find	the	data	in	virtual	memory.

• Steps
– Detect	page	fault
– Find	a	free	page	frame	(in	real	memory)
– Write	a	page	out	to	secondary	storage	if	none	free	(swapping)
– Fetch	desired	page	from	secondary	storage
– Return	from	trap

• Latter	steps	very	costly
– Read	in	extra	pages

• Prepaging – How?		Why?
– Write-out	pages	preemptively

• Dedicate	a	page-out	thread

Page	Caching	Implementation	Strategy
• Optimal	replacement	strategies	are	impractical
• Least-recently-used	(LRU)	good	in	practice

– Except	counting	references	is	impractical

• Two-handed	clock	algorithm	used	in	practice
– OS	uses	a	dediciated page-out	thread	(e.g.linux:	kswapd)

• One	hand	sets	reference	bit	to	0
• Other	hand	triggers	page	flush	if	another	thread	hasn’t	set	reference	bit	to	1

The best we can do is to make a good guess. What seems reasonable is that Belady’s page,
the page whose next reference is farthest in the future, is the page whose most recent reference was
the farthest in the past. This clearly isn’t always true, but it has the advantage of being something
we have a hope of implementing and something that might work reasonably well in practice. This
approach is known as least-recently used (LRU) and has applications in other areas as well.

An exact implementation of LRU would require the operating system to keep track of all
references to page frames and to be able to order them by time of last reference. Without rather
expensive hardware support, doing this would be so time-consuming as to negate any possible
benefi t. However, we can approximate LRU without undue expense.

Rather than ordering page frames by their time of last reference, let’s use a coarser approach
and divide time into discrete periods, each long enough for there to be thousands of references.
Most virtual-memory architectures support a reference bit in their translation entries, set to 1 by
the translation hardware each time the entry is used (i.e., when the corresponding page frame is
referenced). At the end of each period we can examine the reference bits and determine which
page frames have been used. At the same time we zero these bits, so we can do the same thing in
the next period. This coarse measure of LRU works well enough, particularly when we remember
that LRU itself is just a way to get an educated guess about which page is least likely to be used
in the near future.

Rather than implement the approximate LRU algorithm exactly as we’ve described it,
many systems use a continual approach known as the clock algorithm. All active page frames
are conceptually arranged in a circularly linked list. The page-out thread slowly traverses the
list. In the “one-handed” version of the clock algorithm, each time it encounters a page, it checks
the reference bit in the corresponding translation entry: if the bit is set, it clears it. If the bit is
clear, it adds the page to the free list (writing it back to secondary storage fi rst, if necessary).

A problem with the one-handed version is that, in systems with large amounts of primary
storage, it might take too long for the page-out thread to work its way all around the list of page
frames before it can recognize that a page has not been recently referenced. In the two-handed
version of the clock algorithm, the page-out thread implements a second hand some distance
behind the fi rst. The front hand simply clears reference bits. The second (back) hand removes
those pages whose reference bits have not been set to one by the time the hand reaches the page
frame (see Figure 7.18).

Front hand:
reference bit ! 0

Back hand:
if (reference bit !! 0)
 remove page

FIGURE 7 .18 Two-handed clock algorithm.

7.3 Operating-System Issues 303

CH007.indd 303CH007.indd 303 8/6/10 12:19:51 PM8/6/10 12:19:51 PM

Efficient	Fork	via	Copy-on-Write
• Can	fork() be	made	less	expensive	to	implement?

– Remember	fork() copies	a	process’	entire	memory	space

• Lazy	evaluation
– Let	copies	share	address	space,	in	particular	page	tables
– Mark	all	pages	read	only
– On	write()	make	copies	unique	to	each	process,	update	individual	process	

page	tables	appropriately
– OS	bookkeeping	requires	care

2/7/17

24

Shared	Memory	and	mmap() ***	(mmap_shared_memory_example.c)

• mmap() maps	files	to	contiguous	virtual	memory	
• Files	may	be	mapped	to	address	space	shared	across	processes!

– Shared
• Modifications	seen	by	all	forked	processes	(shared	memory	parallel	processing!)

– Private
• Modifications	remain	private	to	each	forked	process	(copy	on	write)

Review
• OS	Sharing	of	processor	and	memory

– Threads	implementation
• Entails	multiplexing	threads	to	available	processors

– Memory	management
• Virtual	memory	allows	large	programs	to	run	on	systems	with	small	amounts	of	
primary	storage

• Virtual	memory	allows	co-existence	of	multiple	programs
• Page	tables	entail	translating	between	virtual	and	real	memory	addresses	at	
runtime

Lecture	4 :	File Systems	&	Networking

Material	from	
Operating	Systems	in	Depth

(spec.	Chapters	6	and	9)	
by

Thomas	Doeppner

GET	THIS	BOOK	AND	READ	IT!

• Memory-mapped
– Each	device	has	a	controller
– Each	controller	has	registers
– Registers	appear	to	processor	as	

physical	memory
– Actually	attached	via	a	bus

• Categories	of	I/O	devices
– Programmed	I/O	(PIO)

• One	word	per	read/write
• e.g.	terminal

– Direct	memory	access	(DMA)
• Controller	directly	manipulates	
physical	memory	in	location	
specified	by	processor

• e.g.	disk

I/O	Architecture	Types	(Simplified	Overview)

104 CHAPTER 3 Basic Concepts

An important property of interrupts is that they can be masked, i.e., temporarily blocked. If an
interrupt occurs while it is masked, the interrupt indication remains pending; once it is unmasked, the
processor is interrupted. How interrupts are masked is architecture-dependent, but two approaches
are common. One approach is that a hardware register implements a bit vector — each bit represents
a class of interrupts. If a particular bit is set, then the corresponding class of interrupts is masked.
Thus the kernel masks interrupts by setting bits in the register. When an interrupt does occur, the
corresponding mask bit is set in the register and cleared when the handler returns — further occur-
rences of that class of interrupts are masked while the handler is running.

What’s more common are hierarchical interrupt levels. Each particular device issues inter-
rupts at a particular level. The processor masks interrupts by setting an interrupt priority level
(IPL) in a hardware register: all devices whose interrupt level is less than or equal to this value
have their interrupts masked. Thus the kernel masks a class of interrupts by setting the IPL to a
particular value. When an interrupt does occur and the handler is invoked, the current IPL is set
to that of the device, and restored to its previous value when the handler returns.

In this section we give a high-level, rather simplistic overview of common I/O architectures. Our
intent is to provide just enough detail to discuss the responsibilities of the operating system in
regard to I/O, but without covering the myriad arcane details of device management. To do this,
we introduce a simple I/O architecture we have used in the past at Brown University for operating
system projects.

A very simple architecture is the memory-mapped architecture: each device is controlled
by a controller and each controller contains a set of registers for monitoring and controlling its
operation (see Figure 3.7). These registers appear to the processor to occupy physical memory
locations. In reality, however, each controller is connected to a bus. When the processor wants to
access or modify a particular location, it broadcasts the address on the bus. Each controller listens
for a fi xed set of addresses and, when one of its addresses has been broadcast, attends to what the
processor wants to have done, e.g., read the data at a particular location or modify the data at a
particular location. The memory controller, a special case, passes the bus requests to the actual
primary memory. The other controllers respond to far fewer addresses, and the effect of reading
and writing is to access and modify the various controller registers.

There are two categories of devices, programmed I/O (PIO) devices and direct memory
access (DMA) devices. PIO devices do I/O by reading or writing data in the controller registers
one byte or word at a time. In DMA devices the controller itself performs the I/O: the processor
puts a description of the desired I/O operation into the controller’s registers, then the controller
takes over and transfers data between a device and primary memory.

3.2
INPUT/OUTPUT
ARCHITECTURES

3.2
INPUT/OUTPUT
ARCHITECTURES

Bus

Memory Disk

Processor

ControllerControllerController

FIGURE 3 .7 Simple I/O architecture.

CH003.indd 104CH003.indd 104 8/2/10 8:31:22 PM8/2/10 8:31:22 PM

If	an	OS	were	written	in	C++	a	device	
driver	would	be	a	class	with	
instances	for	each	device.

2/7/17

25

PIO	and	DMA	Example	
3.2 Input/Output Architectures 105

Our architecture supports both PIO and DMA devices. The default confi guration has
one PIO device (a terminal) and one DMA device (a disk). Each PIO device has four registers:
Control, Status, Read, and Write, each one byte in length (see Figure 3.8). Each DMA device
also has four registers: Control, Status, Memory Address, and Device Address (Figure 3.9). The
control and status registers are each one byte long; the others are four bytes long (they hold
addresses). Certain bits of the control registers are used to start certain functions, as shown in
Figure 3.8 and Figure 3.9. Bits of the status registers are used to indicate whether the associated
controller is ready or busy.

Control registerGoR GoW IER IEW

Status registerRdyR RdyW

Read register

Write register

Ready to write RdyW

Ready to readRdyR

Enable write-completion interruptsIEW

Enable read-completion interruptsIER

Go write (start a write operation)GoW

Go read (start a read operation)GoRLegend:

FIGURE 3 .8 PIO registers.

Op Code Control registerGo IE

Status registerRdy

Memory address register

Device address register

Operation code (identifies the operation)Op Code

Controller is readyRdy

Enable interruptsIE

Start an operationGoLegend:

FIGURE 3 .9 DMA registers.

CH003.indd 105CH003.indd 105 8/2/10 8:31:23 PM8/2/10 8:31:23 PM

3.2 Input/Output Architectures 105

Our architecture supports both PIO and DMA devices. The default confi guration has
one PIO device (a terminal) and one DMA device (a disk). Each PIO device has four registers:
Control, Status, Read, and Write, each one byte in length (see Figure 3.8). Each DMA device
also has four registers: Control, Status, Memory Address, and Device Address (Figure 3.9). The
control and status registers are each one byte long; the others are four bytes long (they hold
addresses). Certain bits of the control registers are used to start certain functions, as shown in
Figure 3.8 and Figure 3.9. Bits of the status registers are used to indicate whether the associated
controller is ready or busy.

Control registerGoR GoW IER IEW

Status registerRdyR RdyW

Read register

Write register

Ready to write RdyW

Ready to readRdyR

Enable write-completion interruptsIEW

Enable read-completion interruptsIER

Go write (start a write operation)GoW

Go read (start a read operation)GoRLegend:

FIGURE 3 .8 PIO registers.

Op Code Control registerGo IE

Status registerRdy

Memory address register

Device address register

Operation code (identifies the operation)Op Code

Controller is readyRdy

Enable interruptsIE

Start an operationGoLegend:

FIGURE 3 .9 DMA registers.

CH003.indd 105CH003.indd 105 8/2/10 8:31:23 PM8/2/10 8:31:23 PM

PIO	(terminal) DMA	(disk)

Usage:

1. Store	byte	in	write	register
2. Set	GoW bit	in	control	register
3. Wait	for	RdyW in	status	register

4. Can	request	an	interrupt

Usage:

1. Set	disk	address	in	device	register
2. Set	memory	address	in	memory	address	register
3. Set	Op	Code,	Go,	IE	in	control	register

File Systems
• Purpose

– Provide	easy-to-use	permanent	(with	respect	to	process	lifetime)	storage	
with	modest	functionality

– Performance	of	file	system	critical	to	system	performance
– Crash	tolerance	a	function	of	file	system	capabilities
– Security	a	major	concern

• Criteria
– Easy	

• File	abstraction	should	be	easy	to	use
– High	performance

• No	waste	of	space,	maximum	utilization	of	resource
– Permanence

• Dependable
– Security

• Access	control	should	be	strict

Basics
• Pedagogical	review	of	Unix	system	5	File	System	(S5FS)
• Revolutionary,	simplifying	Unix	file	abstraction

– A	file	is	an	array	of	bytes,	period.

• File	system	layout
– Boot	block

• First-level	boot	program	that	reads	OS	into	memory
– Superblock

• Describes	layout	of	remaining	filesystem
– i-list

• Array	of	index	nodes	(inodes)
– Data	region

• Disk	blocks	holding	file	contents

6.1 The Basics of File Systems 219

does poorly on all but the fi rst of the criteria listed above. We use it here as a starting point to
discuss how modern fi le-systems handle these concerns.

The Unix fi le abstraction is simple — a revolutionary feature in Unix’s early days. Files are
arrays of bytes. User applications need not know how fi les are physically represented on disks.
Other fi le systems of the time forced the user to be aware of the record size — the amount of data
transferred to or from the application in each fi le request — as well as the block size — the unit
by which data is transferred to or from the disk. Unix just had bytes. Applications read or wrote
as many bytes as necessary. It was up to the fi le system to implement such requests effi ciently
using the available disk storage. Rather than making programs allocate space for fi les before using
them, Unix fi les grow implicitly: writing beyond the current end of a fi le makes it bigger. Files
are named by their paths in a single, system-wide directory hierarchy.

The architecture of the underlying storage medium is, of course, pretty important in fi le-
system design. We assume here that it’s a disk organized as a collection of sectors, each of the same
size — 512 bytes is typical. As detailed in Section 6.1.2 below, disks are accessed by moving disk
heads to the appropriate cylinder and then waiting for the disk to rotate until the desired disk sec-
tor is under one of the heads. Thus the time required to access a sector depends on the distance of
the current position of the disk heads from the desired sector. One of the things that make S5FS so
simple is that it does not take this distance into account when allocating space for fi les. It considers
a disk to be a sequence of sectors each of which can be accessed in the same amount of time as all
the others; the only optimization done is to minimize the number of disk accesses. No attempt is
made to minimize the time spent waiting for disk heads to be properly positioned (the seek time) or
the time waiting for the desired sector to be under the disk head (the rotational latency).

This simplifi es things a lot. All sectors are equal; thus we can think of a disk as a large
array. Accessing this array is a bit expensive compared to accessing primary storage, but the
design of on-disk data structures needn’t differ substantially from the data structures in primary
storage. (This, of course, is a simplifi cation used in S5FS; it doesn’t apply to all fi le systems!)

Figure 6.1 shows the basic format of a fi le system on disk.1 The fi rst disk block contains a
boot block; this has nothing to do with the fi le system, but contains the fi rst-level boot program
that reads the operating system’s binary image into primary memory from the fi le system. The
next block, the superblock, describes the layout of the rest of the fi le system and contains the heads
of the free lists. Following this are two large areas. The fi rst is the i-list, an array of index nodes (inodes)
each of which, if in use, represents a fi le. Second is the data region, which contains the disk blocks
holding or referring to fi le contents.

1 Note that one physical disk is often partitioned to hold multiple fi le-system instances. Thus what is shown in Figure 6.1 is a
single fi le-system instance within a region of a partitioned disk.

Data region

I-list

Superblock
Boot block

FIGURE 6 .1 S5FS
layout.

CH006.indd 219CH006.indd 219 8/6/10 12:11:07 PM8/6/10 12:11:07 PM

Unix’s	S5FS
• Each	file	is	described	by	an	inode
• Directories	are	files	containing	

names	and	inode numbers
• Diskmap

– Maps	logical	blocks	numbered	
relative	to	the	beginning	of	the	file	
to	physical	blocks	numbered	relative	
to	the	beginning	of	the	file	system

– Assume
• Block	length	=	1024	bytes
• 13	pointers

– First	10	point	directly	to	disk	blocks
– Next	singly	indirect
– Doubly
– Triply

– 0	pointer	counts	as	block	of	all	zeros
• Efficient	for	sparse	files

220 CHAPTER 6 File Systems

0
1
2
3
4
5
6
7
8
9

10
11
12

Triple indirect
block Double indirect

blocks
Indirect blocks Data blocks

Disk map
(in inode)

FIGURE 6 .3 S5FS disk map. Each of the indirect blocks (including double and triple
indirect blocks) contains up to 256 pointers.

Device

Inode number

Mode

Link count

Owner, Group

Size

Diskmap

FIGURE 6.2 S5FS inode.

Each fi le is described by an inode; thus a fi le is referred to internally by its inode, which is
done via the inode’s index in the i-list. As we saw in Chapter 1, directories are otherwise normal
fi les containing pairs of directory-component names and inode numbers. Thus following a path
in the directory hierarchy involves reading the contents of a directory fi le (contained in sectors
taken from the data region) to look up the next component of the path. Associated with that compo-
nent in the fi le is an inode number that is used to identify the inode of the fi le containing the next
directory in the path.

The layout of an inode is shown in Figure 6.2. What’s important to us at the moment is the
disk map (Figure 6.3), which refers to the disk blocks containing the fi le’s data. The disk map
maps logical blocks numbered relative to the beginning of a fi le into physical blocks numbered
relative to the beginning of the fi le system. Each block is 1024 (1 K) bytes long. (It was 512 bytes
long in the original Unix fi le system.) The data structure allows fast access when a fi le is accessed
sequentially and, with the help of caching, reasonably fast access when the fi le is used for paging
and other “random” access.

The disk map contains 13 pointers to disk blocks. The fi rst ten of these pointers point to
the fi rst 10 blocks of the fi le, so that the fi rst 10 KB of a fi le are accessed directly. If the fi le is
larger than 10 KB, then pointer number 10 points to a disk block called an indirect block. This
block contains up to 256 (4-byte) pointers to data blocks (i.e., 256 KB of data). If the fi le is big-
ger than this (256 KB ! 10 KB " 266 KB), then pointer number 11 points to a double indirect
block containing 256 pointers to indirect blocks, each of which contains 256 pointers to data
blocks (64 MB of data). If the fi le is bigger than this (64 MB ! 256 KB ! 10 KB), then pointer
number 12 points to a triple indirect block containing up to 256 pointers to double indirect blocks,
each of which contains up to 256 pointers pointing to single indirect blocks, each of which contains

CH006.indd 220CH006.indd 220 8/6/10 12:11:07 PM8/6/10 12:11:07 PM

220 CHAPTER 6 File Systems

0
1
2
3
4
5
6
7
8
9

10
11
12

Triple indirect
block Double indirect

blocks
Indirect blocks Data blocks

Disk map
(in inode)

FIGURE 6 .3 S5FS disk map. Each of the indirect blocks (including double and triple
indirect blocks) contains up to 256 pointers.

Device

Inode number

Mode

Link count

Owner, Group

Size

Diskmap

FIGURE 6.2 S5FS inode.

Each fi le is described by an inode; thus a fi le is referred to internally by its inode, which is
done via the inode’s index in the i-list. As we saw in Chapter 1, directories are otherwise normal
fi les containing pairs of directory-component names and inode numbers. Thus following a path
in the directory hierarchy involves reading the contents of a directory fi le (contained in sectors
taken from the data region) to look up the next component of the path. Associated with that compo-
nent in the fi le is an inode number that is used to identify the inode of the fi le containing the next
directory in the path.

The layout of an inode is shown in Figure 6.2. What’s important to us at the moment is the
disk map (Figure 6.3), which refers to the disk blocks containing the fi le’s data. The disk map
maps logical blocks numbered relative to the beginning of a fi le into physical blocks numbered
relative to the beginning of the fi le system. Each block is 1024 (1 K) bytes long. (It was 512 bytes
long in the original Unix fi le system.) The data structure allows fast access when a fi le is accessed
sequentially and, with the help of caching, reasonably fast access when the fi le is used for paging
and other “random” access.

The disk map contains 13 pointers to disk blocks. The fi rst ten of these pointers point to
the fi rst 10 blocks of the fi le, so that the fi rst 10 KB of a fi le are accessed directly. If the fi le is
larger than 10 KB, then pointer number 10 points to a disk block called an indirect block. This
block contains up to 256 (4-byte) pointers to data blocks (i.e., 256 KB of data). If the fi le is big-
ger than this (256 KB ! 10 KB " 266 KB), then pointer number 11 points to a double indirect
block containing 256 pointers to indirect blocks, each of which contains 256 pointers to data
blocks (64 MB of data). If the fi le is bigger than this (64 MB ! 256 KB ! 10 KB), then pointer
number 12 points to a triple indirect block containing up to 256 pointers to double indirect blocks,
each of which contains up to 256 pointers pointing to single indirect blocks, each of which contains

CH006.indd 220CH006.indd 220 8/6/10 12:11:07 PM8/6/10 12:11:07 PM

2/7/17

26

Organizing	Free	Storage	on	Disk
• Free	disk	blocks	are	represented	as	

a	linked	list
• Superblock

– Contains	addresses	of	up	to	100	free	
disk	blocks

– Last	pointer	points	to	another	block	
containing	free	disk	blocks

– Contains	cache	of	indices	of	free	
inodes

• Inodes
– Simply	marked	as	free	or	not	on	disk
– Disk	writes	required	for	allocation	and	

frees
• Aids	crash	tolerance	– inode updates	
are	immediate

222 CHAPTER 6 File Systems

98
97

99

0
98
97

99

0
Superblock

FIGURE 6 .4 S5FS free list.

Superblock

11
6

12
4

13

16
15
14
13
12
11
10

9
8
7
6
5
4
3
2

0

0
0
0

0

0

0

1
I-list

FIGURE 6 .5 S5FS free inode list.

the inode is marked as allocated. If the cache is empty, then the i-list is scanned for suffi cient free
inodes to refi ll it. To aid this scan, the cache contains the index of the fi rst free inode in the i-list.
Freeing an inode involves simply marking the on-disk inode as free and adding its index to the
cache, if there’s room.

Why are inodes handled this way? In particular, why use a technique that requires a disk
write every time an inode is allocated or freed? There are two reasons. First, inodes are allocated
and freed much less often than data blocks, so there’s less need for a relatively complex technique

CH006.indd 222CH006.indd 222 8/6/10 12:11:08 PM8/6/10 12:11:08 PM

Disk	Architecture
• File	systems	optimize	performance	

by	being	aware	of	disk	
architecture

• Architecture
– Many	platters	(top	and	bottom)
– Many	tracks	per	platter
– Tracks	divided	into	equal	length	

sectors
– Read	a	write	heads	per	surface
– One	head	active	at	a	time
– Set	of	tracks	selected	by	heads	at	

one	moment	calls	a	cylinder
• Nomenclature

– Seek	time	:	time	to	position	the	
heads	over	the	correct	cylinder

– Rotational	latency	:	time	‘til	desired	
sector	is	underneath	head

– Transfer	time	:	time	for	sector	to	
pass	under	head

224 CHAPTER 6 File Systems

 2. Rotate the disk platter until the desired sector is underneath the read/write head. The time
required for this is known as the rotational latency.

 3. Rotate the disk platter further so the head can read or write the entire sector, transferring
data between it and the computer’s memory. The time required for this is known as the
transfer time.

The seek time is usually the dominant factor. Back in the days when S5FS was popular and FFS
was being developed (the early 1980s), average seek times (i.e., the time required to move from
one randomly selected cylinder to another) were typically in the neighborhood of 30 milliseconds.
At the time of this writing, average seek times are from 2 to 10 milliseconds. It takes less time to
move the disk heads a shorter distance than a longer distance, but the relationship is not linear:
we must take into account the time required for acceleration and deceleration of the disk heads
and other factors as well. A typical disk drive might have 25,000 cylinders. The time to move the
heads one cylinder might be .2 milliseconds, yet the average seek time might still be 4 milliseconds.
For our purposes, however, it suffi ces to say that closer means faster.

Rotational latency times depend on the speed at which disks spin. In the early 1980s this was
pretty much always 3600 RPM. Today’s spin rates range from 5200 to 15,000 RPM. Assuming
that the average rotational latency is the time required for half a revolution, rotational latency has
gone from 8.3 milliseconds in the early 1980s to as little as 2 milliseconds today.

The transfer time depends both on rotational latency and on the number of sectors per
track: the more sectors on a track, the smaller the fraction of a full revolution the platter must spin
to pass one complete sector underneath a head. Since modern disks have more sectors in outer
tracks than in inner tracks, the transfer time depends upon which track the sector is in. A typical
drive might have 500 sectors in the inner tracks and 1000 in the outer tracks, with a sector size of
512 bytes. Thus at 10,000 RPM, the transfer rate can be as high as almost 85 MB/second, though
this rate can be maintained only for as much data as there is in a track. Transferring data that is
spread out on multiple tracks requires additional positioning time.

Many disk controllers automatically cache the contents of the current track: as soon as a
disk head is selected after a seek to a new cylinder, a buffer in the controller begins to fi ll with
the contents of the sectors passing under the head. Thus after one complete revolution, the entire
contents of the track are in the buffers and each sector can be read without further delay.

This form of caching is innocuous in the sense that it can only help performance and has
no effect on the semantics of disk operations. Another form of caching — write-behind caching
— is used by many modern disk controllers (particularly SATA) to cache disk writes, allowing
the writer to proceed without having to wait for the data to be written to the actual disk. This can

FIGURE 6 .7 Disk architecture.

Track

Sector

Disk heads
(on top and bottom
of each platter)

Cylinder

CH006.indd 224CH006.indd 224 8/6/10 12:11:09 PM8/6/10 12:11:09 PM

2013	Disk	Performance	
• Tricks	of	the	trade

– Maximizing	throughput
• Head	skewing

– Sectors	offset	on	each	head	by	some	
number	of	sectors	to	account	for	head	
switch	time

• Cylinder	skewing
– Sectors	offset	by	some	amount	to	

account	for	one	track	seek	time

6.1 The Basics of File Systems 225

speed things up a fair amount, but can be a problem if, for example, there is a power failure and
the data does not actually get to disk. Worse yet, data may be written to disk in a different order
from what the writer intended (we discuss the consequences of this in Section 6.2.1). Some fi le
systems (such as ZFS (Section 6.6.6)) cope with this correctly, others do not.

Keep in mind that typical processor speeds in the early 1980s were over a thousand times
lower than they are today. Even though disk technology has improved since then, processor
technology has improved even more and thus the discrepancy between processor speed and disk
speed has increased dramatically.

We now see where we must work so as to improve fi le access times. The biggest issue is
seek time: we need to minimize how often and how far the disk heads move while satisfying disk
requests. A lesser but still important issue is rotational latency: we need to position fi le data on
disk so as to minimize it.

6.1.2.1 The Rhinopias Disk Drive
We now specify a disk drive to use as a running example so that we can be specifi c in examining
fi le-system performance. We want our drive to be representative of drives available today, though
it will undoubtedly be obsolete soon. We also need to give it a name: we’ll call it the Rhinopias
drive. Our drive has the following characteristics:2

Rotation speed 10,000 RPM

Number of surfaces 8

Sector size 512 bytes

Sectors/track 500–1000; 750 average

Tracks/surface 100,000

Storage capacity 307.2 billion bytes

Average seek time 4 milliseconds

One-track seek time .2 milliseconds

Maximum seek time 10 milliseconds

From this information we compute its maximum transfer rate, which occurs when we transfer
consecutive sectors from one track, as 85.33 million bytes/sec. Of course, this occurs only on
outer tracks. A better fi gure might be the maximum transfer rate on the average track of 750 sectors:
64 million bytes/sec.

What is the maximum transfer rate when we’re transferring data that occupies more than
one track? Let’s fi rst consider data that resides in a single cylinder. Though we can switch read/
write heads quickly to go from one track to another in a cylinder, this requires some time, enough
that by the time the drive switches from the read/write head for surface 1 to the head for surface 2,
the disk has rotated some distance into the next sector. Thus if we want to access that next sector,
we have to wait for the disk to spin almost one complete revolution.

What current disk drives (and thus our Rhinopias drive) do to avoid this problem is a trick
called head skewing. Sector 1 on track 2 is not in the same relative position on the track as sector
1 of track 1; instead, it’s offset by one sector. Thus, after accessing sectors 1 through 750 on one
750-sector track, by the time the drive switches to the disk head of the next track, the disk has
rotated so that sector number 1 is just about to pass under the head. Thus to compute the time
required to transfer all the data in one cylinder, we must add to the transfer time for all but the last

2 We use the prefi xes kilo-, mega-, and giga- to refer to powers of two: 210, 220, and 230. The terms thousand, million, and billion
refer to powers of ten: 103, 106, and 109.

CH006.indd 225CH006.indd 225 8/6/10 12:11:10 PM8/6/10 12:11:10 PM

S5FS	Problems	and	Improvements
• File	allocation	strategy	results	in	slow	file	access
• Small	block	size	results	in	slow	file	access
• Lack	of	resilience	in	the	face	of	crashes	is	a	killer

• Possible	improvements
– Increase	block	size

• Fragmentation	becomes	an	issue
– Rearrange	disk	layout	to	optimize	performance

2/7/17

27

Dynamic	Inodes
• S5FS	inode table	is	a	fixed	array

– Requires	predicting	number	of	files	the	system	will	have
– Can’t	add	more	disk	space	to	the	file	system

• Solution
– Treat	inode array	as	a	file
– Keep	inode for	the	inode file	at	a	fixed	location	on	disk	

• Backup

Crash	Resiliency
• To	recover	from	a	crash	means	to	bring	the	file	system’s	metadata	into	a	

consistent	state
• Some	operations	(rename())	require	many	steps,	requiring	multiple	

writes
• Approaches

– Consistency	preserving
– Transactional

• Transaction	support	common	in	databases
– Journaling

• New	value	– modification	steps	are	recorded	in	a	journal	first,	then	applied
• Old	value	– old	blocks	are	recorded	in	a	journal,	then	filesystem updated

– Shadow-paging
• Original	versions	of	modified	items	retained
• New	versions	not	integrated	into	the	file	system	until	the	transaction	is	committed

(single	write)

Shadow-Paged	File	Systems
• Also	called	copy-on-write	file	

systems
– e.g.	WAFL	and	ZFS

• Filesystem updates	result	in	
entirely	new	inode indirect	
reference	tree

• Snapshot	root	always	allows	
recovery	of	a	consistent	
filesystem

6.3 Directories and Naming 253

Root

Inode file
indirect
blocks

Inode file
data blocks

Regular file
indirect blocks

Regular file
data blocks

Snapshot root

FIGURE 6 .35 A leaf
node in a shadow-page
tree is modifi ed, step 2.
Copies are made of the
leaf node and its ances-
tors all the way up to
the root. A copy of the
old root is maintained,
pointing to a snapshot
of the old version of the
fi le system.

The root itself is at a known location on disk and is modifi ed directly, in a single disk write.
Thus, note two things:

 1. If the system crashes after any non-root nodes have been modifi ed but before the root is
modifi ed, then when the system comes back up the root refers to the unmodifi ed fi le-system
tree. No changes take effect on disk until the überblock is modifi ed. Thus we have a transaction
— the modifi ed copies of the nodes are the shadow pages.

 2. A copy of the unmodifi ed root refers to the fi le-system tree as it was before the modifi cations
took place. Thus we have a snapshot of the earlier state of the fi le system. Such snapshots
can be kept around to let us recover inadvertently deleted fi les and can also provide a consistent
copy of the fi le system for backup to a tape drive.

Note also that the transactions don’t require extra disk writes, as the journaling approach does.
As mentioned in Section 6.2.2 above, (Brown, Kolling, et al. 1985) argued that though fewer
disk writes are required, those that were necessary were expensive because they are not to con-
tiguous locations. But fi le-system technology has improved greatly since 1985. In particular,
log-structured fi le systems have shown that we can simply group a bunch of seemingly unre-
lated fi le pages together and write them as a sequence of contiguous blocks. This and other
techniques are used in both WAFL and ZFS to provide good performance, as we discuss in
Sections 6.6.5 and 6.6.6 below.

Naming in fi le systems is pretty straightforward: fi les are named by their path names in a basically
tree-structured naming hierarchy. We could certainly think of other naming techniques — for
example, names could be completely unstructured with no notion of directories — but the organizing
power of directories has proven itself over the past few decades and seems here to stay.

We note briefl y that fi le systems are not database systems. File systems organize fi les for
easy browsing and retrieval based on names. They do not provide the sophisticated search facilities
of database systems. The emphasis in fi le systems is much more on effi cient management of
individual fi les than on information management in general. Thus, by database standards, the
organization of fi le systems only on the basis of fi le names is pretty simplistic. But implementing
such naming well is extremely important to the operating system.

The implementation of a fi le-system name space has all the requirements of the rest of the fi le
system: it must be fast, miserly with space, crash tolerant, and easy to use. The key components are
directories and various means for piecing different name spaces together — that is, the notion of

6.3
DIRECTORIES
AND NAMING

6.3
DIRECTORIES
AND NAMING

CH006.indd 253CH006.indd 253 8/6/10 12:11:37 PM8/6/10 12:11:37 PM

Directories	and	Naming
• Opening	a	file	requires	

– Following	its	pathname
– Opening	directory	files

• Creating	a	file
– Verifying	pathname
– Inserting	component	in	last

• S5FS
– Linear	sequence	of	fixed	length	names	and	inode numbers
– Deleting	entries	involved	marking	slots	as	free
– No	directory	space	ever	given	back	to	filesystem!
– Sequential	search!

• Subsequent	generation	directory	structure
– Variable	length	names
– First	fit	replacement

• Directory	operations	were	a	major	bottleneck!

2/7/17

28

• Storage	allocation	is	very	
important	in	OS’s
– Disk
– Memory

• Example
– 1000,	1100,	250	bytes	in	order

• Competing	approaches
– First-fit
– Best-fit

• Knuth	simulations	revealed	
(non-intuitively)	first-fit	was	
best

• Intuition	:	best-fit	leaves	too	
many	small	gaps

(Dynamic)	Storage	Allocation

3.3 Dynamic Storage Allocation 107

In this version, the start_read and start_write methods return a handle identifying the
operation that has started. A thread can, at some later point, call wait with the handle and wait
until that operation has completed. Note that multiple threads might call wait with the same
handle if all must wait for the same operation (for example, if all need the same block from
a fi le).

A more sophisticated approach to I/O used in what are commonly called “mainframe”
computers is to employ specialized I/O processors to handle much of the I/O work. This is par-
ticularly important in large data-processing applications where I/O costs dominate computation
costs. These I/O processors are traditionally called channels and execute programs in primary
storage called channel programs (see Figure 3.10).

Storage allocation is a very important concern in operating systems. Whenever a thread is cre-
ated, its stacks, control block, and other data structures must be allocated; whenever a thread
terminates, these data structures must be freed. Since there are numerous other such dynamic
data structures, both inside the operating system and within user applications, this allocation and
liberation of storage must be done as quickly as possible.

The classic reference for most of this material is Donald Knuth’s The Art of Computer
Programming, Vol. 1: Fundamental Algorithms. In this section we summarize Knuth’s results
and discuss some additional operating-system concerns.

3.1.1 BEST-FIT AND FIRST-FIT ALGORITHMS

We start with the general problem of maintaining a pool of available memory and allocating vari-
able-size quantities from it. Following Knuth (this is his example), consider the memory pool in
Figure 3.11 that has two blocks of free memory, one 1300 bytes long and the other 1200 bytes
long. We’ll try two different algorithms to process series of allocation requests. The fi rst is called
fi rst fi t — an allocation request is taken from the fi rst area of memory that is large enough to
satisfy the request. The second is called best fi t — the request is taken from the smallest area of
memory that is large enough to satisfy the request.

3.3
DYNAMIC
STORAGE
ALLOCATION

3.3
DYNAMIC
STORAGE
ALLOCATION

Memory

Processor

Channel Controller

Channel Controller

Channel Controller

FIGURE 3 .10 I/O with channels.

1300

1200

FIGURE 3 .11 Pool of
free storage.

CH003.indd 107CH003.indd 107 8/2/10 8:31:24 PM8/2/10 8:31:24 PM

Pool	of	Free	storage

108 CHAPTER 3 Basic Concepts

On the principle that whatever requires the most work must be best, one might think that
best fi t is the algorithm of choice. However, Figure 3.12 illustrates a case in which fi rst fi t
behaves better than best fi t. We fi rst allocate 1000 bytes. Under the fi rst-fi t approach (on the left),
this allocation is taken from the topmost region of free memory, leaving behind a region of 300 bytes
of still unallocated memory. With the best-fi t approach (right), this allocation is taken from the
bottommost region of free memory, leaving behind a region of 200 bytes of still unallocated
memory. The next allocation is for 1100 bytes. Under fi rst fi t, we now have two regions of 300 bytes
and 100 bytes. Under best fi t, we have two regions of 200 bytes. Finally, there is an allocation of
250 bytes. First fi t leaves behind two regions of 50 bytes and 100 bytes, but best fi t cannot handle
the allocation — neither remaining region is large enough.

Clearly one can come up with examples in which best fi t performs better. However, Knuth’s
simulation studies have shown that, on the average, fi rst fi t works best. Intuitively, the reason for
this is that best fi t tends to leave behind a large number of regions of memory that are too small
to be useful, as in Figure 3.12.

The liberation of storage is more diffi cult than its allocation, for the reason shown in Figure
3.13 (another example from Knuth). Here the shaded regions are unallocated memory. The region of
storage A separating the two unallocated regions is about to be liberated. We’d like this to produce
one large region of unallocated storage rather than three smaller adjacent regions. Thus the liberation
algorithm must be able to determine if adjacent storage regions are allocated or free. An algorithm
could simply walk through the list of free storage to determine if the adjacent areas are free, but a
much cheaper approach is to tag the boundaries of storage regions to indicate whether they are
allocated or free. Knuth calls this the boundary-tag method and provides an algorithm for it.

The shortcomings of best fi t illustrate a common issue in storage management: fragmenta-
tion. What we saw here is called external fragmentation, in which we end up with lots of small
areas of storage that collectively are sizeable, but individually are too small to be of use. In
the following sections we encounter internal fragmentation, in which storage is wasted because
more must be allocated than is needed.

3.3.2 BUDDY SYSTEM

The buddy system is a simple dynamic storage allocation scheme that works surprisingly well. Storage
is maintained in blocks whose sizes are powers of two. Requests are rounded up to the smallest such
power greater than the request size. If a block of that size is free, it’s taken; otherwise, the smallest free
block larger than the desired size is found and split in half — the two halves are called buddies. If the
size of either buddy is what’s needed, one of them is allocated (the other remains free). Otherwise one
of the buddies is split in half. This splitting continues until the appropriate size is reached.

300

1200

1300

200

100

300

100

50

200

200

1000 bytes

1100 bytes

250 bytes

First fit Best fit

Stuck!

FIGURE 3 .12 Allocations using fi rst fi t and best fi t.

A free(A)

FIGURE 3 .13 Liberating storage.

CH003.indd 108CH003.indd 108 8/2/10 8:31:25 PM8/2/10 8:31:25 PM

Memory	/	File

Start

Allocation	through	finish

• Knuth	:	ref;	“boundary-tag”	
method	and	algorithm
– Combines	free	segments	greedily	

upon	release
– Requires	datastructure that	

represents	free	or	not-free

• Helps	avoid	“fragmentation”
– External

• Free	spaces	too	small
– Internal

• Allocated	memory	unnecessarily	
too	large	(this	situation	arises	in	
different,	not-covered	allocation	
approaches	like	the	“slab”	
approach)

Freeing	Storage	Is	More	Complex

Data	Structures	for	Nonvolatile	Storage	:	B Trees
• Balanced	tree

– Node-degree	requirement	:	each	node	fits	in	a	block
– Node-size	requirement	:	each	block	must	be	at	least	half	full
– Leaves	are	linked	together

• Example	tree	with	block	size	3
– Consider	inserting	Lucy
– Consider	deletion

6.3 Directories and Naming 259

example of Figure 6.39. But if there’s no room, we need to add a new directory block and fi t this
block into the search tree.

Adding a directory block requires a bit of work. Suppose we add the name Lucy. Since
the directory block it should go into does not have enough free space to hold it, we create a new
block and move everything greater than Lucy, namely Matthew and Nicole, from the old block to
the new one, and put Lucy in the old one. We now have two blocks where we used to have one.
If the parent node, c, of the just-copied block had room for it, we could simply modify c’s ranges
to refer to the new block as well as the old one and we’d be done — we wouldn’t have increased
the length of any search path, so the tree would still be balanced.

However, in our case, this parent-node c has no room. So we split it into two nodes, c
and c!, and add a range for the new node to the appropriate parent — c! in this case. We again
have two nodes where we used to have one. So we must go to the parent of c and c! to accom-
modate c!. As before, if this parent has room, we’re done, otherwise we have to split it and
continue on.

If we reach the root and have to split it, we create a new root node with two ranges, each
referring to one of the halves of the former root. We’ve thus increased the number of levels in the
tree by one, yet maintained its balance. In our example, we have to split node a into nodes a and
a!, and thus create a new root, r — see Figure 6.40.

When deleting an entry, we must make certain we maintain the invariant that all nodes
are at least half full. Let’s suppose we remove Paula and Otto in Figure 6.40. This causes the
directory block containing them to become empty. We could simply leave the empty block in the
directory — this is what S5FS and FFS do, after all. But it’s certainly cleaner and more space
effi cient to remove it, so let’s do so (though note that many systems don’t bother rebalancing after
a deletion, but simply delete the storage when a block is completely free).

We free the block and remove its range from the parent node that points to it, c!. If this
node were more than half full, we’d be done. In our case it’s not, so we examine the parent’s
adjacent siblings (there must be at least one — just node d in our case). Can we combine the
contents of nodes c! and d to form a single node? If we can’t, we would move just enough entries
from d to c! so that it is at least half full (since each node must have room for at least three

Ivan

R
ichard

Lisa

O
tto

D
anielle

G
aston

Virginie

—

D
anielle

Frances

Earl

A
lex

C
harlie

B
onnie

Lisa

N
icole

M
atthew

Ivan

K
arl

Jeanne

Virginie

—

W
alter

R
ichard

Tom
as

S
hary

P
aula

O
tto

—

H
erm

ine

G
aston

—

a:

b: c: d:

FIGURE 6 .39 A B+
tree representing a
directory. To simplify
the fi gure, all entries
occupy the same amount
of space.

CH006.indd 259CH006.indd 259 8/6/10 12:11:41 PM8/6/10 12:11:41 PM

Wrap	- Up
• Covered	a	lot	of	ground,	major	points	include:

• Using	an	OS	effectively
– Process
– Thread

• Synchronization
– Virtual	memory
– File
– System	calls

• Implementing	an	OS	if	you	had	to
– Page	tables
– Filesystems
– Thread	switching
– Synchronization

2/7/17

29

B16	What’s	Next?	-- Networking
• Definition

– A	way	to	interconnect	computers	so	that	they	can	exchange	information

• Types
– Circuit	(old	phone	networks)

• Actual	circuit	between	devices	established
– Packet	switching	(currently	most	common)

• Data	is	divided	into	marked	packets	that	are	transported	independently

• Challenges
– Data	can	be	lost	or	reordered
– To	much	traffic	can	clog	network
– Base	/	Home	networks	are	heterogenous

• OS	Perspective	– Stream	File-based	interface.		

