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Introduc0on	  

B16	  Opera0ng	  Systems	  

Learning	  Outcomes	  (Examinable	  Material	  *)	  
•  Familiarity	  with	  opera0ng	  system	  concepts	  	  

–  File	  
–  Process	  
–  Thread	  
–  Synchronisa0on	  
–  Memory	  
–  Paging	  
–  Socket	  
–  Port	  
	  

•  Datastructures	  /	  implementa0ons	  
–  Page	  table	  
–  Semaphore	  
–  Mutex	  
–  Socket	  

Perspec0ve	  
•  User	  perspec0ve	  *	  

–  Linux	  (posix	  compliant	  OS)	  
–  System	  calls	  (fork,	  wait,	  open,	  prinP)	  
–  Command	  line	  u0li0es	  (man	  <sec0on>)	  
–  C	  programs	  

•  Opera0ng	  system	  implementa)on	  perspec0ve	  
–  “Simple-‐OS”	  
	  

Lecture	  1	  :	  History	  and	  User	  Perspec0ve	  

Material	  from	  	  
Opera0ng	  Systems	  in	  Depth	  	  

(spec.	  Chapter	  1)	  	  
by	  

Thomas	  Doeppner	  
	  

GET	  THIS	  BOOK	  AND	  READ	  IT!	  

B16	  Opera0ng	  Systems	  



28/01/16	  

2	  

What	  is	  an	  opera0ng	  system?	  
•  Opera0ng	  systems	  provide	  sobware	  abstracts	  of	  

–  Processors	  
–  RAM	  (physical	  memory)	  
–  Disks	  (secondary	  storage)	  
–  Network	  interfaces	  	  
–  Display	  
–  Keyboards	  
–  Mice	  

•  Opera0ng	  systems	  allow	  for	  sharing	  
•  Opera0ng	  systems	  typically	  provide	  abstrac0ons	  for	  

–  Processes	  
–  Files	  
–  Sockets	  

Why	  should	  we	  study	  opera0ng	  systems?	  
•  “To	  a	  certain	  extent	  [building	  an	  opera0ng	  system	  is]	  a	  solved	  

problem”	  –	  Doeppner	  
•  “So	  too	  is	  bridge	  building”	  –	  Wood	  

–  History	  and	  its	  lessons	  
•  Capacity	  and	  correct	  usage	  

–  Improvement	  possible	  
•  New	  algorithms,	  new	  storage	  media,	  new	  peripherals	  
•  New	  concerns	  :	  security	  
•  New	  paradigms	  :	  the	  “cloud”	  

Review	  :	  Computer	  ≈	  Von	  Neumann	  Architecture	  	  

Image	  from	  hhp://cse.iitkgp.ac.in/pds/notes/intro.html	  

Review	  :	  Machine	  Instruc0ons	  and	  Assembly	  Code	  
•  Machine	  code	  :	  instruc0ons	  directly	  executed	  by	  the	  CPU	  

–  From	  Wikipedia	  :	  	  
•  “the	  instruc0on	  below	  tells	  an	  x86/IA-‐32	  processor	  to	  move	  an	  immediate	  8-‐bit	  
value	  into	  a	  register.	  	  The	  binary	  code	  for	  this	  instruc0on	  is	  10110	  followed	  by	  a	  
3-‐bit	  iden0fier	  for	  which	  register	  to	  use.	  	  The	  iden0fier	  for	  the	  AL	  register	  is	  000,	  
so	  the	  following	  machine	  code	  loads	  the	  AL	  register	  with	  the	  data	  01100001.”	  

•  Assembly	  language	  :	  one-‐to-‐one	  mapping	  to	  machine	  code	  (nearly)	  
–  Mnemonics	  map	  directly	  to	  instruc0ons	  (MOV	  AL	  =	  10110	  000)	  
–  From	  Wikipedia	  :	  	  

•  “Move	  a	  copy	  of	  the	  following	  value	  into	  AL,	  and	  61	  is	  a	  hexadecimal	  
representa0on	  of	  the	  value	  01100001”	  

10110000	  01100001	  

MOV	  AL,	  61h	  	  	  	  	  	  	  ;	  Load	  AL	  with	  97	  decimal	  (61	  hex)	  
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Compila0on	  and	  Linking	  
•  A	  compiler	  is	  a	  computer	  program	  that	  transforms	  source	  code	  

wrihen	  in	  a	  programming	  language	  into	  another	  computer	  
language	  
–  Examples	  :	  GNU	  compiler	  collec0on	  

•  A	  linker	  takes	  one	  or	  more	  object	  files	  generated	  by	  a	  compiler	  and	  
combines	  them	  into	  a	  single	  executable	  program	  
–  Gathers	  libraries,	  resolving	  symbols	  as	  it	  goes	  
–  Arranges	  objects	  in	  a	  program’s	  address	  space	  

•  Touches	  OS	  through	  libraries,	  virtual	  memory,	  program	  address	  
space	  defini0ons,	  etc.	  
–  Modern	  OS’	  provide	  dynamic	  linking;	  run0me	  resolu0on	  of	  unresolved	  

symbols	  

	  

History	  :	  1950’s	  
•  Earliest	  computers	  had	  no	  opera0ng	  systems	  
•  1954	  :	  OS	  for	  MIT’s	  “Whirlwind”	  computer	  	  

–  Manage	  reading	  of	  paper	  tapes	  avoiding	  human	  interven0on	  

•  1956	  :	  OS	  General	  Motors	  
–  Automated	  tape	  loading	  for	  an	  IBM	  701	  for	  sharing	  computer	  in	  15	  minute	  

0me	  alloca0ons	  

•  1959	  :	  “Time	  Sharing	  in	  Large	  Fast	  Computers”	  
–  Described	  mul0-‐programming	  

•  1959	  :	  McCarthy	  MIT-‐internal	  memo	  described	  “0me-‐share”	  usage	  
of	  IBM	  7090	  
–  Modern	  :	  interac0ve	  compu0ng	  by	  mul0ple	  concurrent	  users	  

Early	  OS	  Designs	  
•  Batch	  systems	  

–  Facilitated	  running	  mul0ple	  jobs	  sequen0ally	  

•  I/O	  bohlenecks	  
–  Computa0on	  stopped	  to	  for	  I/O	  opera0ons	  

•  Interrupts	  invented	  
–  Allows	  no0fica0on	  of	  an	  asynchronous	  opera0on	  comple0on	  
–  First	  machine	  with	  interrupts	  :	  DYSEAC	  1954,	  standard	  soon	  thereaber	  

•  Mul0-‐programming	  followed	  
–  With	  interrupts,	  computa0on	  can	  take	  place	  concurrently	  with	  I/O	  
–  When	  one	  program	  does	  I/O	  another	  can	  be	  compu0ng	  
–  Second	  genera0on	  OS’s	  were	  batch	  systems	  that	  supported	  mul0-‐

programming	  

History	  :	  1960’s,	  the	  golden	  age	  of	  OS	  R&D	  
•  Terminology	  	  

–  “Core”	  memory	  refers	  to	  magne0c	  cores	  each	  holding	  one	  bit	  (primary)	  
–  Disks	  and	  drums	  (secondary)	  

•  1962	  :	  Atlas	  computer	  (Manchester)	  	  
–  “virtual	  memory”	  :	  programs	  were	  wrihen	  as	  if	  machine	  had	  lots	  of	  primary	  

storage	  and	  the	  OS	  shuffled	  data	  to	  and	  from	  secondary	  	  
•  1962	  :	  Compa0ble	  0me-‐sharing	  system	  (CTSS,	  MIT)	  

–  Helped	  prove	  sensibility	  of	  0me-‐sharing	  (3	  concurrent	  users)	  
•  1964	  :	  Mul0cs	  (GE,	  MIT,	  Bell	  labs;	  1970	  Honeywell)	  	  

–  Stated	  desiderata	  
•  Convenient	  remote	  terminal	  access	  	  
•  Con0nuous	  opera0on	  
•  Reliable	  storage	  (file	  system)	  
•  Selec0ve	  sharing	  of	  informa0on	  (access	  control	  /	  security)	  
•  Support	  for	  heterogeneous	  programming	  and	  user	  environments	  

–  Key	  conceptual	  breakthrough	  :	  unifica0on	  of	  file	  and	  virtual	  memory	  via	  
everything	  is	  a	  file	  



28/01/16	  

4	  

History	  :	  1960’s	  and	  1970’s	  
•  IBM	  Mainframes	  OS/360	  
•  DEC	  PDP-‐8/11	  

–  Small,	  purchasable	  for	  research	  

•  1969	  :	  UNIX	  
–  Ken	  Thompson	  and	  Dennis	  Ritchie;	  Mul0cs	  effort	  drop-‐outs	  
–  Wrihen	  in	  C	  
–  1975	  :	  6th	  edi0on	  released	  to	  universi0es	  very	  inexpensively	  
–  1988	  System	  V	  Release	  4	  	  

•  1996	  :	  BSD	  (Berkeley	  sobware	  distribu0on)	  v4.4	  
–  Born	  from	  UNIX	  via	  DEC	  VAX-‐11/780	  and	  virtual	  memory	  

1980’s	  :	  Rise	  of	  the	  Personal	  Computer	  (PC)	  
•  1970’s	  :	  CP/M	  

–  One	  applica0on	  at	  a	  0me	  –	  no	  protec0on	  from	  applica0on	  
–  Three	  components	  

•  Console	  command	  process	  (CCP)	  
•  Basic	  disk	  opera0ng	  system	  (BDOS)	  
•  Basic	  input/output	  system	  (BIOS)	  

•  Apple	  DOS	  (aber	  CP/M)	  
–  1978	  Apple	  DOS	  3.1	  ≈	  CP/M	  

•  Microsob	  	  
–  1975	  :	  Basic	  interpreter	  
–  1979	  :	  Licensed	  7-‐th	  edi0on	  Unix	  from	  AT&T,	  named	  it	  Xenix	  
–  1980	  :	  Microsob	  sells	  OS	  to	  IBM	  and	  buys	  QDOS	  (no	  Unix	  royal0es)	  to	  fulfill	  

•  QDOS	  =	  “Quick	  and	  dirty	  OS”	  
•  Called	  PC-‐DOS	  for	  IBM,	  MS-‐DOS	  licensed	  by	  Microsob	  

1980’s	  ‘0l	  now.	  
•  Early	  80’s	  state	  of	  affairs	  

–  Minicomputer	  OS’s	  
•  Virtual	  memory	  
•  Mul0-‐tasking	  
•  Access	  control	  for	  file-‐systems	  

–  PC	  OS’s	  
•  None	  of	  the	  above	  (roughly	  speaking)	  

•  Worksta0ons	  
–  Sun	  (SunOS,	  Bill	  Joy,	  Berkeley	  4.2	  BSD)	  

•  1984	  :	  Network	  file	  system	  (NFS)	  

•  1985	  :	  Microsob	  Windows	  
–  1.0	  :	  applica0on	  in	  MS-‐DOS	  

•  Allowed	  coopera0ve	  mul0-‐tasking,	  where	  applica0ons	  explicitly	  yield	  the	  processor	  to	  each	  other	  

•  1995	  :	  Windows	  ’95	  to	  ME	  
–  Preemp0ve	  mul0-‐tasking	  (0me-‐slicing),	  virtual	  memory	  (-‐ish),	  unprotected	  OS-‐space	  

•  1993	  :	  First	  release	  of	  Windows	  NT,	  subsequent	  Windows	  OS’s	  based	  on	  NT	  
•  1991	  :	  Linus	  Torvalds	  ported	  Minix	  to	  x86	  

•  Based	  on	  Unix	  (6th	  edi0on)	  
–  Monolithic	  

•  The	  OS	  is	  a	  single	  file	  loaded	  into	  
memory	  at	  boot	  0me	  

–  Interfaces	  
•  Traps	  originate	  from	  user	  
programs	  

•  Interrupts	  originate	  from	  
external	  devices	  	  

–  Modes	  
•  User	  
•  Privileged	  /	  System	  

–  Kernel	  
•  A	  subset	  of	  the	  OS	  that	  runs	  in	  
privileged	  mode	  

•  Or	  a	  subset	  of	  this	  subset	  

Implementa0on	  Perspec0ve	  :	  “Simple	  OS”	  

12 CHAPTER 1 Introduction

In 2003 SCO,10 which had acquired the rights to Unix, sued IBM, claiming that SCO’s code 
was in Linux and thus SCO was owed royalties. (Suing someone with lots of money may be a 
good idea. Suing someone who employs really good lawyers probably isn’t.) In August 2007 the 
judge ruled that SCO was not the rightful owner of the Unix copyright, Novell is. Novell then 
stated that there is no Unix source code in Linux.

Two other free versions of Unix also began development in the early 1990s (and continue 
to be developed): FreeBSD and NetBSD. Both are derived from the BSD project at Berkeley and 
are highly thought of, but neither has achieved the success of Linux.

Apple, in the meantime, was still selling a system whose operating system was derived from 
the original MacOS. Finally, in 2000, they released MacOS X, a Unix system. Its implementation 
was similar to that of OSF/1, combining both Mach and BSD Unix (in the form of NetBSD and 
FreeBSD) in the kernel. Apple fi nally had an operating system that supports virtual memory and 
multitasking and provides a protected fi le system, something it had almost achieved with Lisa OS 
in the early 1980s. Apple’s version of Unix is now the prevalent Unix operating system.

 

In this section we examine the abstractions provided by a relatively simple operating system and 
delve a bit into how they are implemented. Choosing an operating system, even one to discuss 
in a course, is fraught with controversy. What we discuss here is an early version of Unix, as it 
existed in the early 1970s. We choose this partly because of its simplicity and elegance, partly 
because (as we saw above) it had a major infl uence on modern operating systems, such as mod-
ern versions of Unix (Solaris, Linux, MacOS X, etc.) as well as Windows, and primarily because 
it is the earliest operating system whose later versions are still in common use. (Although the 
descendants of IBM’s OS/360 are still in use, few students in operating systems courses have 
direct access to them.) We call it simply Unix for now, though strictly speaking it is Sixth-Edition 
Unix (see Section 1.2.3 for why it is called this).

1.3.1 OS STRUCTURE

Many early operating systems were amazingly small: Sixth-Edition Unix, for instance, had to 
fi t into 64 KB of memory. Thus it made reasonable sense to structure it as a single executable in 
which all parts are stored as a single fi le from which they are loaded into the computer’s memory 
when it boots. This sort of structuring is known as the monolithic approach. As sketched in 
Figure 1.1, application programs call upon the operating system via traps; external devices, such 
as disks and clocks, call upon it via interrupts.

Almost all computers have at least two modes of execution, user mode (with the fewest 
privileges) and privileged mode (with the most). To limit the damage that errant programs can do 
to other programs and the system as a whole, the only code that runs in privileged mode is that 
which is part of the operating system. In simple systems such as Sixth-Edition Unix, we gener-
ally think of the whole operating system as running in privileged mode. Everything else is an 
application and runs in user mode. In other systems, such as modern Windows, major subsystems 
providing operating-system functionality run in user mode. We discuss this in Chapter 4.

We often use the word kernel, as in “operating-system kernel.” This generally means that 
portion of the operating system that runs in privileged mode, but sometimes it means a subset of 
this — some relatively small, key portion of the privileged-mode operating-system code. We will 
try to make it clear which defi nition we’re using.

10 SCO nominally stands for “Santa Cruz Operation,” but the original company of that name sold its Unix business to Caldera. 
SCO then changed its name to Tarantella, the name of the product it was now focusing on. Caldera subsequently changed its 
name to SCO.

1.3
A SIMPLE OS
1.3
A SIMPLE OS

OS

Traps

Interrupts

FIGURE 1 .1  Simple 
OS structure.

Ch001.indd   12Ch001.indd   12 8/5/10   11:26:20 AM8/5/10   11:26:20 AM



28/01/16	  

5	  

Traps	  and	  System	  Calls	  (largely	  from	  user)	  
•  System	  calls	  *	  

–  Example	  

	  	  	  	  	  
requests	  the	  OS	  to	  send	  data	  to	  a	  file	  

•  Unintended	  requests	  for	  kernel	  service	  
–  Using	  a	  bad	  address	  
–  Dividing	  by	  zero	  
	  

1.3.1.1 Traps
Traps are the general means for invoking the kernel from user code. We usually think of a trap as 
an unintended request for kernel service, say that caused by a programming error such as using 
a bad address or dividing by zero. However, for system calls, an important special kind of trap 
discussed below, user code intentionally invokes the kernel.

Traps always elicit some sort of response. For page faults, the operating system determines 
the status of the faulted page and takes appropriate action (such as fetching it from secondary 
storage). For programming errors, what happens depends upon what the program has previ-
ously set up. If nothing, then the program is immediately terminated. A program may establish 
a handler to be invoked in response to the error; the handler might clean up after the error and 
then terminate the process, or perhaps perform some sort of corrective action and continue with 
normal execution.

The response to faults caused by errors is dealt with in Unix via a mechanism called sig-
nals (which is also used in response to other actions; see Chapter 2). Signals allow the kernel to 
invoke code that’s part of the user program, a mechanism known as an upcall.

1.3.1.2 System Calls
We’ve already discussed the multiple layers of abstraction used in all systems. For layers imple-
mented strictly in user code, the actual invocation of functionality within a layer is straightfor-
ward: a simple procedure call or the like. But invocation of operating-system functionality in 
the kernel is more complex. Since the operating system has control over everything, we need 
to be careful about how it is invoked. What Unix and most other operating systems do is to 
provide a relatively small number of system calls through which user code accesses the kernel. 
This way any necessary checking on whether the request should be permitted can be done at 
just these points.

A typical example of a system call is the one used to send data to a fi le, the write system call:

if (write(FileDescriptor, BufferAddress, BufferLength) == -1) {

/* an error has occurred: do something appropriate */

printf("error: %d\n", errno) /* print error message */

}

Here we call write to request the operating system to write data to the fi le (we discuss later 
the meaning of the parameters). If the call fails for some reason, write returns −1, and an integer 
identifying the cause of the error is stored in the global variable errno. Otherwise it returns a non-
negative value: the number of bytes that were actually written to the fi le.

How write actually invokes the operating-system kernel depends on the underlying hard-
ware. What typically happens is that write itself is a normal procedure that contains a special 
machine instruction causing a trap. This trap transfers control to the kernel, which then fi gures 
out why it was invoked and proceeds to handle the invocation.

1.3.1.3 Interrupts
An interrupt is a request from an external device for a response from the processor. We discuss 
the mechanism in more detail in Chapter 3. Unlike a trap, which is handled as part of the program 
that caused it (though within the operating system in privileged mode), an interrupt is handled 
independently of any user program.

For example, a trap caused by dividing by zero is considered an action of the currently 
running program; any response directly affects that program. But the response to an interrupt 

1.3 A Simple OS 13
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Interrupts	  (largely	  from	  hardware)	  
•  Request	  from	  an	  external	  device	  for	  a	  response	  from	  the	  processor	  

–  Handled	  independently	  of	  any	  program	  

•  Examples	  
–  Keyboard	  input	  
–  Data	  available	  

Processes	  *	  
•  Abstrac0on	  that	  includes	  

–  Address	  space	  (virtual	  memory	  *)	  
–  Processors	  (threads	  of	  control	  *)	  

•  Usually	  disjoint	  
–  Processes	  usually	  cannot	  directly	  access	  each	  other’s	  memory	  

•  Parallel	  processing	  via	  pipes,	  shared	  memory,	  etc.	  

•  Running	  a	  program	  from	  the	  shell	  
–  Creates	  a	  “process”	  
–  Program	  is	  loaded	  from	  a	  file	  into	  the	  process’s	  address	  space	  
–  Process’s	  single	  thread	  of	  control	  then	  executes	  the	  program’s	  compiled	  

executable	  code	  

•  Text	  
–  Program	  code	  

•  Data	  
–  Ini0alized	  global	  variables	  

•  BSS	  (block	  started	  by	  symbol)	  
–  Unini0alized	  global	  variables	  

•  Dynamic	  (Heap)	  
–  Dynamically	  allocated	  storage	  

•  Stack	  (grows	  “downward”)	  
–  Local	  variables	  

•  Arrows	  indicate	  variable	  
placement	  

•  malloc()	  claims	  space	  in	  dynamic	  

Memory	  =	  Address	  Space	  =	  e.g.	  2^32	  words,	  etc.	  

stored in a fi le in the fi le system. When we run the program, a process is created and the program 
is loaded from the fi le into the process’s address space. The process’s single thread of control then 
executes the program’s code.

But how is the address space organized? The program consists of executable code and 
data. The code, once loaded, is never modifi ed. Since much of the data, on the other hand, can be 
modifi ed, it makes sense to segregate the two, putting the code in a special region of the address 
space that’s protected from modifi cation. We could simply put all the data in another readable and 
writable region, but we need to consider other issues too.

The variables nprimes and prime are both global, while i, j, and current are local. We know 
that the scope of global variables is the entire program, while the scope of local variables is just 
the block (delineated by curly braces in C) that contains them. In other words, the “lifetime” of 
global variables is the same as the lifetime of the program, while the lifetime of a local variable 
is only from when the thread enters its block to when it exits. So, we must set things up so that 
the portion of the address space allocated for global variables remains allocated for the lifetime 
of the program, but that portion allocated for a local variable remains allocated only while the 
thread is in the variable’s scope.

Thus when the program is loaded into the address space, we’ll permanently allocate space 
for the global variables, just beyond the space allocated for code. But there’s another useful 
distinction to make: nprimes has an initial value of 100, but prime has no initial value, though 
C semantics states that its initial value is thus zero. If we group all such uninitialized variables 
together, we can represent them effi ciently in the copy of the program stored in the fi le system by 
simply stating that we have n bytes of uninitialized data, which will actually be fi lled with zeros. 
For many programs, this will save a lot of space. We of course have to instantiate these variables 
when we load them into the address space, but there are ways to optimize this instantiation (we 
discuss them in Chapter 7).

The local variables can be allocated effi ciently by use of a run-time stack: each time our 
thread enters a new block, it pushes a frame on the stack containing space for local variables and 
perhaps procedure-linkage information. Such frames are popped off the stack when the thread 
exits the block. So what we’ll do is set up a region of the address space for the stack to reside. On 
most architectures, stacks range from high memory addresses to low memory addresses and thus 
stacks typically grown downwards.

Unix structures the address space as shown in Figure 1.2. The executable code, known as 
text, occupies the lower-addressed regions. The initialized data, known simply as data, follows 
the text. The uninitialized data is known, cryptically, as BSS (for “block started by symbol,” a 
mnemonic from an ancient IBM 704 assembler) and comes next, followed by a dynamic region 
that we explain shortly. Then comes a large hole in the address space and fi nally a region, starting 
at the top and growing downwards, containing the stack.

Let’s now modify the program a bit so that the number of primes we want to compute is 
passed as a parameter. Space is allocated for the primes dynamically, based on this parameter.

int nprimes;

int *prime;

int main(int argc, char *argv[]) {

int i;

int current = 2;

nprimes = atoi(argv[1]);

prime = (int *)malloc(nprimes*sizeof(int));

prime[0] = current;

for (i=1; i<nprimes; i++) {

int j;

Text

Data

BSS

Dynamic

Stack

FIGURE 1 .2  Unix 
address space.
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14 CHAPTER 1 Introduction

from a disk controller may or may not have an indirect effect on the currently running program 
and defi nitely has no direct effect (other than slowing it down a bit as the processor deals with 
the interrupt). 

1.3.2 PROCESSES, ADDRESS SPACES, AND THREADS

Probably the most important abstraction from the programmer’s point of view is the process. We 
think of it both as an abstraction of memory — as an address space — and as the abstraction of 
one or more processors — as threads (or threads of control). The term “address space” covers 
both the set of all addresses that a program can generate and the storage associated with these 
addresses. In modern operating systems, address spaces are usually disjoint (they are always dis-
joint in Sixth-Edition Unix): processes generally have no direct access to one another’s address 
spaces. How this is made to work has to do with address-translation hardware and its operating-
system support, subjects we discuss in Chapter 7.

A single thread per process provides a straightforward programming model and was all 
that most operating systems supported until the early 1990s. We cover multithreaded processes 
in considerable detail in Chapter 2, but for now we use the simple model of single-threaded 
processes.

Note that the meaning of the term “process” has evolved over the years. The term origi-
nally meant the same thing as the current meaning of “thread” — see (Dennis and Van Horn 
1966), who use the term “computation” to refer to what we now mean by “process.” Though 
some authors still use “process” in its original sense, few if any operating systems do.

What else is there to a process? To get an idea, consider the following simple C program 
that implements the “Sieve of Eratosthenes” to compute the fi rst one hundred primes. In its 
current form it’s not very useful since, after computing these primes, it immediately terminates 
without doing anything with them. We’ll make it more useful later.

const int nprimes = 100;

int prime[nprimes];

int main() {

int i;

int current = 2;

prime[0] = current;

for (i=1; i<nprimes; i++) {

int j;

NewCandidate:

current++;

for (j=0; prime[j]*prime[j] <= current; j++) {

if (current % prime[j] == 0)

goto NewCandidate; 

}

prime[i] = current;

}

return(0);

}

Our concern here is not prime numbers, but what the operating system must do to make 
this program work. The program is compiled and linked (we explain linking in Chapter 3) and 
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Processes	  and	  Threads	  ****	  (fork_example_1.c)	  
•  Processes	  are	  created	  via	  the	  system	  

call	  fork()	  
–  Any	  exact	  copy	  of	  the	  calling	  process	  is	  

made	  	  
•  Efficient	  –	  copy	  on	  write	  

–  fork()	  returns	  twice!	  
•  Once	  in	  the	  child	  (return	  value	  0)	  
•  Once	  in	  the	  parent	  (return	  value	  the	  PID	  

of	  the	  child	  process)	  

•  Processes	  report	  termina0on	  status	  via	  
the	  system	  call	  exit(ret_code)	  

•  Processes	  can	  wait()	  for	  the	  termina0on	  
of	  child	  processes	  

•  Example	  uses	  
–  Terminal	  /	  Windows	  
–  Apache	  cgi	  

18 CHAPTER 1 Introduction

Since a process’s return code actually means something, it’s important for other processes 
to fi nd out what it is. This is done via the wait system call, which allows a parent process to wait 
until one of its children terminates:

short pid;

if ((pid = fork()) == 0) {

/* some code is here for the child to execute */

exit(n);

} else {

int ReturnCode;

while(pid != wait(&ReturnCode))

;

/* the child has terminated with ReturnCode as its

   return code */

}

Here the parent process creates a child, then waits for it to terminate. Note that wait returns 
the process ID of the child that’s terminated, which might not be the one most recently created 
(the parent might have created others). Thus it calls wait repeatedly until the child it’s interested 
in terminates. The wait call returns the child process’s return code via its argument, which points 
to storage provided by the caller.

A process can wait only for its children to terminate: it has no means for waiting for the 
termination of other processes. This implies that the operating system must keep track of the par-
ent-child relationships among processes.

While a process is waiting for a child to terminate, it’s said to be in the “sleeping state”: it 
won’t be able to execute any further instructions until a terminating child wakes it up.

The act of termination is a bit tricky. One concern is the process ID. These are 16-bit val-
ues and thus must occasionally be reused. Suppose that when a process terminates (i.e., calls 
exit), its ID is immediately made available for assignment to new processes. It might  happen 
that before the process’s parent calls wait, the process ID is actually assigned to a new process. 
Thus there could be some ambiguity about which process is being referred to by the ID.

Another termination concern is the return code: where is it stored between the moments 
when a process terminates and when the code is picked up by the parent via wait? If all storage 
associated with the process is released on termination, we could have a problem.

These concerns are handled as follows. When a process calls exit it doesn’t completely 
disappear, but goes into what’s called the zombie state: it’s no longer active and its address space 
can be relinquished, but its process ID and return value are preserved in the operating system. 
Thus the process still exists, though the only meaningful data associated with it are its ID and 
return value. When the parent eventually calls wait, these values are fi nally released and all traces 
of the process disappear.

But what happens if the parent terminates before the child? This could mean that, since 
the parent is no longer around to perform the wait, the child will remain forever a zombie. To 
deal with this problem, process number 1 (the process whose ID is 1 and which is the ancestor 
of all other processes with greater IDs) inherits the children (including zombies) of terminated 
processes. It executes a loop, continually calling wait and fi nishing the termination of all its (step) 
children.

As shown in Figure 1.4, a process’s return code is kept in its process control block. Nothing 
is of course stored there until the process terminates. But when the process does terminate, its 
return code is copied to the PCB, which is linked to its parent’s queue of terminated children. By 
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Loading	  Programs	  into	  Processes	  (fork_example_2.c)	  
•  execl()	  system	  call	  used	  to	  do	  this	  

•  execl()	  replaces	  the	  en0re	  contents	  of	  the	  
processes	  address	  space	  
–  the	  stack	  is	  ini0alized	  with	  the	  passed	  program	  args.	  
–  a	  special	  start	  rou0ne	  is	  called	  that	  itself	  calls	  main()	  
–  exec	  doesn’t	  return	  except	  if	  there	  is	  an	  error!	  

executing the wait system call, the parent selects the fi rst process from this queue, returning both 
the PID and return-code fi elds.

1.3.4 LOADING PROGRAMS INTO PROCESSES

We’ve briefl y discussed setting up an address space to contain a program; now let’s look at the 
user-level mechanism for doing so. A family of system calls known as exec is provided for this. 
Execs are typically used shortly after fork creates a new process to replace the program with a 
new one. Here’s an example of their use:

int pid;

if ((pid = fork()) == 0) {

/* we’ll soon discuss what might take place before exec

   is called */

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

Here we call execl, which takes a variable number of arguments — the “command-line” 
arguments mentioned above — and passes them to the program. The fi rst argument is the name 
of the fi le containing the program to be loaded. The second argument is the name of the program 
(while this seems a bit redundant, it allows one program to do different things depending on the 
name by which it is called). The remaining arguments are the remaining command-line argu-
ments, terminating with 0.

The effect of the exec call, as shown in Figure 1.5, is to replace the entire contents of the 
current process’s address space with the new program: the text region is replaced with the text of 
primes. The BSS and data regions are replaced with those supplied by primes. The dynamic area 
is replaced with an empty region. The stack is replaced with the arguments that are to be passed to 
main: the total number of arguments (two in this case), followed by a vector referring to their values 
(“primes” and “300”). The process’s thread continues execution by calling a special start routine 
(loaded with the primes program), which then calls main (so that on return from main it calls exit).

Note that since the prior contents of the address space are removed, there is no return from 
a successful call to exec: there’s nothing to return to! However, if exec does return, then (since 
the prior contents clearly weren’t removed) there must have been an error. What we do in such a 
case is simply call exit with a return code indicating an error. (This is certainly not a very helpful 
response, but our focus for the moment is on successful outcomes.)

The parent process waits until the child has completed (calling wait with an argument of 
zero means that the caller does not want the return code). The above code fragment shows what 
a command shell does in response to the command:

% primes 300

In other words, it creates a new process to run the command and waits for that process to 
terminate.
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executing the wait system call, the parent selects the fi rst process from this queue, returning both 
the PID and return-code fi elds.

1.3.4 LOADING PROGRAMS INTO PROCESSES

We’ve briefl y discussed setting up an address space to contain a program; now let’s look at the 
user-level mechanism for doing so. A family of system calls known as exec is provided for this. 
Execs are typically used shortly after fork creates a new process to replace the program with a 
new one. Here’s an example of their use:

int pid;

if ((pid = fork()) == 0) {

/* we’ll soon discuss what might take place before exec

   is called */

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

Here we call execl, which takes a variable number of arguments — the “command-line” 
arguments mentioned above — and passes them to the program. The fi rst argument is the name 
of the fi le containing the program to be loaded. The second argument is the name of the program 
(while this seems a bit redundant, it allows one program to do different things depending on the 
name by which it is called). The remaining arguments are the remaining command-line argu-
ments, terminating with 0.

The effect of the exec call, as shown in Figure 1.5, is to replace the entire contents of the 
current process’s address space with the new program: the text region is replaced with the text of 
primes. The BSS and data regions are replaced with those supplied by primes. The dynamic area 
is replaced with an empty region. The stack is replaced with the arguments that are to be passed to 
main: the total number of arguments (two in this case), followed by a vector referring to their values 
(“primes” and “300”). The process’s thread continues execution by calling a special start routine 
(loaded with the primes program), which then calls main (so that on return from main it calls exit).

Note that since the prior contents of the address space are removed, there is no return from 
a successful call to exec: there’s nothing to return to! However, if exec does return, then (since 
the prior contents clearly weren’t removed) there must have been an error. What we do in such a 
case is simply call exit with a return code indicating an error. (This is certainly not a very helpful 
response, but our focus for the moment is on successful outcomes.)

The parent process waits until the child has completed (calling wait with an argument of 
zero means that the caller does not want the return code). The above code fragment shows what 
a command shell does in response to the command:

% primes 300

In other words, it creates a new process to run the command and waits for that process to 
terminate.
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Files	  *	  
•  Files	  are	  Unix’s	  primary	  abstrac)on	  

for	  everything	  
–  Keyboard	  
–  Display	  
–  Other	  processes	  

•  Naming	  files	  
–  Filesystems	  generally	  are	  tree-‐

structured	  directory	  systems	  	  
–  Namespaces	  are	  generally	  shared	  by	  

all	  processes	  
•  Accessing	  files	  

–  The	  directory-‐system	  name-‐space	  is	  
outside	  the	  process	  
•  open(name)	  returns	  a	  file	  handle,	  

read(args)	  	  
•  OS	  checks	  permissions	  along	  path	  

20 CHAPTER 1 Introduction

1.3.5 FILES

As we’ve pointed out, our primes example isn’t very useful since it doesn’t leave the results 
of its computation where others (programs or people) can use them. What’s needed is access 
to someplace outside the process that’s shared with others. The notion of a fi le is our Unix 
system’s sole abstraction for this concept of “someplace outside the process” (modern 
Unix systems have additional abstractions). Unix uses fi les both as the abstraction of persistent 
data storage (such as on disks) and also as the means for fetching and storing data outside a 
 process, whether that data is stored on disk, in another process, or in some other device, such 
as a keyboard or display.

1.3.5.1 Naming Files
For our current discussion we’re concerned about both how to refer to such “places” outside 
the process and how programs transfer data to and from such places. Since the place is outside the 
process, we need a different space from the process’s address space. The nature of such spaces 
was an issue a number of decades ago, but pretty much all systems today use tree- structured 
directory systems for naming fi les and similar objects. These should be familiar to everyone 
with enough computer experience to have gotten this far in this text: a fi le is named by stringing 
together the names assigned to the edges forming a path from the root of the tree to the fi le.

Unix uses forward slashes as separators between the names; Windows uses back slashes. 
That the path starts at the root is indicated by starting the name with the separators. Such path 
names generally have the beginning (such as the root) at the left, though the Internet’s naming 
scheme (Domain Name System — DNS) has it on the right.

The name space provided by the directory system is generally shared by all processes 
running on a computer (and perhaps by all processes running on a number of computers). Unix 
provides a means to restrict a process to a subtree: one simply redefi nes what “root” means for 
the process. Thus fi les are identifi ed by their path names in the directory system.

Since the directory-system name space is outside the process, special means are required 
to access it. The usual model is that one provides the name of the desired fi le to the operating 
system, and the operating system returns a handle to be used to access the fi le. What’s going on 
behind the scenes is that the operating system, somewhat laboriously, follows the path provided 
by the name, checking to make certain that the process is allowed appropriate access along the 
path. The returned handle provides a direct reference to the fi le so that such expensive path-
 following and access verifi cation isn’t required on subsequent accesses.

This use of a handle to refer to an object managed by the kernel is fairly important. We’ll 
later see it generalized to the notion of a capability (Chapter 8). In abstract terms, possession 
of a handle gives the holder not only a reference to an object in the kernel, but also certain lim-
ited rights for using the object. In the case of fi les, as we discuss, a handle allows the holder to 
 perform certain actions on a fi le.

The following code uses the open system call to obtain a fi le’s handle, then uses the handle 
to read the fi le:

int fd;

char buffer[1024];

int count;

if ((fd = open("/home/twd/fi le", O_RDWR) == -1) {

/* the fi le couldn’t be opened */

perror("/home/twd/fi le");

exit(1);

}
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if ((count = read(fd, buffer, 1024)) == -1) {

/* the read failed */

perror("read");

exit(1);

}

/* buffer now contains count bytes read from the fi le */

Here we use the open system call to access the directory name space to get a handle for 
the fi le whose path name is “/home/twd/fi le”. We’ve indicated by the second argument that 
we want both read and write access to the fi le: if for some reason such access is not permitted, 
the open call fails. If it succeeds, fd contains the handle (known in Unix as a fi le descriptor) for 
the fi le.

We then use this handle as an argument to the read system call to identify the fi le and 
attempt to transfer its fi rst 1024 bytes into buffer. Read returns the number of bytes that were 
actually transferred: it could be less than what was asked for because, for example, the fi le might 
not be that large. The perror routine prints, to fi le descriptor 2, its argument followed by a mes-
sage explaining the error number currently in the global variable errno (recall that that’s how 
failing system calls leave the error number).

1.3.5.2 Using File Descriptors
These handles (or fi le descriptors) form what is essentially an extension to the process’s address 
space, allowing the process unhindered access to the associated fi les. This address-space exten-
sion survives execs. Thus fi les open before an exec takes place are open afterwards. This property 
is exploited as a way to pass the open fi les as additional parameters to the exec. File descriptors 
are small nonnegative integers that are allocated lowest-available-number fi rst. By convention, 
programs expect to read their primary input from fi le descriptor 0, to write their primary output 
to fi le descriptor 1, and to write error messages to fi le descriptor 2. By default, input from fi le 
descriptor 0 comes from the keyboard and output to fi le descriptors 1 and 2 goes to the display 
(or current window).

However, as shown in the following code, different associations can be established in a 
process before an exec:

if (fork() == 0) {

/* set up fi le descriptor 1 in the child process */

close(1);

if (open("/home/twd/Output", O_WRONLY) == -1) {

perror("/home/twd/Output");

exit(1);

}

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;
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Using	  File	  Descriptors	  (fork_example_2.c)	  
•  File	  descriptors	  survive	  exec()’s	  
•  Default	  file	  descriptors	  

–  0	  read	  (keyboard)	  
–  1	  write	  (primary,	  display)	  
–  2	  error	  (display)	  

•  Different	  associa0ons	  can	  be	  
established	  before	  fork()	  

if ((count = read(fd, buffer, 1024)) == -1) {

/* the read failed */

perror("read");

exit(1);

}

/* buffer now contains count bytes read from the fi le */

Here we use the open system call to access the directory name space to get a handle for 
the fi le whose path name is “/home/twd/fi le”. We’ve indicated by the second argument that 
we want both read and write access to the fi le: if for some reason such access is not permitted, 
the open call fails. If it succeeds, fd contains the handle (known in Unix as a fi le descriptor) for 
the fi le.

We then use this handle as an argument to the read system call to identify the fi le and 
attempt to transfer its fi rst 1024 bytes into buffer. Read returns the number of bytes that were 
actually transferred: it could be less than what was asked for because, for example, the fi le might 
not be that large. The perror routine prints, to fi le descriptor 2, its argument followed by a mes-
sage explaining the error number currently in the global variable errno (recall that that’s how 
failing system calls leave the error number).

1.3.5.2 Using File Descriptors
These handles (or fi le descriptors) form what is essentially an extension to the process’s address 
space, allowing the process unhindered access to the associated fi les. This address-space exten-
sion survives execs. Thus fi les open before an exec takes place are open afterwards. This property 
is exploited as a way to pass the open fi les as additional parameters to the exec. File descriptors 
are small nonnegative integers that are allocated lowest-available-number fi rst. By convention, 
programs expect to read their primary input from fi le descriptor 0, to write their primary output 
to fi le descriptor 1, and to write error messages to fi le descriptor 2. By default, input from fi le 
descriptor 0 comes from the keyboard and output to fi le descriptors 1 and 2 goes to the display 
(or current window).

However, as shown in the following code, different associations can be established in a 
process before an exec:

if (fork() == 0) {

/* set up fi le descriptor 1 in the child process */

close(1);

if (open("/home/twd/Output", O_WRONLY) == -1) {

perror("/home/twd/Output");

exit(1);

}

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;
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File	  Random	  Access	  	  
•  lseek()	  provides	  non-‐sequen0al	  access	  to	  files	  

•  Reverses	  a	  file	  

28 CHAPTER 1 Introduction

1.3.5.3 Random Access
As we’ve seen, the normal mode of access to fi les is sequential: successive reads or writes to a fi le 
are to successive locations in the fi le. Though this is probably what’s desired in most situations, 
sometimes we’d like to access a fi le randomly, reading or writing arbitrary locations within it. 
This turns out to be easily done, since the read and write system calls simply look at the contents 
of the fi le-location fi eld of the context structure and increment it after the operation.

Thus to read or write starting at an arbitrary location, all we have to do is provide a means 
for setting this fi le-location fi eld. This is done with the lseek system call. The example below 
shows using lseek to print the contents of a fi le backwards:11

fd = open("textfi le", O_RDONLY); 

/* go to last char in fi le */

fptr = lseek(fd, (off_t)–1, SEEK_END);

while (fptr != –1) {

read(fd, buf, 1);

write(1, buf, 1);

fptr = lseek(fd, (off_t)–2, SEEK_CUR);

}

The fi rst argument to lseek is the fi le descriptor, the second and third arguments (of type 
off_t, an integer type) indicate the value that goes into the fi le-location fi eld. The third argument 
specifi es where we are measuring the offset from (SEEK_SET indicates the offset is interpreted 
as from the beginning of the fi le, SEEK_CUR means from the current position in the fi le, and 
SEEK_END means from the end of the fi le). Note that lseek does no actual I/O; all it does is set 
the fi le-location fi eld.

What we’ve done in the example above is to start with the fi le location set to point to the 
last character in the fi le. After reading a byte, the location is advanced by one, so to get the previ-
ous character, we subtract two from it.

1.3.5.4 Pipes
An interesting construct based on the fi le notion is the pipe. A pipe is a means for one process to 
send data to another directly, as if it were writing to a fi le (see Figure 1.11). The process sending data 
behaves as if it has a fi le descriptor to a fi le that has been opened for writing. The process receiving 
data behaves as if it has a fi le descriptor referring to a fi le that has been opened for reading.

A pipe and the two fi le descriptors referring to it are set up using the pipe system call. 
This creates a pipe object in the kernel and returns, via an output parameter, the two fi le descrip-
tors that refer to it: one, set for write-only, referring to the input side and the other, set for read-
only, referring to the output end. Since this pipe object, though it behaves somewhat like a fi le, 
has no name, the only way for any process to refer to it is via these two fi le descriptors. Thus only the 
process that created it and its descendants (which inherit the fi le descriptors) can refer to the pipe.

FIGURE 1 .11 Communication via a pipe

pipesender receiver

11 This is defi nitely not a good way to print a fi le backwards! It simply illustrates what you can do with lseek.
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Pipes	  *	  (pipe_example.c)	  
•  A	  pipe	  is	  a	  means	  for	  one	  process	  to	  send	  data	  to	  another	  directly	  
•  pipe()	  returns	  two	  nameless	  file	  descriptors	  	  Here’s a simple pipe example:

int p[2];    /* array to hold pipe’s fi le descriptors */

pipe(p);     /* create a pipe; assume no errors */

/* p[0] refers to the output end of the pipe */

/* p[1] refers to the input end of the pipe */

if (fork() == 0) {

char buf[80];

close(p[1]);     /* not needed by the child */

while (read(p[0], buf, 80) > 0) {

/* use data obtained from parent */

…

}

} else {

char buf[80];

close(p[0]);  /* not needed by the parent */

for (;;) {

/* prepare data for child */

…

write(p[1], buf, 80);

}

}

1.3.5.5 Directories
A directory is essentially a fi le like the others we’ve been discussing, except that it is inter-
preted by the operating system as containing references to other fi les (some of which may 
well be other directories). From a logical perspective, a directory consists of an array of pairs 
of component name and inode number, where the latter identifi es the target fi le’s inode to the 
operating system (recall that an inode is a data structure maintained by the operating system 
to represent a fi le).

Every directory contains two special entries, “.” and “..”. The former refers to the directory 
itself, the latter to the directory’s parent. In Figure 1.12, the directory is the root directory and has 
no parent, and thus its “..” entry is a special case that refers to the directory itself.
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FIGURE 1 .12 Sample directory

Component name Inode number

Directory entry

unix 117

etc 4

home 18

pro 36

dev 93

. 1

.. 1
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Directories	  
•  A	  directory	  is	  a	  file	  that	  is	  interpreted	  as	  containing	  references	  to	  

other	  files	  by	  the	  OS	  	  
•  Consists	  of	  an	  array	  of	  	  

–  Component	  name	  
–  inode	  number	  

•  an	  inode	  is	  a	  datastructure	  maintained	  by	  the	  OS	  to	  represent	  a	  file	  

Here’s a simple pipe example:

int p[2];    /* array to hold pipe’s fi le descriptors */

pipe(p);     /* create a pipe; assume no errors */

/* p[0] refers to the output end of the pipe */

/* p[1] refers to the input end of the pipe */

if (fork() == 0) {

char buf[80];

close(p[1]);     /* not needed by the child */

while (read(p[0], buf, 80) > 0) {

/* use data obtained from parent */

…

}

} else {

char buf[80];

close(p[0]);  /* not needed by the parent */

for (;;) {

/* prepare data for child */

…

write(p[1], buf, 80);

}

}

1.3.5.5 Directories
A directory is essentially a fi le like the others we’ve been discussing, except that it is inter-
preted by the operating system as containing references to other fi les (some of which may 
well be other directories). From a logical perspective, a directory consists of an array of pairs 
of component name and inode number, where the latter identifi es the target fi le’s inode to the 
operating system (recall that an inode is a data structure maintained by the operating system 
to represent a fi le).

Every directory contains two special entries, “.” and “..”. The former refers to the directory 
itself, the latter to the directory’s parent. In Figure 1.12, the directory is the root directory and has 
no parent, and thus its “..” entry is a special case that refers to the directory itself.

1.3 A Simple OS 29
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Crea0ng	  Files	  
•  creat()	  and	  open()	  (with	  flags)	  are	  used	  to	  create	  files	  

•  “man	  2	  open”	  :	  	  

OPEN(2)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  BSD	  System	  Calls	  Manual	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  OPEN(2)	  
	  
NAME	  
	  	  	  	  	  open,	  openat	  -‐-‐	  open	  or	  create	  a	  file	  for	  reading	  or	  writing	  
	  
SYNOPSIS	  
	  	  	  	  	  #include	  <fcntl.h>	  
	  
	  	  	  	  	  int	  
	  	  	  	  	  open(const	  char	  *path,	  int	  oflag,	  ...);	  
	  
	  	  	  	  	  int	  
	  	  	  	  	  openat(int	  fd,	  const	  char	  *path,	  int	  oflag,	  ...);	  
	  
DESCRIPTION	  
	  	  	  	  	  The	  file	  name	  specified	  by	  path	  is	  opened	  for	  reading	  and/or	  writing,	  as	  specified	  by	  the	  argument	  oflag;	  
	  	  	  	  	  the	  file	  descriptor	  is	  returned	  to	  the	  calling	  process.	  
	  
	  	  	  	  	  The	  oflag	  argument	  may	  indicate	  that	  the	  file	  is	  to	  be	  created	  if	  it	  does	  not	  exist	  (by	  specifying	  the	  
	  	  	  	  	  O_CREAT	  flag).	  	  In	  this	  case,	  open()	  and	  openat()	  require	  an	  additional	  argument	  mode_t	  mode;	  the	  file	  is	  
	  	  	  	  	  created	  with	  mode	  mode	  as	  described	  in	  chmod(2)	  and	  modified	  by	  the	  process'	  umask	  value	  (see	  umask(2)).	  
	  
	  	  	  	  	  The	  openat()	  function	  is	  equivalent	  to	  the	  open()	  function	  except	  in	  the	  case	  where	  the	  path	  specifies	  a…	  
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Review	  :	  User	  Perspec0ve	  on	  OS	  *	  
•  Rough	  idea	  of	  what	  goes	  inside	  an	  OS	  
•  Traps	  /	  system	  calls	  

–  exec()	  
–  fork()	  
–  open()	  
–  pipe()	  
–  exit()	  
–  close()	  
–  read()	  
–  write()	  
–  dup()	  
–  …	  

•  Next	  lecture	  :	  more	  user	  basics.	  	  	  
•  Final	  two	  lectures	  :	  OS	  implementa0on	  issues	  

Lecture	  2	  :	  Basics;	  Processes,	  Threads,	  …	  	  

Material	  from	  	  
Opera0ng	  Systems	  in	  Depth	  	  

(spec.	  Chapters	  2&3)	  	  	  
by	  

Thomas	  Doeppner	  
	  

GET	  THIS	  BOOK	  AND	  READ	  IT!	  

Threads	  *	  (thread_example_1.c)	  
•  What	  is	  a	  thread?	  

–  Mechanism	  for	  concurrency	  in	  user-‐level	  programs	  
–  “Lightweight	  process”	  
–  Processor(s)	  within	  a	  process	  
–  Share	  process	  memory	  with	  other	  threads	  

•  Why	  threads?	  
–  Can	  drama0cally	  simplify	  code	  

•  Mul0-‐threaded	  database	  concurrently	  handling	  requests	  
•  Server	  listening	  on	  a	  socket	  responding	  to	  client	  requests	  

–  Requires	  care	  
•  Synchroniza0on	  

•  POSIX	  (“portable	  opera0ng	  system	  interface”)	  specifica0on	  

Thread	  Crea0on	  

Alterna0ve	  specifica0ons	  exist;	  all	  conceptually	  similar	  

44 CHAPTER 2 Multithreaded Programming

 

Despite the advantages of programming with threads, only relatively recently have standard APIs 
for multithreaded programming been developed. The most important of these APIs in the Unix 
world is the one developed by a group originally called POSIX 1003.4a. This multi-year effort 
resulted in 1995 in an approved standard, now known by the number 1003.1c.

Microsoft produced as part of its Win-32 interface a threads package whose interface has 
little in common with that of POSIX. Moreover, there are signifi cant differences between the 
Microsoft and POSIX approaches — some of the constructs of one cannot be easily implemented 
in terms of the constructs of the other, and vice versa. Despite these incompatibilities, both 
approaches are useful for multithreaded programming.

2.2.1 THREAD CREATION AND TERMINATION

Creating a thread should be a pretty straightforward operation: in response to some sort of directive, 
a new thread is created and proceeds to execute code independently of its creator. There are, of 
course, a few additional details. We may want to pass parameters to the thread. A stack of some 
size must be created to be the thread’s execution context. Also, we need some mechanism for 
the thread to terminate and to make a termination value available to others.

2.2.1.1 Creating POSIX Threads
POSIX and Win-32 have similar interfaces for creating a thread. Suppose we wish to create a 
bunch of threads, each of which will execute code to provide some service. In POSIX, we do this 
as follows:

void start_servers( ) {

pthread_t thread;

int i;

for (i=0; i<nr_of_server_threads; i++)

pthread_create(

 &thread, // thread ID

 0, // default attributes

 server, // start routine

 argument); // argument

}

void *server(void *arg) {

// perform service

return (0);

}

Thus a thread is created by calling pthread_create. If it returns successfully (returns 0), a 
new thread has been created that is now executing independently of the caller. This thread’s ID 
is returned via the fi rst parameter (an output parameter that, in standard C programming style, is 
a pointer to where the result should be stored). The second parameter is a pointer to an attributes 
structure that defi nes various properties of the thread. Usually we can get by with the default 
properties, which we specify by supplying a null pointer. The third parameter is the address of 
the routine in which our new thread should start its execution. The last argument is the argument 
that is actually passed to the fi rst procedure of the thread.

If pthread_create fails, it returns a positive value indicating the cause of the failure.

2.2
PROGRAMMING 
WITH THREADS

2.2
PROGRAMMING 
WITH THREADS
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Passing	  Arguments	  to	  Threads	  
•  Care	  must	  be	  taken	  with	  

threads	  in	  general	  
•  Problem	  with	  this	  code	  

–  In	  and	  out	  are	  local	  variables	  
thus	  leave	  scope	  when	  rlogind	  
exits	  

2.2 Programming with Threads 45

2.2.1.2 Creating Win-32 Threads
An equivalent program written for Windows using the Win-32 interface is:

void start_servers( ) {

HANDLE thread;

DWORD id;

int i;

for (i=0; i<nr_of_server_threads; i++)

thread = CreateThread(

 0, // security attributes

 0, //  default # of stack pages allocated

 server, // start routine

 0, // argument

 0, // creation fl ags

 &id); // thread ID

}

DWORD WINAPI server(void *arg) {

// perform service

return(0);

}

Calls to CreateThread are used rather than pthread_create. A handle for the new thread is 
returned. A handle, as we discussed in Chapter 1, is similar to a Unix fi le descriptor: it refers to 
information belonging to the user process but maintained in the operating system. In this case, as 
we’ll see, the handle allows the holder to perform operations on the thread.

An ID is returned via the last (output) argument. It is a means of identifying the thread that 
gives the holder no ability to control that thread. Thus one process can make a thread ID available to 
another process so as to identify the thread but not give the second process any control over it.

The fi rst parameter is a pointer to the security attributes to be associated with the thread; 
we use 0 for this for now and discuss other possibilities later. The next parameter is the number 
of stack pages (in bytes) to allocate physical resources for (one megabyte of virtual memory is 
allocated; the parameter indicates how much of this initially has real memory and stack space 
supporting it); 0 means to use the default. The third parameter is the address of the fi rst routine 
our thread executes; the next parameter is the argument that’s passed to that routine. The next to 
the last parameter specifi es various creation fl ags; we don’t supply any here.

If CreateThread fails, indicated by returning a null handle, GetLastError can be used to 
determine the cause of the failure.

2.2.1.3 Handling Multiple Arguments
A problem comes up with both pthread_create and CreateThread when you want to pass 
more than one argument to a thread. Suppose you are creating threads for use with our two-
threaded implementation of rlogind (Section 2.1 above). One might be tempted to use the 
trick outlined below:

typedef struct {

int fi rst, second;

} two_ints_t;
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void rlogind(int r_in, int r_out, int l_in, int l_out) {

pthread_t in_thread, out_thread;

two_ints_t in={r_in, l_out}, out={l_in, r_out};

pthread_create(&in_thread,

0,

incoming,

&in);

pthread_create(&out_thread,

0,

outgoing,

&out);

}

Here we pack two arguments into a structure, then pass a pointer to it to pthread_create. 
This is an example of something that works in single-threaded programs but can cause disastrous 
failures in multithreaded programs. The variables in and out are local variables and thus are allo-
cated on the stack of the thread that called rlogind. When this fi rst thread returns from rlogind, 
these variables go out of scope — the stack locations might be used for other things. Thus when 
pthread_create is called, the addresses of in and out point to useful information. But by the time 
the threads created by the calls to pthread_create reference the data pointed to by their arguments 
(in and out), this data might no longer exist, since the fi rst thread is no longer in their scope. Thus 
our approach works only if we can be certain that fi rst thread does not leave the scope of the 
arguments while they are in use.

Is there a safe way to pass multiple arguments to a thread that works in all cases? Ideally, 
we’d like to copy all of a thread’s arguments onto its stack. But since neither pthread_create 
nor CreateThread provides a means for doing this for more than one argument, we need some 
other technique. (Other threads packages, for example  (Doeppner 1987), did provide a way to 
put multiple arguments on a thread’s stack.) Whatever approach we use, it must involve passing 
a pointer or some sort of pointer-sized identifi er to the thread, which then uses this identifi er 
to refer to the actual arguments (which must reside in storage that is available while the thread 
is executing).

One approach might be to use static or global storage for the arguments, so that there’s not 
a problem with them going out of scope. While this would work in some cases, suppose that in 
our example multiple threads are calling rlogind concurrently. All would use the same locations 
for storing the arguments to pthread_create, and the result would be chaos.

We might allocate storage dynamically for the arguments, using malloc in C or new in C++. 
This might seem to solve our problems, but who frees the storage, and when? The creating thread 
can do so safely only if the created thread is certain not to access the arguments at any point in 
the future. We can’t expect the created thread to free the storage unless its arguments are always 
in dynamically allocated storage.

In summary, we have four approaches for passing multiple arguments to a thread:

 1. copy all arguments to the thread’s stack: this always works, but isn’t supported in either 
POSIX or Win-32

 2. pass a pointer to local storage containing the arguments: this works only if we are certain 
this storage doesn’t go out of scope until the thread is fi nished with it

 3. pass a pointer to static or global storage containing the arguments: this works only if only 
one thread at a time is using the storage
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Variables	  on	  stack	  –	  when	  rlogind	  returns	  
These	  variables	  are	  popped	  off	  the	  stack	  
	  
Soln:	  Global	  variables	  or	  dynamically	  allocated	  variables	  
Laher	  only	  works	  if	  someone	  frees	  said	  space	  
	  

Thread	  Termina0on	  (thread_example_2.c)	  
•  Space	  from	  caller	  must	  be	  provided	  for	  thread	  to	  place	  return	  

values	  

•  pthread_exit()	  terminates	  thread,	  exit()	  terminates	  process	  
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pthread_create(&createe, 0, CreateeProc, 0);

…

pthread_join(create, &result);

…

}

void *CreateeProc(void *arg) {

…

if (should_terminate_now)

pthread_exit((void *)1);

…

return((void *)2);

}

There is a big difference between pthread_exit and exit. The former terminates just the 
calling thread. The latter terminates the entire process, including all threads running in it. Note 
that if a thread returns from a program’s main procedure, it calls exit (it actually returns to 
code that then calls exit). So, consider the following code:

int main(int argc, char *argv[ ]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

return(0);

}

What happens here is that ten threads are created but the creating thread immediately 
returns from main, calls exit, and thus terminates the entire process. On a uniprocessor system, 
none of the ten child threads are likely to get a chance to run at all.

To create a bunch of threads and then terminate innocuously, one might do something like:

int main(int argc, char *argv[ ]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

pthread_exit(0);

return(0);

}

Here the fi rst thread again creates ten threads, but then quietly goes away (the call to return 
is required even though it won’t be executed, since main is defi ned as returning an int). The process 
terminates once all its component threads have terminated (or if one of them calls exit).
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pthread_create(&createe, 0, CreateeProc, 0);

…

pthread_join(create, &result);

…

}

void *CreateeProc(void *arg) {

…

if (should_terminate_now)

pthread_exit((void *)1);

…

return((void *)2);

}

There is a big difference between pthread_exit and exit. The former terminates just the 
calling thread. The latter terminates the entire process, including all threads running in it. Note 
that if a thread returns from a program’s main procedure, it calls exit (it actually returns to 
code that then calls exit). So, consider the following code:

int main(int argc, char *argv[ ]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

return(0);

}

What happens here is that ten threads are created but the creating thread immediately 
returns from main, calls exit, and thus terminates the entire process. On a uniprocessor system, 
none of the ten child threads are likely to get a chance to run at all.

To create a bunch of threads and then terminate innocuously, one might do something like:

int main(int argc, char *argv[ ]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

pthread_exit(0);

return(0);

}

Here the fi rst thread again creates ten threads, but then quietly goes away (the call to return 
is required even though it won’t be executed, since main is defi ned as returning an int). The process 
terminates once all its component threads have terminated (or if one of them calls exit).
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Thread	  Ahributes	  	  
•  “man	  pthread_attr_init”	  
•  e.g.	  to	  specify	  the	  stack	  size	  for	  a	  thread	  one	  ini0alizes	  an	  ahributes	  

datastructure	  
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happen, for example, if the thread places a call to a procedure with large local variables that aren’t 
immediately referenced. So we must be careful to give each thread a suffi ciently large stack (how 
large is large enough depends on the program and the architecture).

To specify the stack size for a thread, one sets up an attributes structure using pthread_attr_
setstacksize and supplies it to pthread_create:

pthread_t thread;

pthread_attr_t thr_attr;

pthread_attr_init(&thr_attr);

pthread_attr_setstacksize(&thr_attr, 20*1024*1024);

...

pthread_create(&thread, &thr_attr, startroutine, arg);

In this case we’ve created a thread with a twenty-megabyte stack.
How large is the default stack? This is not specifi ed in POSIX threads. Different implementa-

tions use different values, ranging from around 20 KB in Tru64 Unix to one megabyte in Solaris 
and eight megabytes in some Linux implementations.

Win-32 uses a different approach to stack size: the amount of address space allocated for 
each thread’s stack is a link-time parameter, not a run-time parameter. The “stacksize” argument 
to CreateThread indicates how many pages of primary memory are allocated to hold the stack 
when the thread starts execution. Additional pages of primary memory are allocated as neces-
sary as the thread runs, up to the maximum stack size. One cannot affect this level of detail using 
POSIX threads.

2.2.1.6 Example
Here is a simple complete multithreaded program that computes the product of two matrices. Our 
approach is to create one thread for each row of the product and have these threads compute the 
necessary inner products. (This isn’t a good way to compute the product of two matrices — it’s 
merely an example of a multithreaded program!)

#include <stdio.h>

#include <pthread.h> /* all POSIX threads declarations */

#include <string.h> /* needed to use strerror below */

#defi ne M 3

#defi ne N 4

#defi ne P 5

int A[M][N]; /* multiplier matrix */

int B[N][P]; /* multiplicand matrix */

int C[M][P]; /* product matrix */

void *matmult(void *);

int main( ) {

int i, j;
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Synchroniza0on	  ***	  (thread_example_3.c)	  	  
•  Remember:	  threads	  share	  access	  to	  common	  data	  structures	  
•  Mutual	  exclusion	  is	  a	  form	  of	  thread	  synchroniza0on	  

–  Makes	  sure	  two	  things	  don’t	  happen	  at	  once	  
–  Example,	  two	  threads	  each	  doing	  

Can	  result	  in	  1	  or	  2;	  reordering	  the	  assembly	  code	  shows	  why	  
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2.2.3.1 Mutual Exclusion
The mutual-exclusion problem involves making certain that two things don’t happen at once. A 
dramatic example arose in the fi ghter aircraft of World War I, as illustrated in Figure 2.4. Due to 
a number of constraints (e.g., machine guns tended to jam frequently and thus had to be near peo-
ple who could unjam them), machine guns were mounted directly in front of the pilot. However, 
blindly shooting a machine gun through a whirling propeller was not a good idea. At the begin-
ning of the war, pilots, being gentlemen, politely refrained from attacking fellow pilots. A bit later 
in the war, however, the Germans developed the tactic of gaining altitude on an opponent, diving 
at him, turning off the engine, then fi ring — without hitting the now-stationary propeller. Today 
this would be called coarse-grained synchronization. Later, the Germans developed technology 
that synchronized the fi ring of the gun with the whirling of the propeller, so that shots were fi red 
only when the propeller blades would not be in the way. This could well be the fi rst example of a 
mutual-exclusion mechanism providing fi ne-grained synchronization!

For a more computer-oriented example of the need for mutual exclusion, consider two 
threads, each performing the following operation:

x = x+1;

If the two threads perform the operation at the same time, what’s the fi nal value of x if its initial 
value was zero? We’d very much like the answer to be 2. However, consider the assembly-language 
version of the statement. It probably looks something like this:

ld r1,x

add r1,1

st r1,x

Thus to add 1 to the variable x, the machine must fi rst load the current contents of location x into 
a register, add 1 to the contents of the register, then store those contents back into the location contain-
ing x. If both threads do this at more or less the same time, the fi nal result stored in x is likely to be 1!

For the concurrent execution of the two assignment statements to behave as we want it to, 
we somehow have to insure that the effect of executing the three assembler instructions is atomic, 
i.e., that all three instructions take place at once without interference.

FIGURE 2 .4  World War I fi ghter aircraft. (Copyright © iStockphoto.)
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POSIX	  Mutexes	  ***	  
•  OS	  must	  support	  thread	  synchroniza0on	  mechanisms	  
•  POSIX	  defines	  a	  data	  type	  called	  a	  mutex	  (from	  “mutual	  exclusion”)	  
•  Mutexes	  can	  ensure	  

–  Only	  one	  thread	  is	  execu0ng	  a	  block	  of	  code	  (code	  locking)	  
–  Only	  one	  thread	  is	  accessing	  a	  par0cular	  data	  structure	  (data	  locking)	  

•  A	  mutex	  either	  belongs	  to	  a	  single	  thread	  or	  no	  thread	  
•  A	  thread	  may	  “lock”	  a	  mutex	  by	  calling	  pthread_mutex_lock()	  
•  A	  mutex	  may	  be	  unlocked	  by	  calling	  pthread_mutex_unlock()	  
•  A	  mutex	  datastructure	  can	  be	  ini0alized	  via	  pthread_mutex_init()	  
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We’re not going to show how to solve this problem right away. Instead, we introduce 
functionality from POSIX threads and Win-32 and show how we can use it to solve the problem. 
In Chapter 5 we show how this functionality is implemented.

POSIX threads defi nes a new data type called a mutex, which stands for mutual exclusion. 
A mutex is used to insure either that only one thread is executing a particular piece of code at 
once (code locking) or that only one thread is accessing a particular data structure at once (data 
locking). A mutex belongs either to a particular thread or to no thread (i.e., it is either locked 
or unlocked). A thread may lock a mutex by calling pthread_mutex_lock. If no other thread has 
the mutex locked, then the calling thread obtains the lock on the mutex and returns. Otherwise it 
waits until no other thread has the mutex, and fi nally returns with the mutex locked. There may, 
of course, be multiple threads waiting for the mutex to be unlocked. Only one thread can lock 
the mutex at a time; there is no specifi ed order for which thread gets the mutex next, though the 
ordering is assumed to be at least somewhat fair.

To unlock a mutex, a thread calls pthread_mutex_unlock. It is considered incorrect to 
unlock a mutex that is not held by the caller (i.e., to unlock someone else’s mutex). However, 
checking for this is costly, so most implementations, if they check at all, do so only when certain 
degrees of debugging are turned on.

Like any other data structure, mutexes must be initialized. This can be done via a call to 
pthread_mutex_init or can be done statically by assigning PTHREAD_MUTEX_INITIALIZER 
to a mutex. The initial state of such initialized mutexes is unlocked. Of course, a mutex should be 
initialized only once! (That is, make certain that, for each mutex, no more than one thread calls 
pthread_mutex_init.) If a mutex is dynamically initialized, a call should be made to pthread_
mutex_destroy when it is no longer needed.

Using mutexes, we can solve the problem of atomically adding 1 to a variable.

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

 // shared by both threads

int x; // ditto

pthread_mutex_lock(&m);

x = x+1;

pthread_mutex_unlock(&m);

Using a mutex to provide mutually exclusive access to a single data structure at a time is 
easy. Things get a bit more involved if we need to arrange for such access to multiple data struc-
tures at once. Consider the following example in which one thread is executing proc1 and another 
is executing proc2:

void proc1( ) {

pthread_mutex_lock(&m1);

/* use object 1 */

pthread_mutex_lock(&m2);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m2);

 pthread_mutex_unlock(&m1);

}

void proc2( ) {

pthread_mutex_lock(&m2);

/* use object 2 */

pthread_mutex_lock(&m1);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m1);

 pthread_mutex_unlock(&m2);

}
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Mutual	  exclusion	  can	  result	  in	  DEADLOCK!	  
•  In	  the	  following,	  “deadlock”	  can	  occur	  
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Deadlock	  is	  nasty,	  difficult	  to	  detect,	  and	  to	  be	  avoided	  at	  all	  cost	  

•  One	  useful	  avoidance	  mechanism	  is	  pthread_mutex_trylock()	  
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Thread 1

Thread 2

Mutex 1 Mutex 2

FIGURE 2 .5  Thread/mutex graph.

can’t possibly exist in the graph. This is easy to do: we simply arrange our mutexes in some order 
(for example, by assigning unique integers to them) and insist that all threads attempting to lock 
multiple resources do so in ascending order.

In most applications it is fairly easy to set things up so that all threads lock mutexes in 
ascending order. However, in some situations this is impossible, often because it is not known 
which mutex should be locked second until the fi rst one is locked. An approach that often works 
in such situations is to use conditional lock requests, as in:

proc1( ) {

pthread_mutex_lock(&m1);

/* use object 1 */

pthread_mutex_lock(&m2);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m2);

 pthread_mutex_unlock(&m1);

}

proc2( ) {

while (1) {

pthread_mutex_lock(&m2);

if (!pthread_mutex_trylock(&m1))

break;

 pthread_mutex_unlock(&m2);

}

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m1);

 pthread_mutex_unlock(&m2);

}

Here thread 1, executing proc1, obtains the mutexes in the correct order. Thread 2, executing 
proc2, must for some reason take the mutexes out of order. If it is holding mutex 2, it must be care-
ful about taking mutex 1. So, rather than call pthread_mutex_lock, it calls pthread_mutex_trylock, 
which always returns without blocking. If the mutex is available, pthread_mutex_trylock locks 
the mutex and returns 0. If the mutex is not available (that is, if it is locked by another thread), 
then pthread_mutex_trylock returns a nonzero error code (EBUSY). In the example above, if 
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Semaphores	  
•  A	  semaphore	  is	  a	  nonnega0ve	  integer	  with	  two	  atomic	  opera0ons	  

–  P	  (try	  to	  decrease)	  :	  thread	  waits	  un0l	  semaphore	  is	  posi0ve	  then	  subtracts	  1	  	  
•  []’s	  are	  nota0on	  for	  guards;	  that	  which	  happens	  between	  them	  is	  atomic,	  instantaneous,	  

and	  no	  other	  opera0on	  that	  might	  take	  interfere	  with	  it	  can	  take	  place	  while	  it	  is	  execu0ng	  

–  V	  (increase)	  

•  Mutexes	  can	  be	  implemented	  as	  semaphores	  
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on native Dutch speakers. According to (Dijkstra undated: early 1960s), P stands for prolagen, 
a made-up word derived from proberen te verlagen, “try to decrease” in Dutch. V stands for 
verhogen, “increase” in Dutch.) The P operation is somewhat complicated: a thread waits until it 
fi nds the value of the semaphore positive, then subtracts one from it. What’s really important is 
that when the active part of the operation starts, the semaphore’s value is defi nitely positive, and 
when this active part fi nishes, the value is exactly one less than when the operation started. It’s 
often described as an atomic or indivisible operation: it has no component parts and takes place 
as if it were happening instantaneously.

We use the following notation to describe the semantics of P:

when (semaphore > 0) [

semaphore = semaphore – 1;

]

This notation means that the operations in square brackets take place only when the expression 
following “when,” known as the guard, is true; the statements in square brackets, known as 
the command sequence, are effectively executed instantaneously: no other operation that might 
interfere with it can take place while it is executing. We call the entire construct a guarded 
command. 

The V operation is simpler: a thread atomically adds one to the value of the semaphore. 
We write this as

[semaphore = semaphore + 1]

There is no other means for manipulating the value of the semaphore (other than initializing 
its value in the fi rst place). Thus if the semaphore’s value is initially one and two threads concur-
rently execute P and V operations on it, the resulting value of the semaphore is guaranteed to be 
one. If its value is initially zero and the two threads concurrently execute P and V operations, the 
P operation must wait until the V operation makes the semaphore’s value positive. Then the P 
operation can complete, reducing the semaphore’s value to zero.

We can easily implement mutexes using semaphores:

semaphore S = 1;

void OneAtATime( ) {

P(S);

…

/* code executed mutually exclusively */

…

V(S);

}

If two threads call the OneAtATime routine, the fi rst one to execute the P operation fi nds S to 
be one, and so subtracts one from it, making it zero. If the second thread now attempts to execute 
the P operation, it fi nds S to be zero and thus must wait. Eventually the fi rst thread performs the V 
operation, adding one back to S, which enables the second thread to continue. It subtracts one from 
S and eventually executes the V and adds one back to it. When semaphores are used in such a way 
that their values are only zero and one, as here, they are known as binary semaphores.

When multiple threads attempt to execute a P operation, the effect must be as if they execute 
it one at a time while the semaphore’s value is positive. If its value is zero, they are queued up 
and, one at a time, they complete the P operation in response to V operations by other threads.
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POSIX	  Semaphores	  
•  Interface	  

•  Note	  :	  Mac’s	  use	  Mach	  spec.	  named-‐semaphore	  via	  sem_open()	  

2.2 Programming with Threads 63

We can easily generalize our above example to allow up to N threads to execute a block of 
code (or access a data structure) simultaneously:

semaphore S = N;

void NAtATime( ) {

P(S);

…

/* No more than N threads here at once */

…

V(S);

}

Semaphores used this way are known as counting semaphores.
A more interesting example of counting semaphores involves using them to solve the 

producer-consumer problem (see Figure 2.6 above). To keep things simple, let’s assume we 
have one producer and one consumer. We have a buffer with B slots. We use two semaphores: 
empty, representing the number of empty slots, and occupied, representing the number of occupied 
slots. Our solution is:

Semaphore empty = B;

Semaphore occupied  = 0;

int nextin = 0;

int nextout = 0;

void Produce(char item) {

P(empty);

buf[nextin] = item;

nextin = nextin + 1;

if (nextin == B)

nextin = 0;

V(occupied);

}

char Consume( ) {

char item;

P(occupied);

item = buf[nextout];

nextout = nextout + 1;

if (nextout == B)

nextout = 0;

V(empty);

return(item);

}

The fi rst P operation of Produce causes the thread to wait until there is at least one empty 
slot in the buffer; at this point the slot is “taken” and empty’s value is reduced by one. The producer 
puts its item in the buffer, then indicates there is one more occupied slot by performing a V operation 
on occupied. Similar actions take place inside of Consume.

POSIX provides an implementation of semaphores, but, strangely, it’s not part of POSIX 
threads (POSIX 1003.1c) but part of the POSIX real-time specifi cation (POSIX 1003.1b). This 
matters only because, depending on the system, you may need to include an additional library 
when you use semaphores.

The POSIX interface for semaphores is given below.

sem_t semaphore;

int err;
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err = sem_init(&semaphore, pshared, init);

err = sem_destroy(&semaphore);

err = sem_wait(&semaphore); // P operation

err = sem_trywait(&semaphore); // conditional P operation

err = sem_post(&semaphore); // V operation

Thus semaphores are of type sem_t. All operations on them return an integer error code. 
They must be dynamically initialized using sem_init (there is no static initialization such as 
is provided for mutexes). They take two arguments in addition to the semaphore itself: a fl ag, 
pshared, indicating whether the semaphore is to be used by threads of just one process (pshared = 
0) or by threads of multiple processes (pshared = 1). We assume the former for now, and discuss 
the latter later. Once a semaphore is no longer used, sem_destroy should be called to free whatever 
storage was allocated by sem_init.

The sem_wait operation is the P operation described above. What’s new is the sem_trywait 
operation, which is similar to pthread_mutex_trylock: if the semaphore’s value is positive and 
thus no waiting is required, it behaves just like sem_wait (the value of the semaphore is immediately 
reduced by one). However, if the semaphore’s value is zero, then, rather than waiting, the caller 
returns immediately with an error code (the value EAGAIN).

We discuss the Win-32 version of semaphores in the section on Win-32 Events, below.

POSIX Condition Variables Semaphores are a convenient way to express solutions to a 
number of synchronization problems, but using them can force amazingly complex solu-
tions for other problems. Thus most operating systems provide additional synchronization 
constructs. Here we describe POSIX’s condition variables; later we discuss the events of 
Win-32.

We described the semantics of semaphores using guarded commands. A general implementation 
of our guarded-command construct is, however, a rather tall order. Somehow we’d have to moni-
tor the values of all variables appearing in the guard (i.e., the expression following the when) so 
as to fi nd out when the guard becomes true. Then we’d have to make certain it remains true when 
we start executing the command sequence (the code in square brackets that follows), and make 
certain that this execution is indivisible.

Condition variables give programmers the tools needed to implement guarded commands. 
A condition variable is a queue of threads waiting for some sort of notifi cation. Threads waiting 
for a guard to become true join such queues. Threads that do something to change the value of a 
guard from false to true can then wake up the threads that were waiting.

The following code shows the general approach:

Guarded command POSIX implementation

when (guard) [

statement 1;

…

statement n;

]

pthread_mutex_lock(&mutex);

while(!guard)

pthread_cond_wait(

&cond_var, &mutex));

statement 1;

…

statement n;

pthread_mutex_unlock(&mutex);
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OS	  Implementa0on	  Problem	  :	  Producer-‐Consumer	  *	  
•  Buffer	  with	  a	  finite	  number	  of	  slots	  
•  Threads	  

–  Producer	  :	  puts	  things	  in	  the	  buffer	  
–  Consumer	  :	  removes	  things	  from	  the	  buffer	  

•  Producer	  must	  wait	  if	  buffer	  is	  full;	  consumer	  if	  buffer	  is	  empty	  

2.2 Programming with Threads 61

mutex 1 is not available, this is probably because it is currently held by thread 1. If thread 2 were 
to block waiting for the mutex, we have an excellent chance for deadlock. So, rather than block, 
thread 1 not only quits trying for mutex 1 but also unlocks mutex 2 (since thread 1 could well be 
waiting for it). It then starts all over again, fi rst taking mutex 2, then mutex 1.

Thread 2 thus repeatedly tries to lock both mutexes (in the wrong order) until it can do so 
without causing any problems. This could, of course, require a fair number of iterations. When 
this approach is used, the assumption (which must be validated) is that contention for locks is low 
and thus even two iterations are unlikely to occur. If lock contention is high, another solution is 
necessary, perhaps one that requires all threads to honor the locking order.

2.2.3.2 Beyond Mutual Exclusion
Though mutual exclusion is the most common form of synchronization, there are numerous 
situations that it cannot handle. One obvious extension to mutual exclusion is what’s known as 
the readers-writers problem: rather than requiring mutual exclusion for all accesses to a data 
structure, we can relax things a bit and insist on mutual exclusion only if the data structure is 
being modifi ed. Thus any number of threads (readers) may be just looking at the data structure at 
once, but any thread intending to modify it must have mutually exclusive access.

Another common (at least in texts such as this) synchronization problem is the pro-
ducer-consumer problem (sometimes called the bounded-buffer problem). Here we have a 
buffer containing a fi nite number of slots. As shown in Figure 2.6, a producer is a thread that 
wishes to put an item into the next empty slot of the buffer. A consumer is a thread that wishes 
to remove an item from the next occupied slot. The synchronization issue for producers is that 
if all slots in the buffer are occupied, then producer threads must wait until empty slots are 
available. Similarly, if all slots are empty, consumer threads must wait until occupied slots 
are available.

The next synchronization problem might seem a bit mundane, but it’s particularly important 
in many operating systems. It doesn’t have a common name; here we call it the event problem. 
A number of threads are waiting for a particular event to happen. Once the event has happened, 
we’d like to release all of the waiting threads. For example, a number of threads might be waiting 
for a read operation on a disk to complete. Once it’s completed, all threads are woken up and can 
use the data that was just read in.

Semaphores These problems, and many others, were fi rst identifi ed in the 1960s. The per-
son who did much of the early work in identifying and elegantly solving these problems was 
Edsger Dijkstra. The semaphore, a synchronization operation (Dijkstra undated: early 1960s) he 
described and used in an early system (Dijkstra 1968), has proven so useful that it continues to 
be used in most modern operating systems.

A semaphore is a nonnegative integer on which there are exactly two operations, called by 
Dijkstra P and V. (What P and V stand for isn’t obvious. While Dijkstra was Dutch and based 
his terminology on Dutch words, the mnemonic signifi cance of P and V seems to be lost even 

ProducerConsumer

FIGURE 2 .6  Producer-consumer problem.
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Semaphore	  sol’n	  to	  the	  producer-‐consumer	  problem	  	  
•  Example	  sheet	  
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We can easily generalize our above example to allow up to N threads to execute a block of 
code (or access a data structure) simultaneously:

semaphore S = N;

void NAtATime( ) {

P(S);

…

/* No more than N threads here at once */

…

V(S);

}

Semaphores used this way are known as counting semaphores.
A more interesting example of counting semaphores involves using them to solve the 

producer-consumer problem (see Figure 2.6 above). To keep things simple, let’s assume we 
have one producer and one consumer. We have a buffer with B slots. We use two semaphores: 
empty, representing the number of empty slots, and occupied, representing the number of occupied 
slots. Our solution is:

Semaphore empty = B;

Semaphore occupied  = 0;

int nextin = 0;

int nextout = 0;

void Produce(char item) {

P(empty);

buf[nextin] = item;

nextin = nextin + 1;

if (nextin == B)

nextin = 0;

V(occupied);

}

char Consume( ) {

char item;

P(occupied);

item = buf[nextout];

nextout = nextout + 1;

if (nextout == B)

nextout = 0;

V(empty);

return(item);

}

The fi rst P operation of Produce causes the thread to wait until there is at least one empty 
slot in the buffer; at this point the slot is “taken” and empty’s value is reduced by one. The producer 
puts its item in the buffer, then indicates there is one more occupied slot by performing a V operation 
on occupied. Similar actions take place inside of Consume.

POSIX provides an implementation of semaphores, but, strangely, it’s not part of POSIX 
threads (POSIX 1003.1c) but part of the POSIX real-time specifi cation (POSIX 1003.1b). This 
matters only because, depending on the system, you may need to include an additional library 
when you use semaphores.

The POSIX interface for semaphores is given below.

sem_t semaphore;

int err;
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Devia0ons	  
•  Signals	  

–  Force	  a	  user	  thread	  to	  put	  aside	  current	  ac0vity	  	  
–  Call	  a	  pre-‐arranged	  handler	  
–  Go	  back	  to	  what	  it	  was	  doing	  
–  Similar	  to	  interrupt	  handling	  inside	  the	  OS	  

•  Examples	  
–  Typing	  special	  characters	  on	  the	  keyboard	  (^c)	  
–  Signals	  sent	  by	  other	  threads	  (kill)	  
–  Program	  excep0ons	  (divide	  by	  zero,	  addressing	  excep0ons)	  

•  Background	  
–  Graceful	  termina0on	  via	  ^c	  and	  SIGINT	  



28/01/16	  

12	  

Signals	  and	  Handled	  by	  Handlers	  
•  Se�ng	  up	  a	  handler	  to	  be	  invoked	  upon	  receipt	  of	  a	  ^c	  signal	  

•  Signals	  can	  be	  used	  to	  communicate	  with	  a	  process	  
	  

80 CHAPTER 2 Multithreaded Programming

A process might set up a handler to be invoked when such a signal is delivered, as shown 
below:

int main( ) {

void handler(int);

sigset(SIGINT, handler);

/* long-running buggy code */

…

}

void handler(int sig) {

/* perform some cleanup actions */

…

exit(1);

}

The call to sigset in main causes handler to be registered as the signal handler for the 
SIGINT signal. Thus if you run this program and decide to terminate it early by typing Ctrl-C, a 
SIGINT signal is delivered to the process, causing it to put aside its current state and call handler; 
handler performs some cleanup actions (perhaps writing some key data to a fi le) and then terminates 
the process.

Signals can also be used as a means for communicating with a process, perhaps requesting 
it to do something:

computation_state_t state;

int main( ) {

void handler(int);

sigset(SIGINT, handler);

long_running_procedure( );

}

long_running_procedure( ) {

while (a_long_time) {

update_state(&state);

compute_more( );

}

}

void handler(int sig) {

display(&state);

}

In this code the main procedure establishes a handler for SIGINT, and then calls 
long_running_procedure, which might execute for several days. Occasionally the user of the 
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•  Signals	  are	  processed	  by	  a	  single	  thread	  of	  
execu0on	  

•  Communica0on	  at	  right	  not	  problem-‐free	  
because	  of	  asynchronous	  access	  to	  state	  

•  Mutex	  use	  will	  result	  in	  deadlock	  
•  Making	  rou0nes	  async-‐signal	  safe	  requires	  

making	  them	  so	  that	  the	  controlling	  thread	  
cannot	  be	  interrupted	  by	  a	  signal	  at	  certain	  
0mes	  (i.e.	  in	  update_state)	  
–  Signal	  handling	  turned	  on	  and	  off	  by	  

•  sigemptyset()	  
•  sigaddset()	  
•  Sigprocmask()	  

•  POSIX	  compliant	  OS’s	  implement	  60+	  async-‐
signal	  safe	  rou0nes	  

Async-‐signal	  safe	  rou0nes	  (OS	  implementa0on	  perspec0ve)	  

80 CHAPTER 2 Multithreaded Programming

A process might set up a handler to be invoked when such a signal is delivered, as shown 
below:

int main( ) {

void handler(int);

sigset(SIGINT, handler);

/* long-running buggy code */

…

}

void handler(int sig) {

/* perform some cleanup actions */

…

exit(1);

}

The call to sigset in main causes handler to be registered as the signal handler for the 
SIGINT signal. Thus if you run this program and decide to terminate it early by typing Ctrl-C, a 
SIGINT signal is delivered to the process, causing it to put aside its current state and call handler; 
handler performs some cleanup actions (perhaps writing some key data to a fi le) and then terminates 
the process.

Signals can also be used as a means for communicating with a process, perhaps requesting 
it to do something:

computation_state_t state;

int main( ) {

void handler(int);

sigset(SIGINT, handler);

long_running_procedure( );

}

long_running_procedure( ) {

while (a_long_time) {

update_state(&state);

compute_more( );

}

}

void handler(int sig) {

display(&state);

}

In this code the main procedure establishes a handler for SIGINT, and then calls 
long_running_procedure, which might execute for several days. Occasionally the user of the 
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•  Context	  switching	  

–  Stack	  frames	  
–  System	  calls	  
–  Interrupts	  

•  I/O	  
•  Dynamic	  Storage	  Alloca0on	  

–  Best-‐fit,	  first-‐fit	  
•  Linking	  and	  loading	  
•  Boo0ng	  

Context	  Switching	  and	  stack	  frames	  
•  “Context”	  is	  the	  se�ng	  in	  which	  execu0on	  is	  currently	  taking	  place	  

–  Processor	  mode	  
–  Address	  space	  
–  Register	  contents	  
–  Thread	  or	  interrupt	  state	  

•  Intel	  x86	  Stack	  Frames	  
–  Subrou0ne	  context	  

•  Instruc0on	  pointer	  (reg.	  eip)	  
–  Address	  to	  which	  control	  should	  

return	  when	  subrou0ne	  is	  
complete	  

•  Frame	  pointer	  (reg.	  ebp)	  
–  Link	  to	  stack	  frame	  of	  caller	  

3.1 Context Switching 95

The picture above is idealized: not all portions of the stack frame are always used. For exam-
ple, registers are not saved if the subroutine doesn’t modify them, the frame pointer is not saved 
if it’s not used, etc. For more details, see the Intel architecture manuals (http://www.intel.com/
design/processor/manuals/253665.pdf).

Here’s possible unoptimized assembler code for the above C code:1

main:

    ; enter main, creating a new stack frame

    pushl %ebp ; Push frame pointer onto the stack;

 ; this means that the contents of the 

 ; stack-pointer register (esp) are

 ; reduced by 4 so that esp points to

 ; next lower word in the stack, then

 ; the contents of the frame-pointer

 ; register (ebp) are stored there.

    movl      %esp, %ebp ; Set frame pointer to point to new 

 ; frame: the address of the current end

 ; of the stack (in register esp) is

 ; copied to the frame-pointer register.

    pushl %esi ; Save esi register: its contents are 

 ; pushed onto the stack.

    pushl %edi ; Save edi register: its contents are 

 ; pushed onto the stack.

    subl $8, %esp ; Create space for local variables (i 

1 We use the syntax of the Gnu assembler. It’s similar to that of the Microsoft assembler (masm) except in the order of arguments: 
in the Gnu assembler, the fi rst argument is the source and the second is the destination; in the Microsoft assembler, the order is 
reversed.

FIGURE 3 .1  Intel x86 stack frames.
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Remember;	  the	  stack	  grows	  down	  
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System	  calls	  
•  Transfer	  control	  from	  user	  to	  system	  code	  and	  back	  

–  Need	  not	  involve	  a	  thread	  switch,	  just	  a	  “stack	  switch”	  	  
–  Trap	  (OS	  code)	  typically	  switches	  to	  a	  kernel	  stack	  frame	   3.1 Context Switching 103

The fi rst technique, allocating a stack, is ruled out for a number of reasons, not least that it 
is too time-consuming, though a variant is used in Solaris, as discussed below. Both the latter two 
approaches are used. A single system-wide interrupt stack was used on DEC’s VAX computers;2 
in most other architectures the interrupt handler borrows a stack (the kernel stack) from the thread 
that was interrupted (see Figure 3.6). If another interrupt handler was interrupted, its context is 
saved on the current stack, and that stack continues to be used for the new interrupt handler.

On those systems on which multiple interrupt handlers use the same stack, perhaps one 
borrowed from a thread, interrupt handlers must execute differently from normal thread execu-
tion. Because there is just one shared stack, there is just one interrupt context. We cannot suspend 
the execution of one handler and resume the execution of another: the handler of the most recent 
interrupt must run to completion. Then, when it has no further need of the stack, the handler of 
the next-most-recent interrupt completes its execution, and so forth.

That the execution of an interrupt handler cannot be suspended is signifi cant because it 
means that interrupt handling cannot yield to anything other than higher-priority interrupts. For 
example, on a uniprocessor system, if interrupt handler 2 interrupts interrupt handler 1 and then 
wakes up a high-priority thread that must immediately respond to an event, the thread cannot run 
until all interrupt handling completes, including that of interrupt handler 1.

If we could somehow give each interrupt handler its own stack, we wouldn’t have this 
problem. Solaris, as well as some real-time systems, has preallocated stacks for each possible 
interrupt level. Thus each has its own independent context and can yield to other processing, just 
as threads can. We discuss this in greater detail in Chapter 5. Most other general-purpose systems 
do not support this style of architecture. 

Another approach to getting interrupt handlers to yield to other execution is that the handler 
places a description of the work that must be done on a queue of some sort, then arranges for it 
to be done in some other context at a later time. This approach, which is used in many systems 
including Windows and Linux, is also discussed in Chapter 5.

2 Multiprocessor versions of the VAX had one interrupt stack per processor.

FIGURE 3 .5  System-call fl ow.

prog( ) {

. . .

write(fd, buffer, size);  trap(write_code);
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•  On	  interrupt	  occurance	  
–  Processor	  	  

•  Puts	  aside	  current	  context	  of	  
thread	  or	  other	  interrupt	  

•  Switches	  to	  interrupt	  context	  

•  Interrupts	  require	  stacks	  
–  OS’s	  differ	  
–  Common	  choice	  :	  kernel	  stack	  

Interrupts	  

3.1 Context Switching 103

The fi rst technique, allocating a stack, is ruled out for a number of reasons, not least that it 
is too time-consuming, though a variant is used in Solaris, as discussed below. Both the latter two 
approaches are used. A single system-wide interrupt stack was used on DEC’s VAX computers;2 
in most other architectures the interrupt handler borrows a stack (the kernel stack) from the thread 
that was interrupted (see Figure 3.6). If another interrupt handler was interrupted, its context is 
saved on the current stack, and that stack continues to be used for the new interrupt handler.

On those systems on which multiple interrupt handlers use the same stack, perhaps one 
borrowed from a thread, interrupt handlers must execute differently from normal thread execu-
tion. Because there is just one shared stack, there is just one interrupt context. We cannot suspend 
the execution of one handler and resume the execution of another: the handler of the most recent 
interrupt must run to completion. Then, when it has no further need of the stack, the handler of 
the next-most-recent interrupt completes its execution, and so forth.

That the execution of an interrupt handler cannot be suspended is signifi cant because it 
means that interrupt handling cannot yield to anything other than higher-priority interrupts. For 
example, on a uniprocessor system, if interrupt handler 2 interrupts interrupt handler 1 and then 
wakes up a high-priority thread that must immediately respond to an event, the thread cannot run 
until all interrupt handling completes, including that of interrupt handler 1.

If we could somehow give each interrupt handler its own stack, we wouldn’t have this 
problem. Solaris, as well as some real-time systems, has preallocated stacks for each possible 
interrupt level. Thus each has its own independent context and can yield to other processing, just 
as threads can. We discuss this in greater detail in Chapter 5. Most other general-purpose systems 
do not support this style of architecture. 

Another approach to getting interrupt handlers to yield to other execution is that the handler 
places a description of the work that must be done on a queue of some sort, then arranges for it 
to be done in some other context at a later time. This approach, which is used in many systems 
including Windows and Linux, is also discussed in Chapter 5.
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•  Memory-‐mapped	  
–  Each	  device	  has	  a	  controller	  
–  Each	  controller	  has	  registers	  
–  Registers	  appear	  to	  processor	  as	  

physical	  memory	  
–  Actually	  ahached	  via	  a	  bus	  

•  Categories	  of	  I/O	  devices	  
–  Programmed	  I/O	  (PIO)	  

•  One	  word	  per	  read/write	  
•  e.g.	  terminal	  

–  Direct	  memory	  access	  (DMA)	  
•  Controller	  directly	  manipulates	  
physical	  memory	  in	  loca0on	  
specified	  by	  processor	  

•  e.g.	  disk	  

I/O	  Architecture	  Types	  (Simplified	  Overview)	  

104 CHAPTER 3 Basic Concepts

An important property of interrupts is that they can be masked, i.e., temporarily blocked. If an 
interrupt occurs while it is masked, the interrupt indication remains pending; once it is unmasked, the 
processor is interrupted. How interrupts are masked is architecture-dependent, but two approaches 
are common. One approach is that a hardware register implements a bit vector — each bit represents 
a class of interrupts. If a particular bit is set, then the corresponding class of interrupts is masked. 
Thus the kernel masks interrupts by setting bits in the register. When an interrupt does occur, the 
corresponding mask bit is set in the register and cleared when the handler returns — further occur-
rences of that class of interrupts are masked while the handler is running.

What’s more common are hierarchical interrupt levels. Each particular device issues inter-
rupts at a particular level. The processor masks interrupts by setting an interrupt priority level 
(IPL) in a hardware register: all devices whose interrupt level is less than or equal to this value 
have their interrupts masked. Thus the kernel masks a class of interrupts by setting the IPL to a 
particular value. When an interrupt does occur and the handler is invoked, the current IPL is set 
to that of the device, and restored to its previous value when the handler returns.

In this section we give a high-level, rather simplistic overview of common I/O architectures. Our 
intent is to provide just enough detail to discuss the responsibilities of the operating system in 
regard to I/O, but without covering the myriad arcane details of device management. To do this, 
we introduce a simple I/O architecture we have used in the past at Brown University for operating 
system projects.

A very simple architecture is the memory-mapped architecture: each device is controlled 
by a controller and each controller contains a set of registers for monitoring and controlling its 
operation (see Figure 3.7). These registers appear to the processor to occupy physical memory 
locations. In reality, however, each controller is connected to a bus. When the processor wants to 
access or modify a particular location, it broadcasts the address on the bus. Each controller listens 
for a fi xed set of addresses and, when one of its addresses has been broadcast, attends to what the 
processor wants to have done, e.g., read the data at a particular location or modify the data at a 
particular location. The memory controller, a special case, passes the bus requests to the actual 
primary memory. The other controllers respond to far fewer addresses, and the effect of reading 
and writing is to access and modify the various controller registers.

There are two categories of devices, programmed I/O (PIO) devices and direct memory 
access (DMA) devices. PIO devices do I/O by reading or writing data in the controller registers 
one byte or word at a time. In DMA devices the controller itself performs the I/O: the processor 
puts a description of the desired I/O operation into the controller’s registers, then the controller 
takes over and transfers data between a device and primary memory.

3.2
INPUT/OUTPUT 
ARCHITECTURES

3.2
INPUT/OUTPUT 
ARCHITECTURES

Bus

Memory Disk

Processor

ControllerControllerController

FIGURE 3 .7  Simple I/O architecture.
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If	  an	  OS	  were	  wrihen	  in	  C++	  a	  device	  
driver	  would	  be	  a	  class	  with	  
instances	  for	  each	  device.	  

PIO	  and	  DMA	  Example	  	  

3.2 Input/Output Architectures 105

Our architecture supports both PIO and DMA devices. The default confi guration has 
one PIO device (a terminal) and one DMA device (a disk). Each PIO device has four registers: 
Control, Status, Read, and Write, each one byte in length (see Figure 3.8). Each DMA device 
also has four registers: Control, Status, Memory Address, and Device Address (Figure 3.9). The 
control and status registers are each one byte long; the others are four bytes long (they hold 
addresses). Certain bits of the control registers are used to start certain functions, as shown in 
Figure 3.8 and Figure 3.9. Bits of the status registers are used to indicate whether the associated 
controller is ready or busy.

Control registerGoR GoW IER IEW
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FIGURE 3 .8  PIO registers.
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PIO	  (terminal)	   DMA	  (disk)	  

Usage:	  
	  
1.  Store	  byte	  in	  write	  register	  
2.  Set	  GoW	  bit	  in	  control	  register	  
3.  Wait	  for	  RdyW	  in	  status	  register	  

4.  Can	  request	  an	  interrupt	  

Usage:	  
	  
1.  Set	  disk	  address	  in	  device	  register	  
2.  Set	  memory	  address	  in	  memory	  address	  register	  
3.  Set	  Op	  Code,	  Go,	  IE	  in	  control	  register	  
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•  Storage	  alloca0on	  is	  very	  
important	  in	  OS’s	  
–  Disk	  
–  Memory	  

•  Example	  
–  1000,	  1100,	  250	  bytes	  in	  order	  

•  Compe0ng	  approaches	  
–  First-‐fit	  
–  Best-‐fit	  

•  Knuth	  simula0ons	  revealed	  
(non-‐intui0vely)	  first-‐fit	  was	  
best	  

•  Intui0on	  :	  best-‐fit	  leaves	  too	  
many	  small	  gaps	  

(Dynamic)	  Storage	  Alloca0on	  

3.3 Dynamic Storage Allocation 107

In this version, the start_read and start_write methods return a handle identifying the 
operation that has started. A thread can, at some later point, call wait with the handle and wait 
until that operation has completed. Note that multiple threads might call wait with the same 
handle if all must wait for the same operation (for example, if all need the same block from 
a fi le).

A more sophisticated approach to I/O used in what are commonly called “mainframe” 
computers is to employ specialized I/O processors to handle much of the I/O work. This is par-
ticularly important in large data-processing applications where I/O costs dominate computation 
costs. These I/O processors are traditionally called channels and execute programs in primary 
storage called channel programs (see Figure 3.10).

Storage allocation is a very important concern in operating systems. Whenever a thread is cre-
ated, its stacks, control block, and other data structures must be allocated; whenever a thread 
terminates, these data structures must be freed. Since there are numerous other such dynamic 
data structures, both inside the operating system and within user applications, this allocation and 
liberation of storage must be done as quickly as possible.

The classic reference for most of this material is Donald Knuth’s The Art of Computer 
Programming, Vol. 1: Fundamental Algorithms. In this section we summarize Knuth’s results 
and discuss some additional operating-system concerns.

3.1.1 BEST-FIT AND FIRST-FIT ALGORITHMS

We start with the general problem of maintaining a pool of available memory and allocating vari-
able-size quantities from it. Following Knuth (this is his example), consider the memory pool in 
Figure 3.11 that has two blocks of free memory, one 1300 bytes long and the other 1200 bytes 
long. We’ll try two different algorithms to process series of allocation requests. The fi rst is called 
fi rst fi t — an allocation request is taken from the fi rst area of memory that is large enough to 
satisfy the request. The second is called best fi t — the request is taken from the smallest area of 
memory that is large enough to satisfy the request.

3.3
DYNAMIC 
STORAGE 
ALLOCATION

3.3
DYNAMIC 
STORAGE 
ALLOCATION

Memory

Processor

Channel Controller

Channel Controller

Channel Controller

FIGURE 3 .10 I/O with channels.

1300

1200

FIGURE 3 .11 Pool of 
free storage.
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Pool	  of	  Free	  storage	  

108 CHAPTER 3 Basic Concepts

On the principle that whatever requires the most work must be best, one might think that 
best fi t is the algorithm of choice. However, Figure 3.12 illustrates a case in which fi rst fi t 
behaves better than best fi t. We fi rst allocate 1000 bytes. Under the fi rst-fi t approach (on the left), 
this allocation is taken from the topmost region of free memory, leaving behind a region of 300 bytes 
of still unallocated memory. With the best-fi t approach (right), this allocation is taken from the 
bottommost region of free memory, leaving behind a region of 200 bytes of still unallocated 
memory. The next allocation is for 1100 bytes. Under fi rst fi t, we now have two regions of 300 bytes 
and 100 bytes. Under best fi t, we have two regions of 200 bytes. Finally, there is an allocation of 
250 bytes. First fi t leaves behind two regions of 50 bytes and 100 bytes, but best fi t cannot handle 
the allocation — neither remaining region is large enough.

Clearly one can come up with examples in which best fi t performs better. However, Knuth’s 
simulation studies have shown that, on the average, fi rst fi t works best. Intuitively, the reason for 
this is that best fi t tends to leave behind a large number of regions of memory that are too small 
to be useful, as in Figure 3.12.

The liberation of storage is more diffi cult than its allocation, for the reason shown in Figure 
3.13 (another example from Knuth). Here the shaded regions are unallocated memory. The region of 
storage A separating the two unallocated regions is about to be liberated. We’d like this to produce 
one large region of unallocated storage rather than three smaller adjacent regions. Thus the liberation 
algorithm must be able to determine if adjacent storage regions are allocated or free. An algorithm 
could simply walk through the list of free storage to determine if the adjacent areas are free, but a 
much cheaper approach is to tag the boundaries of storage regions to indicate whether they are 
allocated or free. Knuth calls this the boundary-tag method and provides an algorithm for it.

The shortcomings of best fi t illustrate a common issue in storage management: fragmenta-
tion. What we saw here is called external fragmentation, in which we end up with lots of small 
areas of storage that collectively are sizeable, but individually are too small to be of use. In 
the following sections we encounter internal fragmentation, in which storage is wasted because 
more must be allocated than is needed.

3.3.2 BUDDY SYSTEM

The buddy system is a simple dynamic storage allocation scheme that works surprisingly well. Storage 
is maintained in blocks whose sizes are powers of two. Requests are rounded up to the smallest such 
power greater than the request size. If a block of that size is free, it’s taken; otherwise, the smallest free 
block larger than the desired size is found and split in half — the two halves are called buddies. If the 
size of either buddy is what’s needed, one of them is allocated (the other remains free). Otherwise one 
of the buddies is split in half. This splitting continues until the appropriate size is reached.

300

1200

1300

200

100

300

100

50

200

200

1000 bytes

1100 bytes

250 bytes

First fit Best fit 

Stuck!

FIGURE 3 .12 Allocations using fi rst fi t and best fi t.

A free(A)

FIGURE 3 .13 Liberating storage.
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Memory	  /	  File	  

Start	  

Alloca0on	  through	  finish	  

•  Knuth	  :	  ref;	  “boundary-‐tag”	  
method	  and	  algorithm	  
–  Combines	  free	  segments	  greedily	  

upon	  release	  
–  Requires	  datastructure	  that	  

represents	  free	  or	  not-‐free	  

•  Helps	  avoid	  “fragmenta0on”	  
–  External	  

•  Free	  spaces	  too	  small	  
–  Internal	  

•  Allocated	  memory	  unnecessarily	  
too	  large	  (this	  situa0on	  arises	  in	  
different,	  not-‐covered	  alloca0on	  
approaches	  like	  the	  “slab”	  
approach)	  

Freeing	  Storage	  Is	  More	  Complex	  

hhp://books.google.co.uk/books?
id=gJrdSueQjBEC&pg=PA328&lpg=PA328&dq=boundary+tag
+algorithm&source=bl&ots=VPIoDQOTqj&sig=NCPz__mnViO5ajj5Q-‐
P3KccBIhk&hl=en&sa=X&ei=j-‐
x4UdDlBcusPIzVgLgJ&ved=0CEsQ6AEwAw#v=onepage&q=boundary
%20tag%20algorithm&f=false	  Linking	  and	  loading	  

•  ld	  links	  and	  relocates	  code	  by	  resolving	  addresses	  of	  variables	  and	  
procedures	  

•  Shared	  libraries	  require	  mechanisms	  that	  delay	  linking	  un0l	  run-‐
0me	  

•  Loading	  requires	  se�ng	  up	  address	  space	  then	  calling	  main	  

Boo0ng	  
	  

•  Thought	  to	  be	  derived	  from	  “to	  pull	  yourself	  up	  by	  your	  bootstraps”	  
•  Modern	  computers	  boot	  from	  BIOS	  read	  only	  memory	  (ROM)	  	  

–  Last	  64K	  of	  the	  first	  MB	  of	  address	  space	  

•  When	  the	  computer	  is	  powered	  on	  it	  starts	  execu0ng	  instruc0ons	  
at	  0xffff0	  

•  Looks	  for	  a	  boot	  device	  
–  Loads	  a	  master	  boot	  record	  (MBR)	  

•  Cylinder	  0,	  head	  0,	  sector	  1	  (hard	  disc)	  

•  Loads	  boot	  program	  
•  Transfers	  control	  to	  boot	  program	  
•  Boot	  progam	  (lilo,	  grub,	  etc.)	  loads	  OS	  
•  Transfers	  control	  

122 CHAPTER 3 Basic Concepts

The provider of the computer system supplies a BIOS chip residing on the “motherboard” con-
taining everything necessary to perform the three functions. Additional BIOS functions might 
reside on chips on add-on boards, providing access to additional devices.

The BIOS ROM is mapped into the last 64K of the fi rst megabyte of address space 
(starting at location 0xf0000). When the system is powered on, the processor starts executing 
instructions at location 0xffff0 — the last sixteen bytes of this mapped region. At this location is 
a branch instruction that transfers control to the beginning of the BIOS code. The fi rst thing the 
code does is the power-on self test, during which it initializes hardware, checks for problems, 
and computes the amount of primary storage.

The next step is to fi nd a boot device. This is probably a hard disk, but could be a fl oppy or 
diskette. The list of possibilities and the order to search are in the settings stored in non-volatile 
RAM.

Once the boot device is found, the master boot record (MBR) is loaded from the fi rst sector 
of a fl oppy or diskette, or from cylinder 0, head 0, sector 1 of a hard disk (see Chapter 6 for an 
explanation of these terms). The MBR (Figure 3.20) is 512 bytes long and contains:

a “magic number” identifying itself

a partition table listing up to four regions of the disk (identifying one as the active or boot 
partition)

executable boot program

The BIOS code transfers control to the boot program. What happens next depends, of 
course, on the boot program. In the original version (for MS-DOS), this program would fi nd 
the one active partition, load the fi rst sector from it (containing the volume boot program), and 
pass control to that program. This program would then load the operating system from that 
partition.

More recent boot programs allow more fl exibility. For example, both lilo (Linux Loader) 
and grub (Grand Unifi ed Boot Manager), allow one to choose from multiple systems to boot, 
so that, for example, one can choose between booting Linux or Windows. Lilo has the sector 
number of the kernel images included within its code and thus must be modifi ed if a kernel 
image moves. Grub understands a number of fi le systems and can fi nd the image given a 
path name.

•

•

•

Boot program

Partition table

Magic number

446 bytes

64 bytes

2 bytes

Partition 1

Partition 2

Partition 3

Partition 4
Master boot record 

FIGURE 3 .20 The mas-
ter boot record, residing 
in the fi rst sector of a 
bootable disk.
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Review	  
•  OS	  essen0als	  

–  Threads	  
–  Context	  switching	  for	  management	  of	  processors	  
–  I/O	  for	  file	  systems	  
–  Dynamic	  storage	  alloca0on	  

Lecture	  3	  :	  
Processor	  &	  Memory	  Management	  	  
(A	  very-‐high-‐level	  OS	  Implementa0on	  

Perspec0ve)	  
Material	  from	  	  

Opera0ng	  Systems	  in	  Depth	  	  
(spec.	  Chapters	  5	  and	  7)	  	  

by	  
Thomas	  Doeppner	  

	  
GET	  THIS	  BOOK	  AND	  READ	  IT!	  

Threads	  Implementa0ons	  
•  OS	  goal	  is	  to	  support	  user-‐level	  applica0on	  programs	  
•  Design	  issues	  related	  to	  thread	  support	  

–  Scheduling	  
–  Synchroniza0on	  

•  In	  or	  out	  of	  kernel?	  
–  One-‐level	  model	  
–  Two-‐level	  model	  

Strategies	  
•  One-‐level	  model	  

–  Each	  user	  thread	  is	  mapped	  to	  a	  kernel	  thread	  

•  Two-‐level	  model	  
–  Single	  kernel	  thread	  

•  Each	  process	  gets	  one	  kernel	  thread	  
•  Threads	  mul0plexed	  on	  this	  kernel	  thread	  
•  Synchroniza0on	  via	  thread	  queues	  	  
•  Disadvantage	  :	  if	  any	  thread	  calls	  blocking	  system	  call	  (i.e.	  read())	  all	  threads	  stop	  

–  Mul0ple	  kernel	  threads	  
•  Many	  kernel	  threads.	  	  User-‐level	  threads	  distributed	  across	  them	  
•  Avoids	  blocking	  problem	  of	  single-‐kernel	  thread	  model	  

•  Other	  approaches	  exist	  …	  
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One	  Hypothe0cal	  Threads	  Implementa0on	  
•  User-‐level	  simple	  thread	  

package	  “straight-‐threads”	  
implementa0on	  

•  Assume	  
–  One	  processor	  
–  No	  interrupts	  

•  Assert	  
–  Thread	  object	  datastructure	  	  
–  Current	  thread	  pointer	  
–  Run	  queue	  datastructure	  

•  threads	  wai0ng	  to	  run	  
–  Mutex	  queue	  of	  threads	  wai0ng	  

to	  lock,	  one	  for	  every	  mutex	  

5.1 Threads Implementations 171

Run queue

Thread object

Stack

Thread object

Stack
Thread object

Stack

Thread object

Stack

Mutex queue

Thread object

Stack
Thread object

Stack

Thread object

Stack

Current thread

FIGURE 5 .8  A collec-
tion of threads: one is 
currently running, three 
are ready to run, and 
three are in a queue 
waiting to lock a 
particular mutex.

Figure 5.8 shows a collection of threads. Assuming a uniprocessor system, at most one 
thread is currently running and its thread object is pointed to by the global variable Current-
Thread. Those threads that are ready to run are organized into a run queue. In our simple system, 
each mutex has an associated queue of threads waiting to lock it.

The context of a thread is a rather nebulous concept, but, as explained in Sections 3.1.2 and 
4.1.3, it contains, at the least, a copy of whatever register points to the thread’s current stack frame. 
This stack frame contains the thread’s current register state. This information is not necessarily 
valid while the thread is running, but must be made valid when the thread is suspended so that it 
can be resumed. See Figure 5.9.

In Section 3.1.2 we discussed how one thread can yield the processor, switching to another 
thread. Here is a variation of the code presented there; this time we assume the existence of 
swapcontext, which saves the caller’s register context in its thread object, then restores that of the 
target thread from its thread object:

void thread_switch( ) {

thread_t NextThread, OldCurrent;

NextThread ! dequeue(RunQueue);

OldCurrent ! CurrentThread;

CurrentThread ! NextThread;

swapcontext(&OldCurrent->context, &NextThread->context);

// We’re now in the new thread’s context

}

The dequeue routine performs the role of a scheduler in this simple system: it selects the next 
thread to run from the run queue. Note that we haven’t dealt with the case when the run queue is 
empty — we take this up in Exercise 5.

Context

Stack

Stack frame

FIGURE 5 .9  A thread’s 
context refers to its 
current stack frame.
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Yielding	  the	  Processor	  
•  Assume	  “Straight-‐threads”	  voluntarily	  yield	  by	  calling	  system	  call	  

•  Here	  swapcontext,	  saves	  the	  caller’s	  register	  context	  in	  its	  thread	  
object,	  then	  restores	  that	  of	  the	  target	  thread	  from	  its	  thread	  
object	  
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Figure 5.8 shows a collection of threads. Assuming a uniprocessor system, at most one 
thread is currently running and its thread object is pointed to by the global variable Current-
Thread. Those threads that are ready to run are organized into a run queue. In our simple system, 
each mutex has an associated queue of threads waiting to lock it.

The context of a thread is a rather nebulous concept, but, as explained in Sections 3.1.2 and 
4.1.3, it contains, at the least, a copy of whatever register points to the thread’s current stack frame. 
This stack frame contains the thread’s current register state. This information is not necessarily 
valid while the thread is running, but must be made valid when the thread is suspended so that it 
can be resumed. See Figure 5.9.

In Section 3.1.2 we discussed how one thread can yield the processor, switching to another 
thread. Here is a variation of the code presented there; this time we assume the existence of 
swapcontext, which saves the caller’s register context in its thread object, then restores that of the 
target thread from its thread object:

void thread_switch( ) {

thread_t NextThread, OldCurrent;

NextThread ! dequeue(RunQueue);

OldCurrent ! CurrentThread;

CurrentThread ! NextThread;

swapcontext(&OldCurrent->context, &NextThread->context);

// We’re now in the new thread’s context

}

The dequeue routine performs the role of a scheduler in this simple system: it selects the next 
thread to run from the run queue. Note that we haven’t dealt with the case when the run queue is 
empty — we take this up in Exercise 5.

Context

Stack

Stack frame

FIGURE 5 .9  A thread’s 
context refers to its 
current stack frame.
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Thread. Those threads that are ready to run are organized into a run queue. In our simple system, 
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4.1.3, it contains, at the least, a copy of whatever register points to the thread’s current stack frame. 
This stack frame contains the thread’s current register state. This information is not necessarily 
valid while the thread is running, but must be made valid when the thread is suspended so that it 
can be resumed. See Figure 5.9.

In Section 3.1.2 we discussed how one thread can yield the processor, switching to another 
thread. Here is a variation of the code presented there; this time we assume the existence of 
swapcontext, which saves the caller’s register context in its thread object, then restores that of the 
target thread from its thread object:

void thread_switch( ) {

thread_t NextThread, OldCurrent;

NextThread ! dequeue(RunQueue);

OldCurrent ! CurrentThread;

CurrentThread ! NextThread;

swapcontext(&OldCurrent->context, &NextThread->context);

// We’re now in the new thread’s context

}

The dequeue routine performs the role of a scheduler in this simple system: it selects the next 
thread to run from the run queue. Note that we haven’t dealt with the case when the run queue is 
empty — we take this up in Exercise 5.
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Implemen0ng	  Mutexes	  
•  Because	  the	  simple	  straight-‐threads	  system	  does	  not	  have	  

interrupts	  and	  all	  threads	  run	  un0l	  voluntarily	  yielding,	  mutex_lock	  
doesn’t	  need	  to	  do	  anything	  special	  to	  make	  its	  ac0on	  atomic	  

172 CHAPTER 5 Processor Management

Implementing mutexes in our straight-threads package is easy:

void mutex_lock(mutex_t *m) {

if (m->locked) {

enqueue(m->queue, CurrentThread);

thread_switch();

} else

m->locked ! 1;

}

void mutex_unlock(mutex_t *m) {

if (queue_empty(m->queue))

m->locked ! 0;

else

enqueue(runqueue, dequeue(m->queue));

}

Note that the mutex_lock code doesn’t do anything special to make its actions atomic. This is 
because in our straight-threads system there are no interrupts and all actions are performed by 
threads, which run until they voluntarily relinquish the processor.

5.1.3 MULTIPLE PROCESSORS

We continue with our straight-threads implementation, but we now allow processors. Thus, say 
that in Figure 5.8 there are possibly a number of running threads, threads, each on a different pro-
cessor. Our thread_switch routine is no longer suffi cient for managing the now multiple processors; 
we need additional mechanisms to ensure all processors are utilized.

A simple approach is to invent special idle threads, one for each processor. Such threads 
run only on designated processors (one per processor). The intent is that they run only when no 
other thread is available to run. To accomplish this, we use the following program:

void idle_thread() {

while(1)

thread_switch();

}

Thus once a normal thread is in the run queue, if there is an idle processor (i.e., one running an 
idle thread), that processor will soon switch to running the non-idle thread.

How synchronization constructs are implemented has a big impact on a system’s performance. 
There is the cost of just checking to see if the current thread should continue. Such checks, say 
in the form of locking mutexes, happen so frequently that they are often carefully coded in assembler 
language to be as fast as possible. Synchronization is important both inside the kernel, where 
there is direct access to thread-scheduling functionality, and in user-level code as part of threads 
packages — performing a system call as part of every synchronization operation is usually much 
too costly.

As an example of the problems faced, let’s consider two very simple approaches to implement-
ing a mutex. The fi rst is known as the spin lock, in which a mutex is represented simply as a bit 
indicating whether it is locked or not. So that multiple threads can safely use it concurrently, 
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Consider	  Mul0ple	  Processors	  
•  thread_switch()	  now	  insufficient	  
•  Simple	  approach	  :	  special	  idle	  threads,	  one	  for	  each	  processor	  

•  Actual	  concurrent	  threads	  like	  this	  require	  actual	  thread	  
synchroniza0on	  	  
–  Synchroniza0on	  implementa0on	  has	  big	  OS	  performance	  impact	  

•  Types	  of	  actual	  implementa0on	  
–  Spin	  lock	  (hardware	  supported)	  
–  Futexes	  	  
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Implementing mutexes in our straight-threads package is easy:

void mutex_lock(mutex_t *m) {

if (m->locked) {

enqueue(m->queue, CurrentThread);

thread_switch();

} else

m->locked ! 1;

}

void mutex_unlock(mutex_t *m) {

if (queue_empty(m->queue))

m->locked ! 0;

else

enqueue(runqueue, dequeue(m->queue));

}

Note that the mutex_lock code doesn’t do anything special to make its actions atomic. This is 
because in our straight-threads system there are no interrupts and all actions are performed by 
threads, which run until they voluntarily relinquish the processor.

5.1.3 MULTIPLE PROCESSORS

We continue with our straight-threads implementation, but we now allow processors. Thus, say 
that in Figure 5.8 there are possibly a number of running threads, threads, each on a different pro-
cessor. Our thread_switch routine is no longer suffi cient for managing the now multiple processors; 
we need additional mechanisms to ensure all processors are utilized.

A simple approach is to invent special idle threads, one for each processor. Such threads 
run only on designated processors (one per processor). The intent is that they run only when no 
other thread is available to run. To accomplish this, we use the following program:

void idle_thread() {

while(1)

thread_switch();

}

Thus once a normal thread is in the run queue, if there is an idle processor (i.e., one running an 
idle thread), that processor will soon switch to running the non-idle thread.

How synchronization constructs are implemented has a big impact on a system’s performance. 
There is the cost of just checking to see if the current thread should continue. Such checks, say 
in the form of locking mutexes, happen so frequently that they are often carefully coded in assembler 
language to be as fast as possible. Synchronization is important both inside the kernel, where 
there is direct access to thread-scheduling functionality, and in user-level code as part of threads 
packages — performing a system call as part of every synchronization operation is usually much 
too costly.

As an example of the problems faced, let’s consider two very simple approaches to implement-
ing a mutex. The fi rst is known as the spin lock, in which a mutex is represented simply as a bit 
indicating whether it is locked or not. So that multiple threads can safely use it concurrently, 
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Spin-‐locks	  
•  Opera0on	  provided	  by	  some	  processors	  (e.g.	  x86)	  with	  hardware	  

guaranteed	  atomicity	  (compare	  and	  swap)	  

•  With	  CAS	  spin-‐locks	  (actual	  synchroniza0on)	  can	  be	  implemented	  
–  Note	  mutex	  with	  zero-‐value	  means	  unlocked	  
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some sort of interlocked instruction is used to lock the mutex. A typical such instruction is the 
compare and swap (CAS) instruction,2 defi ned as follows but executed atomically:

int CAS(int *ptr, int old, int new) {

int tmp ! *ptr;

if (*ptr !! old)

*ptr ! new

return tmp;

}

Though CAS is a single machine instruction, it does two loads from memory and one store with 
the guarantee that, if executed on a multiprocessor system, the effect of concurrent execution of 
it and an operation on another processor is as if one operation completely takes place before the 
other. Assuming that a zero value means unlocked and a one value means locked, mutex operations 
can be implemented as follows:

void spin_lock(int *mutex) {

while(!CAS(mutex, 0, 1))

;

}

void spin_unlock(int *mutex) {

*mutex ! 0;

}

The invocation of the CAS instruction within the spin_lock routine checks to see if the mutex was 
unlocked and, if so, sets its state to locked. It returns what the state of the mutex was just prior 
to the invocation to CAS. The spin_lock routine repeatedly invokes the CAS instruction until it 
reports that the mutex was unlocked (but is now locked by the caller). The spin_unlock routine 
simply clears the mutex, setting its state to unlocked.

Providing the atomicity guarantees of CAS slows down the processors considerably, so 
spin_lock is usually implemented by repeatedly checking the mutex’s state using normal instructions, 
then confi rming and taking the mutex with CAS, as follows:

void spin_lock(int *mutex) {

while (1) {

if (*mutex !! 0) {

// the mutex was at least momentarily unlocked

if (!CAS(mutex, 0, 1)

break; // we have locked the mutex

// some other thread beat us to it, so try again

}

}

}

2 On the x86 architecture, this instruction is cmpxchg (compare and exchange), which actually does more than what is shown for 
CAS. See the Intel documentation for details (http://www.intel.com/Assets/PDF/manual/253666.pdf).
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Faster	  Spinlock	  
•  Providing	  atomicity	  guarantees	  slows	  down	  processors	  
•  Unsafe	  checks	  result	  in	  overall	  speedup	  

5.1 Threads Implementations 173

some sort of interlocked instruction is used to lock the mutex. A typical such instruction is the 
compare and swap (CAS) instruction,2 defi ned as follows but executed atomically:

int CAS(int *ptr, int old, int new) {

int tmp ! *ptr;

if (*ptr !! old)

*ptr ! new

return tmp;

}

Though CAS is a single machine instruction, it does two loads from memory and one store with 
the guarantee that, if executed on a multiprocessor system, the effect of concurrent execution of 
it and an operation on another processor is as if one operation completely takes place before the 
other. Assuming that a zero value means unlocked and a one value means locked, mutex operations 
can be implemented as follows:

void spin_lock(int *mutex) {

while(!CAS(mutex, 0, 1))

;

}

void spin_unlock(int *mutex) {

*mutex ! 0;

}

The invocation of the CAS instruction within the spin_lock routine checks to see if the mutex was 
unlocked and, if so, sets its state to locked. It returns what the state of the mutex was just prior 
to the invocation to CAS. The spin_lock routine repeatedly invokes the CAS instruction until it 
reports that the mutex was unlocked (but is now locked by the caller). The spin_unlock routine 
simply clears the mutex, setting its state to unlocked.

Providing the atomicity guarantees of CAS slows down the processors considerably, so 
spin_lock is usually implemented by repeatedly checking the mutex’s state using normal instructions, 
then confi rming and taking the mutex with CAS, as follows:

void spin_lock(int *mutex) {

while (1) {

if (*mutex !! 0) {

// the mutex was at least momentarily unlocked

if (!CAS(mutex, 0, 1)

break; // we have locked the mutex

// some other thread beat us to it, so try again

}

}

}

2 On the x86 architecture, this instruction is cmpxchg (compare and exchange), which actually does more than what is shown for 
CAS. See the Intel documentation for details (http://www.intel.com/Assets/PDF/manual/253666.pdf).

CH005.indd   173CH005.indd   173 8/2/10   8:42:59 PM8/2/10   8:42:59 PM

Spin-‐Lock	  Implementa0on	  Blocking	  Mutex	  
•  Spin-‐locks	  consume	  processor	  resource	  and	  thus	  should	  be	  used	  sparingly	  
•  blocking_lock	  works	  as	  before	  –	  threads	  wai0ng	  on	  mutex	  queue	  

•  Use	  of	  spin-‐lock	  prevents	  collisions	  on	  mut-‐>holder	  	  
–  e.g.	  holder	  unlocking	  at	  exact	  instance	  empty	  queue	  is	  being	  joined	  

•  There	  is	  s0ll	  a	  subtle	  bug	  arising	  on	  true	  mul0processor	  systems	  (example	  
sheet)	  
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Spin locks are useful only on multiprocessors and, even then, only if locks are held for brief periods 
— otherwise too much processor time is wasted waiting for the lock to be released. An alternative 
approach is to use a blocking lock: threads wait by having their execution suspended. This involves a 
thread’s explicitly yielding the processor and joining a queue of waiting threads, then being explic-
itly resumed at some later time. The code below works on uniprocessor systems. It keeps track of 
which thread has a mutex locked. This is not strictly necessary, but is useful for debugging.

void blocking_lock(mutex_t *mut) {

if (mut->holder !! 0)

enqueue(mut->wait_queue, CurrentThread);

thread_switch();

} else

mut->holder ! CurrentThread;

}

void blocking_unlock(mutex_t *mut) {

if (queue_empty(mut->wait_queue))

mut->holder ! 0;

else {

mut->holder ! dequeue(mut->wait_queue);

enqueue(RunQueue, mut->holder);

}

}

This code does not always work correctly on a multiprocessor: there is a potential problem if a 
mutex is currently locked but its wait queue is empty, the holder of the mutex is unlocking it, and 
another thread is attempting to lock it. It is possible that the thread locking the mutex will fi nd it 
locked and be about to queue itself on the wait queue when the other thread unlocks the mutex, 
fi nds the wait queue empty, and then marks the mutex unlocked (by setting its holder to zero). 
Thus the fi rst thread will then join the wait queue, but will be there forever since no thread will 
ever call the unlock code again.

An attempt at solving this problem is:

void blocking_lock(mutex_t *mut) {

spin_lock(mut->spinlock);

if (mut->holder !! 0)

enqueue(mut->wait_queue, CurrentThread);

spin_unlock(mut->spinlock);

thread_switch();

} else {

mut->holder ! CurrentThread;

spin_unlock(mut->spinlock);

}

}

void blocking_unlock(mutex_t *mut) {

spin_lock(mut->spinlock);

if (queue_empty(mut->wait_queue)) {
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mut->holder ! 0;

} else {

mut->holder ! dequeue(mut->wait_queue);

enqueue(RunQueue, mut->holder);

}

spin_unlock(mut->spinlock);

}

Here we have associated a spin lock with the blocking lock, and use it to synchronize access to 
the data structures associated with the mutex. This solves the problem described above, but it 
turns out there is yet another problem.

Suppose a thread calling blocking_lock has just enqueued itself on the mutex’s wait queue, 
and is just about to call thread_switch. The holder of the mutex now calls blocking_unlock, fi nds 
the fi rst thread in the wait queue, and moves it to the run queue. This thread is now assigned to an 
idle processor, even though it is still running on its original processor!

There are a number of ways of solving (or perhaps avoiding) this problem. One approach 
is for blocking_lock, rather than unlocking the mutex’s spin lock itself, to pass the address of the 
spin lock to thread_switch and have the spin lock released after the thread has given up its proces-
sor. Doing this requires a bit of work — we take it up in Exercise 6.

The blocking approach to mutexes has the obvious advantage over spin locks that 
waiting threads do not consume processor time. However, it has the disadvantage that suspending 
a thread, then waking it up are typically somewhat time-consuming operations. This is particu-
larly so for user-level threads that must execute system calls both to suspend themselves and to 
resume others.

If it is usually the case that lock operations on mutexes succeed, then it makes sense to 
optimize the lock operation for the case of the mutex being unlocked, at the possible expense of 
the case in which the mutex is currently locked. Microsoft does this for their implementation 
of critical sections in Windows, and some implementations of POSIX threads do it for mutexes as 
well. The basic idea is simple: check if the mutex is unlocked. If it is, then simply lock it and go 
on. If it’s not, then a system call is required to lock it. However, the details are anything 
but simple. We describe here how it is implemented on Linux, using futexes (fast user-mode 
mutexes). Our approach is based on that of Ulrich Drepper.3

A futex is implemented as a simple data structure, accessible to both user-mode code and 
kernel code. Contained in it is an unsigned-integer state component called value and a queue of 
waiting threads. Two system calls are provided to support futexes:4

futex_wait(futex_t *futex, unsigned int value) {

if (futex->value !! value)

sleep();

}

futex_wake(futex_t *futex) {

// wake up one thread from futex’s wait queue,

// if there is any

…

}

3 http://people.redhat.com/drepper/futex.pdf.
4 The Linux implementation uses just one system call, with an additional argument to indicate its function.

CH005.indd   175CH005.indd   175 8/2/10   8:42:59 PM8/2/10   8:42:59 PM

Interrupts	  
•  Processors	  usually	  run	  in	  thread	  contexts	  
•  Interrupts	  are	  handled	  in	  interrupt	  contexts	  
•  Interrupts	  typically	  (varies	  from	  one	  arch	  and	  OS	  to	  another)	  

borrow	  stacks	  
–  Note;	  x86	  hardware	  saves	  registers	  

•  Signal	  handlers	  are	  similar	  to	  interrupts	  
•  Interrupts	  preempt	  the	  execu0on	  of	  normal	  threads	  

–  Interrupts	  are	  used	  for	  scheduling	  
•  Interrupts	  can	  have	  priori0es	  
•  Interrupts	  can	  be	  masked	  

–  Interrupt	  processing	  can	  prohibit	  interrup0on	  from	  other	  interrupts	  
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Synchroniza0on	  and	  Interrupts	  
•  Access	  to	  kernel	  datastructures	  must	  be	  carefully	  synchronized	  

between	  thread	  and	  interrupt	  processing	  

•  Disabling	  preemp0on	  prevents	  deadlock	  scenario	  due	  to	  scheduling	  
switch	  to	  different	  thread	  

•  Masking	  interrupts	  prevents	  deadlock	  scenario	  due	  to	  interrupt	  
•  Locks	  ensure	  consistency	  
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the thread, marking it as non-preemptible. Problem four requires the use of spin locks, since even if 
it is waiting for something running on a different processor, an interrupt handler cannot block.

Spin locks by themselves are clearly not suffi cient, as seen in the following variation of an 
earlier example:

int X ! 0;

SpinLock_t L ! UNLOCKED;

void AccessXThread () {

SpinLock (&L);

X ! X"1;

SpinUnlock (&L);

}

void AccessXInterrupt () {

…

SpinLock (&L);

X ! X"1;

SpinUnlock (&L);

…

}

If a thread calls AccessXThread but is interrupted while holding the spin lock L, and then if 
AccessXInterrupt is called in the interrupt context, there will be deadlock when it attempts to lock 
L. Furthermore, if one thread has taken the spin lock within AccessXThread but is preempted by 
another thread, and that thread also calls AccessXThread, there will again be deadlock. The solution 
is for threads to mask interrupts before (not after!) they lock L and to prevent preemption, as in

int X ! 0;

SpinLock_t L ! UNLOCKED;

void AccessXThread() {

DisablePreemption();

MaskInterrupts();

SpinLock(&L);

X ! X"1;

SpinUnlock(&L);

UnMaskInterrupts();

EnablePreemption();

}

void AccessXInterrupt() {

…

SpinLock(&L);

X ! X"1;

SpinUnlock(&L);

…

}

Many operating systems have variants of their spin-lock routines in which interrupts are 
automatically masked and preemption is automatically disabled.

5.2.1.2 Interrupt Threads
Solaris avoids many of the interrupt-related problems experienced in other operating systems by 
allowing interrupts to be handled as threads (Kleiman and Eykholt 1995). This seems contrary 
to our earlier discussion of how interrupts are handled, but it’s actually fairly simple. Each inter-
rupt level has a pre-allocated stack on each processor. When an interrupt occurs, the current 
context (thread or interrupt) is saved by the hardware on the interrupt stack of the appropriate 
level. However, no thread control block (known in Solaris as a lightweight process or LWP) is set 
up. If the interrupt handler returns without blocking, the interrupted thread is simply resumed. 
However, the interrupt handler might block trying to lock a mutex — something not allowed in 
most other operating systems. If this happens, the interrupt handler becomes a full-fl edged thread 
— a lightweight process is created for it and this interrupt thread is treated just like any other 
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Signals	  
•  Threads	  check	  for	  pending	  signals	  on	  return	  to	  user	  mode	  
•  Unix	  signal	  handlers	  are	  user-‐mode	  equivalents	  of	  interrupt	  

handlers	  
•  Threads	  behave	  as	  if	  a	  procedure	  call	  to	  the	  signal	  handler	  was	  

made	  at	  the	  point	  at	  which	  the	  thread	  received	  the	  call	  
–  Almost	  :	  register	  state	  must	  be	  handled	  differently	  

Scheduling	  
•  OS’s	  manage	  resources	  

–  Processor	  0me	  is	  appor0oned	  to	  threads	  
–  Primary	  memory	  is	  appor0oned	  to	  processes	  
–  Disk	  space	  is	  appor0oned	  to	  users	  
–  I/O	  bandwidth	  may	  be	  appor0oned	  to	  processes	  

•  Scheduling	  concerns	  the	  sharing	  of	  processors	  
–  Dynamic	  scheduling	  is	  the	  task	  
–  Objec0ves	  

•  Good	  response	  to	  interac0ve	  threads	  
•  Determinis0c	  response	  to	  real-‐0me	  threads	  
•  Maximize	  process	  comple0ons	  per	  hour	  
•  All	  of	  the	  above?	  

Approaches	  to	  Scheduling	  
•  Simple	  batch	  systems	  

–  One	  job	  at	  a	  0me	  

•  Mul0-‐programmed	  batch	  systems	  
–  Mul0ple	  jobs	  concurrent	  
–  Scheduling	  decisions	  

•  How	  many	  jobs?	  
•  How	  to	  appor0on	  the	  processor	  between	  them?	  

•  Time-‐sharing	  systems	  
–  How	  to	  appor0on	  processor	  to	  threads	  ready	  to	  execute	  
–  Op0miza0on	  criteria	  :	  0me	  between	  job	  submission	  and	  comple0on	  

•  Shared	  servers	  
–  Single	  computer,	  many	  clients,	  all	  wan0ng	  “fair”	  share	  

•  Real-‐0me	  systems	  
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Time-‐Sharing	  Systems	  
•  Primary	  scheduling	  concern	  is	  the	  appearance	  of	  responsiveness	  to	  

interac0ve	  users	  
•  Threads	  assigned	  user-‐level	  priority	  “importance”	  (UNIX	  nice())	  
•  OS	  assigned	  thread	  priority	  rises	  and	  falls	  based	  on	  

–  Length	  of	  bursts	  of	  computa0on	  (before	  yielding)	  
–  Length	  of	  0me	  between	  bursts	  

•  Sensible	  strategy	  
–  Decay	  priority	  while	  thread	  is	  running	  
–  Increase	  priority	  while	  thread	  is	  wai0ng	  

Real-‐Time	  Systems	  
•  Real-‐0me	  system	  scheduling	  must	  be	  dependable	  

–  Music	  
–  Video	  
–  Nuclear	  power	  plant	  data	  processing	  

•  Approximate	  real-‐0me	  by	  adding	  very-‐high	  real-‐0me	  priori0es	  
–  Interrupt	  processing	  s0ll	  preempts	  threads	  
–  Synchronized	  access	  to	  kernel	  resources	  can	  cause	  priority-‐inversion	  

•  Low-‐priority	  threads	  locks	  a	  resource	  a	  real-‐0me	  thread	  needs	  

Memory	  Management	  
•  Requires	  deep	  understanding	  of	  hardware	  capabili0es	  and	  sobware	  

requirements	  
•  Involves	  

–  Memory	  abstrac0on	  
–  Op0mizing	  against	  available	  physical	  resources	  

•  High-‐speed	  cache	  
•  Moderate-‐speed	  primary	  storage	  
•  Low-‐speed	  secondary	  storage	  

•  Security	  	  
–  Protect	  OS	  from	  user	  processes	  
–  Keep	  user	  processes	  apart	  

•  Scalability	  
–  Fit	  processes	  into	  available	  physical	  memory	  

Per-‐Process	  Page	  Table	  *	  
•  Assume	  	  

–  32-‐bit	  virtual	  address	  
–  Page	  size	  4096	  bytes	  

•  Implies	  
–  12	  bit	  offset	  (2^12	  =	  4096)	  
–  20-‐bit	  page	  number	  (2^32	  /	  2^12)	  

•  V	  =	  validity	  bit	  
–  If	  set,	  page	  frame	  no.	  is	  high-‐order	  bits	  of	  address	  in	  real	  memory	  
–  If	  not	  a	  page-‐fault	  occurs	  and	  the	  OS	  takes	  over	  to	  allocate	  or	  load	  a	  

page	  
•  R	  =	  referenced	  bit	  

–  If	  page	  is	  referenced	  by	  a	  thread	  
•  M	  =	  modified	  bit	  

–  set	  if	  page	  is	  modified	  
•  Prot.	  =	  page-‐protec0on	  bits	  

–  user,	  os.,	  exec,	  data,	  etc.	  
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Segment-based schemes were popular in the ’60s and ’70s but are less so today, primarily 
because the advantages of segmentation have turned out not to outweigh the extra costs of the 
complexity of the hardware and software used to manage it. 

There is also a compromise approach, paged segmentation, in which each segment is divided 
into pages. This approach makes segmentation a more viable alternative, but not viable enough. 
Few if any systems use it today. We restrict our discussion to strictly page-based schemes.

So, we assume our virtual-memory systems are based on paging. Somehow we must map 
virtual addresses into real addresses. The most straightforward way of providing such a map-
ping is via a page table. A page table consists of one entry per page of the virtual address space. 
Suppose we have a 32-bit virtual address and a page size of 4096 bytes. The 32-bit address is 
thus split into two parts: a 20-bit page number and a 12-bit offset within the page. When a thread 
generates an address, the hardware uses the page-number portion as an index into the page-table 
array to select a page-table entry, as shown in Figure 7.4.

If the page is in primary storage (i.e. the translation is valid), then the validity bit in the 
page-table entry is set, and the page-frame-number portion of the page-table entry is the high-
order bits of the location in primary memory where the page resides. (Primary memory is thought 
of as being subdivided into pieces called page frames, each exactly big enough to hold a page; the 
address of each of these page frames is at a “page boundary,” so that its low-order bits are zeros.) 
The hardware then appends the offset from the original virtual address to the page-frame number 
to form the fi nal, real address.

If the validity bit of the selected page-table entry is zero, then a page fault occurs and the 
operating system takes over. Other bits in a typical page-table entry include a reference bit, which 
is set by the hardware whenever the page is referenced by a thread, and a modifi ed bit, which 
is set whenever the page is modifi ed. We will see how these bits are used in Section 7.3 below. 
The page-protection bits indicate who is allowed access to the page and what sort of access is 
allowed. For example, the page can be restricted for use only by the operating system, or a page 
containing executable code can be write-protected, meaning that read accesses are allowed but 
not write accesses.

Page no. Offset 

Virtual 
address 

V M R Prot Page frame no. 

FIGURE 7 .4  A simple 
page table, showing 
the validity bit (V), 
modifi ed bit (M), 
reference bit (R), page 
protection bits (Prot), 
and page frame number.
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On	  a	  32-‐bit	  arch.	  the	  page	  table	  
is	  2^20	  *	  4	  bytes	  =	  4MB.	  
	  
What	  about	  a	  64-‐bit	  
architecture?	  *	  
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Forward-‐Mapped	  Page	  Tables	  
•  Lower-‐overhead	  approach	  
•  Each	  virtual	  address	  divided	  into	  two	  10-‐bit	  numbers	  

–  L1	  page	  number	  
–  L2	  page	  number	  
–  Offset	  

•  Advantages	  
–  Lower	  overhead	  –	  e.g.	  not	  all	  L2	  pages	  need	  be	  in	  memory	  at	  once	  	  

•  Disadvantages	  
–  More	  lookups	  

Before we get too excited about page tables, we need to determine what they cost. One 
measure is how much memory is used merely to hold the page table. In our example, the page 
table must have 220 entries, each 4 bytes long. Thus the size of the table is 222 bytes — 4 mega-
bytes. Though today this is an almost trivial amount,2 in the not-too-distant past it was far more 
than could be afforded, particularly for such a per-process overhead function. If we consider 
64-bit architectures (see Section 7.2.5), the cost of memory to hold a complete page table again 
becomes prohibitive (to put it mildly).

7.2.1 FORWARD-MAPPED PAGE TABLES

Rather than having a complete page table in primary memory, we might have just those pieces of 
it that are required to map the portion of the address space currently being used. One approach 
for doing this is the forward-mapped or multilevel scheme in which the page tables form a tree, 
as shown in Figure 7.5. Here the virtual address is divided into three pieces: a level-1 (L1) page 
number, a level-2 (L2) page number, and an offset. Each valid entry in the L1 page table refers 
to an L2 page table, and each valid entry of the L2 page tables refers to a page frame. Thus a 
virtual-to-real translation consists of using the L1-page-number fi eld of the virtual address as an 
index into the L1 page table to select an L2 page table. Then the L2-page-number fi eld is used as 
an index into the L2 page table to select a page frame. Finally, the offset is used to select a loca-
tion within the page frame.

The advantage of this scheme is that not all L2 page tables need to be in real memory at 
once, just those mapping portions of the address space in current use. If the L1 and L2 page 
numbers are each 10 bits long (as in the most commonly used address-translation scheme of the 
Intel x86 architecture), then each page table requires 4 kilobytes of storage. Since each page 
table contains 1024 (! 210) entries, each L2 page table maps 4 megabytes (! 210  " 212 bytes) of 
virtual memory. A simple Unix or Windows process would require one L2 page table to map the 
low-address portion of its address space (text, BSS, data, and dynamic in Unix, assuming they 
require less than 4 megabytes) and another one to map the high-address portion (containing the 
stack, also assuming it requires less than 4 megabytes). Thus the total overhead is 12 kilobytes 
(one L1 and two L2 page tables) — an appreciable savings over the 4 megabytes of overhead 
required for one-level paging.

2 At $12/gigabyte, a reasonable price at the time of this writing, four megabytes is 5 cents’ worth of memory — hardly worth wor-
rying about. However, in the early 1980s it was around $40,000 worth of memory and totally out of the question.

L1 page # L2 page # Offset

L1 page table

L2 page tables Page frame

FIGURE 7 .5  Forward-mapped page table.
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Note	  :	  memory	  access	  is	  slow;	  caching	  is	  impera0ve	  
•  Hardware	  supports	  address	  transla0on	  via	  “transla0on	  lookaside	  

buffers”	  
–  Fast	  processor-‐based	  memory	  containing	  some	  entries	  of	  address	  transla0on	  

table	  

64-‐Bit	  Issues	  
•  Assume	  8-‐Kb	  pages,	  how	  big	  is	  a	  page	  table	  for	  a	  64-‐bit	  arch?	  

–  (Example	  sheet)	  
–  One	  solu0on:	  298 CHAPTER 7 Memory Management

of the architecture are limited to no more that 48-bit addresses. With this limitation, four levels of 
page tables are used with 4KB pages (Figure 7.13) and three levels are used with 2MB pages 
(Figure 7.14). The small page size minimizes internal fragmentation, at the expense of an extra 
level of page tables. The large page size reduces the number of levels, at the expense of internal 
fragmentation. It also reduces the number of TLB entries needed for a range of addresses. An 
operating system might use the larger page size for its own address space, so as to leave more of 
the TLB for user processes. Both Linux and Windows do this, and they also let user processes 
specify the use of the larger page size when mapping fi les into their address spaces.

unused

0112029384763

Page map
table 

Page
directory

pointer table Page
directory table  

Page table

Physical page 

FIGURE 7 .13 x64 virtual address format (4KB pages).

Physical
page 

unused

02029384763

Page map
table 

Page
directory

pointer table Page
directory table  

FIGURE 7 .14 x64 virtual address format (2MB pages).
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X64	  virtual	  address	  format	  

Opera0ng-‐System	  Issues	  
•  OS	  responsible	  for	  ensuring	  programs	  execute	  at	  reasonable	  speed	  
•  OS	  must	  determine	  which	  pages	  should	  be	  in	  primary	  memory	  
•  OS	  virtual	  memory	  policy	  decisions	  

–  Fetch	  
–  Placement	  
–  Replacement	  

•  Simple	  approaches	  
–  Demand	  paging	  

•  Fetch	  only	  when	  a	  thread	  references	  something	  in	  that	  page	  

–  Placement	  
•  Anywhere	  	  

–  Replacement	  
•  When	  full,	  eject	  page	  in	  memory	  longest	  (FIFO)	  

–  Problem?	  
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OS	  Response	  to	  a	  Page	  Fault	  
•  Steps	  

–  Detect	  page	  fault	  
–  Find	  a	  free	  page	  frame	  
–  Write	  a	  page	  out	  to	  secondary	  storage	  if	  none	  free	  
–  Fetch	  desired	  page	  from	  secondary	  storage	  
–  Return	  from	  trap	  

•  Laher	  steps	  very	  costly	  
–  Read	  in	  extra	  pages	  

•  Prepaging	  –	  How?	  	  Why?	  

–  Write-‐out	  pages	  preemp0vely	  
•  Dedicate	  a	  page-‐out	  thread	  

Page	  Caching	  Implementa0on	  Strategy	  
•  Op0mal	  replacement	  strategies	  are	  imprac0cal	  
•  Least-‐recently-‐used	  (LRU)	  good	  in	  prac0ce	  

–  Except	  coun0ng	  references	  is	  imprac0cal	  

•  Two-‐handed	  clock	  algorithm	  used	  in	  prac0ce	  
–  OS	  uses	  page-‐out	  thread	  	  

•  One	  hand	  sets	  reference	  bit	  to	  0	  
•  Other	  hand	  triggers	  page	  flush	  if	  another	  thread	  hasn’t	  set	  reference	  bit	  to	  1	  

The best we can do is to make a good guess. What seems reasonable is that Belady’s page, 
the page whose next reference is farthest in the future, is the page whose most recent reference was 
the farthest in the past. This clearly isn’t always true, but it has the advantage of being something 
we have a hope of implementing and something that might work reasonably well in practice. This 
approach is known as least-recently used (LRU) and has applications in other areas as well.

An exact implementation of LRU would require the operating system to keep track of all 
references to page frames and to be able to order them by time of last reference. Without rather 
expensive hardware support, doing this would be so time-consuming as to negate any possible 
benefi t. However, we can approximate LRU without undue expense.

Rather than ordering page frames by their time of last reference, let’s use a coarser approach 
and divide time into discrete periods, each long enough for there to be thousands of references. 
Most virtual-memory architectures support a reference bit in their translation entries, set to 1 by 
the translation hardware each time the entry is used (i.e., when the corresponding page frame is 
referenced). At the end of each period we can examine the reference bits and determine which 
page frames have been used. At the same time we zero these bits, so we can do the same thing in 
the next period. This coarse measure of LRU works well enough, particularly when we remember 
that LRU itself is just a way to get an educated guess about which page is least likely to be used 
in the near future.

Rather than implement the approximate LRU algorithm exactly as we’ve described it, 
many systems use a continual approach known as the clock algorithm. All active page frames 
are conceptually arranged in a circularly linked list. The page-out thread slowly traverses the 
list. In the “one-handed” version of the clock algorithm, each time it encounters a page, it checks 
the reference bit in the corresponding translation entry: if the bit is set, it clears it. If the bit is 
clear, it adds the page to the free list (writing it back to secondary storage fi rst, if necessary).

A problem with the one-handed version is that, in systems with large amounts of primary 
storage, it might take too long for the page-out thread to work its way all around the list of page 
frames before it can recognize that a page has not been recently referenced. In the two-handed 
version of the clock algorithm, the page-out thread implements a second hand some distance 
behind the fi rst. The front hand simply clears reference bits. The second (back) hand removes 
those pages whose reference bits have not been set to one by the time the hand reaches the page 
frame  (see Figure 7.18).

Front hand:
reference bit ! 0

Back hand:
if (reference bit !! 0)
    remove page  

FIGURE 7 .18 Two-handed clock algorithm.
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Efficient	  Fork	  via	  Copy-‐on-‐Write	  
•  Can	  fork()	  be	  made	  less	  expensive	  to	  implement?	  

–  Remember	  fork()	  copies	  a	  process’	  en0re	  memory	  space	  

•  Lazy	  evalua0on	  
–  Let	  copies	  share	  address	  space	  
–  Mark	  all	  pages	  read	  only	  
–  On	  write	  make	  copies	  
–  OS	  bookkeeping	  requires	  care	  
	  

Shared	  Memory	  and	  mmap()	  ***	  (mmap_shared_memory_example.c)	  

•  mmap()	  maps	  files	  to	  con0guous	  virtual	  memory	  	  
•  Files	  may	  be	  mapped	  to	  address	  space	  shared	  across	  processes!	  

–  Shared	  
•  Modifica0ons	  seen	  by	  all	  forked	  processes	  (parallel	  processing!)	  

–  Private	  
•  Modifica0ons	  remain	  private	  to	  each	  forked	  process	  (copy	  on	  write)	  
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Review	  
•  Process	  management	  

–  Entails	  mul0plexing	  threads,	  interrupts,	  and	  system	  calls	  to	  available	  
processors	  

	  

•  Memory	  management	  
–  Virtual	  memory	  allows	  large	  programs	  to	  run	  on	  systems	  with	  small	  amounts	  

of	  primary	  storage	  
–  Virtual	  memory	  allows	  co-‐existence	  of	  mul0ple	  programs	  
–  Memory	  mapping	  allows	  parallel	  processing	  

Lecture	  4	  :	  File	  Systems	  &	  Networking	  

Material	  from	  	  
Opera0ng	  Systems	  in	  Depth	  	  

(spec.	  Chapters	  6	  and	  9)	  	  
by	  

Thomas	  Doeppner	  
	  

GET	  THIS	  BOOK	  AND	  READ	  IT!	  

File	  Systems	  
•  Purpose	  

–  Provide	  easy-‐to-‐use	  permanent	  storage	  with	  modest	  func0onality	  
–  Performance	  of	  file	  system	  cri0cal	  to	  system	  performance	  
–  Crash	  tolerance	  a	  func0on	  of	  file	  system	  capabili0es	  
–  Security	  a	  major	  concern	  

•  Criteria	  
–  Easy	  	  

•  File	  abstrac0on	  should	  be	  easy	  to	  use	  
–  High	  performance	  

•  No	  waste	  of	  space,	  maximum	  u0liza0on	  of	  resource	  

–  Permanence	  
•  Dependable	  

–  Security	  
•  Access	  control	  should	  be	  strict	  

Basics	  
•  Pedagogical	  review	  of	  Unix	  system	  5	  File	  System	  (S5FS)	  
•  Revolu0onary,	  simplifying	  Unix	  file	  abstrac0on	  

–  A	  file	  is	  an	  array	  of	  bytes,	  period.	  
•  File	  system	  layout	  

–  Boot	  block	  
•  First-‐level	  boot	  program	  that	  reads	  OS	  into	  memory	  

–  Superblock	  
•  Describes	  layout	  of	  remaining	  filesystem	  

–  i-‐list	  
•  Array	  of	  index	  nodes	  (inodes)	  

–  Data	  region	  
•  Disk	  blocks	  holding	  file	  contents	  

6.1 The Basics of File Systems 219

does poorly on all but the fi rst of the criteria listed above. We use it here as a starting point to 
discuss how modern fi le-systems handle these concerns.

The Unix fi le abstraction is simple — a revolutionary feature in Unix’s early days. Files are 
arrays of bytes. User applications need not know how fi les are physically represented on disks. 
Other fi le systems of the time forced the user to be aware of the record size — the amount of data 
transferred to or from the application in each fi le request — as well as the block size — the unit 
by which data is transferred to or from the disk. Unix just had bytes. Applications read or wrote 
as many bytes as necessary. It was up to the fi le system to implement such requests effi ciently 
using the available disk storage. Rather than making programs allocate space for fi les before using 
them, Unix fi les grow implicitly: writing beyond the current end of a fi le makes it bigger. Files 
are named by their paths in a single, system-wide directory hierarchy.

The architecture of the underlying storage medium is, of course, pretty important in fi le-
system design. We assume here that it’s a disk organized as a collection of sectors, each of the same 
size — 512 bytes is typical. As detailed in Section 6.1.2 below, disks are accessed by moving disk 
heads to the appropriate cylinder and then waiting for the disk to rotate until the desired disk sec-
tor is under one of the heads. Thus the time required to access a sector depends on the distance of 
the current position of the disk heads from the desired sector. One of the things that make S5FS so 
simple is that it does not take this distance into account when allocating space for fi les. It considers 
a disk to be a sequence of sectors each of which can be accessed in the same amount of time as all 
the others; the only optimization done is to minimize the number of disk accesses. No attempt is 
made to minimize the time spent waiting for disk heads to be properly positioned (the seek time) or 
the time waiting for the desired sector to be under the disk head (the rotational latency).

This simplifi es things a lot. All sectors are equal; thus we can think of a disk as a large 
array. Accessing this array is a bit expensive compared to accessing primary storage, but the 
design of on-disk data structures needn’t differ substantially from the data structures in primary 
storage. (This, of course, is a simplifi cation used in S5FS; it doesn’t apply to all fi le systems!)

Figure 6.1 shows the basic format of a fi le system on disk.1 The fi rst disk block contains a 
boot block; this has nothing to do with the fi le system, but contains the fi rst-level boot program 
that reads the operating system’s binary image into primary memory from the fi le system. The 
next block, the superblock, describes the layout of the rest of the fi le system and contains the heads 
of the free lists. Following this are two large areas. The fi rst is the i-list, an array of index nodes (inodes) 
each of which, if in use, represents a fi le. Second is the data region, which contains the disk blocks 
holding or referring to fi le contents.

1 Note that one physical disk is often partitioned to hold multiple fi le-system instances. Thus what is shown in Figure 6.1 is a 
single fi le-system instance within a region of a partitioned disk.

Data region 

I-list

Superblock
Boot block

FIGURE 6 .1  S5FS 
layout.
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Unix’s	  S5FS	  
•  Each	  file	  is	  described	  by	  an	  inode	  
•  Directories	  are	  files	  containing	  

names	  and	  inode	  numbers	  
•  Diskmap	  

–  Maps	  logical	  blocks	  numbered	  
rela0ve	  to	  the	  beginning	  of	  the	  file	  
to	  physical	  blocks	  numbered	  rela0ve	  
to	  the	  beginning	  of	  the	  file	  system	  

–  Assume	  
•  Block	  length	  =	  1024	  bytes	  
•  13	  pointers	  

–  First	  10	  point	  directly	  to	  disk	  blocks	  
–  Next	  singly	  indirect	  
–  Doubly	  
–  Triply	  

–  0	  pointer	  counts	  as	  block	  of	  all	  zeros	  
•  Efficient	  for	  sparse	  files	  

220 CHAPTER 6 File Systems

0
1
2
3
4
5
6
7
8
9

10
11
12

Triple indirect
block Double indirect

blocks 
Indirect blocks Data blocks

Disk map
(in inode)

FIGURE 6 .3  S5FS disk map. Each of the indirect blocks (including double and triple 
indirect blocks) contains up to 256 pointers.

Device

Inode number 

Mode

Link count 

Owner, Group

Size

Diskmap 

FIGURE 6.2 S5FS inode.

Each fi le is described by an inode; thus a fi le is referred to internally by its inode, which is 
done via the inode’s index in the i-list. As we saw in Chapter 1, directories are otherwise normal 
fi les containing pairs of directory-component names and inode numbers. Thus following a path 
in the directory hierarchy involves reading the contents of a directory fi le (contained in sectors 
taken from the data region) to look up the next component of the path. Associated with that compo-
nent in the fi le is an inode number that is used to identify the inode of the fi le containing the next 
directory in the path.

The layout of an inode is shown in Figure 6.2. What’s important to us at the moment is the 
disk map (Figure 6.3), which refers to the disk blocks containing the fi le’s data. The disk map 
maps logical blocks numbered relative to the beginning of a fi le into physical blocks numbered 
relative to the beginning of the fi le system. Each block is 1024 (1 K) bytes long. (It was 512 bytes 
long in the original Unix fi le system.) The data structure allows fast access when a fi le is accessed 
sequentially and, with the help of caching, reasonably fast access when the fi le is used for paging 
and other “random” access.

The disk map contains 13 pointers to disk blocks. The fi rst ten of these pointers point to 
the fi rst 10 blocks of the fi le, so that the fi rst 10 KB of a fi le are accessed directly. If the fi le is 
larger than 10 KB, then pointer number 10 points to a disk block called an indirect block. This 
block contains up to 256 (4-byte) pointers to data blocks (i.e., 256 KB of data). If the fi le is big-
ger than this (256 KB ! 10 KB " 266 KB), then pointer number 11 points to a double indirect 
block containing 256 pointers to indirect blocks, each of which contains 256 pointers to data 
blocks (64 MB of data). If the fi le is bigger than this (64 MB ! 256 KB ! 10 KB), then pointer 
number 12 points to a triple indirect block containing up to 256 pointers to double indirect blocks, 
each of which contains up to 256 pointers pointing to single indirect blocks, each of which contains 
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FIGURE 6 .3  S5FS disk map. Each of the indirect blocks (including double and triple 
indirect blocks) contains up to 256 pointers.
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FIGURE 6.2 S5FS inode.

Each fi le is described by an inode; thus a fi le is referred to internally by its inode, which is 
done via the inode’s index in the i-list. As we saw in Chapter 1, directories are otherwise normal 
fi les containing pairs of directory-component names and inode numbers. Thus following a path 
in the directory hierarchy involves reading the contents of a directory fi le (contained in sectors 
taken from the data region) to look up the next component of the path. Associated with that compo-
nent in the fi le is an inode number that is used to identify the inode of the fi le containing the next 
directory in the path.

The layout of an inode is shown in Figure 6.2. What’s important to us at the moment is the 
disk map (Figure 6.3), which refers to the disk blocks containing the fi le’s data. The disk map 
maps logical blocks numbered relative to the beginning of a fi le into physical blocks numbered 
relative to the beginning of the fi le system. Each block is 1024 (1 K) bytes long. (It was 512 bytes 
long in the original Unix fi le system.) The data structure allows fast access when a fi le is accessed 
sequentially and, with the help of caching, reasonably fast access when the fi le is used for paging 
and other “random” access.

The disk map contains 13 pointers to disk blocks. The fi rst ten of these pointers point to 
the fi rst 10 blocks of the fi le, so that the fi rst 10 KB of a fi le are accessed directly. If the fi le is 
larger than 10 KB, then pointer number 10 points to a disk block called an indirect block. This 
block contains up to 256 (4-byte) pointers to data blocks (i.e., 256 KB of data). If the fi le is big-
ger than this (256 KB ! 10 KB " 266 KB), then pointer number 11 points to a double indirect 
block containing 256 pointers to indirect blocks, each of which contains 256 pointers to data 
blocks (64 MB of data). If the fi le is bigger than this (64 MB ! 256 KB ! 10 KB), then pointer 
number 12 points to a triple indirect block containing up to 256 pointers to double indirect blocks, 
each of which contains up to 256 pointers pointing to single indirect blocks, each of which contains 
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Organizing	  Free	  Storage	  on	  Disk	  
•  Free	  disk	  blocks	  are	  represented	  as	  

a	  linked	  list	  
•  Superblock	  

–  Contains	  addresses	  of	  up	  to	  100	  free	  
disk	  blocks	  

–  Last	  pointer	  points	  to	  another	  block	  
containing	  free	  disk	  blocks	  

–  Contains	  cache	  of	  indices	  of	  free	  
inodes	  

•  Inodes	  
–  Simply	  marked	  as	  free	  or	  not	  on	  disk	  
–  Disk	  writes	  required	  for	  alloca0on	  and	  

frees	  
•  Aids	  crash	  tolerance	  –	  inode	  updates	  
are	  immediate	  
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FIGURE 6 .5  S5FS free inode list.

the inode is marked as allocated. If the cache is empty, then the i-list is scanned for suffi cient free 
inodes to refi ll it. To aid this scan, the cache contains the index of the fi rst free inode in the i-list. 
Freeing an inode involves simply marking the on-disk inode as free and adding its index to the 
cache, if there’s room.

Why are inodes handled this way? In particular, why use a technique that requires a disk 
write every time an inode is allocated or freed? There are two reasons. First, inodes are allocated 
and freed much less often than data blocks, so there’s less need for a relatively complex technique 
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Disk	  Architecture	  
•  File	  systems	  op0mize	  performance	  

by	  being	  aware	  of	  disk	  
architecture	  

•  Architecture	  
–  Many	  plahers	  (top	  and	  bohom)	  
–  Many	  tracks	  per	  plaher	  
–  Tracks	  divided	  into	  equal	  length	  

sectors	  
–  Read	  a	  write	  heads	  per	  surface	  
–  One	  head	  ac0ve	  at	  a	  0me	  
–  Set	  of	  tracks	  selected	  by	  heads	  at	  

one	  moment	  calls	  a	  cylinder	  
•  Nomenclature	  

–  Seek	  0me	  :	  0me	  to	  posi0on	  the	  
heads	  over	  the	  correct	  cylinder	  

–  Rota0onal	  latency	  :	  0me	  ‘0l	  desired	  
sector	  is	  underneath	  head	  

–  Transfer	  0me	  :	  0me	  for	  sector	  to	  
pass	  under	  head	  
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 2. Rotate the disk platter until the desired sector is underneath the read/write head. The time 
required for this is known as the rotational latency.

 3. Rotate the disk platter further so the head can read or write the entire sector, transferring 
data between it and the computer’s memory. The time required for this is known as the 
transfer time.

The seek time is usually the dominant factor. Back in the days when S5FS was popular and FFS 
was being developed (the early 1980s), average seek times (i.e., the time required to move from 
one randomly selected cylinder to another) were typically in the neighborhood of 30 milliseconds. 
At the time of this writing, average seek times are from 2 to 10 milliseconds. It takes less time to 
move the disk heads a shorter distance than a longer distance, but the relationship is not linear: 
we must take into account the time required for acceleration and deceleration of the disk heads 
and other factors as well. A typical disk drive might have 25,000 cylinders. The time to move the 
heads one cylinder might be .2 milliseconds, yet the average seek time might still be 4 milliseconds. 
For our purposes, however, it suffi ces to say that closer means faster.

Rotational latency times depend on the speed at which disks spin. In the early 1980s this was 
pretty much always 3600 RPM. Today’s spin rates range from 5200 to 15,000 RPM. Assuming 
that the average rotational latency is the time required for half a revolution, rotational latency has 
gone from 8.3 milliseconds in the early 1980s to as little as 2 milliseconds today.

The transfer time depends both on rotational latency and on the number of sectors per 
track: the more sectors on a track, the smaller the fraction of a full revolution the platter must spin 
to pass one complete sector underneath a head. Since modern disks have more sectors in outer 
tracks than in inner tracks, the transfer time depends upon which track the sector is in. A typical 
drive might have 500 sectors in the inner tracks and 1000 in the outer tracks, with a sector size of 
512 bytes. Thus at 10,000 RPM, the transfer rate can be as high as almost 85 MB/second, though 
this rate can be maintained only for as much data as there is in a track. Transferring data that is 
spread out on multiple tracks requires additional positioning time.

Many disk controllers automatically cache the contents of the current track: as soon as a 
disk head is selected after a seek to a new cylinder, a buffer in the controller begins to fi ll with 
the contents of the sectors passing under the head. Thus after one complete revolution, the entire 
contents of the track are in the buffers and each sector can be read without further delay.

This form of caching is innocuous in the sense that it can only help performance and has 
no effect on the semantics of disk operations. Another form of caching — write-behind caching 
— is used by many modern disk controllers (particularly SATA) to cache disk writes, allowing 
the writer to proceed without having to wait for the data to be written to the actual disk. This can 

FIGURE 6 .7  Disk architecture.
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2013	  Disk	  Performance	  	  
•  Tricks	  of	  the	  trade	  

–  Maximizing	  throughput	  
•  Head	  skewing	  

–  Sectors	  offset	  on	  each	  head	  by	  some	  
number	  of	  sectors	  to	  account	  for	  head	  
switch	  0me	  

•  Cylinder	  skewing	  
–  Sectors	  offset	  by	  some	  amount	  to	  

account	  for	  one	  track	  seek	  0me	  
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speed things up a fair amount, but can be a problem if, for example, there is a power failure and 
the data does not actually get to disk. Worse yet, data may be written to disk in a different order 
from what the writer intended (we discuss the consequences of this in Section 6.2.1). Some fi le 
systems (such as ZFS (Section 6.6.6)) cope with this correctly, others do not.

Keep in mind that typical processor speeds in the early 1980s were over a thousand times 
lower than they are today. Even though disk technology has improved since then, processor 
technology has improved even more and thus the discrepancy between processor speed and disk 
speed has increased dramatically.

We now see where we must work so as to improve fi le access times. The biggest issue is 
seek time: we need to minimize how often and how far the disk heads move while satisfying disk 
requests. A lesser but still important issue is rotational latency: we need to position fi le data on 
disk so as to minimize it.

6.1.2.1 The Rhinopias Disk Drive
We now specify a disk drive to use as a running example so that we can be specifi c in examining 
fi le-system performance. We want our drive to be representative of drives available today, though 
it will undoubtedly be obsolete soon. We also need to give it a name: we’ll call it the Rhinopias 
drive. Our drive has the following characteristics:2

Rotation speed 10,000 RPM

Number of surfaces 8

Sector size 512 bytes

Sectors/track 500–1000; 750 average

Tracks/surface 100,000

Storage capacity 307.2 billion bytes

Average seek time 4 milliseconds

One-track seek time .2 milliseconds

Maximum seek time 10 milliseconds

From this information we compute its maximum transfer rate, which occurs when we transfer 
consecutive sectors from one track, as 85.33 million bytes/sec. Of course, this occurs only on 
outer tracks. A better fi gure might be the maximum transfer rate on the average track of 750 sectors: 
64 million bytes/sec.

What is the maximum transfer rate when we’re transferring data that occupies more than 
one track? Let’s fi rst consider data that resides in a single cylinder. Though we can switch read/
write heads quickly to go from one track to another in a cylinder, this requires some time, enough 
that by the time the drive switches from the read/write head for surface 1 to the head for surface 2, 
the disk has rotated some distance into the next sector. Thus if we want to access that next sector, 
we have to wait for the disk to spin almost one complete revolution.

What current disk drives (and thus our Rhinopias drive) do to avoid this problem is a trick 
called head skewing. Sector 1 on track 2 is not in the same relative position on the track as sector 
1 of track 1; instead, it’s offset by one sector. Thus, after accessing sectors 1 through 750 on one 
750-sector track, by the time the drive switches to the disk head of the next track, the disk has 
rotated so that sector number 1 is just about to pass under the head. Thus to compute the time 
required to transfer all the data in one cylinder, we must add to the transfer time for all but the last 

2 We use the prefi xes kilo-, mega-, and giga- to refer to powers of two: 210, 220, and 230. The terms thousand, million, and billion 
refer to powers of ten: 103, 106, and 109.
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S5FS	  Problems	  and	  Improvements	  
•  File	  alloca0on	  strategy	  results	  in	  slow	  file	  access	  
•  Small	  block	  size	  results	  in	  slow	  file	  access	  
•  Lack	  of	  resilience	  in	  the	  face	  of	  crashes	  is	  a	  killer	  

•  Possible	  improvements	  
–  Increase	  block	  size	  

•  Fragmenta0on	  becomes	  an	  issue	  

–  Rearrange	  disk	  layout	  to	  op0mize	  performance	  

	  

Dynamic	  Inodes	  
•  S5FS	  inode	  table	  is	  a	  fixed	  array	  

–  Requires	  predic0ng	  number	  of	  files	  the	  system	  will	  have	  
–  Can’t	  add	  more	  disk	  space	  to	  the	  file	  system	  

•  Solu0on	  
–  Treat	  inode	  array	  as	  a	  file	  
–  Keep	  inode	  for	  the	  inode	  file	  at	  a	  fixed	  loca0on	  on	  disk	  	  

•  Backup	  
	  

Crash	  Resiliency	  
•  To	  recover	  from	  a	  crash	  means	  to	  bring	  the	  file	  system’s	  metadata	  into	  a	  

consistent	  state	  
•  Some	  opera0ons	  (rename()	  )	  require	  many	  steps,	  requiring	  mul0ple	  

writes	  
•  Approaches	  

–  Consistency	  preserving	  
–  Transac0onal	  

•  Transac0on	  support	  common	  in	  databases	  
–  Journaling	  

•  New	  value	  –	  modifica0on	  steps	  are	  recorded	  in	  a	  journal	  first,	  then	  applied	  
•  Old	  value	  –	  old	  blocks	  are	  recorded	  in	  a	  journal,	  then	  filesystem	  updated	  

–  Shadow-‐paging	  
•  Original	  versions	  of	  modified	  items	  retained	  
•  New	  versions	  not	  integrated	  into	  the	  file	  system	  un0l	  the	  transac0on	  is	  commihed	  

(single	  write)	  

Journaled	  File	  Systems	  
•  Many	  file	  systems	  use	  journaling	  for	  crash	  tolerance	  
•  Journaling	  may	  be	  used	  to	  protect	  	  

–  Metadata	  
–  User	  data	  
–  Both	  

•  Ext3	  example	  
–  Updates	  grouped	  into	  0me-‐delimited	  transac0ons	  
–  Separate	  commit	  thread	  copies	  from	  file-‐system	  block	  cache	  to	  a	  journal	  
–  Back-‐links	  are	  maintained	  to	  cache	  that	  allowing	  freeing	  journal	  space	  upon	  

final	  commit	  
–  Upon	  crash	  any	  journaled	  updates	  are	  processed	  
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Shadow-‐Paged	  File	  Systems	  
•  Also	  called	  copy-‐on-‐write	  file	  

systems	  
–  e.g.	  WAFL	  and	  ZFS	  

•  Filesystem	  updates	  result	  in	  
en0rely	  new	  inode	  indirect	  
reference	  tree	  

•  Snapshot	  root	  always	  allows	  
recovery	  of	  a	  consistent	  
filesystem	  
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Root

Inode file
indirect
blocks

Inode file
data blocks

Regular file
indirect blocks

Regular file
data blocks

Snapshot root

FIGURE 6 .35 A leaf 
node in a shadow-page 
tree is modifi ed, step 2. 
Copies are made of the 
leaf node and its ances-
tors all the way up to 
the root. A copy of the 
old root is maintained, 
pointing to a snapshot 
of the old version of the 
fi le system.

The root itself is at a known location on disk and is modifi ed directly, in a single disk write. 
Thus, note two things:

 1. If the system crashes after any non-root nodes have been modifi ed but before the root is 
modifi ed, then when the system comes back up the root refers to the unmodifi ed fi le-system 
tree. No changes take effect on disk until the überblock is modifi ed. Thus we have a transaction 
— the modifi ed copies of the nodes are the shadow pages.

 2. A copy of the unmodifi ed root refers to the fi le-system tree as it was before the modifi cations 
took place. Thus we have a snapshot of the earlier state of the fi le system. Such snapshots 
can be kept around to let us recover inadvertently deleted fi les and can also provide a consistent 
copy of the fi le system for backup to a tape drive.

Note also that the transactions don’t require extra disk writes, as the journaling approach does. 
As mentioned in Section 6.2.2 above, (Brown, Kolling, et al. 1985) argued that though fewer 
disk writes are required, those that were necessary were expensive because they are not to con-
tiguous locations. But fi le-system technology has improved greatly since 1985. In particular, 
log-structured fi le systems have shown that we can simply group a bunch of seemingly unre-
lated fi le pages together and write them as a sequence of contiguous blocks. This and other 
techniques are used in both WAFL and ZFS to provide good performance, as we discuss in 
Sections 6.6.5 and 6.6.6 below.

 

Naming in fi le systems is pretty straightforward: fi les are named by their path names in a basically 
tree-structured naming hierarchy. We could certainly think of other naming techniques — for 
example, names could be completely unstructured with no notion of directories — but the organizing 
power of directories has proven itself over the past few decades and seems here to stay.

We note briefl y that fi le systems are not database systems. File systems organize fi les for 
easy browsing and retrieval based on names. They do not provide the sophisticated search facilities 
of database systems. The emphasis in fi le systems is much more on effi cient management of 
individual fi les than on information management in general. Thus, by database standards, the 
organization of fi le systems only on the basis of fi le names is pretty simplistic. But implementing 
such naming well is extremely important to the operating system.

The implementation of a fi le-system name space has all the requirements of the rest of the fi le 
system: it must be fast, miserly with space, crash tolerant, and easy to use. The key components are 
directories and various means for piecing different name spaces together — that is, the notion of 
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Directories	  and	  Naming	  
•  Opening	  a	  file	  requires	  	  

–  Following	  its	  pathname	  
–  Opening	  directory	  files	  

•  Crea0ng	  a	  file	  
–  Verifying	  pathname	  
–  Inser0ng	  component	  in	  last	  

•  S5FS	  
–  Linear	  sequence	  of	  fixed	  length	  names	  and	  inode	  numbers	  
–  Dele0ng	  entries	  involved	  marking	  slots	  as	  free	  
–  No	  directory	  space	  ever	  given	  back	  to	  filesystem!	  
–  Sequen0al	  search!	  

•  Subsequent	  genera0on	  directory	  structure	  
–  Variable	  length	  names	  
–  First	  fit	  replacement	  

•  Directory	  opera0ons	  were	  a	  major	  bohleneck!	  

Hashing	  
•  Extensible	  hashing	  

–  Sequence	  of	  hash	  func0ons	  	  
•  h0,	  h1,	  h2,	  …,	  hi,	  	  

–  Low	  order	  bits	  of	  hi	  are	  enforced	  to	  be	  the	  same	  as	  hi-‐1	  
–  hi	  hashes	  to	  2i	  buckets	  

•  Example	  :	  Adding	  Fritz	  (hashed	  to	  bucket	  2)	  
–  Indirect	  buckets	  used	  to	  efficiently	  and	  compactly	  implement	  rehashing	  by	  

replica0ng	  non-‐split	  bucket	  pointers	  
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Alice inode index

George inode index

Ralph inode index
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Adam inode index
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FIGURE 6 .37 Extensible hashing example, part 1. Here we have four buckets and hence are using h2, 
which actually computes indexes into the array of indirect buckets, which, in turn, lead to the appropriate 
bucket. Each of our buckets holds two items. We are about to add an entry for Fritz. However, h2(Fritz) is 
2 and the bucket that leads to it is already full.

Harry inode index
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inode indexGeorge
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inode indexLily
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FIGURE 6.38 Extensible hashing example, part 2. Here we’ve added an entry for Fritz to the directory of 
Figure 6.37. Since the bucket Fritz was to go in under h2 was full, we’ve switched to h3, which maps names 
into eight buckets. However, rather than double the number of buckets and rehash the contents of all the old 
buckets, we take advantage of the array of indirect buckets. We double their number, but, initially, the new 
ones point to the same buckets as the old ones do: indirect buckets 0 and 4 point to bucket 0, indirect buckets 
1 and 5 point to bucket 1, and so forth. For Fritz’s sake we add a new (direct) bucket which we label 4. 
We rehash Fritz and the prior contents of bucket 2 under h3, with the result that Fritz and George end up in 
the bucket referred to by indirect bucket 6, while Alice stays in the bucket referred to by indirect bucket 2. 
Thus, we set indirect bucket 6 to refer to the new bucket 4. If, for example, we add another name that would 
go into bucket 0, we’d have to add another bucket to hold it and rehash the current contents of bucket 0.

CH006.indd   257CH006.indd   257 8/6/10   12:11:39 PM8/6/10   12:11:39 PM

6.3 Directories and Naming 257

Harry inode index

Betty inode index

Alice inode index

George inode index

Ralph inode index

inode indexLily

Adam inode index

Indirect buckets

h2

Buckets

0

1

2

3

FIGURE 6 .37 Extensible hashing example, part 1. Here we have four buckets and hence are using h2, 
which actually computes indexes into the array of indirect buckets, which, in turn, lead to the appropriate 
bucket. Each of our buckets holds two items. We are about to add an entry for Fritz. However, h2(Fritz) is 
2 and the bucket that leads to it is already full.

Harry inode index

Betty inode index

Alice inode index

inode indexGeorge

Ralph inode index

inode indexLily

Adam inode index

Indirect buckets

h3

Fritz inode index

Buckets

0

1

2

3

4

FIGURE 6.38 Extensible hashing example, part 2. Here we’ve added an entry for Fritz to the directory of 
Figure 6.37. Since the bucket Fritz was to go in under h2 was full, we’ve switched to h3, which maps names 
into eight buckets. However, rather than double the number of buckets and rehash the contents of all the old 
buckets, we take advantage of the array of indirect buckets. We double their number, but, initially, the new 
ones point to the same buckets as the old ones do: indirect buckets 0 and 4 point to bucket 0, indirect buckets 
1 and 5 point to bucket 1, and so forth. For Fritz’s sake we add a new (direct) bucket which we label 4. 
We rehash Fritz and the prior contents of bucket 2 under h3, with the result that Fritz and George end up in 
the bucket referred to by indirect bucket 6, while Alice stays in the bucket referred to by indirect bucket 2. 
Thus, we set indirect bucket 6 to refer to the new bucket 4. If, for example, we add another name that would 
go into bucket 0, we’d have to add another bucket to hold it and rehash the current contents of bucket 0.
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B+	  Trees	  
•  Balanced	  tree	  

–  Node-‐degree	  requirement	  :	  each	  node	  fits	  in	  a	  block	  
–  Node-‐size	  requirement	  :	  each	  block	  must	  be	  at	  least	  half	  full	  
–  Leaves	  are	  linked	  together	  

•  Example	  tree	  with	  block	  size	  3	  
–  Consider	  inser0ng	  Lucy	  
–  Consider	  dele0on	  
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example of Figure 6.39. But if there’s no room, we need to add a new directory block and fi t this 
block into the search tree.

Adding a directory block requires a bit of work. Suppose we add the name Lucy. Since 
the directory block it should go into does not have enough free space to hold it, we create a new 
block and move everything greater than Lucy, namely Matthew and Nicole, from the old block to 
the new one, and put Lucy in the old one. We now have two blocks where we used to have one. 
If the parent node, c, of the just-copied block had room for it, we could simply modify c’s ranges 
to refer to the new block as well as the old one and we’d be done — we wouldn’t have increased 
the length of any search path, so the tree would still be balanced.

However, in our case, this parent-node c has no room. So we split it into two nodes, c 
and c!, and add a range for the new node to the appropriate parent — c! in this case. We again 
have two nodes where we used to have one. So we must go to the parent of c and c! to accom-
modate c!. As before, if this parent has room, we’re done, otherwise we have to split it and 
continue on.

If we reach the root and have to split it, we create a new root node with two ranges, each 
referring to one of the halves of the former root. We’ve thus increased the number of levels in the 
tree by one, yet maintained its balance. In our example, we have to split node a into nodes a and 
a!, and thus create a new root, r — see Figure 6.40.

When deleting an entry, we must make certain we maintain the invariant that all nodes 
are at least half full. Let’s suppose we remove Paula and Otto in Figure 6.40. This causes the 
directory block containing them to become empty. We could simply leave the empty block in the 
directory — this is what S5FS and FFS do, after all. But it’s certainly cleaner and more space 
effi cient to remove it, so let’s do so (though note that many systems don’t bother rebalancing after 
a deletion, but simply delete the storage when a block is completely free).

We free the block and remove its range from the parent node that points to it, c!. If this 
node were more than half full, we’d be done. In our case it’s not, so we examine the parent’s 
adjacent siblings (there must be at least one — just node d in our case). Can we combine the 
contents of nodes c! and d to form a single node? If we can’t, we would move just enough entries 
from d to c! so that it is at least half full (since each node must have room for at least three 
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Introduc0on	  to	  Networking	  
•  Defini0on	  

–  A	  way	  to	  interconnect	  computers	  so	  that	  they	  can	  exchange	  informa0on	  

•  Types	  
–  Circuit	  (old	  phone	  networks)	  

•  Actual	  circuit	  between	  devices	  established	  
–  Packet	  switching	  (currently	  most	  common)	  

•  Data	  is	  divided	  into	  marked	  packets	  that	  are	  transported	  independently	  

•  Challenges	  
–  Data	  can	  be	  lost	  or	  reordered	  
–  To	  much	  traffic	  can	  clog	  network	  
–  Base	  /	  Home	  networks	  are	  heterogenous	  

Standardiza0on	  
•  Interna0onal	  Standards	  Organiza0on	  (ISO)	  

Open	  Systems	  Interconnect	  (OSI)	  7-‐layer	  
network	  model	  

•  Layers	  
1.  Physical	  layer	  (the	  wire,	  EM,	  etc.)	  
2.  Data	  link	  layer	  (e.g.	  ethernet)	  

•  Means	  for	  moving	  data	  on	  and	  off	  wire	  
•  Info.	  representa0on	  scheme	  in	  EM	  waves	  	  

–  Sequences	  of	  bits	  known	  as	  frames	  
•  Sharing	  mechanisms	  
•  Medium	  access	  control	  (MAC)	  addresses	  

–  Used	  to	  decide	  who	  should	  get	  what	  
3.  Network	  layer	  

•  Addressing,	  delivery,	  packets	  
4.  Transport	  layer	  

•  Ensures	  communica0on	  is	  reliable	  
5.  Session	  layer	  

•  Dialogue	  control	  (who	  talks	  when),	  
synchroniza0on	  (error	  recovery),	  etc.	  

6.  Presenta0on	  layer	  
•  Deals	  with	  transforming	  datastructures	  

(endianness,	  floa0ng	  point	  numbers,	  …)	  
7.  Applica0on	  layer	  (e.g.	  hhp)	  

•  High-‐level	  applica0on	  (support)	  sobware	  
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Data passing through the network can be lost or reordered.

Too much traffi c can overwhelm the routers and switches.

These concerns and others were addressed by a committee operating under the auspices of the 
International Organization for Standardization (known as ISO4) in the 1970s by defi ning a network 
model consisting of seven layers, known as the Open Systems Interconnect (OSI) model (Figure 9.1). 
Each layer is built on top of the next lower layer and provides certain types of functionality. Protocols 
can then be designed and implemented to provide the functionality of a particular layer.

Here’s a brief description of the OSI model’s layers.

 1. The physical layer corresponds to the “wire.” Concerns here have to do with electromagnetic 
waves and the medium through which they are propagating.

 2. The data link layer provides the means for putting data on the wire (and for taking it off). 
An example is the Ethernet. Concerns here include how to represent bits as electromagnetic 
waves. Data is represented as sequences of bits known as frames. If, as in the Ethernet, the 
physical layer can be shared with potentially more than one other computer, some means for 
sharing must be provided; doing this properly is known as medium access control (MAC). 
The MAC address is used to indicate who should receive a frame. Important parameters 
include the form of the MAC address and the maximum and minimum frame sizes.

 3. The network layer sees to it that the data travels to the intended destination (perhaps via a 
number of intermediate points). It deals with data in units known as packets. Some notion 
of a network address is needed here to identify other computers.

 4. The transport layer is responsible for making sure that communication is reliable, i.e., that 
what’s sent is received unchanged. 

4 One might think it should be known as IOS, but it’s supposed to be an international organization, and IOS would make sense in 
English, but, for example, not in French. So, “ISO” is chosen as its abbreviation: the three letters are derived from “isos,” which 
means “equal” in Greek. (See http://www.iso.org/iso/about/discover-iso_isos-name.htm.)
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FIGURE 9 .1  ISO’s open systems interconnect (OSI) model.
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Internet	  Protocols	  
•  Dis0nc0ons	  in	  top	  three	  layers	  

ignored	  
•  Base	  network	  combines	  OSI	  1&2	  

–  Called	  internet	  protocol	  (IP)	  
–  Protocol	  data	  unit	  (packet)	  

•  IP	  Packet	  
–  Header	  (addresses)	  
–  Data	  (PDU	  of	  higher	  layer)	  

•  Called	  a	  segment	  
•  Packaging	  

–  Normally	  a	  header	  is	  added	  to	  a	  
segment	  

–  If	  a	  segment	  is	  too	  large	  it	  is	  split	  
•  e.g.	  ethernet’s	  maximum	  transfer	  

unit	  (MTU)	  is	  1500	  bytes	  
•  Rou0ng	  

–  Controlled	  externally	  
–  Picked	  from	  rou0ng	  tables	  
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 5. The session layer builds on the reliable connection provided by the transport layer. Among 
the services provided here can be dialog control, which indicates whose turn it is to transmit, 
and synchronization, which tracks progress for error recovery. For example, if the transport 
connection fails, a new one can be established under the same session as the original.

 6. The presentation layer deals with the representation of data. It copes with the different ways 
machines represent basic data items (such as integers and fl oating-point numbers) and pro-
vides a means for communicating more complicated data items, such as arrays and structure.

 7. The application layer is not necessarily where the application resides, but rather where 
high-level software used by the application for network access resides. For example, the 
HTTP protocol used for web browsing can be considered to reside here.

The bottom three layers (layers 1–3) are sometimes called the communications subnet. Data that 
must pass through a number of machines on its way to the destination is forwarded by an 
implementation of protocols in these lower layers on each intermediate machine.

The distinctions among the top three layers are in general pretty much ignored. Many 
applications use remote-procedure-call and similar protocols that are built on top of the transport 
layer and incorporate all the functionality of layers 5 through 7.

The OSI model is useful in helping us understand a number of networking issues, but as a 
model it’s not strictly followed in practice, where “practice” means the Internet. The Internet’s model 
is considerably simpler and more specifi c: while the OSI model was intended as the basis of any 
number of network protocols, the Internet model was designed as a model for the Internet, period.

The OSI model can be considered an a priori model in the sense that it came fi rst, with 
the idea that protocols were to follow. With the Internet model, the reverse happened: fi rst there 
were protocols, then a model to describe them. This is an a posteriori model: the model came 
after the protocols.

The protocols used on the Internet are known as the Internet protocols (also called TCP/
IP). They don’t fi t precisely into the OSI model (for example, there is no analog of the session 
and presentation layers), but the rough correspondence is shown in Figure 9.2.

There was much speculation in the 1980s that protocols designed to fi t in the OSI model 
not only would be competitors of the Internet protocols, but would replace them. Today one hears 
very little of the OSI protocols (though the OSI seven-layer terminology is much used); whatever 
competition there was between the OSI protocols and the Internet protocols was defi nitely won 
by the latter.
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End-to-end

Internet

Net interface

Internet

Net interface

Internet

Net interface

OSI Layers 5-7

OSI Layer 4

OSI Layer 3

OSI Layers 1-2

FIGURE 9 .2  The Internet’s networking model.
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9.1.1.1 The Internet Protocol (IP)
What we called a “base network” earlier is abstracted by OSI layers 1 and 2. Thus the peculiarities 
of a particular base network are handled by protocols at OSI layer 3. The Internet has exactly 
one protocol defi ned for this layer, the internet protocol (IP). It is, however, evolving. Version 4 
is currently in use (versions 1 through 3 were never in common use), but may be replaced by 
version 6 (version 5 was never in common use either). Here we discuss version 4.

First, we say a few words about what’s called a protocol data unit (PDU). This is the 
information sent as one unit by a protocol at a particular level. The PDU of IP, sitting at the network 
layer, is known as a packet. In general, PDUs contain control information as well as data. This 
control information is usually segregated from the data and placed at the beginning, where it’s 
called a header; however, sometimes some or all of it may be at the end of the PDU, where it’s called 
a trailer. What’s important is that the data portion of a PDU is the PDU of the next-higher-layer 
protocol. In particular, the data portion of an IP packet is the PDU of the transport layer (where 
the PDU is called a segment). Similarly, the network-layer packet is the data portion of the data-
link-layer PDU (a frame).

IP forms packets from the segments given it by the transport protocol. Ordinarily IP simply 
takes the segment as is and puts a header in the front (see Figure 9.3, where the transport layer’s 
segment is called data). However, if the resulting packet would be too large for the data-link layer 
to handle (for example, Ethernet’s maximum transfer unit (MTU) is 1500 bytes, meaning that its 
frames cannot be larger than that), IP breaks the segment into some number of fragments, so that 
each, when combined with IP and Ethernet headers, is no larger than the MTU, and transmits each 
as a separate packet. When forwarding packets on a router, IP ordinarily simply takes them and 
forwards them on to their destination. However, if the packet is too large for the outgoing 
data-link layer, it again breaks the packet data into appropriately sized fragments and forwards 
each separately. It’s the responsibility of the ultimate destination’s IP to reassemble the fragments 
into the segment expected by the transport protocol. The fragment offset fi eld of the IP header 
(Figure 9.3) indicates the byte offset relative to the beginning of the original segment of the 
data portion of a fragmented IP packet. The identifi cation fi eld identifi es the original segment of 
which this is a fragment.

IP’s primary job is forwarding: getting packets to their destination. Each packet contains 
the source and destination addresses. Based on the destination address, IP either keeps the packet, 
sending it up to the higher-level protocol, or forwards it on to the next hop in its route.

Determining the route is the tough part. Routing information is not maintained by IP, but 
supplied either by a separate routing protocol or by an administrator. In either case, routes are 
stored in a table for IP’s use. If the destination is another host on a directly connected network, IP 

vers hlen type of serv total length

identification flags fragment offset

time-to-live protocol header checksum

source address

destination address

options padding

data

FIGURE 9 .3  IP packet showing header.
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IPv4	  Addresses	  
•  Structured	  32-‐bit	  numbers	  
•  Allows	  

–  2113658	  networks	  
–  3189604356	  hosts	  

•  Issues	  
–  Too	  many	  (large	  rou0ng	  tables)	  
–  Too	  few	  (not	  enough	  hosts)	  

•  IPv6	  =	  128	  bit	  addresses	  
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forwards it directly to that host. Otherwise it checks the routing table for either an entry 
containing a route to the given address or, if that’s not present, an entry giving a route to the 
base network of the destination. If neither is present, then there should be a default entry giving 
a route to a router with more information. Ultimately this leads to one of a set of routers 
(originally called core routers) without default entries in their tables, but with routes to all 
known base networks.

Internet addresses are structured 32-bit values usually written in dot notation, in which 
each byte, from most signifi cant to least, is written in decimal and is separated from the next by 
a dot. For example, 0x8094400a is written as 128.148.64.10. The original idea was that these 
addresses were split into three fi elds: a class identifi er, a network number (identifying a base net-
work), and a host number (Figure 9.4). Three classes of addresses, known as A, B, and C, were 
defi ned, each providing a different split between the bits identifying the network and the bits 
identifying a host on that network. Each network uses just one class of addresses — networks are 
referred to as class-A, class-B, or class-C. A fourth class of addresses, class D, was also defi ned, 
as explained below.

Class-A networks have 7 bits to identify the network and 24 to identify the host on that 
network. Thus there could be up to 27–2 class-A networks (the all-zeros and all-ones addresses 
are special), each with 224–2 hosts. Class-B networks have 14 bits to identify the network and 
16 bits to identify the host. Class-C networks have 21 bits for the network and 8 bits for the 
host. Thus there could be 214–2 class-B networks, each with 216–2 hosts, and 221–2 class-C networks, 
each with 28–2 hosts. Class-D addresses are used for multicast: one-to-many communication. 
Not counting the multicast addresses, this scheme allows a total of 2,113,658 networks and 
3,189,604,356 hosts.

There are two problems with these address classes. The fi rst is that the numbers are too big. 
The other is that they’re too small. They’re too big because they require huge routing tables and 
too small because there aren’t enough usable addresses.

Since the core routers must have routes for all networks, their routing tables potentially 
have 2,113,658 entries. What’s more, the routing protocols require that the core routers periodi-
cally exchange their tables. The memory and communication costs for this were prohibitive in the 
1980s (though they are not that bad now).

Making the problem of not enough network addresses even worse was that a fair portion 
of the class-A and class-B addresses were wasted. This was because few if any class-A networks 
had anything close to 224–2 hosts on them, or could even contemplate having that many. Even 
with class-B networks, 216–2 hosts were far more than was reasonable.

hostnetwork0Class A

hostnetwork10Class B

24 bits7 bits

16 bits14 bits

hostnetwork110Class C

8 bits21 bits

multicast group ID1110Class D

28 bits

FIGURE 9 .4  Class-based Internet addresses.
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Internet	  Transport	  Protocols	  
•  User	  datagram	  protocol	  (UDP)	  

–  Not	  reliable	  
–  Provides	  checksum	  only	  
–  Allows	  one	  to	  implement	  own	  reliability	  scheme	  

•  Transmission	  control	  protocol	  (TCP)	  
–  Reliable	  communica0on	  
–  Copes	  with	  network	  conges0on	  
–  32	  bit	  sequence	  number	  transmihed	  from	  

sender	  to	  receiver	  indica0ng	  how	  many	  bytes	  
have	  been	  transmihed	  

–  Response	  returned	  indica0ng	  successful	  receipt	  
of	  the	  whole	  sequence	  numbered	  less	  than	  the	  
returned	  value	  

–  Sequence	  numbers	  must	  be	  reused	  
•  Gives	  rise	  to	  a	  maximum	  segment	  life0me	  (set	  

“by	  fiat”	  to	  2	  min.)	  
–  Star0ng	  sequence	  number	  decided	  in	  handshake	  

•  Both	  augment	  IP	  addresses	  with	  16	  bit	  port	  
numbers	  
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while some of the segments are still in transit. Then we start again, “reincarnating” the session. 
If we start with the same sequence number as we started with previously, the late-arriving segments 
from the previous session may be mistaken for segments belonging to the current session. So, 
when starting a new session, we need to choose an initial sequence number that we know is not 
in a previously transmitted segment that’s still out on the Internet.

It might seem reasonable to keep track of the last sequence number used and use one 
greater than that for the next connection to a particular destination. But this would mean keeping 
track of sequence numbers of all recently terminated connections. This probably wouldn’t be all 
that unreasonable today, but was considered so in 1981. It also wouldn’t completely solve the 
problem, as explained below.

What was done instead was to guess the maximum speed at which sequence numbers are 
being consumed and then assign initial sequence numbers assuming that any previous connec-
tion ran at that speed. The speed chosen was 250,000 bytes/second. So, for example, a connection 
starting at time 0 was given an initial sequence number of 0. If that connection terminated for 
some reason and a new connection was made 1000 seconds after the fi rst one started, since 
the old connection must have transmitted less than 250,000,000 bytes, the new one was safely 
given an initial sequence number of 250,000,000. This approach is known as using an initial-
sequence-number (ISN) generator. Of course, if the actual communication speed was greater 
than 250,000 bytes/second, or if the ISN generator wrapped around completely (it had a period 
of 4.55 hours) while a connection was still active, there still might be a duplicate sequence-number 
problem. However, in 1981, communication that fast and that long-lasting didn’t happen, so this 
approach worked.

There were other problems, though. If a system crashed and then restarted, the ISN 
generator would be restarted as well. One might think that the generator could be based on a 
time-of-day clock that survives crashes, but this has problems as well. So, the suggestion was to 
wait an MSL after rebooting before starting up TCP. In practice, machines took far longer than 
an MSL to reboot, so such a delay was not needed. A more serious problem has to do with 
sequence-number-guessing attacks — see RFC 1948.7

Let’s look at how TCP actually works. Figure 9.5 shows a typical TCP segment, including 
its header. There’s no need for IP addresses, since these are in the IP header; but the header does 
contain the sending and receiving port numbers. The fl ags fi eld contains various control bits. Two 
of these bits — the SYN and FIN fl ags — appear in the sequence number space and thus are sent 

7 http://tools.ietf.org/html/rfc1948.

source port
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acknowledgment sequence number

checksum

options

data

destination port

padding

window sizeoffset reserved flags

urgent pointer

FIGURE 9 .5  TCP segment with header.
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reliably if set. If the ACK fl ag is set, then the acknowledgment sequence number fi eld contains an 
acknowledgment as described above: all data bytes and control bits with sequence numbers less 
than this have been received. The RST (reset) bit, used to indicate something has gone wrong, 
generally means that the connection is being unilaterally terminated. The PSH (push) bit indicates 
that the segment should be passed to the application without delay. The URG (urgent data) bit 
indicates that the urgent pointer fi eld is meaningful. If the URG bit is set, then the urgent-pointer 
fi eld contains the sequence number of the end of “urgent data” that should be delivered to the 
application even before data with earlier sequence numbers. (The urgent data begins at the beginning 
of the fi rst segment with the URG fl ag set.)

The checksum fi eld is a checksum not only on the TCP header, but on the TCP data and 
on the address portions of the IP header as well. If a receiver determines the checksum is 
bad, it discards the packet and relies on the sender to retransmit it. The options fi eld contains 
variable-length optional information that we won’t discuss. Finally, the window-size fi eld 
indicates how much buffer space the sender has to receive additional data. We discuss this in 
more detail below.

TCP’s actions are controlled by the rather elaborate state machine shown in Figure 9.6. 
Here the edges between states are labeled with the event causing a state transition as well as 
the action performed when changing states. An entity using TCP starts with its connection in the 
closed state. If it’s a server, it performs what’s called a passive open and goes to the listen state, 
where it’s ready to receive connections from clients.

It’s the client that actually initiates a connection. It starts a “three-way handshake” in which 
both parties come up with a suitable initial sequence number and reliably communicate it to the 
other. The client performs an active open, in which it sends a special synchronize segment to 
the server and goes to the syn-sent state. This synchronize segment has the SYN bit set in the 
header’s fl ags and contains the client’s initial sequence number — thus the SYN bit itself has this 
number. When the synchronize segment reaches the server, it responds with its own synchronize 
segment and goes to the syn-received state. Its synchronize segment has the SYN and ACK bits 
set in the fl ags, contains the server’s initial sequence number, and acknowledges the client’s 
initial sequence number (that is, its acknowledgment-sequence-number fi eld contains a value 
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recv ACK of FIN

recv ACK

FIGURE 9 .6  TCP state machine.
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