28/01/16

Learning Outcomes (Examinable Material *)

* Familiarity with operating system concepts
— File
— Process
— Thread
— Synchronisation
) — Memory
Introduction ~ paging
— Socket
— Port

B16 Operating Systems

« Datastructures / implementations
— Page table
— Semaphore
— Mutex
— Socket

Perspective

* User perspective *
— Linux (posix compliant OS) B16 Operaﬁ ng Systems
— System calls (fork, wait, open, printf)
— Command line utilities (man <section>)
— C programs

Lecture 1 : History and User Perspective

* Operating system implementation perspective
— “Simple-0S”

Material from
Operating Systems in Depth
ec. Chapter 1

Thomas Doeppner

GET THIS BOOK AND READ IT!

What is an operating system?

* Operating systems provide software abstracts of
— Processors

RAM (physical memory)
— Disks (secondary storage)
Network interfaces

— Display
— Keyboards
— Mice
* Operating systems allow for sharing

* Operating systems typically provide abstractions for
— Processes
— Files
— Sockets

Why should we study operating systems?

* “To a certain extent [building an operating system is] a solved
problem” — Doeppner

* “Sotoo is bridge building” — Wood
— History and its lessons
* Capacity and correct usage
— Improvement possible
* New algorithms, new storage media, new peripherals
* New concerns : security
* New paradigms : the “cloud”

Review : Computer = Von Neumann Architecture

Keyboard

Control Unit
ontrol Unil Main
Memory Input
Devices
Display
Registers
|| | Memory
——
—1 Storage Output
Central Processing Unit Bus Devices
(CPU)

Image from http://cse.iitkgp.ac.in/pds/notes/intro.html

Review : Machine Instructions and Assembly Code

* Machine code : instructions directly executed by the CPU
— From Wikipedia :
* “the instruction below tells an x86/IA-32 processor to move an immediate 8-bit
value into a register. The binary code for this instruction is 10110 followed by a

3-bit identifier for which register to use. The identifier for the AL register is 000,
so the following machine code loads the AL register with the data 01100001.”

10110000 01100001

* Assembly language : one-to-one mapping to machine code (nearly)
— Mnemonics map directly to instructions (MOV AL = 10110 000)
— From Wikipedia :
* “Move a copy of the following value into AL, and 61 is a hexadecimal
representation of the value 01100001”

MOV AL, 61h ; Load AL with 97 decimal (61 hex)

28/01/16

Compilation and Linking

* A compiler is a computer program that transforms source code
written in a programming language into another computer
language

— Examples : GNU compiler collection

* A linker takes one or more object files generated by a compiler and

combines them into a single executable program
— Gathers libraries, resolving symbols as it goes
— Arranges objects in a program’s address space

* Touches OS through libraries, virtual memory, program address
space definitions, etc.

— Modern OS’ provide dynamic linking; runtime resolution of unresolved
symbols

History : 1950’s
Earliest computers had no operating systems
1954 : OS for MIT’s “Whirlwind” computer
— Manage reading of paper tapes avoiding human intervention

1956 : OS General Motors

— Automated tape loading for an IBM 701 for sharing computer in 15 minute
time allocations

1959 : “Time Sharing in Large Fast Computers”

— Described multi-programming

1959 : McCarthy MIT-internal memo described “time-share” usage

of IBM 7090

— Modern : interactive computing by multiple concurrent users

Early OS Designs

* Batch systems
— Facilitated running multiple jobs sequentially
* 1/0 bottlenecks
— Computation stopped to for I/O operations
* Interrupts invented
— Allows notification of an asynchronous operation completion
— First machine with interrupts : DYSEAC 1954, standard soon thereafter
* Multi-programming followed
— With interrupts, computation can take place concurrently with 1/0
— When one program does 1/0 another can be computing

— Second generation OS’s were batch systems that supported multi-
programming

History : 1960’s, the golden age of OS R&D

Terminology
— “Core” memory refers to magnetic cores each holding one bit (primary)
— Disks and drums (secondary)
1962 : Atlas computer (Manchester)
— “virtual memory” : programs were written as if machine had lots of primary
storage and the OS shuffled data to and from secondary
1962 : Compatible time-sharing system (CTSS, MIT)
— Helped prove sensibility of time-sharing (3 concurrent users)
1964 : Multics (GE, MIT, Bell labs; 1970 Honeywell)
— Stated desiderata
* Convenient remote terminal access
Continuous operation
Reliable storage (file system)
Selective sharing of information (access control / security)
Support for heterogeneous programming and user environments

— Key conceptual breakthrough : unification of file and virtual memory via
everything is a file

28/01/16

History : 1960’s and 1970’s

IBM Mainframes 0OS/360

DEC PDP-8/11

— Small, purchasable for research

1969 : UNIX

— Ken Thompson and Dennis Ritchie; Multics effort drop-outs
— Writtenin C

— 1975 : 6th edition released to universities very inexpensively
— 1988 System V Release 4

1996 : BSD (Berkeley software distribution) v4.4

— Born from UNIX via DEC VAX-11/780 and virtual memory

1980’s : Rise of the Personal Computer (PC)
+ 1970's : CP/M

— One application at a time — no protection from application
— Three components
* Console command process (CCP)
* Basic disk operating system (BDOS)
* Basic input/output system (BIOS)
* Apple DOS (after CP/M)
— 1978 Apple DOS 3.1 = CP/M
* Microsoft
— 1975 : Basic interpreter
— 1979 : Licensed 7-th edition Unix from AT&T, named it Xenix
— 1980 : Microsoft sells OS to IBM and buys QDOS (no Unix royalties) to fulfill
* QDOS = “Quick and dirty 0S”
* Called PC-DOS for IBM, MS-DOS licensed by Microsoft

1980’s ‘til now.

Early 80’s state of affairs
— Minicomputer OS’s
* Virtual memory
* Multi-tasking
* Access control for file-systems
— PCOS's
* None of the above (roughly speaking)
Workstations
— Sun (SunOS, Bill Joy, Berkeley 4.2 BSD)
* 1984 : Network file system (NFS)
1985 : Microsoft Windows
— 1.0: application in MS-DOS
+ Allowed cooperative multi-tasking, where applications explicitly yield the processor to each other
1995 : Windows ’95 to ME
— Preemptive multi-tasking (time-slicing), virtual memory (-ish), unprotected OS-space
1993 : First release of Windows NT, subsequent Windows OS’s based on NT

1991 : Linus Torvalds ported Minix to x86

Implementation Perspective : “Simple OS”

* Based on Unix (6" edition)
— Monolithic

* The OS is a single file loaded into
memory at boot time
Traps
Interfaces

 Traps originate from user
programs

* Interrupts originate from
external devices

— Modes
e User

Interrupts

* Privileged / System
— Kernel

* Asubset of the OS that runs in
privileged mode
* Or asubset of this subset

28/01/16

Traps and System Calls (largely from user)

» System calls *
— Example
if (write(FileDescriptor, BufferAddress, BufferLength) == -1) {
/* an error has occurred: do something appropriate */
printf("error: %d\n", errno) /* print error message */
)
requests the OS to send data to a file
* Unintended requests for kernel service
— Using a bad address
— Dividing by zero

Interrupts (largely from hardware)

Request from an external device for a response from the processor
— Handled independently of any program

Examples

— Keyboard input

— Data available

Processes *

* Abstraction that includes
— Address space (virtual memory *)
— Processors (threads of control *)
* Usually disjoint
— Processes usually cannot directly access each other’s memory
* Parallel processing via pipes, shared memory, etc.
* Running a program from the shell
— Creates a “process”
— Program is loaded from a file into the process’s address space

— Process’s single thread of control then executes the program’s compiled
executable code

Memory = Address Space = e.g. 232 words, etc.

Text const int nprimes = 100;

int prime(nprimes];

— Program code (5 mofa)

Data int i;

— Initialized global variables int curromg = 2;
prime[0] = current;

BSS (block started by symbol) for (i=1; i<nprimes;

int j;

iv+)

— Uninitialized global variables

NewCandidate:

i current++;
Dynamic (Heap)
— Dynamically allocated storage for (j=0; prime[j]*prime(j] <= current; j++) {
if (current % prime[j] == '0)

Stack (grows “downward”)
— Local variables)

goto NewCandidate;

Stack

prime[i] = current;

) 2
Arrows indicate variable return (0); t
placement J Dynamic
malloc() claims space in dynamic Bss

Data

Text

28/01/16

Processes and Threads **** (fork_example_1.c)

* Processes are created via the system
call fork()
— Any exact copy of the calling process is
made
+ Efficient — copy on write
— fork() returns twice!
* Once in the child (return value 0)
+ Once in the parent (return value the PID
of the child process)
* Processes report termination status via
the system call exit(ret_code)
* Processes can wait() for the termination
of child processes
¢ Example uses

— Terminal / Windows
— Apache cgi

fork()) == 0) {

me code is here for the child to e

} else (
int ReturnCode;
while(pid != wait (sReturnCode))

/* the child erminated with Ret de as its

Loading Programs into Processes (fork_example_2.c)

» execl() system call used to do this

int pid;
if ((pid = fork()) == 0) {
/* we'll soon discuss what might take place before exec T
is called */ t
execl (*/home/twd/bin/primes”, "primes*, *300*, 0);
exit(1);

/* parent continues here */

as
while(pid != wait(0)) /* ignore the return code */ o
7 ¥
» execl() replaces the entire contents of the :
processes address space progs 858
— the stack is initialized with the passed program args. :?;

After

— a special start routine is called that itself calls main()
— exec doesn’t return except if there is an error!

Files *

* Files are Unix’s primary abstraction
for everything
— Keyboard
— Display
— Other processes
* Naming files
— Filesystems generally are tree-
structured directory systems
— Namespaces are generally shared by
all processes
¢ Accessing files
— The directory-system name-space is
outside the process
+ open(name) returns a file handle,
read(args,
* 0S checks permissions along path

int fd;
char buffer([1024];
int count;

if ((£d = open

/* the file couldn’t b

/home/twd/file", O_RDWR) == -1) {

ned */

perror (" /home/twd/file

exit (1) ;

if ((count = read(fd, buffer, 1024)) == -1)
/* the read failed */
perror ("read") ;

exit(1l);

er now contains cou:

bytes read from the file */

Using File Descriptors (fork_example_2.c)

* File descriptors survive exec()’s

« Default file descriptors if (fork() == 0) (

/* set up file descriptor 1 in the child process */

— O-read (keyboard) close(1);
—_ 1WI’Ite (pl’lmary d|5p|ay) if (open("/home/twd/Output”, O_WRONLY) == -1) {
)
) perror (" /home/twd/Output") ;
— 2 error (display) exit(1);
« Different associations can be L
. execl (" /home/twd/bin/primes", "primes", "300", 0);

established before fork() A,

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

28/01/16

File Random Access

* |seek() provides non-sequential access to files

fd = open("textfile", O_RDONLY) ;
/* go to last char in file */
fptr = lseek(fd, (off_t)-1, SEEK_END) ;
while (fptr != -1) {
read(fd, buf, 1);
write(1l, buf, 1);
fptr = lseek(fd, (off_t)-2, SEEK_CUR);

* Reverses a file

Pipes * (pipe_example.c)
* A pipe is a means for one process to send data to another directly
* pipe() returns two nameless file descriptors

int p[2]; /* array to hold pipe’s file descriptors */
pipe(p) ; /* create a pipe; assume no errors */

/* p[0] refers to the output end of the pipe */

/* pl[1] refers to the input end of the pipe */
if (fork() == 0) {

char buf[80];

close(p[1]); /* not needed by the child */

while (read(p[0], buf, 80) > 0) {

/* use data obtained from parent */

}
} else {
char buf[80];

close(pl0]) ; /* not needed by the parent */
for (;;) {

/* prepare data for child */

write(p[1], buf, 80);

Directories
* Adirectory is a file that is interpreted as containing references to
other files by the OS
* Consists of an array of
— Component name
— inode number

* aninode is a datastructure maintained by the OS to represent a file

‘ Component name Inode number

Directory entry
1
1

unix 117

etc 4

home 18

pro 36

dev 93

Creating Files

creat() and open() (with flags) are used to create files

“man 2 open” :

OPEN(2) BSD System Calls Manual OPEN(2)

NAME
open, openat -- open or create a file for reading or writing

SYNOPSIS
#include <fentl.h>

int

open(const char *path, int oflag, ...);

int

openat(int fd, const char *path, int oflag, ...);
DESCRIPTION

The file name specified by path is opened for reading and/or writing, as specified by the argument oflag;
the file descriptor is returned to the calling process.
The oflag argument may indicate that the file is to be created if it does not exist (by specifying the

O_CREAT flag). In this case, open() and openat() require an additional argument mode_t mode; the file is
created with mode mode as described in chmod(2) and modified by the process’ umask value (see umask(2)).

The openat() function is equivalent to the open() function except in the case where the path specifies a..

28/01/16

Review : User Perspective on OS *

Rough idea of what goes inside an OS
Traps / system calls

exec()
fork()
open()
pipe()
exit()
close()
read()
write()
dup()

Next lecture : more user basics.
Final two lectures : OS implementation issues

Lecture 2 : Basics; Processes, Threads, ...

Material from
Operating Systems in Depth
sec. Chapters 283
by
Thomas Doeppner

GET THIS BOOK AND READ IT!

Threads * (thread_example_1.c)

What is a thread?

Mechanism for concurrency in user-level programs
“Lightweight process”

Processor(s) within a process

Share process memory with other threads

Why threads?

POSIX (“portable operating system interface”) specification

Can dramatically simplify code
* Multi-threaded database concurrently handling requests
« Server listening on a socket responding to client requests
Requires care
¢ Synchronization

Thread Creation

void start_servers() {
pthread t thread;

int i;

for (i=0; i<nr_of_server_threads; i++)

pthread_create (

&thread, // thread ID

0, // default attributes
server, // start routine
argument) ; // argument

}

void *server (void *arg) {
// perform service
return (0);

1
Alternative specifications exist; all conceptually similar

28/01/16

Passing Arguments to Threads

* Care must be taken with S
nt first, second;

threads in general § e

. Problem Wlth thlS Code void rlogind(int r_in, int r_out, iat 1_in, int 1_out) {
pthread t in_thread, ouj ead;
— In and out are local variables “‘r’;fi““’ft - ff’;hu;“' CriE=E iy Lo
read_create (&in_thread,
thus leave scope when rlogind . o,

exits incoming,

pthr reate (gout_thread,

Thread Termination (thread_example_2.c)

* Space from caller must be provided for thread to place return

values

pthread_create (&createe, 0, CreateeProc, 0);

pthread_join(create, &result);

* pthread_exit() terminates thread, exit() terminates process

void *CreateeProc(void *arg) ({

if (should_terminate_now)
pthread_exit ((void *)1);

return((void *)2);

Thread Attributes

* “man pthread_attr_init”

* e.g. to specify the stack size for a thread one initializes an attributes
datastructure

pthread_t thread;
pthread _attr t thr_attr;

pthread_attr_init (&thr_attr) ;
pthread_attr_setstacksize(&thr_attr, 20*1024*1024) ;

pthread_create (&thread, &thr_attr, startroutine, arg);

Synchronization *** (thread_example_3.c)

Remember: threads share access to common data structures
Mutual exclusion is a form of thread synchronization
— Makes sure two things don’t happen at once
— Example, two threads each doing
X = X+1;

Can result in 1 or 2; reordering the assembly code shows why

1d rl,x
add rl,1
st rl,x

28/01/16

POSIX Mutexes ***

OS must support thread synchronization mechanisms
POSIX defines a data type called a mutex (from “mutual exclusion”)
Mutexes can ensure

— Only one thread is executing a block of code (code locking)
— Only one thread is accessing a particular data structure (data locking)
A mutex either belongs to a single thread or no thread
A thread may “lock” a mutex by calling pthread_mutex_lock()
A mutex may be unlocked by calling pthread_mutex_unlock()
A mutex datastructure can be initialized via pthread_mutex_init()
pthread mutex_t m - PTHREAD_MUTEX_INITIALIZER;
// shared by both threads
int x; // ditto
pthread_mutex_lock (&m) ;
x = x+1;

pthread_mutex_unlock (&m) ;

Mutual exclusion can result in DEADLOCK!

void procl() {

pthread_mutex_lock (&ml) ;
/* use object 1 */
pthread_mutex_lock (&m2) ;
/* use objects 1 and 2 */
pthread_mutex_unlock (&m2) ;

pthread_mutex_unlock (&ml) ;

In the following, “deadlock” can occur

void proc2() {

pthread_mutex_lock (&m2) ;
/* use object 2 */
pthread_mutex_lock (&ml) ;
/* use objects 1 and 2 */
pthread_mutex_unlock (&ml) ;

pthread_mutex_unlock (&m2) ;

Deadlock is nasty, difficult to detect, and to be avoided at all cost

One useful avoidance mechanism is pthread_mutex_trylock()

procl() { proc2() {
pthread_mutex_lock (&ml) ; while (1) {
/* use object 1 */ pthread_mutex_lock (&m2) ;

pthread_mutex_lock (&m2) ; if (!pthread_mutex_trylock(&ml))
/* use objects 1 and 2 */ break;
pthread_mutex_unlock (&m2) ; pthread_mutex_unlock (&m2) ;

pthread_mutex_unlock (&ml) ; }
/* use objects 1 and 2 */

pthread_mutex_unlock (&ml) ;
pthread_mutex_unlock (&m2) ;

1

Semaphores

* A semaphore is a nonnegative integer with two atomic operations

— P (try to decrease) : thread waits until semaphore is positive then subtracts 1

* [I's are notation for guards; that which happens between them is atomic, instantaneous,
and no other operation that might take interfere with it can take place while it is executing
when (semaphore > 0) [

semaphore = semaphore - 1;

— V (increase)

[semaphore = semaphore + 1]

* Mutexes can be implemented as semaphores

semaphore S = 1;
void OneAtATime() {
B(S);

/* code executed mutually exclusively */

v(S);

28/01/16

10

POSIX Semaphores

Interface
sem_t semaphore;
int err;

err = sem_init (&semaphore, pshared, init);

err = sem_destroy (&semaphore) ;

err = sem_wailt (&semaphore) ; // P operation
err = sem_trywait (&semaphore) ; // conditional P operation
err = sem_post (&semaphore) ; // V operation

* Note : Mac’s use Mach spec. named-semaphore via sem_open()

OS Implementation Problem : Producer-Consumer *

Buffer with a finite number of slots
Threads
— Producer : puts things in the buffer
— Consumer : removes things from the buffer
Producer must wait if buffer is full; consumer if buffer is empty

N

V1111111

7

Semaphore sol’n to the producer-consumer problem

* Example sheet

Deviations

Signals

— Force a user thread to put aside current activity
— Call a pre-arranged handler

— Go back to what it was doing

— Similar to interrupt handling inside the OS
Examples

— Typing special characters on the keyboard ("c)

— Signals sent by other threads (kill)

— Program exceptions (divide by zero, addressing exceptions)
Background

— Graceful termination via ~c and SIGINT

28/01/16

11

Signals and Handled by Handlers

» Setting up a handler to be invoked upon receipt of a ~c signal

int main() {
void handler (int) ;
sigset (SIGINT, handler);

/* long-running buggy code */
}

void handler (int sig) {

/* perform some cleanup actions */

exit(1);

}

* Signals can be used to communicate with a process

Async-signal safe routines (OS implementation perspective)

* Signals are processed by a single thread of
execution
* Communication at right not problem-free
because of asynchronous access to state
¢ Mutex use will result in deadlock
* Making routines async-signal safe requires
making them so that the controlling thread
cannot be interrupted by a signal at certain
times (i.e. in update_state)
— Signal handling turned on and off by
« sigemptyset()
+ sigaddset()
« Sigprocmask()
¢ POSIX compliant OS’s implement 60+ async-
signal safe routines

computation_state_t state;

int main() {

void handler (int) ;

sigset (SIGINT, handler);

long_running_procedure();
}

long_running_procedure() {
while (a_long_time) {
update_state (&state) ;

compute_more();

}

void handler (int sig) {

display (&state) ;

Other Basic OS Concepts

* Context switching
— Stack frames
— System calls
— Interrupts
* 1/0
* Dynamic Storage Allocation
— Best-fit, first-fit
* Linking and loading
* Booting

Context Switching and stack frames

* “Context” is the setting in which execution is currently taking place

— Processor mode

Address space
— Register contents
— Thread or interrupt state

* Intel x86 Stack Frames
— Subroutine context
 Instruction pointer (reg. eip)
— Address to which control should

return when subroutine is
complete

* Frame pointer (reg. ebp)
— Link to stack frame of caller

args
eip
ebp Stack frame
Saved registers
Local variables
args
eip
ebp e
Saved registers
Local variables e

Remember; the stack grows down

28/01/16

12

System calls

* Transfer control from user to system code and back
— Need not involve a thread switch, just a “stack switch”

— Trap (OS code) typically switches to a kernel stack frame

prog() { write (

prog frame
write(f£d, buffer, size); trap(write_code); write
)) v
User stack
User
Kernel

trap_handler (code) {

if (code == write_code)

write_handler();

trap_handler
frame

write_handler
frame

v

Kernel stack

Interrupts

On interrupt occurance
— Processor

* Puts aside current context of
thread or other interrupt

* Switches to interrupt context
Interrupts require stacks
— 0S’s differ
— Common choice : kernel stack

User
stack
frames

!

Current thread's
user stack

Kemel
stack
frames

Interrupt
handler

I/O Architecture Types (Simplified Overview)

* Memory-mapped
— Each device has a controller
— Each controller has registers
— Registers appear to processor as
physical memory
— Actually attached via a bus

» Categories of I/0 devices
— Programmed I/O (PIO)
* One word per read/write
* e.g. terminal
— Direct memory access (DMA)

* Controller directly manipulates
physical memory in location
specified by processor

* e.g.disk

!

Processor

If an OS were written in C++ a device

driver would be a class with
instances for each device.

1's frame
Interrupt
handler
2's frame
Current thread’s
kernel stack
PIO and DMA Example
PIO (terminal) DMA (disk)
[A= e [T [T [oot o [e]=] Gz | oz
ol T [T T [[] s
Forfrow] | [[|]| stusrogster \‘ \‘ \‘ \‘ \‘ \‘ \‘ \‘
N O O O
I o L S
N O O
T T T T T T T] weiteregister \‘ \‘ \‘ \‘ \‘ \‘ \‘ \‘HH
Legend: GoR Go read (start a read operation) e @ Start an operation
I(;;W g:a:l':ll:;i‘o: ::Zj;p\en"?:‘n;xs Op Code Operation code (identifies the operation)
- % oot
. eady fora
RO ey 0w
Usage: Usage:

1. Store byte in write register
2. Set GoW bit in control register
3. Wait for RdyW in status register

4. Canrequest an interrupt

1. Setdisk address in device register
2. Set memory address in memory address register
3. Set Op Code, Go, IE in control register

28/01/16

13

(Dynamic) Storage Allocation

Storage allocation is very
important in OS’s Start
— Disk Memory / File

— Memory Pool of Free storage 1300
1200

Example
— 1000, 1100, 250 bytes in order

Competing approaches

— First-fit First fit Best fit

— Best-fit o0 1000 bytes 1800
. . 1200 200

Knuth simulations revealed
A g q g 300 200
(non-intuitively) first-fit was E 10 1100bytes E 00
50
E 1 aoe

Allocation through finish

best

* Intuition : best-fit leaves too
many small gaps

Freeing Storage Is More Complex

* Knuth : ref; “boundary-tag”

method and algorithm

— Combines free segments greedily Lexbrn i
upon release

— Requires datastructure that

E

& LencTa2 E

represents free or not-free [—
TAG TAG (shuged)
* Helps avoid “fragmentation”
— External ™5
T
* Free spaces too small s |
— Internal e
* Allocated memory unnecessarily =
too large (this situation arises in FREE
different, not-covered allocation T A G
approaches like the “slab” (@

approach)

FIGURE C-2, THE BOUNDARY TAG METHOD

Linking and loading
1d links and relocates code by resolving addresses of variables and
procedures
Shared libraries require mechanisms that delay linking until run-
time
Loading requires setting up address space then calling main

Booting

* Thought to be derived from “to pull yourself up by your bootstraps”
* Modern computers boot from BIOS read only memory (ROM)
— Last 64K of the first MB of address space

* When the computer is powered on it starts executing instructions
at OxffffO

* Looks for a boot device

— Loads a master boot record (MBR)
* Cylinder 0, head 0, sector 1 (hard disc)
* Loads boot program
445 bytes Boot program

* Transfers control to boot program
* Boot progam (lilo, grub, etc.) loads OS

Partition 1

Partition 2

* Transfers control cabytos < [IIPaRERIABIE
2bytes §_| Magic number
Master boot record

Partition 3

Partition 4

28/01/16

14

Review

* OS essentials

— Threads

— Context switching for management of processors
1/0 for file systems

Dynamic storage allocation

Lecture 3 :
Processor & Memory Management
(A very-high-level OS Implementation
Perspective)

Material from
Operating Systems in Depth
(pters 5 and 7)

Thomas Doeppner

GET THIS BOOK AND READ IT!

Threads Implementations

* OS goal is to support user-level application programs
* Design issues related to thread support

— Scheduling

— Synchronization
* Inor out of kernel?

— One-level model

— Two-level model

Strategies

One-level model
— Each user thread is mapped to a kernel thread
Two-level model

— Single kernel thread
* Each process gets one kernel thread
* Threads multiplexed on this kernel thread
* Synchronization via thread queues

 Disadvantage : if any thread calls blocking system call (i.e. read()) all threads stop

— Multiple kernel threads
* Many kernel threads. User-level threads distributed across them
* Avoids blocking problem of single-kernel thread model

Other approaches exist ...

28/01/16

15

One Hypothetical Threads Implementation

User-level simple thread
package “straight-threads”
implementation

Current thread

‘ Run queue ‘ ‘ Mutex queue ‘

Assume
— One processor
— No interrupts
Assert
— Thread object datastructure
— Current thread pointer
— Run queue datastructure
* threads waiting to run

— Mutex queue of threads waiting
to lock, one for every mutex

Yielding the Processor
* Assume “Straight-threads” voluntarily yield by calling system call

void thread_switch() {

thread t NextThread, OldCurrent;

Context

NextThread = dequeue (RunQueue) ;
OldCurrent = CurrentThread; Stack
CurrentThread = NextThread;

swapcontext (&01dCurrent->context, &NextThread->context) ; ErEkianD

// We're now in the new thread’s context

}

* Here swapcontext, saves the caller’s register context in its thread
object, then restores that of the target thread from its thread
object

Implementing Mutexes

Because the simple straight-threads system does not have
interrupts and all threads run until voluntarily yielding, mutex_lock
doesn’t need to do anything special to make its action atomic

void mutex_lock(mutex_t *m) {
if (m->locked) {
enqueue (m->queue, CurrentThread) ;
thread_switch() ;
} else
m->locked = 1;
}

void mutex_unlock (mutex_t *m) {
if (queue_empty (m->gueue))
m->locked = 0;
else

enqueue (runqueue, dequeue (m->queue)) ;

Consider Multiple Processors

* thread_switch() now insufficient
* Simple approach : special idle threads, one for each processor

void idle_thread() {
while (1)

thread_switch() ;
}

* Actual concurrent threads like this require actual thread
synchronization
— Synchronization implementation has big OS performance impact
* Types of actual implementation
— Spin lock (hardware supported)
— Futexes

28/01/16

16

Spin-locks

* Operation provided by some processors (e.g. x86) with hardware
guaranteed atomicity (compare and swap)

int CAS(int *ptr, int old, int new) {
int tmp = *ptr;
if (*ptr == old)
*ptr = new
return tmp;
)

* With CAS spin-locks (actual synchronization) can be implemented
— Note mutex with zero-value means unlocked

void spin_lock(int *mutex) {

while(!CAS(mutex, 0, 1))

)

void spin_unlock(int *mutex) {
*mutex = 0;

}

Faster Spinlock

Providing atomicity guarantees slows down processors
Unsafe checks result in overall speedup

void spin_lock(int *mutex) {
while (1) {
if (*mutex == 0) {
// the mutex was at least momentarily unlocked
if (!CAS(mutex, 0, 1)
break; // we have locked the mutex

// some other thread beat us to it, so try again

Spin-Lock Implementation Blocking Mutex

* Spin-locks consume processor resource and thus should be used sparingly
* blocking_lock works as before —threads waiting on mutex queue

void blocking_lock (mutex_t *mut) { void blocking_unlock (mutex_t *mut) {
spin_lock (mut->spinlock) ; spin_lock (mut->spinlock) ;
if (mut->holder != 0) if (queue_empty (mut- t_queue)) {
enqueue (mut->wait_gueue, CurrentThread); mut->holder
spin_unlock (mut->spinlock) ;) else {
thread_switch() ; mut->holder = dequeue(mut->wait_queue);
} else { enqueue (RunQueue, mut->holder);
mut->holder = CurrentThread;)
spin_unlock (mut->spinlock) ; spin_unlock (mut->spinlock) ;

¢ Use of spin-lock prevents collisions on mut->holder
— e.g. holder unlocking at exact instance empty queue is being joined

¢ There is still a subtle bug arising on true multiprocessor systems (example
sheet)

Interrupts

Processors usually run in thread contexts

Interrupts are handled in interrupt contexts

Interrupts typically (varies from one arch and OS to another)
borrow stacks

— Note; x86 hardware saves registers

Signal handlers are similar to interrupts

Interrupts preempt the execution of normal threads

— Interrupts are used for scheduling

Interrupts can have priorities

Interrupts can be masked

— Interrupt processing can prohibit interruption from other interrupts

28/01/16

17

Synchronization and Interrupts

Access to kernel datastructures must be carefully synchronized
between thread and interrupt processing

Disabling preemption prevents deadlock scenario due to scheduling

int X = 0;
Spintock_t L = UN

KED;

void void A

sXInterrupt () {

SpinLock (&L) ;
X = x+1;

SpinUnlock (1) ;

switch to different thread
Masking interrupts prevents deadlock scenario due to interrupt
Locks ensure consistency

Signals
Threads check for pending signals on return to user mode
Unix signal handlers are user-mode equivalents of interrupt
handlers
Threads behave as if a procedure call to the signal handler was
made at the point at which the thread received the call
— Almost : register state must be handled differently

Scheduling

0S’s manage resources

Processor time is apportioned to threads
Primary memory is apportioned to processes
Disk space is apportioned to users

1/0 bandwidth may be apportioned to processes

Scheduling concerns the sharing of processors
— Dynamic scheduling is the task

— Objectives
* Good response to interactive threads

* Deterministic response to real-time threads
* Maximize process completions per hour
* All of the above?

Approaches to Scheduling

Simple batch systems
— One job at a time
Multi-programmed batch systems
— Multiple jobs concurrent
— Scheduling decisions
* How many jobs?
* How to apportion the processor between them?
Time-sharing systems
— How to apportion processor to threads ready to execute
— Optimization criteria : time between job submission and completion
Shared servers
— Single computer, many clients, all wanting “fair” share

Real-time systems

28/01/16

18

Time-Sharing Systems

Primary scheduling concern is the appearance of responsiveness to
interactive users
Threads assigned user-level priority “importance” (UNIX nice())
OS assigned thread priority rises and falls based on

— Length of bursts of computation (before yielding)

— Length of time between bursts

Sensible strategy

— Decay priority while thread is running

— Increase priority while thread is waiting

Real-Time Systems

* Real-time system scheduling must be dependable
— Music
— Video
— Nuclear power plant data processing
* Approximate real-time by adding very-high real-time priorities
— Interrupt processing still preempts threads
— Synchronized access to kernel resources can cause priority-inversion
* Low-priority threads locks a resource a real-time thread needs

Memory Management

Requires deep understanding of hardware capabilities and software
requirements
Involves
— Memory abstraction
— Optimizing against available physical resources
* High-speed cache
* Moderate-speed primary storage
* Low-speed secondary storage
Security
— Protect OS from user processes
— Keep user processes apart
Scalability
— Fit processes into available physical memory

Per-Process Page Table *

* Assume
— 32-bit virtual address
— Page size 4096 bytes Vel
. Implles address.
— 12 bit offset (2712 = 4096)
— 20-bit page number (2432 / 2A12) MMM Pt ‘ R,
V = validity bit

~ Ifset, page frame no. is high-order bits of address in real memory
~ Ifnota page-fault occurs and the OS takes over to allocate or load a
page
R = referenced bit
~ Ifpageis referenced by a thread
M = modified bit
— setif page is modified
Prot. = page-protection bits
- user, 0s., exec, data, etc.

On a 32-bit arch. the page table
is 220 * 4 bytes = 4MB.

What about a 64-bit
architecture? *

28/01/16

19

Forward-Mapped Page Tables

* Lower-overhead approach

* Each virtual address divided into two 10-bit numbers
— L1 page number
— L2 page number [t [emaer | o]
— Offset /

(=== o

[TIITTI

[TMITN

L1 page table

* Advantages 12 page tables Page frame
— Lower overhead — e.g. not all L2 pages need be in memory at once
* Disadvantages
— More lookups

Note : memory access is slow; caching is imperative

* Hardware supports address translation via “translation lookaside
buffers”

— Fast processor-based memory containing some entries of address translation

table

64-Bit Issues

* Assume 8-Kb pages, how big is a page table for a 64-bit arch?
— (Example sheet)
— One solution:

Page
directory table

Page table
Physical page

X64 virtual address format

Operating-System Issues

* OS responsible for ensuring programs execute at reasonable speed

* OS must determine which pages should be in primary memory

* OS virtual memory policy decisions
— Fetch
— Placement
— Replacement

* Simple approaches
— Demand paging
* Fetch only when a thread references something in that page
— Placement
* Anywhere
— Replacement

* When full, eject page in memory longest (FIFO)
— Problem?

28/01/16

20

OS Response to a Page Fault

Steps

Detect page fault

Find a free page frame

Write a page out to secondary storage if none free
Fetch desired page from secondary storage
Return from trap

Latter steps very costly

Read in extra pages
* Prepaging — How? Why?
Write-out pages preemptively
* Dedicate a page-out thread

Page Caching Implementation Strategy

* Optimal replacement strategies are impractical
* Least-recently-used (LRU) good in practice

— Except counting references is impractical
* Two-handed clock algorithm used in practice

— OS uses page-out thread
* One hand sets reference bit to 0
» Other hand triggers page flush if another thread hasn’t set reference bit to 1

Back hand:
if (reference bit == 0)
I remove page

Front hand:
reference bit = 0

Efficient Fork via Copy-on-Write

Can fork() be made less expensive to implement?

Remember fork() copies a process’ entire memory space

Lazy evaluation

Let copies share address space
Mark all pages read only

On write make copies

OS bookkeeping requires care

Shared Memory and mmap () *** (mmap_shared_memory_example.c)

* mmap() maps files to contiguous virtual memory

* Files may be mapped to address space shared across processes!
— Shared
* Modifications seen by all forked processes (parallel processing!)
— Private
* Modifications remain private to each forked process (copy on write)

28/01/16

21

Review

Process management

— Entails multiplexing threads, interrupts, and system calls to available
processors

Memory management

— Virtual memory allows large programs to run on systems with small amounts

of primary storage
— Virtual memory allows co-existence of multiple programs
— Memory mapping allows parallel processing

Lecture 4 : File Systems & Networking

Material from
Operating Systems in Depth
(pters 6 and 9)

Thomas Doeppner

GET THIS BOOK AND READ IT!

File Systems

Purpose

— Provide easy-to-use permanent storage with modest functionality
— Performance of file system critical to system performance

— Crash tolerance a function of file system capabilities

— Security a major concern

Criteria
— Easy
* File abstraction should be easy to use
— High performance
* No waste of space, maximum utilization of resource
— Permanence
* Dependable
— Security
* Access control should be strict

Basics

* Pedagogical review of Unix system 5 File System (S5FS)
* Revolutionary, simplifying Unix file abstraction
— Afileis an array of bytes, period.
* File system layout
— Boot block
* First-level boot program that reads OS into memory
— Superblock Data rogion
* Describes layout of remaining filesystem
— i-list
* Array of index nodes (inodes)

List

Superblock

Data region Boot bock
* Disk blocks holding file contents

28/01/16

22

7
Unix’s S5FS
Each file is described by an inode i
Directories are files containing Mode
names and inode numbers —

size

Diskmap
— Maps logical blocks numbered
relative to the beginning of the file
to physical blocks numbered relative
to the beginning of the file system
— Assume
* Block length = 1024 bytes
+ 13 pointers
— First 10 point directly to disk blocks
— Next singly indirect
— Doubly
— Triply
— 0 pointer counts as block of all zeros
« Efficient for sparse files

Diskmap

Disk map
(ininode)

Triple indirect
e Double indirect

blocks Data blocks

Indirect blocks

Organizing Free Storage on Disk
Free disk blocks are represented as
a linked list

Superblock
— Contains addresses of up to 100 free —=

98

il

disk blocks = /
— Last pointer points to another block T i

containing free disk blocks Superbiock

— Contains cache of indices of free
inodes

Inodes
— Simply marked as free or not on disk
— Disk writes required for allocation and
frees

* Aids crash tolerance — inode updates
are immediate

Disk Architecture

File systems optimize performance
by being aware of disk
architecture
Architecture
— Many platters (top and bottom)
— Many tracks per platter
— Tracks divided into equal length
sectors
— Read a write heads per surface
— One head active at a time
— Set of tracks selected by heads at
one moment calls a cylinder
Nomenclature
— Seek time : time to position the
heads over the correct cylinder
— Rotational latency : time ‘til desired
sector is underneath head
— Transfer time : time for sector to
pass under head

Disk heads
(on top and bottom
of each platter)

2013 Disk Performance

Tricks of the trade AT TR T
it Sectorsize 512 bytes
Maximizing throughput Soctostvasx | s00-1000,750 aveage
. Head Skewing Tracks/surface 100,000
Storage capacity | 307.2 ilion ytes

— Sectors offset on each head by some Average seek time | 4 miliseconds

number of sectors to account for head Crreine Al

itch time Maximum sesk tme | 10 miissconds
swi

* Cylinder skewing
— Sectors offset by some amount to
account for one track seek time

28/01/16

23

S5FS Problems and Improvements

File allocation strategy results in slow file access
Small block size results in slow file access
Lack of resilience in the face of crashes is a killer

Possible improvements

— Increase block size
* Fragmentation becomes an issue

— Rearrange disk layout to optimize performance

Dynamic Inodes

* S5FSinode table is a fixed array
— Requires predicting number of files the system will have
— Can’t add more disk space to the file system
* Solution
— Treat inode array as a file
— Keep inode for the inode file at a fixed location on disk
* Backup

Crash Resiliency

To recover from a crash means to bring the file system’s metadata into a
consistent state

Some operations (rename()) require many steps, requiring multiple
writes

Approaches
— Consistency preserving
— Transactional

Transaction support common in databases
— Journaling
* New value — modification steps are recorded in a journal first, then applied
« 0ld value — old blocks are recorded in a journal, then filesystem updated
— Shadow-paging
« Original versions of modified items retained

* New versions not integrated into the file system until the transaction is committed
(single write)

Journaled File Systems

* Many file systems use journaling for crash tolerance
* Journaling may be used to protect

— Metadata

— User data

— Both

* Ext3 example
— Updates grouped into time-delimited transactions

— Separate commit thread copies from file-system block cache to a journal
— Back-links are maintained to cache that allowing freeing journal space upon

final commit
— Upon crash any journaled updates are processed

28/01/16

24

Shadow-Paged File Systems

Also called copy-on-write file

systems Root Snapshot root
— e.g. WAFL and ZFS ‘“‘Em’k‘. (111
Filesystem updates result in rdote

entirely new inode indirect
reference tree

Regular fle

Directories and Naming

¢ Opening a file requires
— Following its pathname
— Opening directory files
¢ Creating a file
— Verifying pathname
— Inserting component in last

e S5FS
— Linear sequence of fixed length names and inode numbers
— Deleting entries involved marking slots as free
— No directory space ever given back to filesystem!
— Sequential search!
¢ Subsequent generation directory structure
— Variable length names
— First fit replacement

« Directory operations were a major bottleneck!

* Snapshot root always allows dtablocks
recovery of a consistent
filesystem
Hashing

Extensible hashing
— Sequence of hash functions
* hg hy, hy, by,
— Low order bits of h; are enforced to be the same as h;
— h, hashes to 2! buckets
Example : Adding Fritz (hashed to bucket 2)

— Indirect buckets used to efficiently and compactly implement rehashing by
replicating non-split bucket pointers

node index.

Ralph | inode Index

Uiy | inode index Uly | inoda index

‘Adam | inods index. Adam | inoda index

Alce | inode ndex Alcs | inode ndex

Geoge | inoda index

Indirect buckets Hamy | inode index Hamy | inode index

inode index.

Botty | inode index Betty

Buckets Fitz | inode ndex

Geoge | inoda index

Buckets

B+ Trees

* Balanced tree
— Node-degree requirement : each node fits in a block
— Node-size requirement : each block must be at least half full
— Leaves are linked together

* Example tree with block size 3
— Consider inserting Lucy
— Consider deletion

Uoisen

28/01/16

25

Introduction to Networking

* Definition
— A way to interconnect computers so that they can exchange information
* Types

— Circuit (old phone networks)
* Actual circuit between devices established
— Packet switching (currently most common)
 Data is divided into marked packets that are transported independently
* Challenges
— Data can be lost or reordered
— To much traffic can clog network

— Base / Home networks are heterogenous

Standardization

International Standards Organization (ISO)

Internet Protocols

08l Layers 57

* Distinctions in top three layers
ignored

¢ Base network combines OSI 1&2
— Called internet protocol (IP)

Application Application

oSl Layer 4

End-to-end

— Protocol data unit (packet) == DTW‘] =1 =1 =]
e IP Packet i { i i
— Header (addresses) s o] ot ol s o s |
— Data (PDU of higher layer)
* Called a segment
¢ Packaging
— Normally a header is added to a vers [en | typo o sov tota ength

segment identication fags | ragmentoffset

— If 2 segment s too large it s split oo [o EErE
* e.g. ethernet’s maximum transfer destination address
unit (MTU) is 1500 bytes oo pacding

* Routing
— Controlled externally
~ Picked from routing tables

source address.

data

Open Systems Interconnect (OSI) 7-layer 7[_appicaton |
e yararmode! =
1. Physical layer (the wire, EM, etc.) 5
2. Data link layer (e.g. ethernet)
. Means for moving data on and off wire 4
. Info. representation scheme in EM waves
- Sequences of bits known as frames 3‘ network ‘ ‘ network. ‘ ‘ network ‘ ‘ network ‘
. Sharing mechanisms 7
. Medium access control (MAC) addresses 2 aamaink | [caaik | [cmmix | [s |
- Used to decide who should get what T Tt T T
3. Network layer 1[ptvscal o o || pmsca |+ prysca |
o Addressing, delivery, packets
4. Transport layer
° Ensures communication is reliable
5. Session layer
. Dialogue control (who talks when),
synchronization (error recovery), etc.
6. Presentation layer
. Deals with transforming datastructures
(endianness, floating point numbers, ...
7. Application layer (e.g. http)
o High-level application (support) software
IPv4 Addresses
Structured 32-bit numbers
class A [o] network host |
AI IOWS 7bits 24 bits
~ 2113658 networks cs[o] e [e]
— 3189604356 hosts casmc [10] T []
2ot o
Issues
Class D ‘ 1110 ‘ multcast group 1D ‘

— Too many (large routing tables)

— Too few (not enough hosts)
IPv6 = 128 bit addresses

2abts

28/01/16

26

Internet Transport Protocols

User datagram protocol (UDP)
— Not reliable
— Provides checksum only
— Allows one to implement own reliability scheme
Transmission control protocol (TCP)
— Reliable communication
— Copes with network congestion
— 32 bit sequence number transmitted from data
sender to receiver indicating how many bytes
have been transmitted
— Response returned indicating successful receipt
of the whole sequence numbered less than the active open:
returned value send SYN passive open: nt state
— Sequence numbers must be reused
- Gives rise to a maximum segment lifetime (set
“by fiat” to 2 min.)
— Starting sequence number decided in handshake

destination port

sequence number

source port

acknowledgment sequence number

el el | T

= \ st

options padding

Gloar sate

recy sy

P S oy
o
N

Send ACK.

Both augment IP addresses with 16 bit port
numbers

—
o o]

recy FN: cLose
send ACK send FIN

o

rov ACK rocy ACK of FIN

o

recy ACK

o

recu N timeout

— » e vait

28/01/16

27

