
28/01/16	

1	

Introduc0on	

B16	 Opera0ng	 Systems	

Learning	 Outcomes	 (Examinable	 Material	 *)	
•  Familiarity	 with	 opera0ng	 system	 concepts	 	

–  File	
–  Process	
–  Thread	
–  Synchronisa0on	
–  Memory	
–  Paging	
–  Socket	
–  Port	
	

•  Datastructures	 /	 implementa0ons	
–  Page	 table	
–  Semaphore	
–  Mutex	
–  Socket	

Perspec0ve	
•  User	 perspec0ve	 *	

–  Linux	 (posix	 compliant	 OS)	
–  System	 calls	 (fork,	 wait,	 open,	 prinP)	
–  Command	 line	 u0li0es	 (man	 <sec0on>)	
–  C	 programs	

•  Opera0ng	 system	 implementa)on	 perspec0ve	
–  “Simple-‐OS”	
	

Lecture	 1	 :	 History	 and	 User	 Perspec0ve	

Material	 from	 	
Opera0ng	 Systems	 in	 Depth	 	

(spec.	 Chapter	 1)	 	
by	

Thomas	 Doeppner	
	

GET	 THIS	 BOOK	 AND	 READ	 IT!	

B16	 Opera0ng	 Systems	

28/01/16	

2	

What	 is	 an	 opera0ng	 system?	
•  Opera0ng	 systems	 provide	 sobware	 abstracts	 of	

–  Processors	
–  RAM	 (physical	 memory)	
–  Disks	 (secondary	 storage)	
–  Network	 interfaces	 	
–  Display	
–  Keyboards	
–  Mice	

•  Opera0ng	 systems	 allow	 for	 sharing	
•  Opera0ng	 systems	 typically	 provide	 abstrac0ons	 for	

–  Processes	
–  Files	
–  Sockets	

Why	 should	 we	 study	 opera0ng	 systems?	
•  “To	 a	 certain	 extent	 [building	 an	 opera0ng	 system	 is]	 a	 solved	

problem”	 –	 Doeppner	
•  “So	 too	 is	 bridge	 building”	 –	 Wood	

–  History	 and	 its	 lessons	
•  Capacity	 and	 correct	 usage	

–  Improvement	 possible	
•  New	 algorithms,	 new	 storage	 media,	 new	 peripherals	
•  New	 concerns	 :	 security	
•  New	 paradigms	 :	 the	 “cloud”	

Review	 :	 Computer	 ≈	 Von	 Neumann	 Architecture	 	

Image	 from	 hhp://cse.iitkgp.ac.in/pds/notes/intro.html	

Review	 :	 Machine	 Instruc0ons	 and	 Assembly	 Code	
•  Machine	 code	 :	 instruc0ons	 directly	 executed	 by	 the	 CPU	

–  From	 Wikipedia	 :	 	
•  “the	 instruc0on	 below	 tells	 an	 x86/IA-‐32	 processor	 to	 move	 an	 immediate	 8-‐bit	
value	 into	 a	 register.	 	 The	 binary	 code	 for	 this	 instruc0on	 is	 10110	 followed	 by	 a	
3-‐bit	 iden0fier	 for	 which	 register	 to	 use.	 	 The	 iden0fier	 for	 the	 AL	 register	 is	 000,	
so	 the	 following	 machine	 code	 loads	 the	 AL	 register	 with	 the	 data	 01100001.”	

•  Assembly	 language	 :	 one-‐to-‐one	 mapping	 to	 machine	 code	 (nearly)	
–  Mnemonics	 map	 directly	 to	 instruc0ons	 (MOV	 AL	 =	 10110	 000)	
–  From	 Wikipedia	 :	 	

•  “Move	 a	 copy	 of	 the	 following	 value	 into	 AL,	 and	 61	 is	 a	 hexadecimal	
representa0on	 of	 the	 value	 01100001”	

10110000	 01100001	

MOV	 AL,	 61h	 	 	 	 	 	 	 ;	 Load	 AL	 with	 97	 decimal	 (61	 hex)	

28/01/16	

3	

Compila0on	 and	 Linking	
•  A	 compiler	 is	 a	 computer	 program	 that	 transforms	 source	 code	

wrihen	 in	 a	 programming	 language	 into	 another	 computer	
language	
–  Examples	 :	 GNU	 compiler	 collec0on	

•  A	 linker	 takes	 one	 or	 more	 object	 files	 generated	 by	 a	 compiler	 and	
combines	 them	 into	 a	 single	 executable	 program	
–  Gathers	 libraries,	 resolving	 symbols	 as	 it	 goes	
–  Arranges	 objects	 in	 a	 program’s	 address	 space	

•  Touches	 OS	 through	 libraries,	 virtual	 memory,	 program	 address	
space	 defini0ons,	 etc.	
–  Modern	 OS’	 provide	 dynamic	 linking;	 run0me	 resolu0on	 of	 unresolved	

symbols	

	

History	 :	 1950’s	
•  Earliest	 computers	 had	 no	 opera0ng	 systems	
•  1954	 :	 OS	 for	 MIT’s	 “Whirlwind”	 computer	 	

–  Manage	 reading	 of	 paper	 tapes	 avoiding	 human	 interven0on	

•  1956	 :	 OS	 General	 Motors	
–  Automated	 tape	 loading	 for	 an	 IBM	 701	 for	 sharing	 computer	 in	 15	 minute	

0me	 alloca0ons	

•  1959	 :	 “Time	 Sharing	 in	 Large	 Fast	 Computers”	
–  Described	 mul0-‐programming	

•  1959	 :	 McCarthy	 MIT-‐internal	 memo	 described	 “0me-‐share”	 usage	
of	 IBM	 7090	
–  Modern	 :	 interac0ve	 compu0ng	 by	 mul0ple	 concurrent	 users	

Early	 OS	 Designs	
•  Batch	 systems	

–  Facilitated	 running	 mul0ple	 jobs	 sequen0ally	

•  I/O	 bohlenecks	
–  Computa0on	 stopped	 to	 for	 I/O	 opera0ons	

•  Interrupts	 invented	
–  Allows	 no0fica0on	 of	 an	 asynchronous	 opera0on	 comple0on	
–  First	 machine	 with	 interrupts	 :	 DYSEAC	 1954,	 standard	 soon	 thereaber	

•  Mul0-‐programming	 followed	
–  With	 interrupts,	 computa0on	 can	 take	 place	 concurrently	 with	 I/O	
–  When	 one	 program	 does	 I/O	 another	 can	 be	 compu0ng	
–  Second	 genera0on	 OS’s	 were	 batch	 systems	 that	 supported	 mul0-‐

programming	

History	 :	 1960’s,	 the	 golden	 age	 of	 OS	 R&D	
•  Terminology	 	

–  “Core”	 memory	 refers	 to	 magne0c	 cores	 each	 holding	 one	 bit	 (primary)	
–  Disks	 and	 drums	 (secondary)	

•  1962	 :	 Atlas	 computer	 (Manchester)	 	
–  “virtual	 memory”	 :	 programs	 were	 wrihen	 as	 if	 machine	 had	 lots	 of	 primary	

storage	 and	 the	 OS	 shuffled	 data	 to	 and	 from	 secondary	 	
•  1962	 :	 Compa0ble	 0me-‐sharing	 system	 (CTSS,	 MIT)	

–  Helped	 prove	 sensibility	 of	 0me-‐sharing	 (3	 concurrent	 users)	
•  1964	 :	 Mul0cs	 (GE,	 MIT,	 Bell	 labs;	 1970	 Honeywell)	 	

–  Stated	 desiderata	
•  Convenient	 remote	 terminal	 access	 	
•  Con0nuous	 opera0on	
•  Reliable	 storage	 (file	 system)	
•  Selec0ve	 sharing	 of	 informa0on	 (access	 control	 /	 security)	
•  Support	 for	 heterogeneous	 programming	 and	 user	 environments	

–  Key	 conceptual	 breakthrough	 :	 unifica0on	 of	 file	 and	 virtual	 memory	 via	
everything	 is	 a	 file	

28/01/16	

4	

History	 :	 1960’s	 and	 1970’s	
•  IBM	 Mainframes	 OS/360	
•  DEC	 PDP-‐8/11	

–  Small,	 purchasable	 for	 research	

•  1969	 :	 UNIX	
–  Ken	 Thompson	 and	 Dennis	 Ritchie;	 Mul0cs	 effort	 drop-‐outs	
–  Wrihen	 in	 C	
–  1975	 :	 6th	 edi0on	 released	 to	 universi0es	 very	 inexpensively	
–  1988	 System	 V	 Release	 4	 	

•  1996	 :	 BSD	 (Berkeley	 sobware	 distribu0on)	 v4.4	
–  Born	 from	 UNIX	 via	 DEC	 VAX-‐11/780	 and	 virtual	 memory	

1980’s	 :	 Rise	 of	 the	 Personal	 Computer	 (PC)	
•  1970’s	 :	 CP/M	

–  One	 applica0on	 at	 a	 0me	 –	 no	 protec0on	 from	 applica0on	
–  Three	 components	

•  Console	 command	 process	 (CCP)	
•  Basic	 disk	 opera0ng	 system	 (BDOS)	
•  Basic	 input/output	 system	 (BIOS)	

•  Apple	 DOS	 (aber	 CP/M)	
–  1978	 Apple	 DOS	 3.1	 ≈	 CP/M	

•  Microsob	 	
–  1975	 :	 Basic	 interpreter	
–  1979	 :	 Licensed	 7-‐th	 edi0on	 Unix	 from	 AT&T,	 named	 it	 Xenix	
–  1980	 :	 Microsob	 sells	 OS	 to	 IBM	 and	 buys	 QDOS	 (no	 Unix	 royal0es)	 to	 fulfill	

•  QDOS	 =	 “Quick	 and	 dirty	 OS”	
•  Called	 PC-‐DOS	 for	 IBM,	 MS-‐DOS	 licensed	 by	 Microsob	

1980’s	 ‘0l	 now.	
•  Early	 80’s	 state	 of	 affairs	

–  Minicomputer	 OS’s	
•  Virtual	 memory	
•  Mul0-‐tasking	
•  Access	 control	 for	 file-‐systems	

–  PC	 OS’s	
•  None	 of	 the	 above	 (roughly	 speaking)	

•  Worksta0ons	
–  Sun	 (SunOS,	 Bill	 Joy,	 Berkeley	 4.2	 BSD)	

•  1984	 :	 Network	 file	 system	 (NFS)	

•  1985	 :	 Microsob	 Windows	
–  1.0	 :	 applica0on	 in	 MS-‐DOS	

•  Allowed	 coopera0ve	 mul0-‐tasking,	 where	 applica0ons	 explicitly	 yield	 the	 processor	 to	 each	 other	

•  1995	 :	 Windows	 ’95	 to	 ME	
–  Preemp0ve	 mul0-‐tasking	 (0me-‐slicing),	 virtual	 memory	 (-‐ish),	 unprotected	 OS-‐space	

•  1993	 :	 First	 release	 of	 Windows	 NT,	 subsequent	 Windows	 OS’s	 based	 on	 NT	
•  1991	 :	 Linus	 Torvalds	 ported	 Minix	 to	 x86	

•  Based	 on	 Unix	 (6th	 edi0on)	
–  Monolithic	

•  The	 OS	 is	 a	 single	 file	 loaded	 into	
memory	 at	 boot	 0me	

–  Interfaces	
•  Traps	 originate	 from	 user	
programs	

•  Interrupts	 originate	 from	
external	 devices	 	

–  Modes	
•  User	
•  Privileged	 /	 System	

–  Kernel	
•  A	 subset	 of	 the	 OS	 that	 runs	 in	
privileged	 mode	

•  Or	 a	 subset	 of	 this	 subset	

Implementa0on	 Perspec0ve	 :	 “Simple	 OS”	

12 CHAPTER 1 Introduction

In 2003 SCO,10 which had acquired the rights to Unix, sued IBM, claiming that SCO’s code
was in Linux and thus SCO was owed royalties. (Suing someone with lots of money may be a
good idea. Suing someone who employs really good lawyers probably isn’t.) In August 2007 the
judge ruled that SCO was not the rightful owner of the Unix copyright, Novell is. Novell then
stated that there is no Unix source code in Linux.

Two other free versions of Unix also began development in the early 1990s (and continue
to be developed): FreeBSD and NetBSD. Both are derived from the BSD project at Berkeley and
are highly thought of, but neither has achieved the success of Linux.

Apple, in the meantime, was still selling a system whose operating system was derived from
the original MacOS. Finally, in 2000, they released MacOS X, a Unix system. Its implementation
was similar to that of OSF/1, combining both Mach and BSD Unix (in the form of NetBSD and
FreeBSD) in the kernel. Apple fi nally had an operating system that supports virtual memory and
multitasking and provides a protected fi le system, something it had almost achieved with Lisa OS
in the early 1980s. Apple’s version of Unix is now the prevalent Unix operating system.

In this section we examine the abstractions provided by a relatively simple operating system and
delve a bit into how they are implemented. Choosing an operating system, even one to discuss
in a course, is fraught with controversy. What we discuss here is an early version of Unix, as it
existed in the early 1970s. We choose this partly because of its simplicity and elegance, partly
because (as we saw above) it had a major infl uence on modern operating systems, such as mod-
ern versions of Unix (Solaris, Linux, MacOS X, etc.) as well as Windows, and primarily because
it is the earliest operating system whose later versions are still in common use. (Although the
descendants of IBM’s OS/360 are still in use, few students in operating systems courses have
direct access to them.) We call it simply Unix for now, though strictly speaking it is Sixth-Edition
Unix (see Section 1.2.3 for why it is called this).

1.3.1 OS STRUCTURE

Many early operating systems were amazingly small: Sixth-Edition Unix, for instance, had to
fi t into 64 KB of memory. Thus it made reasonable sense to structure it as a single executable in
which all parts are stored as a single fi le from which they are loaded into the computer’s memory
when it boots. This sort of structuring is known as the monolithic approach. As sketched in
Figure 1.1, application programs call upon the operating system via traps; external devices, such
as disks and clocks, call upon it via interrupts.

Almost all computers have at least two modes of execution, user mode (with the fewest
privileges) and privileged mode (with the most). To limit the damage that errant programs can do
to other programs and the system as a whole, the only code that runs in privileged mode is that
which is part of the operating system. In simple systems such as Sixth-Edition Unix, we gener-
ally think of the whole operating system as running in privileged mode. Everything else is an
application and runs in user mode. In other systems, such as modern Windows, major subsystems
providing operating-system functionality run in user mode. We discuss this in Chapter 4.

We often use the word kernel, as in “operating-system kernel.” This generally means that
portion of the operating system that runs in privileged mode, but sometimes it means a subset of
this — some relatively small, key portion of the privileged-mode operating-system code. We will
try to make it clear which defi nition we’re using.

10 SCO nominally stands for “Santa Cruz Operation,” but the original company of that name sold its Unix business to Caldera.
SCO then changed its name to Tarantella, the name of the product it was now focusing on. Caldera subsequently changed its
name to SCO.

1.3
A SIMPLE OS
1.3
A SIMPLE OS

OS

Traps

Interrupts

FIGURE 1 .1 Simple
OS structure.

Ch001.indd 12Ch001.indd 12 8/5/10 11:26:20 AM8/5/10 11:26:20 AM

28/01/16	

5	

Traps	 and	 System	 Calls	 (largely	 from	 user)	
•  System	 calls	 *	

–  Example	

	 	 	 	 	
requests	 the	 OS	 to	 send	 data	 to	 a	 file	

•  Unintended	 requests	 for	 kernel	 service	
–  Using	 a	 bad	 address	
–  Dividing	 by	 zero	
	

1.3.1.1 Traps
Traps are the general means for invoking the kernel from user code. We usually think of a trap as
an unintended request for kernel service, say that caused by a programming error such as using
a bad address or dividing by zero. However, for system calls, an important special kind of trap
discussed below, user code intentionally invokes the kernel.

Traps always elicit some sort of response. For page faults, the operating system determines
the status of the faulted page and takes appropriate action (such as fetching it from secondary
storage). For programming errors, what happens depends upon what the program has previ-
ously set up. If nothing, then the program is immediately terminated. A program may establish
a handler to be invoked in response to the error; the handler might clean up after the error and
then terminate the process, or perhaps perform some sort of corrective action and continue with
normal execution.

The response to faults caused by errors is dealt with in Unix via a mechanism called sig-
nals (which is also used in response to other actions; see Chapter 2). Signals allow the kernel to
invoke code that’s part of the user program, a mechanism known as an upcall.

1.3.1.2 System Calls
We’ve already discussed the multiple layers of abstraction used in all systems. For layers imple-
mented strictly in user code, the actual invocation of functionality within a layer is straightfor-
ward: a simple procedure call or the like. But invocation of operating-system functionality in
the kernel is more complex. Since the operating system has control over everything, we need
to be careful about how it is invoked. What Unix and most other operating systems do is to
provide a relatively small number of system calls through which user code accesses the kernel.
This way any necessary checking on whether the request should be permitted can be done at
just these points.

A typical example of a system call is the one used to send data to a fi le, the write system call:

if (write(FileDescriptor, BufferAddress, BufferLength) == -1) {

/* an error has occurred: do something appropriate */

printf("error: %d\n", errno) /* print error message */

}

Here we call write to request the operating system to write data to the fi le (we discuss later
the meaning of the parameters). If the call fails for some reason, write returns −1, and an integer
identifying the cause of the error is stored in the global variable errno. Otherwise it returns a non-
negative value: the number of bytes that were actually written to the fi le.

How write actually invokes the operating-system kernel depends on the underlying hard-
ware. What typically happens is that write itself is a normal procedure that contains a special
machine instruction causing a trap. This trap transfers control to the kernel, which then fi gures
out why it was invoked and proceeds to handle the invocation.

1.3.1.3 Interrupts
An interrupt is a request from an external device for a response from the processor. We discuss
the mechanism in more detail in Chapter 3. Unlike a trap, which is handled as part of the program
that caused it (though within the operating system in privileged mode), an interrupt is handled
independently of any user program.

For example, a trap caused by dividing by zero is considered an action of the currently
running program; any response directly affects that program. But the response to an interrupt

1.3 A Simple OS 13

Ch001.indd 13Ch001.indd 13 8/5/10 11:26:21 AM8/5/10 11:26:21 AM

Interrupts	 (largely	 from	 hardware)	
•  Request	 from	 an	 external	 device	 for	 a	 response	 from	 the	 processor	

–  Handled	 independently	 of	 any	 program	

•  Examples	
–  Keyboard	 input	
–  Data	 available	

Processes	 *	
•  Abstrac0on	 that	 includes	

–  Address	 space	 (virtual	 memory	 *)	
–  Processors	 (threads	 of	 control	 *)	

•  Usually	 disjoint	
–  Processes	 usually	 cannot	 directly	 access	 each	 other’s	 memory	

•  Parallel	 processing	 via	 pipes,	 shared	 memory,	 etc.	

•  Running	 a	 program	 from	 the	 shell	
–  Creates	 a	 “process”	
–  Program	 is	 loaded	 from	 a	 file	 into	 the	 process’s	 address	 space	
–  Process’s	 single	 thread	 of	 control	 then	 executes	 the	 program’s	 compiled	

executable	 code	

•  Text	
–  Program	 code	

•  Data	
–  Ini0alized	 global	 variables	

•  BSS	 (block	 started	 by	 symbol)	
–  Unini0alized	 global	 variables	

•  Dynamic	 (Heap)	
–  Dynamically	 allocated	 storage	

•  Stack	 (grows	 “downward”)	
–  Local	 variables	

•  Arrows	 indicate	 variable	
placement	

•  malloc()	 claims	 space	 in	 dynamic	

Memory	 =	 Address	 Space	 =	 e.g.	 2^32	 words,	 etc.	

stored in a fi le in the fi le system. When we run the program, a process is created and the program
is loaded from the fi le into the process’s address space. The process’s single thread of control then
executes the program’s code.

But how is the address space organized? The program consists of executable code and
data. The code, once loaded, is never modifi ed. Since much of the data, on the other hand, can be
modifi ed, it makes sense to segregate the two, putting the code in a special region of the address
space that’s protected from modifi cation. We could simply put all the data in another readable and
writable region, but we need to consider other issues too.

The variables nprimes and prime are both global, while i, j, and current are local. We know
that the scope of global variables is the entire program, while the scope of local variables is just
the block (delineated by curly braces in C) that contains them. In other words, the “lifetime” of
global variables is the same as the lifetime of the program, while the lifetime of a local variable
is only from when the thread enters its block to when it exits. So, we must set things up so that
the portion of the address space allocated for global variables remains allocated for the lifetime
of the program, but that portion allocated for a local variable remains allocated only while the
thread is in the variable’s scope.

Thus when the program is loaded into the address space, we’ll permanently allocate space
for the global variables, just beyond the space allocated for code. But there’s another useful
distinction to make: nprimes has an initial value of 100, but prime has no initial value, though
C semantics states that its initial value is thus zero. If we group all such uninitialized variables
together, we can represent them effi ciently in the copy of the program stored in the fi le system by
simply stating that we have n bytes of uninitialized data, which will actually be fi lled with zeros.
For many programs, this will save a lot of space. We of course have to instantiate these variables
when we load them into the address space, but there are ways to optimize this instantiation (we
discuss them in Chapter 7).

The local variables can be allocated effi ciently by use of a run-time stack: each time our
thread enters a new block, it pushes a frame on the stack containing space for local variables and
perhaps procedure-linkage information. Such frames are popped off the stack when the thread
exits the block. So what we’ll do is set up a region of the address space for the stack to reside. On
most architectures, stacks range from high memory addresses to low memory addresses and thus
stacks typically grown downwards.

Unix structures the address space as shown in Figure 1.2. The executable code, known as
text, occupies the lower-addressed regions. The initialized data, known simply as data, follows
the text. The uninitialized data is known, cryptically, as BSS (for “block started by symbol,” a
mnemonic from an ancient IBM 704 assembler) and comes next, followed by a dynamic region
that we explain shortly. Then comes a large hole in the address space and fi nally a region, starting
at the top and growing downwards, containing the stack.

Let’s now modify the program a bit so that the number of primes we want to compute is
passed as a parameter. Space is allocated for the primes dynamically, based on this parameter.

int nprimes;

int *prime;

int main(int argc, char *argv[]) {

int i;

int current = 2;

nprimes = atoi(argv[1]);

prime = (int *)malloc(nprimes*sizeof(int));

prime[0] = current;

for (i=1; i<nprimes; i++) {

int j;

Text

Data

BSS

Dynamic

Stack

FIGURE 1 .2 Unix
address space.

1.3 A Simple OS 15

Ch001.indd 15Ch001.indd 15 8/5/10 11:26:22 AM8/5/10 11:26:22 AM

14 CHAPTER 1 Introduction

from a disk controller may or may not have an indirect effect on the currently running program
and defi nitely has no direct effect (other than slowing it down a bit as the processor deals with
the interrupt).

1.3.2 PROCESSES, ADDRESS SPACES, AND THREADS

Probably the most important abstraction from the programmer’s point of view is the process. We
think of it both as an abstraction of memory — as an address space — and as the abstraction of
one or more processors — as threads (or threads of control). The term “address space” covers
both the set of all addresses that a program can generate and the storage associated with these
addresses. In modern operating systems, address spaces are usually disjoint (they are always dis-
joint in Sixth-Edition Unix): processes generally have no direct access to one another’s address
spaces. How this is made to work has to do with address-translation hardware and its operating-
system support, subjects we discuss in Chapter 7.

A single thread per process provides a straightforward programming model and was all
that most operating systems supported until the early 1990s. We cover multithreaded processes
in considerable detail in Chapter 2, but for now we use the simple model of single-threaded
processes.

Note that the meaning of the term “process” has evolved over the years. The term origi-
nally meant the same thing as the current meaning of “thread” — see (Dennis and Van Horn
1966), who use the term “computation” to refer to what we now mean by “process.” Though
some authors still use “process” in its original sense, few if any operating systems do.

What else is there to a process? To get an idea, consider the following simple C program
that implements the “Sieve of Eratosthenes” to compute the fi rst one hundred primes. In its
current form it’s not very useful since, after computing these primes, it immediately terminates
without doing anything with them. We’ll make it more useful later.

const int nprimes = 100;

int prime[nprimes];

int main() {

int i;

int current = 2;

prime[0] = current;

for (i=1; i<nprimes; i++) {

int j;

NewCandidate:

current++;

for (j=0; prime[j]*prime[j] <= current; j++) {

if (current % prime[j] == 0)

goto NewCandidate;

}

prime[i] = current;

}

return(0);

}

Our concern here is not prime numbers, but what the operating system must do to make
this program work. The program is compiled and linked (we explain linking in Chapter 3) and

Ch001.indd 14Ch001.indd 14 8/5/10 11:26:22 AM8/5/10 11:26:22 AM

28/01/16	

6	

Processes	 and	 Threads	 ****	 (fork_example_1.c)	
•  Processes	 are	 created	 via	 the	 system	

call	 fork()	
–  Any	 exact	 copy	 of	 the	 calling	 process	 is	

made	 	
•  Efficient	 –	 copy	 on	 write	

–  fork()	 returns	 twice!	
•  Once	 in	 the	 child	 (return	 value	 0)	
•  Once	 in	 the	 parent	 (return	 value	 the	 PID	

of	 the	 child	 process)	

•  Processes	 report	 termina0on	 status	 via	
the	 system	 call	 exit(ret_code)	

•  Processes	 can	 wait()	 for	 the	 termina0on	
of	 child	 processes	

•  Example	 uses	
–  Terminal	 /	 Windows	
–  Apache	 cgi	

18 CHAPTER 1 Introduction

Since a process’s return code actually means something, it’s important for other processes
to fi nd out what it is. This is done via the wait system call, which allows a parent process to wait
until one of its children terminates:

short pid;

if ((pid = fork()) == 0) {

/* some code is here for the child to execute */

exit(n);

} else {

int ReturnCode;

while(pid != wait(&ReturnCode))

;

/* the child has terminated with ReturnCode as its

 return code */

}

Here the parent process creates a child, then waits for it to terminate. Note that wait returns
the process ID of the child that’s terminated, which might not be the one most recently created
(the parent might have created others). Thus it calls wait repeatedly until the child it’s interested
in terminates. The wait call returns the child process’s return code via its argument, which points
to storage provided by the caller.

A process can wait only for its children to terminate: it has no means for waiting for the
termination of other processes. This implies that the operating system must keep track of the par-
ent-child relationships among processes.

While a process is waiting for a child to terminate, it’s said to be in the “sleeping state”: it
won’t be able to execute any further instructions until a terminating child wakes it up.

The act of termination is a bit tricky. One concern is the process ID. These are 16-bit val-
ues and thus must occasionally be reused. Suppose that when a process terminates (i.e., calls
exit), its ID is immediately made available for assignment to new processes. It might happen
that before the process’s parent calls wait, the process ID is actually assigned to a new process.
Thus there could be some ambiguity about which process is being referred to by the ID.

Another termination concern is the return code: where is it stored between the moments
when a process terminates and when the code is picked up by the parent via wait? If all storage
associated with the process is released on termination, we could have a problem.

These concerns are handled as follows. When a process calls exit it doesn’t completely
disappear, but goes into what’s called the zombie state: it’s no longer active and its address space
can be relinquished, but its process ID and return value are preserved in the operating system.
Thus the process still exists, though the only meaningful data associated with it are its ID and
return value. When the parent eventually calls wait, these values are fi nally released and all traces
of the process disappear.

But what happens if the parent terminates before the child? This could mean that, since
the parent is no longer around to perform the wait, the child will remain forever a zombie. To
deal with this problem, process number 1 (the process whose ID is 1 and which is the ancestor
of all other processes with greater IDs) inherits the children (including zombies) of terminated
processes. It executes a loop, continually calling wait and fi nishing the termination of all its (step)
children.

As shown in Figure 1.4, a process’s return code is kept in its process control block. Nothing
is of course stored there until the process terminates. But when the process does terminate, its
return code is copied to the PCB, which is linked to its parent’s queue of terminated children. By

Ch001.indd 18Ch001.indd 18 8/5/10 11:26:26 AM8/5/10 11:26:26 AM

Loading	 Programs	 into	 Processes	 (fork_example_2.c)	
•  execl()	 system	 call	 used	 to	 do	 this	

•  execl()	 replaces	 the	 en0re	 contents	 of	 the	
processes	 address	 space	
–  the	 stack	 is	 ini0alized	 with	 the	 passed	 program	 args.	
–  a	 special	 start	 rou0ne	 is	 called	 that	 itself	 calls	 main()	
–  exec	 doesn’t	 return	 except	 if	 there	 is	 an	 error!	

executing the wait system call, the parent selects the fi rst process from this queue, returning both
the PID and return-code fi elds.

1.3.4 LOADING PROGRAMS INTO PROCESSES

We’ve briefl y discussed setting up an address space to contain a program; now let’s look at the
user-level mechanism for doing so. A family of system calls known as exec is provided for this.
Execs are typically used shortly after fork creates a new process to replace the program with a
new one. Here’s an example of their use:

int pid;

if ((pid = fork()) == 0) {

/* we’ll soon discuss what might take place before exec

 is called */

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

Here we call execl, which takes a variable number of arguments — the “command-line”
arguments mentioned above — and passes them to the program. The fi rst argument is the name
of the fi le containing the program to be loaded. The second argument is the name of the program
(while this seems a bit redundant, it allows one program to do different things depending on the
name by which it is called). The remaining arguments are the remaining command-line argu-
ments, terminating with 0.

The effect of the exec call, as shown in Figure 1.5, is to replace the entire contents of the
current process’s address space with the new program: the text region is replaced with the text of
primes. The BSS and data regions are replaced with those supplied by primes. The dynamic area
is replaced with an empty region. The stack is replaced with the arguments that are to be passed to
main: the total number of arguments (two in this case), followed by a vector referring to their values
(“primes” and “300”). The process’s thread continues execution by calling a special start routine
(loaded with the primes program), which then calls main (so that on return from main it calls exit).

Note that since the prior contents of the address space are removed, there is no return from
a successful call to exec: there’s nothing to return to! However, if exec does return, then (since
the prior contents clearly weren’t removed) there must have been an error. What we do in such a
case is simply call exit with a return code indicating an error. (This is certainly not a very helpful
response, but our focus for the moment is on successful outcomes.)

The parent process waits until the child has completed (calling wait with an argument of
zero means that the caller does not want the return code). The above code fragment shows what
a command shell does in response to the command:

% primes 300

In other words, it creates a new process to run the command and waits for that process to
terminate.

1.3 A Simple OS 19

exec(prog, args)

Before

FIGURE 1 .5 The effect
of exec.

After

prog’s text

prog’s data

prog’s BSS

args

Ch001.indd 19Ch001.indd 19 8/5/10 11:26:26 AM8/5/10 11:26:26 AM

executing the wait system call, the parent selects the fi rst process from this queue, returning both
the PID and return-code fi elds.

1.3.4 LOADING PROGRAMS INTO PROCESSES

We’ve briefl y discussed setting up an address space to contain a program; now let’s look at the
user-level mechanism for doing so. A family of system calls known as exec is provided for this.
Execs are typically used shortly after fork creates a new process to replace the program with a
new one. Here’s an example of their use:

int pid;

if ((pid = fork()) == 0) {

/* we’ll soon discuss what might take place before exec

 is called */

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

Here we call execl, which takes a variable number of arguments — the “command-line”
arguments mentioned above — and passes them to the program. The fi rst argument is the name
of the fi le containing the program to be loaded. The second argument is the name of the program
(while this seems a bit redundant, it allows one program to do different things depending on the
name by which it is called). The remaining arguments are the remaining command-line argu-
ments, terminating with 0.

The effect of the exec call, as shown in Figure 1.5, is to replace the entire contents of the
current process’s address space with the new program: the text region is replaced with the text of
primes. The BSS and data regions are replaced with those supplied by primes. The dynamic area
is replaced with an empty region. The stack is replaced with the arguments that are to be passed to
main: the total number of arguments (two in this case), followed by a vector referring to their values
(“primes” and “300”). The process’s thread continues execution by calling a special start routine
(loaded with the primes program), which then calls main (so that on return from main it calls exit).

Note that since the prior contents of the address space are removed, there is no return from
a successful call to exec: there’s nothing to return to! However, if exec does return, then (since
the prior contents clearly weren’t removed) there must have been an error. What we do in such a
case is simply call exit with a return code indicating an error. (This is certainly not a very helpful
response, but our focus for the moment is on successful outcomes.)

The parent process waits until the child has completed (calling wait with an argument of
zero means that the caller does not want the return code). The above code fragment shows what
a command shell does in response to the command:

% primes 300

In other words, it creates a new process to run the command and waits for that process to
terminate.

1.3 A Simple OS 19

exec(prog, args)

Before

FIGURE 1 .5 The effect
of exec.

After

prog’s text

prog’s data

prog’s BSS

args

Ch001.indd 19Ch001.indd 19 8/5/10 11:26:26 AM8/5/10 11:26:26 AM

Files	 *	
•  Files	 are	 Unix’s	 primary	 abstrac)on	

for	 everything	
–  Keyboard	
–  Display	
–  Other	 processes	

•  Naming	 files	
–  Filesystems	 generally	 are	 tree-‐

structured	 directory	 systems	 	
–  Namespaces	 are	 generally	 shared	 by	

all	 processes	
•  Accessing	 files	

–  The	 directory-‐system	 name-‐space	 is	
outside	 the	 process	
•  open(name)	 returns	 a	 file	 handle,	

read(args)	 	
•  OS	 checks	 permissions	 along	 path	

20 CHAPTER 1 Introduction

1.3.5 FILES

As we’ve pointed out, our primes example isn’t very useful since it doesn’t leave the results
of its computation where others (programs or people) can use them. What’s needed is access
to someplace outside the process that’s shared with others. The notion of a fi le is our Unix
system’s sole abstraction for this concept of “someplace outside the process” (modern
Unix systems have additional abstractions). Unix uses fi les both as the abstraction of persistent
data storage (such as on disks) and also as the means for fetching and storing data outside a
 process, whether that data is stored on disk, in another process, or in some other device, such
as a keyboard or display.

1.3.5.1 Naming Files
For our current discussion we’re concerned about both how to refer to such “places” outside
the process and how programs transfer data to and from such places. Since the place is outside the
process, we need a different space from the process’s address space. The nature of such spaces
was an issue a number of decades ago, but pretty much all systems today use tree- structured
directory systems for naming fi les and similar objects. These should be familiar to everyone
with enough computer experience to have gotten this far in this text: a fi le is named by stringing
together the names assigned to the edges forming a path from the root of the tree to the fi le.

Unix uses forward slashes as separators between the names; Windows uses back slashes.
That the path starts at the root is indicated by starting the name with the separators. Such path
names generally have the beginning (such as the root) at the left, though the Internet’s naming
scheme (Domain Name System — DNS) has it on the right.

The name space provided by the directory system is generally shared by all processes
running on a computer (and perhaps by all processes running on a number of computers). Unix
provides a means to restrict a process to a subtree: one simply redefi nes what “root” means for
the process. Thus fi les are identifi ed by their path names in the directory system.

Since the directory-system name space is outside the process, special means are required
to access it. The usual model is that one provides the name of the desired fi le to the operating
system, and the operating system returns a handle to be used to access the fi le. What’s going on
behind the scenes is that the operating system, somewhat laboriously, follows the path provided
by the name, checking to make certain that the process is allowed appropriate access along the
path. The returned handle provides a direct reference to the fi le so that such expensive path-
 following and access verifi cation isn’t required on subsequent accesses.

This use of a handle to refer to an object managed by the kernel is fairly important. We’ll
later see it generalized to the notion of a capability (Chapter 8). In abstract terms, possession
of a handle gives the holder not only a reference to an object in the kernel, but also certain lim-
ited rights for using the object. In the case of fi les, as we discuss, a handle allows the holder to
 perform certain actions on a fi le.

The following code uses the open system call to obtain a fi le’s handle, then uses the handle
to read the fi le:

int fd;

char buffer[1024];

int count;

if ((fd = open("/home/twd/fi le", O_RDWR) == -1) {

/* the fi le couldn’t be opened */

perror("/home/twd/fi le");

exit(1);

}

Ch001.indd 20Ch001.indd 20 8/5/10 11:26:27 AM8/5/10 11:26:27 AM

if ((count = read(fd, buffer, 1024)) == -1) {

/* the read failed */

perror("read");

exit(1);

}

/* buffer now contains count bytes read from the fi le */

Here we use the open system call to access the directory name space to get a handle for
the fi le whose path name is “/home/twd/fi le”. We’ve indicated by the second argument that
we want both read and write access to the fi le: if for some reason such access is not permitted,
the open call fails. If it succeeds, fd contains the handle (known in Unix as a fi le descriptor) for
the fi le.

We then use this handle as an argument to the read system call to identify the fi le and
attempt to transfer its fi rst 1024 bytes into buffer. Read returns the number of bytes that were
actually transferred: it could be less than what was asked for because, for example, the fi le might
not be that large. The perror routine prints, to fi le descriptor 2, its argument followed by a mes-
sage explaining the error number currently in the global variable errno (recall that that’s how
failing system calls leave the error number).

1.3.5.2 Using File Descriptors
These handles (or fi le descriptors) form what is essentially an extension to the process’s address
space, allowing the process unhindered access to the associated fi les. This address-space exten-
sion survives execs. Thus fi les open before an exec takes place are open afterwards. This property
is exploited as a way to pass the open fi les as additional parameters to the exec. File descriptors
are small nonnegative integers that are allocated lowest-available-number fi rst. By convention,
programs expect to read their primary input from fi le descriptor 0, to write their primary output
to fi le descriptor 1, and to write error messages to fi le descriptor 2. By default, input from fi le
descriptor 0 comes from the keyboard and output to fi le descriptors 1 and 2 goes to the display
(or current window).

However, as shown in the following code, different associations can be established in a
process before an exec:

if (fork() == 0) {

/* set up fi le descriptor 1 in the child process */

close(1);

if (open("/home/twd/Output", O_WRONLY) == -1) {

perror("/home/twd/Output");

exit(1);

}

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

1.3 A Simple OS 21

Ch001.indd 21Ch001.indd 21 8/5/10 11:26:27 AM8/5/10 11:26:27 AM

Using	 File	 Descriptors	 (fork_example_2.c)	
•  File	 descriptors	 survive	 exec()’s	
•  Default	 file	 descriptors	

–  0	 read	 (keyboard)	
–  1	 write	 (primary,	 display)	
–  2	 error	 (display)	

•  Different	 associa0ons	 can	 be	
established	 before	 fork()	

if ((count = read(fd, buffer, 1024)) == -1) {

/* the read failed */

perror("read");

exit(1);

}

/* buffer now contains count bytes read from the fi le */

Here we use the open system call to access the directory name space to get a handle for
the fi le whose path name is “/home/twd/fi le”. We’ve indicated by the second argument that
we want both read and write access to the fi le: if for some reason such access is not permitted,
the open call fails. If it succeeds, fd contains the handle (known in Unix as a fi le descriptor) for
the fi le.

We then use this handle as an argument to the read system call to identify the fi le and
attempt to transfer its fi rst 1024 bytes into buffer. Read returns the number of bytes that were
actually transferred: it could be less than what was asked for because, for example, the fi le might
not be that large. The perror routine prints, to fi le descriptor 2, its argument followed by a mes-
sage explaining the error number currently in the global variable errno (recall that that’s how
failing system calls leave the error number).

1.3.5.2 Using File Descriptors
These handles (or fi le descriptors) form what is essentially an extension to the process’s address
space, allowing the process unhindered access to the associated fi les. This address-space exten-
sion survives execs. Thus fi les open before an exec takes place are open afterwards. This property
is exploited as a way to pass the open fi les as additional parameters to the exec. File descriptors
are small nonnegative integers that are allocated lowest-available-number fi rst. By convention,
programs expect to read their primary input from fi le descriptor 0, to write their primary output
to fi le descriptor 1, and to write error messages to fi le descriptor 2. By default, input from fi le
descriptor 0 comes from the keyboard and output to fi le descriptors 1 and 2 goes to the display
(or current window).

However, as shown in the following code, different associations can be established in a
process before an exec:

if (fork() == 0) {

/* set up fi le descriptor 1 in the child process */

close(1);

if (open("/home/twd/Output", O_WRONLY) == -1) {

perror("/home/twd/Output");

exit(1);

}

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

1.3 A Simple OS 21

Ch001.indd 21Ch001.indd 21 8/5/10 11:26:27 AM8/5/10 11:26:27 AM

28/01/16	

7	

File	 Random	 Access	 	
•  lseek()	 provides	 non-‐sequen0al	 access	 to	 files	

•  Reverses	 a	 file	

28 CHAPTER 1 Introduction

1.3.5.3 Random Access
As we’ve seen, the normal mode of access to fi les is sequential: successive reads or writes to a fi le
are to successive locations in the fi le. Though this is probably what’s desired in most situations,
sometimes we’d like to access a fi le randomly, reading or writing arbitrary locations within it.
This turns out to be easily done, since the read and write system calls simply look at the contents
of the fi le-location fi eld of the context structure and increment it after the operation.

Thus to read or write starting at an arbitrary location, all we have to do is provide a means
for setting this fi le-location fi eld. This is done with the lseek system call. The example below
shows using lseek to print the contents of a fi le backwards:11

fd = open("textfi le", O_RDONLY);

/* go to last char in fi le */

fptr = lseek(fd, (off_t)–1, SEEK_END);

while (fptr != –1) {

read(fd, buf, 1);

write(1, buf, 1);

fptr = lseek(fd, (off_t)–2, SEEK_CUR);

}

The fi rst argument to lseek is the fi le descriptor, the second and third arguments (of type
off_t, an integer type) indicate the value that goes into the fi le-location fi eld. The third argument
specifi es where we are measuring the offset from (SEEK_SET indicates the offset is interpreted
as from the beginning of the fi le, SEEK_CUR means from the current position in the fi le, and
SEEK_END means from the end of the fi le). Note that lseek does no actual I/O; all it does is set
the fi le-location fi eld.

What we’ve done in the example above is to start with the fi le location set to point to the
last character in the fi le. After reading a byte, the location is advanced by one, so to get the previ-
ous character, we subtract two from it.

1.3.5.4 Pipes
An interesting construct based on the fi le notion is the pipe. A pipe is a means for one process to
send data to another directly, as if it were writing to a fi le (see Figure 1.11). The process sending data
behaves as if it has a fi le descriptor to a fi le that has been opened for writing. The process receiving
data behaves as if it has a fi le descriptor referring to a fi le that has been opened for reading.

A pipe and the two fi le descriptors referring to it are set up using the pipe system call.
This creates a pipe object in the kernel and returns, via an output parameter, the two fi le descrip-
tors that refer to it: one, set for write-only, referring to the input side and the other, set for read-
only, referring to the output end. Since this pipe object, though it behaves somewhat like a fi le,
has no name, the only way for any process to refer to it is via these two fi le descriptors. Thus only the
process that created it and its descendants (which inherit the fi le descriptors) can refer to the pipe.

FIGURE 1 .11 Communication via a pipe

pipesender receiver

11 This is defi nitely not a good way to print a fi le backwards! It simply illustrates what you can do with lseek.

Ch001.indd 28Ch001.indd 28 8/5/10 11:26:32 AM8/5/10 11:26:32 AM

Pipes	 *	 (pipe_example.c)	
•  A	 pipe	 is	 a	 means	 for	 one	 process	 to	 send	 data	 to	 another	 directly	
•  pipe()	 returns	 two	 nameless	 file	 descriptors	 	 Here’s a simple pipe example:

int p[2]; /* array to hold pipe’s fi le descriptors */

pipe(p); /* create a pipe; assume no errors */

/* p[0] refers to the output end of the pipe */

/* p[1] refers to the input end of the pipe */

if (fork() == 0) {

char buf[80];

close(p[1]); /* not needed by the child */

while (read(p[0], buf, 80) > 0) {

/* use data obtained from parent */

…

}

} else {

char buf[80];

close(p[0]); /* not needed by the parent */

for (;;) {

/* prepare data for child */

…

write(p[1], buf, 80);

}

}

1.3.5.5 Directories
A directory is essentially a fi le like the others we’ve been discussing, except that it is inter-
preted by the operating system as containing references to other fi les (some of which may
well be other directories). From a logical perspective, a directory consists of an array of pairs
of component name and inode number, where the latter identifi es the target fi le’s inode to the
operating system (recall that an inode is a data structure maintained by the operating system
to represent a fi le).

Every directory contains two special entries, “.” and “..”. The former refers to the directory
itself, the latter to the directory’s parent. In Figure 1.12, the directory is the root directory and has
no parent, and thus its “..” entry is a special case that refers to the directory itself.

1.3 A Simple OS 29

FIGURE 1 .12 Sample directory

Component name Inode number

Directory entry

unix 117

etc 4

home 18

pro 36

dev 93

. 1

.. 1

Ch001.indd 29Ch001.indd 29 8/5/10 11:26:33 AM8/5/10 11:26:33 AM

Directories	
•  A	 directory	 is	 a	 file	 that	 is	 interpreted	 as	 containing	 references	 to	

other	 files	 by	 the	 OS	 	
•  Consists	 of	 an	 array	 of	 	

–  Component	 name	
–  inode	 number	

•  an	 inode	 is	 a	 datastructure	 maintained	 by	 the	 OS	 to	 represent	 a	 file	

Here’s a simple pipe example:

int p[2]; /* array to hold pipe’s fi le descriptors */

pipe(p); /* create a pipe; assume no errors */

/* p[0] refers to the output end of the pipe */

/* p[1] refers to the input end of the pipe */

if (fork() == 0) {

char buf[80];

close(p[1]); /* not needed by the child */

while (read(p[0], buf, 80) > 0) {

/* use data obtained from parent */

…

}

} else {

char buf[80];

close(p[0]); /* not needed by the parent */

for (;;) {

/* prepare data for child */

…

write(p[1], buf, 80);

}

}

1.3.5.5 Directories
A directory is essentially a fi le like the others we’ve been discussing, except that it is inter-
preted by the operating system as containing references to other fi les (some of which may
well be other directories). From a logical perspective, a directory consists of an array of pairs
of component name and inode number, where the latter identifi es the target fi le’s inode to the
operating system (recall that an inode is a data structure maintained by the operating system
to represent a fi le).

Every directory contains two special entries, “.” and “..”. The former refers to the directory
itself, the latter to the directory’s parent. In Figure 1.12, the directory is the root directory and has
no parent, and thus its “..” entry is a special case that refers to the directory itself.

1.3 A Simple OS 29

FIGURE 1 .12 Sample directory

Component name Inode number

Directory entry

unix 117

etc 4

home 18

pro 36

dev 93

. 1

.. 1

Ch001.indd 29Ch001.indd 29 8/5/10 11:26:33 AM8/5/10 11:26:33 AM

Crea0ng	 Files	
•  creat()	 and	 open()	 (with	 flags)	 are	 used	 to	 create	 files	

•  “man	 2	 open”	 :	 	

OPEN(2)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 BSD	 System	 Calls	 Manual	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 OPEN(2)	
	
NAME	
	 	 	 	 	 open,	 openat	 -‐-‐	 open	 or	 create	 a	 file	 for	 reading	 or	 writing	
	
SYNOPSIS	
	 	 	 	 	 #include	 <fcntl.h>	
	
	 	 	 	 	 int	
	 	 	 	 	 open(const	 char	 *path,	 int	 oflag,	 ...);	
	
	 	 	 	 	 int	
	 	 	 	 	 openat(int	 fd,	 const	 char	 *path,	 int	 oflag,	 ...);	
	
DESCRIPTION	
	 	 	 	 	 The	 file	 name	 specified	 by	 path	 is	 opened	 for	 reading	 and/or	 writing,	 as	 specified	 by	 the	 argument	 oflag;	
	 	 	 	 	 the	 file	 descriptor	 is	 returned	 to	 the	 calling	 process.	
	
	 	 	 	 	 The	 oflag	 argument	 may	 indicate	 that	 the	 file	 is	 to	 be	 created	 if	 it	 does	 not	 exist	 (by	 specifying	 the	
	 	 	 	 	 O_CREAT	 flag).	 	 In	 this	 case,	 open()	 and	 openat()	 require	 an	 additional	 argument	 mode_t	 mode;	 the	 file	 is	
	 	 	 	 	 created	 with	 mode	 mode	 as	 described	 in	 chmod(2)	 and	 modified	 by	 the	 process'	 umask	 value	 (see	 umask(2)).	
	
	 	 	 	 	 The	 openat()	 function	 is	 equivalent	 to	 the	 open()	 function	 except	 in	 the	 case	 where	 the	 path	 specifies	 a…	

28/01/16	

8	

Review	 :	 User	 Perspec0ve	 on	 OS	 *	
•  Rough	 idea	 of	 what	 goes	 inside	 an	 OS	
•  Traps	 /	 system	 calls	

–  exec()	
–  fork()	
–  open()	
–  pipe()	
–  exit()	
–  close()	
–  read()	
–  write()	
–  dup()	
–  …	

•  Next	 lecture	 :	 more	 user	 basics.	 	 	
•  Final	 two	 lectures	 :	 OS	 implementa0on	 issues	

Lecture	 2	 :	 Basics;	 Processes,	 Threads,	 …	 	

Material	 from	 	
Opera0ng	 Systems	 in	 Depth	 	

(spec.	 Chapters	 2&3)	 	 	
by	

Thomas	 Doeppner	
	

GET	 THIS	 BOOK	 AND	 READ	 IT!	

Threads	 *	 (thread_example_1.c)	
•  What	 is	 a	 thread?	

–  Mechanism	 for	 concurrency	 in	 user-‐level	 programs	
–  “Lightweight	 process”	
–  Processor(s)	 within	 a	 process	
–  Share	 process	 memory	 with	 other	 threads	

•  Why	 threads?	
–  Can	 drama0cally	 simplify	 code	

•  Mul0-‐threaded	 database	 concurrently	 handling	 requests	
•  Server	 listening	 on	 a	 socket	 responding	 to	 client	 requests	

–  Requires	 care	
•  Synchroniza0on	

•  POSIX	 (“portable	 opera0ng	 system	 interface”)	 specifica0on	

Thread	 Crea0on	

Alterna0ve	 specifica0ons	 exist;	 all	 conceptually	 similar	

44 CHAPTER 2 Multithreaded Programming

Despite the advantages of programming with threads, only relatively recently have standard APIs
for multithreaded programming been developed. The most important of these APIs in the Unix
world is the one developed by a group originally called POSIX 1003.4a. This multi-year effort
resulted in 1995 in an approved standard, now known by the number 1003.1c.

Microsoft produced as part of its Win-32 interface a threads package whose interface has
little in common with that of POSIX. Moreover, there are signifi cant differences between the
Microsoft and POSIX approaches — some of the constructs of one cannot be easily implemented
in terms of the constructs of the other, and vice versa. Despite these incompatibilities, both
approaches are useful for multithreaded programming.

2.2.1 THREAD CREATION AND TERMINATION

Creating a thread should be a pretty straightforward operation: in response to some sort of directive,
a new thread is created and proceeds to execute code independently of its creator. There are, of
course, a few additional details. We may want to pass parameters to the thread. A stack of some
size must be created to be the thread’s execution context. Also, we need some mechanism for
the thread to terminate and to make a termination value available to others.

2.2.1.1 Creating POSIX Threads
POSIX and Win-32 have similar interfaces for creating a thread. Suppose we wish to create a
bunch of threads, each of which will execute code to provide some service. In POSIX, we do this
as follows:

void start_servers() {

pthread_t thread;

int i;

for (i=0; i<nr_of_server_threads; i++)

pthread_create(

 &thread, // thread ID

 0, // default attributes

 server, // start routine

 argument); // argument

}

void *server(void *arg) {

// perform service

return (0);

}

Thus a thread is created by calling pthread_create. If it returns successfully (returns 0), a
new thread has been created that is now executing independently of the caller. This thread’s ID
is returned via the fi rst parameter (an output parameter that, in standard C programming style, is
a pointer to where the result should be stored). The second parameter is a pointer to an attributes
structure that defi nes various properties of the thread. Usually we can get by with the default
properties, which we specify by supplying a null pointer. The third parameter is the address of
the routine in which our new thread should start its execution. The last argument is the argument
that is actually passed to the fi rst procedure of the thread.

If pthread_create fails, it returns a positive value indicating the cause of the failure.

2.2
PROGRAMMING
WITH THREADS

2.2
PROGRAMMING
WITH THREADS

CH002.indd 44CH002.indd 44 8/2/10 8:26:13 PM8/2/10 8:26:13 PM

28/01/16	

9	

Passing	 Arguments	 to	 Threads	
•  Care	 must	 be	 taken	 with	

threads	 in	 general	
•  Problem	 with	 this	 code	

–  In	 and	 out	 are	 local	 variables	
thus	 leave	 scope	 when	 rlogind	
exits	

2.2 Programming with Threads 45

2.2.1.2 Creating Win-32 Threads
An equivalent program written for Windows using the Win-32 interface is:

void start_servers() {

HANDLE thread;

DWORD id;

int i;

for (i=0; i<nr_of_server_threads; i++)

thread = CreateThread(

 0, // security attributes

 0, // default # of stack pages allocated

 server, // start routine

 0, // argument

 0, // creation fl ags

 &id); // thread ID

}

DWORD WINAPI server(void *arg) {

// perform service

return(0);

}

Calls to CreateThread are used rather than pthread_create. A handle for the new thread is
returned. A handle, as we discussed in Chapter 1, is similar to a Unix fi le descriptor: it refers to
information belonging to the user process but maintained in the operating system. In this case, as
we’ll see, the handle allows the holder to perform operations on the thread.

An ID is returned via the last (output) argument. It is a means of identifying the thread that
gives the holder no ability to control that thread. Thus one process can make a thread ID available to
another process so as to identify the thread but not give the second process any control over it.

The fi rst parameter is a pointer to the security attributes to be associated with the thread;
we use 0 for this for now and discuss other possibilities later. The next parameter is the number
of stack pages (in bytes) to allocate physical resources for (one megabyte of virtual memory is
allocated; the parameter indicates how much of this initially has real memory and stack space
supporting it); 0 means to use the default. The third parameter is the address of the fi rst routine
our thread executes; the next parameter is the argument that’s passed to that routine. The next to
the last parameter specifi es various creation fl ags; we don’t supply any here.

If CreateThread fails, indicated by returning a null handle, GetLastError can be used to
determine the cause of the failure.

2.2.1.3 Handling Multiple Arguments
A problem comes up with both pthread_create and CreateThread when you want to pass
more than one argument to a thread. Suppose you are creating threads for use with our two-
threaded implementation of rlogind (Section 2.1 above). One might be tempted to use the
trick outlined below:

typedef struct {

int fi rst, second;

} two_ints_t;

CH002.indd 45CH002.indd 45 8/2/10 8:26:14 PM8/2/10 8:26:14 PM

46 CHAPTER 2 Multithreaded Programming

void rlogind(int r_in, int r_out, int l_in, int l_out) {

pthread_t in_thread, out_thread;

two_ints_t in={r_in, l_out}, out={l_in, r_out};

pthread_create(&in_thread,

0,

incoming,

&in);

pthread_create(&out_thread,

0,

outgoing,

&out);

}

Here we pack two arguments into a structure, then pass a pointer to it to pthread_create.
This is an example of something that works in single-threaded programs but can cause disastrous
failures in multithreaded programs. The variables in and out are local variables and thus are allo-
cated on the stack of the thread that called rlogind. When this fi rst thread returns from rlogind,
these variables go out of scope — the stack locations might be used for other things. Thus when
pthread_create is called, the addresses of in and out point to useful information. But by the time
the threads created by the calls to pthread_create reference the data pointed to by their arguments
(in and out), this data might no longer exist, since the fi rst thread is no longer in their scope. Thus
our approach works only if we can be certain that fi rst thread does not leave the scope of the
arguments while they are in use.

Is there a safe way to pass multiple arguments to a thread that works in all cases? Ideally,
we’d like to copy all of a thread’s arguments onto its stack. But since neither pthread_create
nor CreateThread provides a means for doing this for more than one argument, we need some
other technique. (Other threads packages, for example (Doeppner 1987), did provide a way to
put multiple arguments on a thread’s stack.) Whatever approach we use, it must involve passing
a pointer or some sort of pointer-sized identifi er to the thread, which then uses this identifi er
to refer to the actual arguments (which must reside in storage that is available while the thread
is executing).

One approach might be to use static or global storage for the arguments, so that there’s not
a problem with them going out of scope. While this would work in some cases, suppose that in
our example multiple threads are calling rlogind concurrently. All would use the same locations
for storing the arguments to pthread_create, and the result would be chaos.

We might allocate storage dynamically for the arguments, using malloc in C or new in C++.
This might seem to solve our problems, but who frees the storage, and when? The creating thread
can do so safely only if the created thread is certain not to access the arguments at any point in
the future. We can’t expect the created thread to free the storage unless its arguments are always
in dynamically allocated storage.

In summary, we have four approaches for passing multiple arguments to a thread:

 1. copy all arguments to the thread’s stack: this always works, but isn’t supported in either
POSIX or Win-32

 2. pass a pointer to local storage containing the arguments: this works only if we are certain
this storage doesn’t go out of scope until the thread is fi nished with it

 3. pass a pointer to static or global storage containing the arguments: this works only if only
one thread at a time is using the storage

CH002.indd 46CH002.indd 46 8/2/10 8:26:14 PM8/2/10 8:26:14 PM

Variables	 on	 stack	 –	 when	 rlogind	 returns	
These	 variables	 are	 popped	 off	 the	 stack	
	
Soln:	 Global	 variables	 or	 dynamically	 allocated	 variables	
Laher	 only	 works	 if	 someone	 frees	 said	 space	
	

Thread	 Termina0on	 (thread_example_2.c)	
•  Space	 from	 caller	 must	 be	 provided	 for	 thread	 to	 place	 return	

values	

•  pthread_exit()	 terminates	 thread,	 exit()	 terminates	 process	

48 CHAPTER 2 Multithreaded Programming

pthread_create(&createe, 0, CreateeProc, 0);

…

pthread_join(create, &result);

…

}

void *CreateeProc(void *arg) {

…

if (should_terminate_now)

pthread_exit((void *)1);

…

return((void *)2);

}

There is a big difference between pthread_exit and exit. The former terminates just the
calling thread. The latter terminates the entire process, including all threads running in it. Note
that if a thread returns from a program’s main procedure, it calls exit (it actually returns to
code that then calls exit). So, consider the following code:

int main(int argc, char *argv[]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

return(0);

}

What happens here is that ten threads are created but the creating thread immediately
returns from main, calls exit, and thus terminates the entire process. On a uniprocessor system,
none of the ten child threads are likely to get a chance to run at all.

To create a bunch of threads and then terminate innocuously, one might do something like:

int main(int argc, char *argv[]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

pthread_exit(0);

return(0);

}

Here the fi rst thread again creates ten threads, but then quietly goes away (the call to return
is required even though it won’t be executed, since main is defi ned as returning an int). The process
terminates once all its component threads have terminated (or if one of them calls exit).

CH002.indd 48CH002.indd 48 8/2/10 8:26:14 PM8/2/10 8:26:14 PM

48 CHAPTER 2 Multithreaded Programming

pthread_create(&createe, 0, CreateeProc, 0);

…

pthread_join(create, &result);

…

}

void *CreateeProc(void *arg) {

…

if (should_terminate_now)

pthread_exit((void *)1);

…

return((void *)2);

}

There is a big difference between pthread_exit and exit. The former terminates just the
calling thread. The latter terminates the entire process, including all threads running in it. Note
that if a thread returns from a program’s main procedure, it calls exit (it actually returns to
code that then calls exit). So, consider the following code:

int main(int argc, char *argv[]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

return(0);

}

What happens here is that ten threads are created but the creating thread immediately
returns from main, calls exit, and thus terminates the entire process. On a uniprocessor system,
none of the ten child threads are likely to get a chance to run at all.

To create a bunch of threads and then terminate innocuously, one might do something like:

int main(int argc, char *argv[]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

pthread_exit(0);

return(0);

}

Here the fi rst thread again creates ten threads, but then quietly goes away (the call to return
is required even though it won’t be executed, since main is defi ned as returning an int). The process
terminates once all its component threads have terminated (or if one of them calls exit).

CH002.indd 48CH002.indd 48 8/2/10 8:26:14 PM8/2/10 8:26:14 PM

Thread	 Ahributes	 	
•  “man	 pthread_attr_init”	
•  e.g.	 to	 specify	 the	 stack	 size	 for	 a	 thread	 one	 ini0alizes	 an	 ahributes	

datastructure	

	

2.2 Programming with Threads 51

happen, for example, if the thread places a call to a procedure with large local variables that aren’t
immediately referenced. So we must be careful to give each thread a suffi ciently large stack (how
large is large enough depends on the program and the architecture).

To specify the stack size for a thread, one sets up an attributes structure using pthread_attr_
setstacksize and supplies it to pthread_create:

pthread_t thread;

pthread_attr_t thr_attr;

pthread_attr_init(&thr_attr);

pthread_attr_setstacksize(&thr_attr, 20*1024*1024);

...

pthread_create(&thread, &thr_attr, startroutine, arg);

In this case we’ve created a thread with a twenty-megabyte stack.
How large is the default stack? This is not specifi ed in POSIX threads. Different implementa-

tions use different values, ranging from around 20 KB in Tru64 Unix to one megabyte in Solaris
and eight megabytes in some Linux implementations.

Win-32 uses a different approach to stack size: the amount of address space allocated for
each thread’s stack is a link-time parameter, not a run-time parameter. The “stacksize” argument
to CreateThread indicates how many pages of primary memory are allocated to hold the stack
when the thread starts execution. Additional pages of primary memory are allocated as neces-
sary as the thread runs, up to the maximum stack size. One cannot affect this level of detail using
POSIX threads.

2.2.1.6 Example
Here is a simple complete multithreaded program that computes the product of two matrices. Our
approach is to create one thread for each row of the product and have these threads compute the
necessary inner products. (This isn’t a good way to compute the product of two matrices — it’s
merely an example of a multithreaded program!)

#include <stdio.h>

#include <pthread.h> /* all POSIX threads declarations */

#include <string.h> /* needed to use strerror below */

#defi ne M 3

#defi ne N 4

#defi ne P 5

int A[M][N]; /* multiplier matrix */

int B[N][P]; /* multiplicand matrix */

int C[M][P]; /* product matrix */

void *matmult(void *);

int main() {

int i, j;

CH002.indd 51CH002.indd 51 8/2/10 8:26:15 PM8/2/10 8:26:15 PM

Synchroniza0on	 ***	 (thread_example_3.c)	 	
•  Remember:	 threads	 share	 access	 to	 common	 data	 structures	
•  Mutual	 exclusion	 is	 a	 form	 of	 thread	 synchroniza0on	

–  Makes	 sure	 two	 things	 don’t	 happen	 at	 once	
–  Example,	 two	 threads	 each	 doing	

Can	 result	 in	 1	 or	 2;	 reordering	 the	 assembly	 code	 shows	 why	
	
	

2.2 Programming with Threads 57

2.2.3.1 Mutual Exclusion
The mutual-exclusion problem involves making certain that two things don’t happen at once. A
dramatic example arose in the fi ghter aircraft of World War I, as illustrated in Figure 2.4. Due to
a number of constraints (e.g., machine guns tended to jam frequently and thus had to be near peo-
ple who could unjam them), machine guns were mounted directly in front of the pilot. However,
blindly shooting a machine gun through a whirling propeller was not a good idea. At the begin-
ning of the war, pilots, being gentlemen, politely refrained from attacking fellow pilots. A bit later
in the war, however, the Germans developed the tactic of gaining altitude on an opponent, diving
at him, turning off the engine, then fi ring — without hitting the now-stationary propeller. Today
this would be called coarse-grained synchronization. Later, the Germans developed technology
that synchronized the fi ring of the gun with the whirling of the propeller, so that shots were fi red
only when the propeller blades would not be in the way. This could well be the fi rst example of a
mutual-exclusion mechanism providing fi ne-grained synchronization!

For a more computer-oriented example of the need for mutual exclusion, consider two
threads, each performing the following operation:

x = x+1;

If the two threads perform the operation at the same time, what’s the fi nal value of x if its initial
value was zero? We’d very much like the answer to be 2. However, consider the assembly-language
version of the statement. It probably looks something like this:

ld r1,x

add r1,1

st r1,x

Thus to add 1 to the variable x, the machine must fi rst load the current contents of location x into
a register, add 1 to the contents of the register, then store those contents back into the location contain-
ing x. If both threads do this at more or less the same time, the fi nal result stored in x is likely to be 1!

For the concurrent execution of the two assignment statements to behave as we want it to,
we somehow have to insure that the effect of executing the three assembler instructions is atomic,
i.e., that all three instructions take place at once without interference.

FIGURE 2 .4 World War I fi ghter aircraft. (Copyright © iStockphoto.)

CH002.indd 57CH002.indd 57 8/2/10 8:26:16 PM8/2/10 8:26:16 PM

2.2 Programming with Threads 57

2.2.3.1 Mutual Exclusion
The mutual-exclusion problem involves making certain that two things don’t happen at once. A
dramatic example arose in the fi ghter aircraft of World War I, as illustrated in Figure 2.4. Due to
a number of constraints (e.g., machine guns tended to jam frequently and thus had to be near peo-
ple who could unjam them), machine guns were mounted directly in front of the pilot. However,
blindly shooting a machine gun through a whirling propeller was not a good idea. At the begin-
ning of the war, pilots, being gentlemen, politely refrained from attacking fellow pilots. A bit later
in the war, however, the Germans developed the tactic of gaining altitude on an opponent, diving
at him, turning off the engine, then fi ring — without hitting the now-stationary propeller. Today
this would be called coarse-grained synchronization. Later, the Germans developed technology
that synchronized the fi ring of the gun with the whirling of the propeller, so that shots were fi red
only when the propeller blades would not be in the way. This could well be the fi rst example of a
mutual-exclusion mechanism providing fi ne-grained synchronization!

For a more computer-oriented example of the need for mutual exclusion, consider two
threads, each performing the following operation:

x = x+1;

If the two threads perform the operation at the same time, what’s the fi nal value of x if its initial
value was zero? We’d very much like the answer to be 2. However, consider the assembly-language
version of the statement. It probably looks something like this:

ld r1,x

add r1,1

st r1,x

Thus to add 1 to the variable x, the machine must fi rst load the current contents of location x into
a register, add 1 to the contents of the register, then store those contents back into the location contain-
ing x. If both threads do this at more or less the same time, the fi nal result stored in x is likely to be 1!

For the concurrent execution of the two assignment statements to behave as we want it to,
we somehow have to insure that the effect of executing the three assembler instructions is atomic,
i.e., that all three instructions take place at once without interference.

FIGURE 2 .4 World War I fi ghter aircraft. (Copyright © iStockphoto.)

CH002.indd 57CH002.indd 57 8/2/10 8:26:16 PM8/2/10 8:26:16 PM

28/01/16	

10	

POSIX	 Mutexes	 ***	
•  OS	 must	 support	 thread	 synchroniza0on	 mechanisms	
•  POSIX	 defines	 a	 data	 type	 called	 a	 mutex	 (from	 “mutual	 exclusion”)	
•  Mutexes	 can	 ensure	

–  Only	 one	 thread	 is	 execu0ng	 a	 block	 of	 code	 (code	 locking)	
–  Only	 one	 thread	 is	 accessing	 a	 par0cular	 data	 structure	 (data	 locking)	

•  A	 mutex	 either	 belongs	 to	 a	 single	 thread	 or	 no	 thread	
•  A	 thread	 may	 “lock”	 a	 mutex	 by	 calling	 pthread_mutex_lock()	
•  A	 mutex	 may	 be	 unlocked	 by	 calling	 pthread_mutex_unlock()	
•  A	 mutex	 datastructure	 can	 be	 ini0alized	 via	 pthread_mutex_init()	

58 CHAPTER 2 Multithreaded Programming

We’re not going to show how to solve this problem right away. Instead, we introduce
functionality from POSIX threads and Win-32 and show how we can use it to solve the problem.
In Chapter 5 we show how this functionality is implemented.

POSIX threads defi nes a new data type called a mutex, which stands for mutual exclusion.
A mutex is used to insure either that only one thread is executing a particular piece of code at
once (code locking) or that only one thread is accessing a particular data structure at once (data
locking). A mutex belongs either to a particular thread or to no thread (i.e., it is either locked
or unlocked). A thread may lock a mutex by calling pthread_mutex_lock. If no other thread has
the mutex locked, then the calling thread obtains the lock on the mutex and returns. Otherwise it
waits until no other thread has the mutex, and fi nally returns with the mutex locked. There may,
of course, be multiple threads waiting for the mutex to be unlocked. Only one thread can lock
the mutex at a time; there is no specifi ed order for which thread gets the mutex next, though the
ordering is assumed to be at least somewhat fair.

To unlock a mutex, a thread calls pthread_mutex_unlock. It is considered incorrect to
unlock a mutex that is not held by the caller (i.e., to unlock someone else’s mutex). However,
checking for this is costly, so most implementations, if they check at all, do so only when certain
degrees of debugging are turned on.

Like any other data structure, mutexes must be initialized. This can be done via a call to
pthread_mutex_init or can be done statically by assigning PTHREAD_MUTEX_INITIALIZER
to a mutex. The initial state of such initialized mutexes is unlocked. Of course, a mutex should be
initialized only once! (That is, make certain that, for each mutex, no more than one thread calls
pthread_mutex_init.) If a mutex is dynamically initialized, a call should be made to pthread_
mutex_destroy when it is no longer needed.

Using mutexes, we can solve the problem of atomically adding 1 to a variable.

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

 // shared by both threads

int x; // ditto

pthread_mutex_lock(&m);

x = x+1;

pthread_mutex_unlock(&m);

Using a mutex to provide mutually exclusive access to a single data structure at a time is
easy. Things get a bit more involved if we need to arrange for such access to multiple data struc-
tures at once. Consider the following example in which one thread is executing proc1 and another
is executing proc2:

void proc1() {

pthread_mutex_lock(&m1);

/* use object 1 */

pthread_mutex_lock(&m2);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m2);

 pthread_mutex_unlock(&m1);

}

void proc2() {

pthread_mutex_lock(&m2);

/* use object 2 */

pthread_mutex_lock(&m1);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m1);

 pthread_mutex_unlock(&m2);

}

CH002.indd 58CH002.indd 58 8/2/10 8:26:17 PM8/2/10 8:26:17 PM

Mutual	 exclusion	 can	 result	 in	 DEADLOCK!	
•  In	 the	 following,	 “deadlock”	 can	 occur	

58 CHAPTER 2 Multithreaded Programming

We’re not going to show how to solve this problem right away. Instead, we introduce
functionality from POSIX threads and Win-32 and show how we can use it to solve the problem.
In Chapter 5 we show how this functionality is implemented.

POSIX threads defi nes a new data type called a mutex, which stands for mutual exclusion.
A mutex is used to insure either that only one thread is executing a particular piece of code at
once (code locking) or that only one thread is accessing a particular data structure at once (data
locking). A mutex belongs either to a particular thread or to no thread (i.e., it is either locked
or unlocked). A thread may lock a mutex by calling pthread_mutex_lock. If no other thread has
the mutex locked, then the calling thread obtains the lock on the mutex and returns. Otherwise it
waits until no other thread has the mutex, and fi nally returns with the mutex locked. There may,
of course, be multiple threads waiting for the mutex to be unlocked. Only one thread can lock
the mutex at a time; there is no specifi ed order for which thread gets the mutex next, though the
ordering is assumed to be at least somewhat fair.

To unlock a mutex, a thread calls pthread_mutex_unlock. It is considered incorrect to
unlock a mutex that is not held by the caller (i.e., to unlock someone else’s mutex). However,
checking for this is costly, so most implementations, if they check at all, do so only when certain
degrees of debugging are turned on.

Like any other data structure, mutexes must be initialized. This can be done via a call to
pthread_mutex_init or can be done statically by assigning PTHREAD_MUTEX_INITIALIZER
to a mutex. The initial state of such initialized mutexes is unlocked. Of course, a mutex should be
initialized only once! (That is, make certain that, for each mutex, no more than one thread calls
pthread_mutex_init.) If a mutex is dynamically initialized, a call should be made to pthread_
mutex_destroy when it is no longer needed.

Using mutexes, we can solve the problem of atomically adding 1 to a variable.

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

 // shared by both threads

int x; // ditto

pthread_mutex_lock(&m);

x = x+1;

pthread_mutex_unlock(&m);

Using a mutex to provide mutually exclusive access to a single data structure at a time is
easy. Things get a bit more involved if we need to arrange for such access to multiple data struc-
tures at once. Consider the following example in which one thread is executing proc1 and another
is executing proc2:

void proc1() {

pthread_mutex_lock(&m1);

/* use object 1 */

pthread_mutex_lock(&m2);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m2);

 pthread_mutex_unlock(&m1);

}

void proc2() {

pthread_mutex_lock(&m2);

/* use object 2 */

pthread_mutex_lock(&m1);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m1);

 pthread_mutex_unlock(&m2);

}

CH002.indd 58CH002.indd 58 8/2/10 8:26:17 PM8/2/10 8:26:17 PM

Deadlock	 is	 nasty,	 difficult	 to	 detect,	 and	 to	 be	 avoided	 at	 all	 cost	

•  One	 useful	 avoidance	 mechanism	 is	 pthread_mutex_trylock()	

60 CHAPTER 2 Multithreaded Programming

Thread 1

Thread 2

Mutex 1 Mutex 2

FIGURE 2 .5 Thread/mutex graph.

can’t possibly exist in the graph. This is easy to do: we simply arrange our mutexes in some order
(for example, by assigning unique integers to them) and insist that all threads attempting to lock
multiple resources do so in ascending order.

In most applications it is fairly easy to set things up so that all threads lock mutexes in
ascending order. However, in some situations this is impossible, often because it is not known
which mutex should be locked second until the fi rst one is locked. An approach that often works
in such situations is to use conditional lock requests, as in:

proc1() {

pthread_mutex_lock(&m1);

/* use object 1 */

pthread_mutex_lock(&m2);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m2);

 pthread_mutex_unlock(&m1);

}

proc2() {

while (1) {

pthread_mutex_lock(&m2);

if (!pthread_mutex_trylock(&m1))

break;

 pthread_mutex_unlock(&m2);

}

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m1);

 pthread_mutex_unlock(&m2);

}

Here thread 1, executing proc1, obtains the mutexes in the correct order. Thread 2, executing
proc2, must for some reason take the mutexes out of order. If it is holding mutex 2, it must be care-
ful about taking mutex 1. So, rather than call pthread_mutex_lock, it calls pthread_mutex_trylock,
which always returns without blocking. If the mutex is available, pthread_mutex_trylock locks
the mutex and returns 0. If the mutex is not available (that is, if it is locked by another thread),
then pthread_mutex_trylock returns a nonzero error code (EBUSY). In the example above, if

CH002.indd 60CH002.indd 60 8/2/10 8:26:18 PM8/2/10 8:26:18 PM

Semaphores	
•  A	 semaphore	 is	 a	 nonnega0ve	 integer	 with	 two	 atomic	 opera0ons	

–  P	 (try	 to	 decrease)	 :	 thread	 waits	 un0l	 semaphore	 is	 posi0ve	 then	 subtracts	 1	 	
•  []’s	 are	 nota0on	 for	 guards;	 that	 which	 happens	 between	 them	 is	 atomic,	 instantaneous,	

and	 no	 other	 opera0on	 that	 might	 take	 interfere	 with	 it	 can	 take	 place	 while	 it	 is	 execu0ng	

–  V	 (increase)	

•  Mutexes	 can	 be	 implemented	 as	 semaphores	

62 CHAPTER 2 Multithreaded Programming

on native Dutch speakers. According to (Dijkstra undated: early 1960s), P stands for prolagen,
a made-up word derived from proberen te verlagen, “try to decrease” in Dutch. V stands for
verhogen, “increase” in Dutch.) The P operation is somewhat complicated: a thread waits until it
fi nds the value of the semaphore positive, then subtracts one from it. What’s really important is
that when the active part of the operation starts, the semaphore’s value is defi nitely positive, and
when this active part fi nishes, the value is exactly one less than when the operation started. It’s
often described as an atomic or indivisible operation: it has no component parts and takes place
as if it were happening instantaneously.

We use the following notation to describe the semantics of P:

when (semaphore > 0) [

semaphore = semaphore – 1;

]

This notation means that the operations in square brackets take place only when the expression
following “when,” known as the guard, is true; the statements in square brackets, known as
the command sequence, are effectively executed instantaneously: no other operation that might
interfere with it can take place while it is executing. We call the entire construct a guarded
command.

The V operation is simpler: a thread atomically adds one to the value of the semaphore.
We write this as

[semaphore = semaphore + 1]

There is no other means for manipulating the value of the semaphore (other than initializing
its value in the fi rst place). Thus if the semaphore’s value is initially one and two threads concur-
rently execute P and V operations on it, the resulting value of the semaphore is guaranteed to be
one. If its value is initially zero and the two threads concurrently execute P and V operations, the
P operation must wait until the V operation makes the semaphore’s value positive. Then the P
operation can complete, reducing the semaphore’s value to zero.

We can easily implement mutexes using semaphores:

semaphore S = 1;

void OneAtATime() {

P(S);

…

/* code executed mutually exclusively */

…

V(S);

}

If two threads call the OneAtATime routine, the fi rst one to execute the P operation fi nds S to
be one, and so subtracts one from it, making it zero. If the second thread now attempts to execute
the P operation, it fi nds S to be zero and thus must wait. Eventually the fi rst thread performs the V
operation, adding one back to S, which enables the second thread to continue. It subtracts one from
S and eventually executes the V and adds one back to it. When semaphores are used in such a way
that their values are only zero and one, as here, they are known as binary semaphores.

When multiple threads attempt to execute a P operation, the effect must be as if they execute
it one at a time while the semaphore’s value is positive. If its value is zero, they are queued up
and, one at a time, they complete the P operation in response to V operations by other threads.

CH002.indd 62CH002.indd 62 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

62 CHAPTER 2 Multithreaded Programming

on native Dutch speakers. According to (Dijkstra undated: early 1960s), P stands for prolagen,
a made-up word derived from proberen te verlagen, “try to decrease” in Dutch. V stands for
verhogen, “increase” in Dutch.) The P operation is somewhat complicated: a thread waits until it
fi nds the value of the semaphore positive, then subtracts one from it. What’s really important is
that when the active part of the operation starts, the semaphore’s value is defi nitely positive, and
when this active part fi nishes, the value is exactly one less than when the operation started. It’s
often described as an atomic or indivisible operation: it has no component parts and takes place
as if it were happening instantaneously.

We use the following notation to describe the semantics of P:

when (semaphore > 0) [

semaphore = semaphore – 1;

]

This notation means that the operations in square brackets take place only when the expression
following “when,” known as the guard, is true; the statements in square brackets, known as
the command sequence, are effectively executed instantaneously: no other operation that might
interfere with it can take place while it is executing. We call the entire construct a guarded
command.

The V operation is simpler: a thread atomically adds one to the value of the semaphore.
We write this as

[semaphore = semaphore + 1]

There is no other means for manipulating the value of the semaphore (other than initializing
its value in the fi rst place). Thus if the semaphore’s value is initially one and two threads concur-
rently execute P and V operations on it, the resulting value of the semaphore is guaranteed to be
one. If its value is initially zero and the two threads concurrently execute P and V operations, the
P operation must wait until the V operation makes the semaphore’s value positive. Then the P
operation can complete, reducing the semaphore’s value to zero.

We can easily implement mutexes using semaphores:

semaphore S = 1;

void OneAtATime() {

P(S);

…

/* code executed mutually exclusively */

…

V(S);

}

If two threads call the OneAtATime routine, the fi rst one to execute the P operation fi nds S to
be one, and so subtracts one from it, making it zero. If the second thread now attempts to execute
the P operation, it fi nds S to be zero and thus must wait. Eventually the fi rst thread performs the V
operation, adding one back to S, which enables the second thread to continue. It subtracts one from
S and eventually executes the V and adds one back to it. When semaphores are used in such a way
that their values are only zero and one, as here, they are known as binary semaphores.

When multiple threads attempt to execute a P operation, the effect must be as if they execute
it one at a time while the semaphore’s value is positive. If its value is zero, they are queued up
and, one at a time, they complete the P operation in response to V operations by other threads.

CH002.indd 62CH002.indd 62 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

62 CHAPTER 2 Multithreaded Programming

on native Dutch speakers. According to (Dijkstra undated: early 1960s), P stands for prolagen,
a made-up word derived from proberen te verlagen, “try to decrease” in Dutch. V stands for
verhogen, “increase” in Dutch.) The P operation is somewhat complicated: a thread waits until it
fi nds the value of the semaphore positive, then subtracts one from it. What’s really important is
that when the active part of the operation starts, the semaphore’s value is defi nitely positive, and
when this active part fi nishes, the value is exactly one less than when the operation started. It’s
often described as an atomic or indivisible operation: it has no component parts and takes place
as if it were happening instantaneously.

We use the following notation to describe the semantics of P:

when (semaphore > 0) [

semaphore = semaphore – 1;

]

This notation means that the operations in square brackets take place only when the expression
following “when,” known as the guard, is true; the statements in square brackets, known as
the command sequence, are effectively executed instantaneously: no other operation that might
interfere with it can take place while it is executing. We call the entire construct a guarded
command.

The V operation is simpler: a thread atomically adds one to the value of the semaphore.
We write this as

[semaphore = semaphore + 1]

There is no other means for manipulating the value of the semaphore (other than initializing
its value in the fi rst place). Thus if the semaphore’s value is initially one and two threads concur-
rently execute P and V operations on it, the resulting value of the semaphore is guaranteed to be
one. If its value is initially zero and the two threads concurrently execute P and V operations, the
P operation must wait until the V operation makes the semaphore’s value positive. Then the P
operation can complete, reducing the semaphore’s value to zero.

We can easily implement mutexes using semaphores:

semaphore S = 1;

void OneAtATime() {

P(S);

…

/* code executed mutually exclusively */

…

V(S);

}

If two threads call the OneAtATime routine, the fi rst one to execute the P operation fi nds S to
be one, and so subtracts one from it, making it zero. If the second thread now attempts to execute
the P operation, it fi nds S to be zero and thus must wait. Eventually the fi rst thread performs the V
operation, adding one back to S, which enables the second thread to continue. It subtracts one from
S and eventually executes the V and adds one back to it. When semaphores are used in such a way
that their values are only zero and one, as here, they are known as binary semaphores.

When multiple threads attempt to execute a P operation, the effect must be as if they execute
it one at a time while the semaphore’s value is positive. If its value is zero, they are queued up
and, one at a time, they complete the P operation in response to V operations by other threads.

CH002.indd 62CH002.indd 62 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

28/01/16	

11	

POSIX	 Semaphores	
•  Interface	

•  Note	 :	 Mac’s	 use	 Mach	 spec.	 named-‐semaphore	 via	 sem_open()	

2.2 Programming with Threads 63

We can easily generalize our above example to allow up to N threads to execute a block of
code (or access a data structure) simultaneously:

semaphore S = N;

void NAtATime() {

P(S);

…

/* No more than N threads here at once */

…

V(S);

}

Semaphores used this way are known as counting semaphores.
A more interesting example of counting semaphores involves using them to solve the

producer-consumer problem (see Figure 2.6 above). To keep things simple, let’s assume we
have one producer and one consumer. We have a buffer with B slots. We use two semaphores:
empty, representing the number of empty slots, and occupied, representing the number of occupied
slots. Our solution is:

Semaphore empty = B;

Semaphore occupied = 0;

int nextin = 0;

int nextout = 0;

void Produce(char item) {

P(empty);

buf[nextin] = item;

nextin = nextin + 1;

if (nextin == B)

nextin = 0;

V(occupied);

}

char Consume() {

char item;

P(occupied);

item = buf[nextout];

nextout = nextout + 1;

if (nextout == B)

nextout = 0;

V(empty);

return(item);

}

The fi rst P operation of Produce causes the thread to wait until there is at least one empty
slot in the buffer; at this point the slot is “taken” and empty’s value is reduced by one. The producer
puts its item in the buffer, then indicates there is one more occupied slot by performing a V operation
on occupied. Similar actions take place inside of Consume.

POSIX provides an implementation of semaphores, but, strangely, it’s not part of POSIX
threads (POSIX 1003.1c) but part of the POSIX real-time specifi cation (POSIX 1003.1b). This
matters only because, depending on the system, you may need to include an additional library
when you use semaphores.

The POSIX interface for semaphores is given below.

sem_t semaphore;

int err;

CH002.indd 63CH002.indd 63 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

64 CHAPTER 2 Multithreaded Programming

err = sem_init(&semaphore, pshared, init);

err = sem_destroy(&semaphore);

err = sem_wait(&semaphore); // P operation

err = sem_trywait(&semaphore); // conditional P operation

err = sem_post(&semaphore); // V operation

Thus semaphores are of type sem_t. All operations on them return an integer error code.
They must be dynamically initialized using sem_init (there is no static initialization such as
is provided for mutexes). They take two arguments in addition to the semaphore itself: a fl ag,
pshared, indicating whether the semaphore is to be used by threads of just one process (pshared =
0) or by threads of multiple processes (pshared = 1). We assume the former for now, and discuss
the latter later. Once a semaphore is no longer used, sem_destroy should be called to free whatever
storage was allocated by sem_init.

The sem_wait operation is the P operation described above. What’s new is the sem_trywait
operation, which is similar to pthread_mutex_trylock: if the semaphore’s value is positive and
thus no waiting is required, it behaves just like sem_wait (the value of the semaphore is immediately
reduced by one). However, if the semaphore’s value is zero, then, rather than waiting, the caller
returns immediately with an error code (the value EAGAIN).

We discuss the Win-32 version of semaphores in the section on Win-32 Events, below.

POSIX Condition Variables Semaphores are a convenient way to express solutions to a
number of synchronization problems, but using them can force amazingly complex solu-
tions for other problems. Thus most operating systems provide additional synchronization
constructs. Here we describe POSIX’s condition variables; later we discuss the events of
Win-32.

We described the semantics of semaphores using guarded commands. A general implementation
of our guarded-command construct is, however, a rather tall order. Somehow we’d have to moni-
tor the values of all variables appearing in the guard (i.e., the expression following the when) so
as to fi nd out when the guard becomes true. Then we’d have to make certain it remains true when
we start executing the command sequence (the code in square brackets that follows), and make
certain that this execution is indivisible.

Condition variables give programmers the tools needed to implement guarded commands.
A condition variable is a queue of threads waiting for some sort of notifi cation. Threads waiting
for a guard to become true join such queues. Threads that do something to change the value of a
guard from false to true can then wake up the threads that were waiting.

The following code shows the general approach:

Guarded command POSIX implementation

when (guard) [

statement 1;

…

statement n;

]

pthread_mutex_lock(&mutex);

while(!guard)

pthread_cond_wait(

&cond_var, &mutex));

statement 1;

…

statement n;

pthread_mutex_unlock(&mutex);

CH002.indd 64CH002.indd 64 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

OS	 Implementa0on	 Problem	 :	 Producer-‐Consumer	 *	
•  Buffer	 with	 a	 finite	 number	 of	 slots	
•  Threads	

–  Producer	 :	 puts	 things	 in	 the	 buffer	
–  Consumer	 :	 removes	 things	 from	 the	 buffer	

•  Producer	 must	 wait	 if	 buffer	 is	 full;	 consumer	 if	 buffer	 is	 empty	

2.2 Programming with Threads 61

mutex 1 is not available, this is probably because it is currently held by thread 1. If thread 2 were
to block waiting for the mutex, we have an excellent chance for deadlock. So, rather than block,
thread 1 not only quits trying for mutex 1 but also unlocks mutex 2 (since thread 1 could well be
waiting for it). It then starts all over again, fi rst taking mutex 2, then mutex 1.

Thread 2 thus repeatedly tries to lock both mutexes (in the wrong order) until it can do so
without causing any problems. This could, of course, require a fair number of iterations. When
this approach is used, the assumption (which must be validated) is that contention for locks is low
and thus even two iterations are unlikely to occur. If lock contention is high, another solution is
necessary, perhaps one that requires all threads to honor the locking order.

2.2.3.2 Beyond Mutual Exclusion
Though mutual exclusion is the most common form of synchronization, there are numerous
situations that it cannot handle. One obvious extension to mutual exclusion is what’s known as
the readers-writers problem: rather than requiring mutual exclusion for all accesses to a data
structure, we can relax things a bit and insist on mutual exclusion only if the data structure is
being modifi ed. Thus any number of threads (readers) may be just looking at the data structure at
once, but any thread intending to modify it must have mutually exclusive access.

Another common (at least in texts such as this) synchronization problem is the pro-
ducer-consumer problem (sometimes called the bounded-buffer problem). Here we have a
buffer containing a fi nite number of slots. As shown in Figure 2.6, a producer is a thread that
wishes to put an item into the next empty slot of the buffer. A consumer is a thread that wishes
to remove an item from the next occupied slot. The synchronization issue for producers is that
if all slots in the buffer are occupied, then producer threads must wait until empty slots are
available. Similarly, if all slots are empty, consumer threads must wait until occupied slots
are available.

The next synchronization problem might seem a bit mundane, but it’s particularly important
in many operating systems. It doesn’t have a common name; here we call it the event problem.
A number of threads are waiting for a particular event to happen. Once the event has happened,
we’d like to release all of the waiting threads. For example, a number of threads might be waiting
for a read operation on a disk to complete. Once it’s completed, all threads are woken up and can
use the data that was just read in.

Semaphores These problems, and many others, were fi rst identifi ed in the 1960s. The per-
son who did much of the early work in identifying and elegantly solving these problems was
Edsger Dijkstra. The semaphore, a synchronization operation (Dijkstra undated: early 1960s) he
described and used in an early system (Dijkstra 1968), has proven so useful that it continues to
be used in most modern operating systems.

A semaphore is a nonnegative integer on which there are exactly two operations, called by
Dijkstra P and V. (What P and V stand for isn’t obvious. While Dijkstra was Dutch and based
his terminology on Dutch words, the mnemonic signifi cance of P and V seems to be lost even

ProducerConsumer

FIGURE 2 .6 Producer-consumer problem.

CH002.indd 61CH002.indd 61 8/2/10 8:26:18 PM8/2/10 8:26:18 PM

Semaphore	 sol’n	 to	 the	 producer-‐consumer	 problem	 	
•  Example	 sheet	

2.2 Programming with Threads 63

We can easily generalize our above example to allow up to N threads to execute a block of
code (or access a data structure) simultaneously:

semaphore S = N;

void NAtATime() {

P(S);

…

/* No more than N threads here at once */

…

V(S);

}

Semaphores used this way are known as counting semaphores.
A more interesting example of counting semaphores involves using them to solve the

producer-consumer problem (see Figure 2.6 above). To keep things simple, let’s assume we
have one producer and one consumer. We have a buffer with B slots. We use two semaphores:
empty, representing the number of empty slots, and occupied, representing the number of occupied
slots. Our solution is:

Semaphore empty = B;

Semaphore occupied = 0;

int nextin = 0;

int nextout = 0;

void Produce(char item) {

P(empty);

buf[nextin] = item;

nextin = nextin + 1;

if (nextin == B)

nextin = 0;

V(occupied);

}

char Consume() {

char item;

P(occupied);

item = buf[nextout];

nextout = nextout + 1;

if (nextout == B)

nextout = 0;

V(empty);

return(item);

}

The fi rst P operation of Produce causes the thread to wait until there is at least one empty
slot in the buffer; at this point the slot is “taken” and empty’s value is reduced by one. The producer
puts its item in the buffer, then indicates there is one more occupied slot by performing a V operation
on occupied. Similar actions take place inside of Consume.

POSIX provides an implementation of semaphores, but, strangely, it’s not part of POSIX
threads (POSIX 1003.1c) but part of the POSIX real-time specifi cation (POSIX 1003.1b). This
matters only because, depending on the system, you may need to include an additional library
when you use semaphores.

The POSIX interface for semaphores is given below.

sem_t semaphore;

int err;

CH002.indd 63CH002.indd 63 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

Devia0ons	
•  Signals	

–  Force	 a	 user	 thread	 to	 put	 aside	 current	 ac0vity	 	
–  Call	 a	 pre-‐arranged	 handler	
–  Go	 back	 to	 what	 it	 was	 doing	
–  Similar	 to	 interrupt	 handling	 inside	 the	 OS	

•  Examples	
–  Typing	 special	 characters	 on	 the	 keyboard	 (^c)	
–  Signals	 sent	 by	 other	 threads	 (kill)	
–  Program	 excep0ons	 (divide	 by	 zero,	 addressing	 excep0ons)	

•  Background	
–  Graceful	 termina0on	 via	 ^c	 and	 SIGINT	

28/01/16	

12	

Signals	 and	 Handled	 by	 Handlers	
•  Se�ng	 up	 a	 handler	 to	 be	 invoked	 upon	 receipt	 of	 a	 ^c	 signal	

•  Signals	 can	 be	 used	 to	 communicate	 with	 a	 process	
	

80 CHAPTER 2 Multithreaded Programming

A process might set up a handler to be invoked when such a signal is delivered, as shown
below:

int main() {

void handler(int);

sigset(SIGINT, handler);

/* long-running buggy code */

…

}

void handler(int sig) {

/* perform some cleanup actions */

…

exit(1);

}

The call to sigset in main causes handler to be registered as the signal handler for the
SIGINT signal. Thus if you run this program and decide to terminate it early by typing Ctrl-C, a
SIGINT signal is delivered to the process, causing it to put aside its current state and call handler;
handler performs some cleanup actions (perhaps writing some key data to a fi le) and then terminates
the process.

Signals can also be used as a means for communicating with a process, perhaps requesting
it to do something:

computation_state_t state;

int main() {

void handler(int);

sigset(SIGINT, handler);

long_running_procedure();

}

long_running_procedure() {

while (a_long_time) {

update_state(&state);

compute_more();

}

}

void handler(int sig) {

display(&state);

}

In this code the main procedure establishes a handler for SIGINT, and then calls
long_running_procedure, which might execute for several days. Occasionally the user of the

CH002.indd 80CH002.indd 80 8/2/10 8:26:23 PM8/2/10 8:26:23 PM

•  Signals	 are	 processed	 by	 a	 single	 thread	 of	
execu0on	

•  Communica0on	 at	 right	 not	 problem-‐free	
because	 of	 asynchronous	 access	 to	 state	

•  Mutex	 use	 will	 result	 in	 deadlock	
•  Making	 rou0nes	 async-‐signal	 safe	 requires	

making	 them	 so	 that	 the	 controlling	 thread	
cannot	 be	 interrupted	 by	 a	 signal	 at	 certain	
0mes	 (i.e.	 in	 update_state)	
–  Signal	 handling	 turned	 on	 and	 off	 by	

•  sigemptyset()	
•  sigaddset()	
•  Sigprocmask()	

•  POSIX	 compliant	 OS’s	 implement	 60+	 async-‐
signal	 safe	 rou0nes	

Async-‐signal	 safe	 rou0nes	 (OS	 implementa0on	 perspec0ve)	

80 CHAPTER 2 Multithreaded Programming

A process might set up a handler to be invoked when such a signal is delivered, as shown
below:

int main() {

void handler(int);

sigset(SIGINT, handler);

/* long-running buggy code */

…

}

void handler(int sig) {

/* perform some cleanup actions */

…

exit(1);

}

The call to sigset in main causes handler to be registered as the signal handler for the
SIGINT signal. Thus if you run this program and decide to terminate it early by typing Ctrl-C, a
SIGINT signal is delivered to the process, causing it to put aside its current state and call handler;
handler performs some cleanup actions (perhaps writing some key data to a fi le) and then terminates
the process.

Signals can also be used as a means for communicating with a process, perhaps requesting
it to do something:

computation_state_t state;

int main() {

void handler(int);

sigset(SIGINT, handler);

long_running_procedure();

}

long_running_procedure() {

while (a_long_time) {

update_state(&state);

compute_more();

}

}

void handler(int sig) {

display(&state);

}

In this code the main procedure establishes a handler for SIGINT, and then calls
long_running_procedure, which might execute for several days. Occasionally the user of the

CH002.indd 80CH002.indd 80 8/2/10 8:26:23 PM8/2/10 8:26:23 PMOther	 Basic	 OS	 Concepts	
•  Context	 switching	

–  Stack	 frames	
–  System	 calls	
–  Interrupts	

•  I/O	
•  Dynamic	 Storage	 Alloca0on	

–  Best-‐fit,	 first-‐fit	
•  Linking	 and	 loading	
•  Boo0ng	

Context	 Switching	 and	 stack	 frames	
•  “Context”	 is	 the	 se�ng	 in	 which	 execu0on	 is	 currently	 taking	 place	

–  Processor	 mode	
–  Address	 space	
–  Register	 contents	
–  Thread	 or	 interrupt	 state	

•  Intel	 x86	 Stack	 Frames	
–  Subrou0ne	 context	

•  Instruc0on	 pointer	 (reg.	 eip)	
–  Address	 to	 which	 control	 should	

return	 when	 subrou0ne	 is	
complete	

•  Frame	 pointer	 (reg.	 ebp)	
–  Link	 to	 stack	 frame	 of	 caller	

3.1 Context Switching 95

The picture above is idealized: not all portions of the stack frame are always used. For exam-
ple, registers are not saved if the subroutine doesn’t modify them, the frame pointer is not saved
if it’s not used, etc. For more details, see the Intel architecture manuals (http://www.intel.com/
design/processor/manuals/253665.pdf).

Here’s possible unoptimized assembler code for the above C code:1

main:

 ; enter main, creating a new stack frame

 pushl %ebp ; Push frame pointer onto the stack;

 ; this means that the contents of the

 ; stack-pointer register (esp) are

 ; reduced by 4 so that esp points to

 ; next lower word in the stack, then

 ; the contents of the frame-pointer

 ; register (ebp) are stored there.

 movl %esp, %ebp ; Set frame pointer to point to new

 ; frame: the address of the current end

 ; of the stack (in register esp) is

 ; copied to the frame-pointer register.

 pushl %esi ; Save esi register: its contents are

 ; pushed onto the stack.

 pushl %edi ; Save edi register: its contents are

 ; pushed onto the stack.

 subl $8, %esp ; Create space for local variables (i

1 We use the syntax of the Gnu assembler. It’s similar to that of the Microsoft assembler (masm) except in the order of arguments:
in the Gnu assembler, the fi rst argument is the source and the second is the destination; in the Microsoft assembler, the order is
reversed.

FIGURE 3 .1 Intel x86 stack frames.

args

eip

Saved registers

Local variables

ebp

args

eip

Saved registers

Local variables

ebp

esp

ebp

Stack frame

CH003.indd 95CH003.indd 95 8/2/10 8:31:19 PM8/2/10 8:31:19 PM

Remember;	 the	 stack	 grows	 down	

28/01/16	

13	

System	 calls	
•  Transfer	 control	 from	 user	 to	 system	 code	 and	 back	

–  Need	 not	 involve	 a	 thread	 switch,	 just	 a	 “stack	 switch”	 	
–  Trap	 (OS	 code)	 typically	 switches	 to	 a	 kernel	 stack	 frame	 3.1 Context Switching 103

The fi rst technique, allocating a stack, is ruled out for a number of reasons, not least that it
is too time-consuming, though a variant is used in Solaris, as discussed below. Both the latter two
approaches are used. A single system-wide interrupt stack was used on DEC’s VAX computers;2
in most other architectures the interrupt handler borrows a stack (the kernel stack) from the thread
that was interrupted (see Figure 3.6). If another interrupt handler was interrupted, its context is
saved on the current stack, and that stack continues to be used for the new interrupt handler.

On those systems on which multiple interrupt handlers use the same stack, perhaps one
borrowed from a thread, interrupt handlers must execute differently from normal thread execu-
tion. Because there is just one shared stack, there is just one interrupt context. We cannot suspend
the execution of one handler and resume the execution of another: the handler of the most recent
interrupt must run to completion. Then, when it has no further need of the stack, the handler of
the next-most-recent interrupt completes its execution, and so forth.

That the execution of an interrupt handler cannot be suspended is signifi cant because it
means that interrupt handling cannot yield to anything other than higher-priority interrupts. For
example, on a uniprocessor system, if interrupt handler 2 interrupts interrupt handler 1 and then
wakes up a high-priority thread that must immediately respond to an event, the thread cannot run
until all interrupt handling completes, including that of interrupt handler 1.

If we could somehow give each interrupt handler its own stack, we wouldn’t have this
problem. Solaris, as well as some real-time systems, has preallocated stacks for each possible
interrupt level. Thus each has its own independent context and can yield to other processing, just
as threads can. We discuss this in greater detail in Chapter 5. Most other general-purpose systems
do not support this style of architecture.

Another approach to getting interrupt handlers to yield to other execution is that the handler
places a description of the work that must be done on a queue of some sort, then arranges for it
to be done in some other context at a later time. This approach, which is used in many systems
including Windows and Linux, is also discussed in Chapter 5.

2 Multiprocessor versions of the VAX had one interrupt stack per processor.

FIGURE 3 .5 System-call fl ow.

prog() {

. . .

write(fd, buffer, size); trap(write_code);

. . .

}

write() {

. . .

. . .

}

prog frame

write

User stack

User
Kernel

trap_handler(code) {

. . .

if(code == write_code)

write_handler();

. . .

}

trap_handler
frame

write_handler
frame

Kernel stack

FIGURE 3 .6 Interrupt
handlers and stacks.

User
stack

frames

Current thread’s
user stack

Kernel
stack

frames

Interrupt
handler

1’s frame

Interrupt
handler

2’s frame

Current thread’s
kernel stack

CH003.indd 103CH003.indd 103 8/2/10 8:31:21 PM8/2/10 8:31:21 PM

•  On	 interrupt	 occurance	
–  Processor	 	

•  Puts	 aside	 current	 context	 of	
thread	 or	 other	 interrupt	

•  Switches	 to	 interrupt	 context	

•  Interrupts	 require	 stacks	
–  OS’s	 differ	
–  Common	 choice	 :	 kernel	 stack	

Interrupts	

3.1 Context Switching 103

The fi rst technique, allocating a stack, is ruled out for a number of reasons, not least that it
is too time-consuming, though a variant is used in Solaris, as discussed below. Both the latter two
approaches are used. A single system-wide interrupt stack was used on DEC’s VAX computers;2
in most other architectures the interrupt handler borrows a stack (the kernel stack) from the thread
that was interrupted (see Figure 3.6). If another interrupt handler was interrupted, its context is
saved on the current stack, and that stack continues to be used for the new interrupt handler.

On those systems on which multiple interrupt handlers use the same stack, perhaps one
borrowed from a thread, interrupt handlers must execute differently from normal thread execu-
tion. Because there is just one shared stack, there is just one interrupt context. We cannot suspend
the execution of one handler and resume the execution of another: the handler of the most recent
interrupt must run to completion. Then, when it has no further need of the stack, the handler of
the next-most-recent interrupt completes its execution, and so forth.

That the execution of an interrupt handler cannot be suspended is signifi cant because it
means that interrupt handling cannot yield to anything other than higher-priority interrupts. For
example, on a uniprocessor system, if interrupt handler 2 interrupts interrupt handler 1 and then
wakes up a high-priority thread that must immediately respond to an event, the thread cannot run
until all interrupt handling completes, including that of interrupt handler 1.

If we could somehow give each interrupt handler its own stack, we wouldn’t have this
problem. Solaris, as well as some real-time systems, has preallocated stacks for each possible
interrupt level. Thus each has its own independent context and can yield to other processing, just
as threads can. We discuss this in greater detail in Chapter 5. Most other general-purpose systems
do not support this style of architecture.

Another approach to getting interrupt handlers to yield to other execution is that the handler
places a description of the work that must be done on a queue of some sort, then arranges for it
to be done in some other context at a later time. This approach, which is used in many systems
including Windows and Linux, is also discussed in Chapter 5.

2 Multiprocessor versions of the VAX had one interrupt stack per processor.

FIGURE 3 .5 System-call fl ow.

prog() {

. . .

write(fd, buffer, size); trap(write_code);

. . .

}

write() {

. . .

. . .

}

prog frame

write

User stack

User
Kernel

trap_handler(code) {

. . .

if(code == write_code)

write_handler();

. . .

}

trap_handler
frame

write_handler
frame

Kernel stack

FIGURE 3 .6 Interrupt
handlers and stacks.

User
stack

frames

Current thread’s
user stack

Kernel
stack

frames

Interrupt
handler

1’s frame

Interrupt
handler

2’s frame

Current thread’s
kernel stack

CH003.indd 103CH003.indd 103 8/2/10 8:31:21 PM8/2/10 8:31:21 PM

•  Memory-‐mapped	
–  Each	 device	 has	 a	 controller	
–  Each	 controller	 has	 registers	
–  Registers	 appear	 to	 processor	 as	

physical	 memory	
–  Actually	 ahached	 via	 a	 bus	

•  Categories	 of	 I/O	 devices	
–  Programmed	 I/O	 (PIO)	

•  One	 word	 per	 read/write	
•  e.g.	 terminal	

–  Direct	 memory	 access	 (DMA)	
•  Controller	 directly	 manipulates	
physical	 memory	 in	 loca0on	
specified	 by	 processor	

•  e.g.	 disk	

I/O	 Architecture	 Types	 (Simplified	 Overview)	

104 CHAPTER 3 Basic Concepts

An important property of interrupts is that they can be masked, i.e., temporarily blocked. If an
interrupt occurs while it is masked, the interrupt indication remains pending; once it is unmasked, the
processor is interrupted. How interrupts are masked is architecture-dependent, but two approaches
are common. One approach is that a hardware register implements a bit vector — each bit represents
a class of interrupts. If a particular bit is set, then the corresponding class of interrupts is masked.
Thus the kernel masks interrupts by setting bits in the register. When an interrupt does occur, the
corresponding mask bit is set in the register and cleared when the handler returns — further occur-
rences of that class of interrupts are masked while the handler is running.

What’s more common are hierarchical interrupt levels. Each particular device issues inter-
rupts at a particular level. The processor masks interrupts by setting an interrupt priority level
(IPL) in a hardware register: all devices whose interrupt level is less than or equal to this value
have their interrupts masked. Thus the kernel masks a class of interrupts by setting the IPL to a
particular value. When an interrupt does occur and the handler is invoked, the current IPL is set
to that of the device, and restored to its previous value when the handler returns.

In this section we give a high-level, rather simplistic overview of common I/O architectures. Our
intent is to provide just enough detail to discuss the responsibilities of the operating system in
regard to I/O, but without covering the myriad arcane details of device management. To do this,
we introduce a simple I/O architecture we have used in the past at Brown University for operating
system projects.

A very simple architecture is the memory-mapped architecture: each device is controlled
by a controller and each controller contains a set of registers for monitoring and controlling its
operation (see Figure 3.7). These registers appear to the processor to occupy physical memory
locations. In reality, however, each controller is connected to a bus. When the processor wants to
access or modify a particular location, it broadcasts the address on the bus. Each controller listens
for a fi xed set of addresses and, when one of its addresses has been broadcast, attends to what the
processor wants to have done, e.g., read the data at a particular location or modify the data at a
particular location. The memory controller, a special case, passes the bus requests to the actual
primary memory. The other controllers respond to far fewer addresses, and the effect of reading
and writing is to access and modify the various controller registers.

There are two categories of devices, programmed I/O (PIO) devices and direct memory
access (DMA) devices. PIO devices do I/O by reading or writing data in the controller registers
one byte or word at a time. In DMA devices the controller itself performs the I/O: the processor
puts a description of the desired I/O operation into the controller’s registers, then the controller
takes over and transfers data between a device and primary memory.

3.2
INPUT/OUTPUT
ARCHITECTURES

3.2
INPUT/OUTPUT
ARCHITECTURES

Bus

Memory Disk

Processor

ControllerControllerController

FIGURE 3 .7 Simple I/O architecture.

CH003.indd 104CH003.indd 104 8/2/10 8:31:22 PM8/2/10 8:31:22 PM

If	 an	 OS	 were	 wrihen	 in	 C++	 a	 device	
driver	 would	 be	 a	 class	 with	
instances	 for	 each	 device.	

PIO	 and	 DMA	 Example	 	

3.2 Input/Output Architectures 105

Our architecture supports both PIO and DMA devices. The default confi guration has
one PIO device (a terminal) and one DMA device (a disk). Each PIO device has four registers:
Control, Status, Read, and Write, each one byte in length (see Figure 3.8). Each DMA device
also has four registers: Control, Status, Memory Address, and Device Address (Figure 3.9). The
control and status registers are each one byte long; the others are four bytes long (they hold
addresses). Certain bits of the control registers are used to start certain functions, as shown in
Figure 3.8 and Figure 3.9. Bits of the status registers are used to indicate whether the associated
controller is ready or busy.

Control registerGoR GoW IER IEW

Status registerRdyR RdyW

Read register

Write register

Ready to write RdyW

Ready to readRdyR

Enable write-completion interruptsIEW

Enable read-completion interruptsIER

Go write (start a write operation)GoW

Go read (start a read operation)GoRLegend:

FIGURE 3 .8 PIO registers.

Op Code Control registerGo IE

Status registerRdy

Memory address register

Device address register

Operation code (identifies the operation)Op Code

Controller is readyRdy

Enable interruptsIE

Start an operationGoLegend:

FIGURE 3 .9 DMA registers.

CH003.indd 105CH003.indd 105 8/2/10 8:31:23 PM8/2/10 8:31:23 PM

3.2 Input/Output Architectures 105

Our architecture supports both PIO and DMA devices. The default confi guration has
one PIO device (a terminal) and one DMA device (a disk). Each PIO device has four registers:
Control, Status, Read, and Write, each one byte in length (see Figure 3.8). Each DMA device
also has four registers: Control, Status, Memory Address, and Device Address (Figure 3.9). The
control and status registers are each one byte long; the others are four bytes long (they hold
addresses). Certain bits of the control registers are used to start certain functions, as shown in
Figure 3.8 and Figure 3.9. Bits of the status registers are used to indicate whether the associated
controller is ready or busy.

Control registerGoR GoW IER IEW

Status registerRdyR RdyW

Read register

Write register

Ready to write RdyW

Ready to readRdyR

Enable write-completion interruptsIEW

Enable read-completion interruptsIER

Go write (start a write operation)GoW

Go read (start a read operation)GoRLegend:

FIGURE 3 .8 PIO registers.

Op Code Control registerGo IE

Status registerRdy

Memory address register

Device address register

Operation code (identifies the operation)Op Code

Controller is readyRdy

Enable interruptsIE

Start an operationGoLegend:

FIGURE 3 .9 DMA registers.

CH003.indd 105CH003.indd 105 8/2/10 8:31:23 PM8/2/10 8:31:23 PM

PIO	 (terminal)	 DMA	 (disk)	

Usage:	
	
1.  Store	 byte	 in	 write	 register	
2.  Set	 GoW	 bit	 in	 control	 register	
3.  Wait	 for	 RdyW	 in	 status	 register	

4.  Can	 request	 an	 interrupt	

Usage:	
	
1.  Set	 disk	 address	 in	 device	 register	
2.  Set	 memory	 address	 in	 memory	 address	 register	
3.  Set	 Op	 Code,	 Go,	 IE	 in	 control	 register	

28/01/16	

14	

•  Storage	 alloca0on	 is	 very	
important	 in	 OS’s	
–  Disk	
–  Memory	

•  Example	
–  1000,	 1100,	 250	 bytes	 in	 order	

•  Compe0ng	 approaches	
–  First-‐fit	
–  Best-‐fit	

•  Knuth	 simula0ons	 revealed	
(non-‐intui0vely)	 first-‐fit	 was	
best	

•  Intui0on	 :	 best-‐fit	 leaves	 too	
many	 small	 gaps	

(Dynamic)	 Storage	 Alloca0on	

3.3 Dynamic Storage Allocation 107

In this version, the start_read and start_write methods return a handle identifying the
operation that has started. A thread can, at some later point, call wait with the handle and wait
until that operation has completed. Note that multiple threads might call wait with the same
handle if all must wait for the same operation (for example, if all need the same block from
a fi le).

A more sophisticated approach to I/O used in what are commonly called “mainframe”
computers is to employ specialized I/O processors to handle much of the I/O work. This is par-
ticularly important in large data-processing applications where I/O costs dominate computation
costs. These I/O processors are traditionally called channels and execute programs in primary
storage called channel programs (see Figure 3.10).

Storage allocation is a very important concern in operating systems. Whenever a thread is cre-
ated, its stacks, control block, and other data structures must be allocated; whenever a thread
terminates, these data structures must be freed. Since there are numerous other such dynamic
data structures, both inside the operating system and within user applications, this allocation and
liberation of storage must be done as quickly as possible.

The classic reference for most of this material is Donald Knuth’s The Art of Computer
Programming, Vol. 1: Fundamental Algorithms. In this section we summarize Knuth’s results
and discuss some additional operating-system concerns.

3.1.1 BEST-FIT AND FIRST-FIT ALGORITHMS

We start with the general problem of maintaining a pool of available memory and allocating vari-
able-size quantities from it. Following Knuth (this is his example), consider the memory pool in
Figure 3.11 that has two blocks of free memory, one 1300 bytes long and the other 1200 bytes
long. We’ll try two different algorithms to process series of allocation requests. The fi rst is called
fi rst fi t — an allocation request is taken from the fi rst area of memory that is large enough to
satisfy the request. The second is called best fi t — the request is taken from the smallest area of
memory that is large enough to satisfy the request.

3.3
DYNAMIC
STORAGE
ALLOCATION

3.3
DYNAMIC
STORAGE
ALLOCATION

Memory

Processor

Channel Controller

Channel Controller

Channel Controller

FIGURE 3 .10 I/O with channels.

1300

1200

FIGURE 3 .11 Pool of
free storage.

CH003.indd 107CH003.indd 107 8/2/10 8:31:24 PM8/2/10 8:31:24 PM

Pool	 of	 Free	 storage	

108 CHAPTER 3 Basic Concepts

On the principle that whatever requires the most work must be best, one might think that
best fi t is the algorithm of choice. However, Figure 3.12 illustrates a case in which fi rst fi t
behaves better than best fi t. We fi rst allocate 1000 bytes. Under the fi rst-fi t approach (on the left),
this allocation is taken from the topmost region of free memory, leaving behind a region of 300 bytes
of still unallocated memory. With the best-fi t approach (right), this allocation is taken from the
bottommost region of free memory, leaving behind a region of 200 bytes of still unallocated
memory. The next allocation is for 1100 bytes. Under fi rst fi t, we now have two regions of 300 bytes
and 100 bytes. Under best fi t, we have two regions of 200 bytes. Finally, there is an allocation of
250 bytes. First fi t leaves behind two regions of 50 bytes and 100 bytes, but best fi t cannot handle
the allocation — neither remaining region is large enough.

Clearly one can come up with examples in which best fi t performs better. However, Knuth’s
simulation studies have shown that, on the average, fi rst fi t works best. Intuitively, the reason for
this is that best fi t tends to leave behind a large number of regions of memory that are too small
to be useful, as in Figure 3.12.

The liberation of storage is more diffi cult than its allocation, for the reason shown in Figure
3.13 (another example from Knuth). Here the shaded regions are unallocated memory. The region of
storage A separating the two unallocated regions is about to be liberated. We’d like this to produce
one large region of unallocated storage rather than three smaller adjacent regions. Thus the liberation
algorithm must be able to determine if adjacent storage regions are allocated or free. An algorithm
could simply walk through the list of free storage to determine if the adjacent areas are free, but a
much cheaper approach is to tag the boundaries of storage regions to indicate whether they are
allocated or free. Knuth calls this the boundary-tag method and provides an algorithm for it.

The shortcomings of best fi t illustrate a common issue in storage management: fragmenta-
tion. What we saw here is called external fragmentation, in which we end up with lots of small
areas of storage that collectively are sizeable, but individually are too small to be of use. In
the following sections we encounter internal fragmentation, in which storage is wasted because
more must be allocated than is needed.

3.3.2 BUDDY SYSTEM

The buddy system is a simple dynamic storage allocation scheme that works surprisingly well. Storage
is maintained in blocks whose sizes are powers of two. Requests are rounded up to the smallest such
power greater than the request size. If a block of that size is free, it’s taken; otherwise, the smallest free
block larger than the desired size is found and split in half — the two halves are called buddies. If the
size of either buddy is what’s needed, one of them is allocated (the other remains free). Otherwise one
of the buddies is split in half. This splitting continues until the appropriate size is reached.

300

1200

1300

200

100

300

100

50

200

200

1000 bytes

1100 bytes

250 bytes

First fit Best fit

Stuck!

FIGURE 3 .12 Allocations using fi rst fi t and best fi t.

A free(A)

FIGURE 3 .13 Liberating storage.

CH003.indd 108CH003.indd 108 8/2/10 8:31:25 PM8/2/10 8:31:25 PM

Memory	 /	 File	

Start	

Alloca0on	 through	 finish	

•  Knuth	 :	 ref;	 “boundary-‐tag”	
method	 and	 algorithm	
–  Combines	 free	 segments	 greedily	

upon	 release	
–  Requires	 datastructure	 that	

represents	 free	 or	 not-‐free	

•  Helps	 avoid	 “fragmenta0on”	
–  External	

•  Free	 spaces	 too	 small	
–  Internal	

•  Allocated	 memory	 unnecessarily	
too	 large	 (this	 situa0on	 arises	 in	
different,	 not-‐covered	 alloca0on	
approaches	 like	 the	 “slab”	
approach)	

Freeing	 Storage	 Is	 More	 Complex	

hhp://books.google.co.uk/books?
id=gJrdSueQjBEC&pg=PA328&lpg=PA328&dq=boundary+tag
+algorithm&source=bl&ots=VPIoDQOTqj&sig=NCPz__mnViO5ajj5Q-‐
P3KccBIhk&hl=en&sa=X&ei=j-‐
x4UdDlBcusPIzVgLgJ&ved=0CEsQ6AEwAw#v=onepage&q=boundary
%20tag%20algorithm&f=false	 Linking	 and	 loading	

•  ld	 links	 and	 relocates	 code	 by	 resolving	 addresses	 of	 variables	 and	
procedures	

•  Shared	 libraries	 require	 mechanisms	 that	 delay	 linking	 un0l	 run-‐
0me	

•  Loading	 requires	 se�ng	 up	 address	 space	 then	 calling	 main	

Boo0ng	
	

•  Thought	 to	 be	 derived	 from	 “to	 pull	 yourself	 up	 by	 your	 bootstraps”	
•  Modern	 computers	 boot	 from	 BIOS	 read	 only	 memory	 (ROM)	 	

–  Last	 64K	 of	 the	 first	 MB	 of	 address	 space	

•  When	 the	 computer	 is	 powered	 on	 it	 starts	 execu0ng	 instruc0ons	
at	 0xffff0	

•  Looks	 for	 a	 boot	 device	
–  Loads	 a	 master	 boot	 record	 (MBR)	

•  Cylinder	 0,	 head	 0,	 sector	 1	 (hard	 disc)	

•  Loads	 boot	 program	
•  Transfers	 control	 to	 boot	 program	
•  Boot	 progam	 (lilo,	 grub,	 etc.)	 loads	 OS	
•  Transfers	 control	

122 CHAPTER 3 Basic Concepts

The provider of the computer system supplies a BIOS chip residing on the “motherboard” con-
taining everything necessary to perform the three functions. Additional BIOS functions might
reside on chips on add-on boards, providing access to additional devices.

The BIOS ROM is mapped into the last 64K of the fi rst megabyte of address space
(starting at location 0xf0000). When the system is powered on, the processor starts executing
instructions at location 0xffff0 — the last sixteen bytes of this mapped region. At this location is
a branch instruction that transfers control to the beginning of the BIOS code. The fi rst thing the
code does is the power-on self test, during which it initializes hardware, checks for problems,
and computes the amount of primary storage.

The next step is to fi nd a boot device. This is probably a hard disk, but could be a fl oppy or
diskette. The list of possibilities and the order to search are in the settings stored in non-volatile
RAM.

Once the boot device is found, the master boot record (MBR) is loaded from the fi rst sector
of a fl oppy or diskette, or from cylinder 0, head 0, sector 1 of a hard disk (see Chapter 6 for an
explanation of these terms). The MBR (Figure 3.20) is 512 bytes long and contains:

a “magic number” identifying itself

a partition table listing up to four regions of the disk (identifying one as the active or boot
partition)

executable boot program

The BIOS code transfers control to the boot program. What happens next depends, of
course, on the boot program. In the original version (for MS-DOS), this program would fi nd
the one active partition, load the fi rst sector from it (containing the volume boot program), and
pass control to that program. This program would then load the operating system from that
partition.

More recent boot programs allow more fl exibility. For example, both lilo (Linux Loader)
and grub (Grand Unifi ed Boot Manager), allow one to choose from multiple systems to boot,
so that, for example, one can choose between booting Linux or Windows. Lilo has the sector
number of the kernel images included within its code and thus must be modifi ed if a kernel
image moves. Grub understands a number of fi le systems and can fi nd the image given a
path name.

•

•

•

Boot program

Partition table

Magic number

446 bytes

64 bytes

2 bytes

Partition 1

Partition 2

Partition 3

Partition 4
Master boot record

FIGURE 3 .20 The mas-
ter boot record, residing
in the fi rst sector of a
bootable disk.

CH003.indd 122CH003.indd 122 8/2/10 8:31:33 PM8/2/10 8:31:33 PM

28/01/16	

15	

Review	
•  OS	 essen0als	

–  Threads	
–  Context	 switching	 for	 management	 of	 processors	
–  I/O	 for	 file	 systems	
–  Dynamic	 storage	 alloca0on	

Lecture	 3	 :	
Processor	 &	 Memory	 Management	 	
(A	 very-‐high-‐level	 OS	 Implementa0on	

Perspec0ve)	
Material	 from	 	

Opera0ng	 Systems	 in	 Depth	 	
(spec.	 Chapters	 5	 and	 7)	 	

by	
Thomas	 Doeppner	

	
GET	 THIS	 BOOK	 AND	 READ	 IT!	

Threads	 Implementa0ons	
•  OS	 goal	 is	 to	 support	 user-‐level	 applica0on	 programs	
•  Design	 issues	 related	 to	 thread	 support	

–  Scheduling	
–  Synchroniza0on	

•  In	 or	 out	 of	 kernel?	
–  One-‐level	 model	
–  Two-‐level	 model	

Strategies	
•  One-‐level	 model	

–  Each	 user	 thread	 is	 mapped	 to	 a	 kernel	 thread	

•  Two-‐level	 model	
–  Single	 kernel	 thread	

•  Each	 process	 gets	 one	 kernel	 thread	
•  Threads	 mul0plexed	 on	 this	 kernel	 thread	
•  Synchroniza0on	 via	 thread	 queues	 	
•  Disadvantage	 :	 if	 any	 thread	 calls	 blocking	 system	 call	 (i.e.	 read())	 all	 threads	 stop	

–  Mul0ple	 kernel	 threads	
•  Many	 kernel	 threads.	 	 User-‐level	 threads	 distributed	 across	 them	
•  Avoids	 blocking	 problem	 of	 single-‐kernel	 thread	 model	

•  Other	 approaches	 exist	 …	

28/01/16	

16	

One	 Hypothe0cal	 Threads	 Implementa0on	
•  User-‐level	 simple	 thread	

package	 “straight-‐threads”	
implementa0on	

•  Assume	
–  One	 processor	
–  No	 interrupts	

•  Assert	
–  Thread	 object	 datastructure	 	
–  Current	 thread	 pointer	
–  Run	 queue	 datastructure	

•  threads	 wai0ng	 to	 run	
–  Mutex	 queue	 of	 threads	 wai0ng	

to	 lock,	 one	 for	 every	 mutex	

5.1 Threads Implementations 171

Run queue

Thread object

Stack

Thread object

Stack
Thread object

Stack

Thread object

Stack

Mutex queue

Thread object

Stack
Thread object

Stack

Thread object

Stack

Current thread

FIGURE 5 .8 A collec-
tion of threads: one is
currently running, three
are ready to run, and
three are in a queue
waiting to lock a
particular mutex.

Figure 5.8 shows a collection of threads. Assuming a uniprocessor system, at most one
thread is currently running and its thread object is pointed to by the global variable Current-
Thread. Those threads that are ready to run are organized into a run queue. In our simple system,
each mutex has an associated queue of threads waiting to lock it.

The context of a thread is a rather nebulous concept, but, as explained in Sections 3.1.2 and
4.1.3, it contains, at the least, a copy of whatever register points to the thread’s current stack frame.
This stack frame contains the thread’s current register state. This information is not necessarily
valid while the thread is running, but must be made valid when the thread is suspended so that it
can be resumed. See Figure 5.9.

In Section 3.1.2 we discussed how one thread can yield the processor, switching to another
thread. Here is a variation of the code presented there; this time we assume the existence of
swapcontext, which saves the caller’s register context in its thread object, then restores that of the
target thread from its thread object:

void thread_switch() {

thread_t NextThread, OldCurrent;

NextThread ! dequeue(RunQueue);

OldCurrent ! CurrentThread;

CurrentThread ! NextThread;

swapcontext(&OldCurrent->context, &NextThread->context);

// We’re now in the new thread’s context

}

The dequeue routine performs the role of a scheduler in this simple system: it selects the next
thread to run from the run queue. Note that we haven’t dealt with the case when the run queue is
empty — we take this up in Exercise 5.

Context

Stack

Stack frame

FIGURE 5 .9 A thread’s
context refers to its
current stack frame.

CH005.indd 171CH005.indd 171 8/2/10 8:42:58 PM8/2/10 8:42:58 PM

Yielding	 the	 Processor	
•  Assume	 “Straight-‐threads”	 voluntarily	 yield	 by	 calling	 system	 call	

•  Here	 swapcontext,	 saves	 the	 caller’s	 register	 context	 in	 its	 thread	
object,	 then	 restores	 that	 of	 the	 target	 thread	 from	 its	 thread	
object	

5.1 Threads Implementations 171

Run queue

Thread object

Stack

Thread object

Stack
Thread object

Stack

Thread object

Stack

Mutex queue

Thread object

Stack
Thread object

Stack

Thread object

Stack

Current thread

FIGURE 5 .8 A collec-
tion of threads: one is
currently running, three
are ready to run, and
three are in a queue
waiting to lock a
particular mutex.

Figure 5.8 shows a collection of threads. Assuming a uniprocessor system, at most one
thread is currently running and its thread object is pointed to by the global variable Current-
Thread. Those threads that are ready to run are organized into a run queue. In our simple system,
each mutex has an associated queue of threads waiting to lock it.

The context of a thread is a rather nebulous concept, but, as explained in Sections 3.1.2 and
4.1.3, it contains, at the least, a copy of whatever register points to the thread’s current stack frame.
This stack frame contains the thread’s current register state. This information is not necessarily
valid while the thread is running, but must be made valid when the thread is suspended so that it
can be resumed. See Figure 5.9.

In Section 3.1.2 we discussed how one thread can yield the processor, switching to another
thread. Here is a variation of the code presented there; this time we assume the existence of
swapcontext, which saves the caller’s register context in its thread object, then restores that of the
target thread from its thread object:

void thread_switch() {

thread_t NextThread, OldCurrent;

NextThread ! dequeue(RunQueue);

OldCurrent ! CurrentThread;

CurrentThread ! NextThread;

swapcontext(&OldCurrent->context, &NextThread->context);

// We’re now in the new thread’s context

}

The dequeue routine performs the role of a scheduler in this simple system: it selects the next
thread to run from the run queue. Note that we haven’t dealt with the case when the run queue is
empty — we take this up in Exercise 5.

Context

Stack

Stack frame

FIGURE 5 .9 A thread’s
context refers to its
current stack frame.

CH005.indd 171CH005.indd 171 8/2/10 8:42:58 PM8/2/10 8:42:58 PM

5.1 Threads Implementations 171

Run queue

Thread object

Stack

Thread object

Stack
Thread object

Stack

Thread object

Stack

Mutex queue

Thread object

Stack
Thread object

Stack

Thread object

Stack

Current thread

FIGURE 5 .8 A collec-
tion of threads: one is
currently running, three
are ready to run, and
three are in a queue
waiting to lock a
particular mutex.

Figure 5.8 shows a collection of threads. Assuming a uniprocessor system, at most one
thread is currently running and its thread object is pointed to by the global variable Current-
Thread. Those threads that are ready to run are organized into a run queue. In our simple system,
each mutex has an associated queue of threads waiting to lock it.

The context of a thread is a rather nebulous concept, but, as explained in Sections 3.1.2 and
4.1.3, it contains, at the least, a copy of whatever register points to the thread’s current stack frame.
This stack frame contains the thread’s current register state. This information is not necessarily
valid while the thread is running, but must be made valid when the thread is suspended so that it
can be resumed. See Figure 5.9.

In Section 3.1.2 we discussed how one thread can yield the processor, switching to another
thread. Here is a variation of the code presented there; this time we assume the existence of
swapcontext, which saves the caller’s register context in its thread object, then restores that of the
target thread from its thread object:

void thread_switch() {

thread_t NextThread, OldCurrent;

NextThread ! dequeue(RunQueue);

OldCurrent ! CurrentThread;

CurrentThread ! NextThread;

swapcontext(&OldCurrent->context, &NextThread->context);

// We’re now in the new thread’s context

}

The dequeue routine performs the role of a scheduler in this simple system: it selects the next
thread to run from the run queue. Note that we haven’t dealt with the case when the run queue is
empty — we take this up in Exercise 5.

Context

Stack

Stack frame

FIGURE 5 .9 A thread’s
context refers to its
current stack frame.

CH005.indd 171CH005.indd 171 8/2/10 8:42:58 PM8/2/10 8:42:58 PM

Implemen0ng	 Mutexes	
•  Because	 the	 simple	 straight-‐threads	 system	 does	 not	 have	

interrupts	 and	 all	 threads	 run	 un0l	 voluntarily	 yielding,	 mutex_lock	
doesn’t	 need	 to	 do	 anything	 special	 to	 make	 its	 ac0on	 atomic	

172 CHAPTER 5 Processor Management

Implementing mutexes in our straight-threads package is easy:

void mutex_lock(mutex_t *m) {

if (m->locked) {

enqueue(m->queue, CurrentThread);

thread_switch();

} else

m->locked ! 1;

}

void mutex_unlock(mutex_t *m) {

if (queue_empty(m->queue))

m->locked ! 0;

else

enqueue(runqueue, dequeue(m->queue));

}

Note that the mutex_lock code doesn’t do anything special to make its actions atomic. This is
because in our straight-threads system there are no interrupts and all actions are performed by
threads, which run until they voluntarily relinquish the processor.

5.1.3 MULTIPLE PROCESSORS

We continue with our straight-threads implementation, but we now allow processors. Thus, say
that in Figure 5.8 there are possibly a number of running threads, threads, each on a different pro-
cessor. Our thread_switch routine is no longer suffi cient for managing the now multiple processors;
we need additional mechanisms to ensure all processors are utilized.

A simple approach is to invent special idle threads, one for each processor. Such threads
run only on designated processors (one per processor). The intent is that they run only when no
other thread is available to run. To accomplish this, we use the following program:

void idle_thread() {

while(1)

thread_switch();

}

Thus once a normal thread is in the run queue, if there is an idle processor (i.e., one running an
idle thread), that processor will soon switch to running the non-idle thread.

How synchronization constructs are implemented has a big impact on a system’s performance.
There is the cost of just checking to see if the current thread should continue. Such checks, say
in the form of locking mutexes, happen so frequently that they are often carefully coded in assembler
language to be as fast as possible. Synchronization is important both inside the kernel, where
there is direct access to thread-scheduling functionality, and in user-level code as part of threads
packages — performing a system call as part of every synchronization operation is usually much
too costly.

As an example of the problems faced, let’s consider two very simple approaches to implement-
ing a mutex. The fi rst is known as the spin lock, in which a mutex is represented simply as a bit
indicating whether it is locked or not. So that multiple threads can safely use it concurrently,

CH005.indd 172CH005.indd 172 8/2/10 8:42:59 PM8/2/10 8:42:59 PM

Consider	 Mul0ple	 Processors	
•  thread_switch()	 now	 insufficient	
•  Simple	 approach	 :	 special	 idle	 threads,	 one	 for	 each	 processor	

•  Actual	 concurrent	 threads	 like	 this	 require	 actual	 thread	
synchroniza0on	 	
–  Synchroniza0on	 implementa0on	 has	 big	 OS	 performance	 impact	

•  Types	 of	 actual	 implementa0on	
–  Spin	 lock	 (hardware	 supported)	
–  Futexes	 	

172 CHAPTER 5 Processor Management

Implementing mutexes in our straight-threads package is easy:

void mutex_lock(mutex_t *m) {

if (m->locked) {

enqueue(m->queue, CurrentThread);

thread_switch();

} else

m->locked ! 1;

}

void mutex_unlock(mutex_t *m) {

if (queue_empty(m->queue))

m->locked ! 0;

else

enqueue(runqueue, dequeue(m->queue));

}

Note that the mutex_lock code doesn’t do anything special to make its actions atomic. This is
because in our straight-threads system there are no interrupts and all actions are performed by
threads, which run until they voluntarily relinquish the processor.

5.1.3 MULTIPLE PROCESSORS

We continue with our straight-threads implementation, but we now allow processors. Thus, say
that in Figure 5.8 there are possibly a number of running threads, threads, each on a different pro-
cessor. Our thread_switch routine is no longer suffi cient for managing the now multiple processors;
we need additional mechanisms to ensure all processors are utilized.

A simple approach is to invent special idle threads, one for each processor. Such threads
run only on designated processors (one per processor). The intent is that they run only when no
other thread is available to run. To accomplish this, we use the following program:

void idle_thread() {

while(1)

thread_switch();

}

Thus once a normal thread is in the run queue, if there is an idle processor (i.e., one running an
idle thread), that processor will soon switch to running the non-idle thread.

How synchronization constructs are implemented has a big impact on a system’s performance.
There is the cost of just checking to see if the current thread should continue. Such checks, say
in the form of locking mutexes, happen so frequently that they are often carefully coded in assembler
language to be as fast as possible. Synchronization is important both inside the kernel, where
there is direct access to thread-scheduling functionality, and in user-level code as part of threads
packages — performing a system call as part of every synchronization operation is usually much
too costly.

As an example of the problems faced, let’s consider two very simple approaches to implement-
ing a mutex. The fi rst is known as the spin lock, in which a mutex is represented simply as a bit
indicating whether it is locked or not. So that multiple threads can safely use it concurrently,

CH005.indd 172CH005.indd 172 8/2/10 8:42:59 PM8/2/10 8:42:59 PM

28/01/16	

17	

Spin-‐locks	
•  Opera0on	 provided	 by	 some	 processors	 (e.g.	 x86)	 with	 hardware	

guaranteed	 atomicity	 (compare	 and	 swap)	

•  With	 CAS	 spin-‐locks	 (actual	 synchroniza0on)	 can	 be	 implemented	
–  Note	 mutex	 with	 zero-‐value	 means	 unlocked	

	

5.1 Threads Implementations 173

some sort of interlocked instruction is used to lock the mutex. A typical such instruction is the
compare and swap (CAS) instruction,2 defi ned as follows but executed atomically:

int CAS(int *ptr, int old, int new) {

int tmp ! *ptr;

if (*ptr !! old)

*ptr ! new

return tmp;

}

Though CAS is a single machine instruction, it does two loads from memory and one store with
the guarantee that, if executed on a multiprocessor system, the effect of concurrent execution of
it and an operation on another processor is as if one operation completely takes place before the
other. Assuming that a zero value means unlocked and a one value means locked, mutex operations
can be implemented as follows:

void spin_lock(int *mutex) {

while(!CAS(mutex, 0, 1))

;

}

void spin_unlock(int *mutex) {

*mutex ! 0;

}

The invocation of the CAS instruction within the spin_lock routine checks to see if the mutex was
unlocked and, if so, sets its state to locked. It returns what the state of the mutex was just prior
to the invocation to CAS. The spin_lock routine repeatedly invokes the CAS instruction until it
reports that the mutex was unlocked (but is now locked by the caller). The spin_unlock routine
simply clears the mutex, setting its state to unlocked.

Providing the atomicity guarantees of CAS slows down the processors considerably, so
spin_lock is usually implemented by repeatedly checking the mutex’s state using normal instructions,
then confi rming and taking the mutex with CAS, as follows:

void spin_lock(int *mutex) {

while (1) {

if (*mutex !! 0) {

// the mutex was at least momentarily unlocked

if (!CAS(mutex, 0, 1)

break; // we have locked the mutex

// some other thread beat us to it, so try again

}

}

}

2 On the x86 architecture, this instruction is cmpxchg (compare and exchange), which actually does more than what is shown for
CAS. See the Intel documentation for details (http://www.intel.com/Assets/PDF/manual/253666.pdf).

CH005.indd 173CH005.indd 173 8/2/10 8:42:59 PM8/2/10 8:42:59 PM

5.1 Threads Implementations 173

some sort of interlocked instruction is used to lock the mutex. A typical such instruction is the
compare and swap (CAS) instruction,2 defi ned as follows but executed atomically:

int CAS(int *ptr, int old, int new) {

int tmp ! *ptr;

if (*ptr !! old)

*ptr ! new

return tmp;

}

Though CAS is a single machine instruction, it does two loads from memory and one store with
the guarantee that, if executed on a multiprocessor system, the effect of concurrent execution of
it and an operation on another processor is as if one operation completely takes place before the
other. Assuming that a zero value means unlocked and a one value means locked, mutex operations
can be implemented as follows:

void spin_lock(int *mutex) {

while(!CAS(mutex, 0, 1))

;

}

void spin_unlock(int *mutex) {

*mutex ! 0;

}

The invocation of the CAS instruction within the spin_lock routine checks to see if the mutex was
unlocked and, if so, sets its state to locked. It returns what the state of the mutex was just prior
to the invocation to CAS. The spin_lock routine repeatedly invokes the CAS instruction until it
reports that the mutex was unlocked (but is now locked by the caller). The spin_unlock routine
simply clears the mutex, setting its state to unlocked.

Providing the atomicity guarantees of CAS slows down the processors considerably, so
spin_lock is usually implemented by repeatedly checking the mutex’s state using normal instructions,
then confi rming and taking the mutex with CAS, as follows:

void spin_lock(int *mutex) {

while (1) {

if (*mutex !! 0) {

// the mutex was at least momentarily unlocked

if (!CAS(mutex, 0, 1)

break; // we have locked the mutex

// some other thread beat us to it, so try again

}

}

}

2 On the x86 architecture, this instruction is cmpxchg (compare and exchange), which actually does more than what is shown for
CAS. See the Intel documentation for details (http://www.intel.com/Assets/PDF/manual/253666.pdf).

CH005.indd 173CH005.indd 173 8/2/10 8:42:59 PM8/2/10 8:42:59 PM

Faster	 Spinlock	
•  Providing	 atomicity	 guarantees	 slows	 down	 processors	
•  Unsafe	 checks	 result	 in	 overall	 speedup	

5.1 Threads Implementations 173

some sort of interlocked instruction is used to lock the mutex. A typical such instruction is the
compare and swap (CAS) instruction,2 defi ned as follows but executed atomically:

int CAS(int *ptr, int old, int new) {

int tmp ! *ptr;

if (*ptr !! old)

*ptr ! new

return tmp;

}

Though CAS is a single machine instruction, it does two loads from memory and one store with
the guarantee that, if executed on a multiprocessor system, the effect of concurrent execution of
it and an operation on another processor is as if one operation completely takes place before the
other. Assuming that a zero value means unlocked and a one value means locked, mutex operations
can be implemented as follows:

void spin_lock(int *mutex) {

while(!CAS(mutex, 0, 1))

;

}

void spin_unlock(int *mutex) {

*mutex ! 0;

}

The invocation of the CAS instruction within the spin_lock routine checks to see if the mutex was
unlocked and, if so, sets its state to locked. It returns what the state of the mutex was just prior
to the invocation to CAS. The spin_lock routine repeatedly invokes the CAS instruction until it
reports that the mutex was unlocked (but is now locked by the caller). The spin_unlock routine
simply clears the mutex, setting its state to unlocked.

Providing the atomicity guarantees of CAS slows down the processors considerably, so
spin_lock is usually implemented by repeatedly checking the mutex’s state using normal instructions,
then confi rming and taking the mutex with CAS, as follows:

void spin_lock(int *mutex) {

while (1) {

if (*mutex !! 0) {

// the mutex was at least momentarily unlocked

if (!CAS(mutex, 0, 1)

break; // we have locked the mutex

// some other thread beat us to it, so try again

}

}

}

2 On the x86 architecture, this instruction is cmpxchg (compare and exchange), which actually does more than what is shown for
CAS. See the Intel documentation for details (http://www.intel.com/Assets/PDF/manual/253666.pdf).

CH005.indd 173CH005.indd 173 8/2/10 8:42:59 PM8/2/10 8:42:59 PM

Spin-‐Lock	 Implementa0on	 Blocking	 Mutex	
•  Spin-‐locks	 consume	 processor	 resource	 and	 thus	 should	 be	 used	 sparingly	
•  blocking_lock	 works	 as	 before	 –	 threads	 wai0ng	 on	 mutex	 queue	

•  Use	 of	 spin-‐lock	 prevents	 collisions	 on	 mut-‐>holder	 	
–  e.g.	 holder	 unlocking	 at	 exact	 instance	 empty	 queue	 is	 being	 joined	

•  There	 is	 s0ll	 a	 subtle	 bug	 arising	 on	 true	 mul0processor	 systems	 (example	
sheet)	

174 CHAPTER 5 Processor Management

Spin locks are useful only on multiprocessors and, even then, only if locks are held for brief periods
— otherwise too much processor time is wasted waiting for the lock to be released. An alternative
approach is to use a blocking lock: threads wait by having their execution suspended. This involves a
thread’s explicitly yielding the processor and joining a queue of waiting threads, then being explic-
itly resumed at some later time. The code below works on uniprocessor systems. It keeps track of
which thread has a mutex locked. This is not strictly necessary, but is useful for debugging.

void blocking_lock(mutex_t *mut) {

if (mut->holder !! 0)

enqueue(mut->wait_queue, CurrentThread);

thread_switch();

} else

mut->holder ! CurrentThread;

}

void blocking_unlock(mutex_t *mut) {

if (queue_empty(mut->wait_queue))

mut->holder ! 0;

else {

mut->holder ! dequeue(mut->wait_queue);

enqueue(RunQueue, mut->holder);

}

}

This code does not always work correctly on a multiprocessor: there is a potential problem if a
mutex is currently locked but its wait queue is empty, the holder of the mutex is unlocking it, and
another thread is attempting to lock it. It is possible that the thread locking the mutex will fi nd it
locked and be about to queue itself on the wait queue when the other thread unlocks the mutex,
fi nds the wait queue empty, and then marks the mutex unlocked (by setting its holder to zero).
Thus the fi rst thread will then join the wait queue, but will be there forever since no thread will
ever call the unlock code again.

An attempt at solving this problem is:

void blocking_lock(mutex_t *mut) {

spin_lock(mut->spinlock);

if (mut->holder !! 0)

enqueue(mut->wait_queue, CurrentThread);

spin_unlock(mut->spinlock);

thread_switch();

} else {

mut->holder ! CurrentThread;

spin_unlock(mut->spinlock);

}

}

void blocking_unlock(mutex_t *mut) {

spin_lock(mut->spinlock);

if (queue_empty(mut->wait_queue)) {

CH005.indd 174CH005.indd 174 8/2/10 8:42:59 PM8/2/10 8:42:59 PM

174 CHAPTER 5 Processor Management

Spin locks are useful only on multiprocessors and, even then, only if locks are held for brief periods
— otherwise too much processor time is wasted waiting for the lock to be released. An alternative
approach is to use a blocking lock: threads wait by having their execution suspended. This involves a
thread’s explicitly yielding the processor and joining a queue of waiting threads, then being explic-
itly resumed at some later time. The code below works on uniprocessor systems. It keeps track of
which thread has a mutex locked. This is not strictly necessary, but is useful for debugging.

void blocking_lock(mutex_t *mut) {

if (mut->holder !! 0)

enqueue(mut->wait_queue, CurrentThread);

thread_switch();

} else

mut->holder ! CurrentThread;

}

void blocking_unlock(mutex_t *mut) {

if (queue_empty(mut->wait_queue))

mut->holder ! 0;

else {

mut->holder ! dequeue(mut->wait_queue);

enqueue(RunQueue, mut->holder);

}

}

This code does not always work correctly on a multiprocessor: there is a potential problem if a
mutex is currently locked but its wait queue is empty, the holder of the mutex is unlocking it, and
another thread is attempting to lock it. It is possible that the thread locking the mutex will fi nd it
locked and be about to queue itself on the wait queue when the other thread unlocks the mutex,
fi nds the wait queue empty, and then marks the mutex unlocked (by setting its holder to zero).
Thus the fi rst thread will then join the wait queue, but will be there forever since no thread will
ever call the unlock code again.

An attempt at solving this problem is:

void blocking_lock(mutex_t *mut) {

spin_lock(mut->spinlock);

if (mut->holder !! 0)

enqueue(mut->wait_queue, CurrentThread);

spin_unlock(mut->spinlock);

thread_switch();

} else {

mut->holder ! CurrentThread;

spin_unlock(mut->spinlock);

}

}

void blocking_unlock(mutex_t *mut) {

spin_lock(mut->spinlock);

if (queue_empty(mut->wait_queue)) {

CH005.indd 174CH005.indd 174 8/2/10 8:42:59 PM8/2/10 8:42:59 PM

5.1 Threads Implementations 175

mut->holder ! 0;

} else {

mut->holder ! dequeue(mut->wait_queue);

enqueue(RunQueue, mut->holder);

}

spin_unlock(mut->spinlock);

}

Here we have associated a spin lock with the blocking lock, and use it to synchronize access to
the data structures associated with the mutex. This solves the problem described above, but it
turns out there is yet another problem.

Suppose a thread calling blocking_lock has just enqueued itself on the mutex’s wait queue,
and is just about to call thread_switch. The holder of the mutex now calls blocking_unlock, fi nds
the fi rst thread in the wait queue, and moves it to the run queue. This thread is now assigned to an
idle processor, even though it is still running on its original processor!

There are a number of ways of solving (or perhaps avoiding) this problem. One approach
is for blocking_lock, rather than unlocking the mutex’s spin lock itself, to pass the address of the
spin lock to thread_switch and have the spin lock released after the thread has given up its proces-
sor. Doing this requires a bit of work — we take it up in Exercise 6.

The blocking approach to mutexes has the obvious advantage over spin locks that
waiting threads do not consume processor time. However, it has the disadvantage that suspending
a thread, then waking it up are typically somewhat time-consuming operations. This is particu-
larly so for user-level threads that must execute system calls both to suspend themselves and to
resume others.

If it is usually the case that lock operations on mutexes succeed, then it makes sense to
optimize the lock operation for the case of the mutex being unlocked, at the possible expense of
the case in which the mutex is currently locked. Microsoft does this for their implementation
of critical sections in Windows, and some implementations of POSIX threads do it for mutexes as
well. The basic idea is simple: check if the mutex is unlocked. If it is, then simply lock it and go
on. If it’s not, then a system call is required to lock it. However, the details are anything
but simple. We describe here how it is implemented on Linux, using futexes (fast user-mode
mutexes). Our approach is based on that of Ulrich Drepper.3

A futex is implemented as a simple data structure, accessible to both user-mode code and
kernel code. Contained in it is an unsigned-integer state component called value and a queue of
waiting threads. Two system calls are provided to support futexes:4

futex_wait(futex_t *futex, unsigned int value) {

if (futex->value !! value)

sleep();

}

futex_wake(futex_t *futex) {

// wake up one thread from futex’s wait queue,

// if there is any

…

}

3 http://people.redhat.com/drepper/futex.pdf.
4 The Linux implementation uses just one system call, with an additional argument to indicate its function.

CH005.indd 175CH005.indd 175 8/2/10 8:42:59 PM8/2/10 8:42:59 PM

Interrupts	
•  Processors	 usually	 run	 in	 thread	 contexts	
•  Interrupts	 are	 handled	 in	 interrupt	 contexts	
•  Interrupts	 typically	 (varies	 from	 one	 arch	 and	 OS	 to	 another)	

borrow	 stacks	
–  Note;	 x86	 hardware	 saves	 registers	

•  Signal	 handlers	 are	 similar	 to	 interrupts	
•  Interrupts	 preempt	 the	 execu0on	 of	 normal	 threads	

–  Interrupts	 are	 used	 for	 scheduling	
•  Interrupts	 can	 have	 priori0es	
•  Interrupts	 can	 be	 masked	

–  Interrupt	 processing	 can	 prohibit	 interrup0on	 from	 other	 interrupts	

28/01/16	

18	

Synchroniza0on	 and	 Interrupts	
•  Access	 to	 kernel	 datastructures	 must	 be	 carefully	 synchronized	

between	 thread	 and	 interrupt	 processing	

•  Disabling	 preemp0on	 prevents	 deadlock	 scenario	 due	 to	 scheduling	
switch	 to	 different	 thread	

•  Masking	 interrupts	 prevents	 deadlock	 scenario	 due	 to	 interrupt	
•  Locks	 ensure	 consistency	
	

182 CHAPTER 5 Processor Management

the thread, marking it as non-preemptible. Problem four requires the use of spin locks, since even if
it is waiting for something running on a different processor, an interrupt handler cannot block.

Spin locks by themselves are clearly not suffi cient, as seen in the following variation of an
earlier example:

int X ! 0;

SpinLock_t L ! UNLOCKED;

void AccessXThread () {

SpinLock (&L);

X ! X"1;

SpinUnlock (&L);

}

void AccessXInterrupt () {

…

SpinLock (&L);

X ! X"1;

SpinUnlock (&L);

…

}

If a thread calls AccessXThread but is interrupted while holding the spin lock L, and then if
AccessXInterrupt is called in the interrupt context, there will be deadlock when it attempts to lock
L. Furthermore, if one thread has taken the spin lock within AccessXThread but is preempted by
another thread, and that thread also calls AccessXThread, there will again be deadlock. The solution
is for threads to mask interrupts before (not after!) they lock L and to prevent preemption, as in

int X ! 0;

SpinLock_t L ! UNLOCKED;

void AccessXThread() {

DisablePreemption();

MaskInterrupts();

SpinLock(&L);

X ! X"1;

SpinUnlock(&L);

UnMaskInterrupts();

EnablePreemption();

}

void AccessXInterrupt() {

…

SpinLock(&L);

X ! X"1;

SpinUnlock(&L);

…

}

Many operating systems have variants of their spin-lock routines in which interrupts are
automatically masked and preemption is automatically disabled.

5.2.1.2 Interrupt Threads
Solaris avoids many of the interrupt-related problems experienced in other operating systems by
allowing interrupts to be handled as threads (Kleiman and Eykholt 1995). This seems contrary
to our earlier discussion of how interrupts are handled, but it’s actually fairly simple. Each inter-
rupt level has a pre-allocated stack on each processor. When an interrupt occurs, the current
context (thread or interrupt) is saved by the hardware on the interrupt stack of the appropriate
level. However, no thread control block (known in Solaris as a lightweight process or LWP) is set
up. If the interrupt handler returns without blocking, the interrupted thread is simply resumed.
However, the interrupt handler might block trying to lock a mutex — something not allowed in
most other operating systems. If this happens, the interrupt handler becomes a full-fl edged thread
— a lightweight process is created for it and this interrupt thread is treated just like any other

CH005.indd 182CH005.indd 182 8/2/10 8:43:01 PM8/2/10 8:43:01 PM

Signals	
•  Threads	 check	 for	 pending	 signals	 on	 return	 to	 user	 mode	
•  Unix	 signal	 handlers	 are	 user-‐mode	 equivalents	 of	 interrupt	

handlers	
•  Threads	 behave	 as	 if	 a	 procedure	 call	 to	 the	 signal	 handler	 was	

made	 at	 the	 point	 at	 which	 the	 thread	 received	 the	 call	
–  Almost	 :	 register	 state	 must	 be	 handled	 differently	

Scheduling	
•  OS’s	 manage	 resources	

–  Processor	 0me	 is	 appor0oned	 to	 threads	
–  Primary	 memory	 is	 appor0oned	 to	 processes	
–  Disk	 space	 is	 appor0oned	 to	 users	
–  I/O	 bandwidth	 may	 be	 appor0oned	 to	 processes	

•  Scheduling	 concerns	 the	 sharing	 of	 processors	
–  Dynamic	 scheduling	 is	 the	 task	
–  Objec0ves	

•  Good	 response	 to	 interac0ve	 threads	
•  Determinis0c	 response	 to	 real-‐0me	 threads	
•  Maximize	 process	 comple0ons	 per	 hour	
•  All	 of	 the	 above?	

Approaches	 to	 Scheduling	
•  Simple	 batch	 systems	

–  One	 job	 at	 a	 0me	

•  Mul0-‐programmed	 batch	 systems	
–  Mul0ple	 jobs	 concurrent	
–  Scheduling	 decisions	

•  How	 many	 jobs?	
•  How	 to	 appor0on	 the	 processor	 between	 them?	

•  Time-‐sharing	 systems	
–  How	 to	 appor0on	 processor	 to	 threads	 ready	 to	 execute	
–  Op0miza0on	 criteria	 :	 0me	 between	 job	 submission	 and	 comple0on	

•  Shared	 servers	
–  Single	 computer,	 many	 clients,	 all	 wan0ng	 “fair”	 share	

•  Real-‐0me	 systems	
	

28/01/16	

19	

Time-‐Sharing	 Systems	
•  Primary	 scheduling	 concern	 is	 the	 appearance	 of	 responsiveness	 to	

interac0ve	 users	
•  Threads	 assigned	 user-‐level	 priority	 “importance”	 (UNIX	 nice())	
•  OS	 assigned	 thread	 priority	 rises	 and	 falls	 based	 on	

–  Length	 of	 bursts	 of	 computa0on	 (before	 yielding)	
–  Length	 of	 0me	 between	 bursts	

•  Sensible	 strategy	
–  Decay	 priority	 while	 thread	 is	 running	
–  Increase	 priority	 while	 thread	 is	 wai0ng	

Real-‐Time	 Systems	
•  Real-‐0me	 system	 scheduling	 must	 be	 dependable	

–  Music	
–  Video	
–  Nuclear	 power	 plant	 data	 processing	

•  Approximate	 real-‐0me	 by	 adding	 very-‐high	 real-‐0me	 priori0es	
–  Interrupt	 processing	 s0ll	 preempts	 threads	
–  Synchronized	 access	 to	 kernel	 resources	 can	 cause	 priority-‐inversion	

•  Low-‐priority	 threads	 locks	 a	 resource	 a	 real-‐0me	 thread	 needs	

Memory	 Management	
•  Requires	 deep	 understanding	 of	 hardware	 capabili0es	 and	 sobware	

requirements	
•  Involves	

–  Memory	 abstrac0on	
–  Op0mizing	 against	 available	 physical	 resources	

•  High-‐speed	 cache	
•  Moderate-‐speed	 primary	 storage	
•  Low-‐speed	 secondary	 storage	

•  Security	 	
–  Protect	 OS	 from	 user	 processes	
–  Keep	 user	 processes	 apart	

•  Scalability	
–  Fit	 processes	 into	 available	 physical	 memory	

Per-‐Process	 Page	 Table	 *	
•  Assume	 	

–  32-‐bit	 virtual	 address	
–  Page	 size	 4096	 bytes	

•  Implies	
–  12	 bit	 offset	 (2^12	 =	 4096)	
–  20-‐bit	 page	 number	 (2^32	 /	 2^12)	

•  V	 =	 validity	 bit	
–  If	 set,	 page	 frame	 no.	 is	 high-‐order	 bits	 of	 address	 in	 real	 memory	
–  If	 not	 a	 page-‐fault	 occurs	 and	 the	 OS	 takes	 over	 to	 allocate	 or	 load	 a	

page	
•  R	 =	 referenced	 bit	

–  If	 page	 is	 referenced	 by	 a	 thread	
•  M	 =	 modified	 bit	

–  set	 if	 page	 is	 modified	
•  Prot.	 =	 page-‐protec0on	 bits	

–  user,	 os.,	 exec,	 data,	 etc.	

290 CHAPTER 7 Memory Management

Segment-based schemes were popular in the ’60s and ’70s but are less so today, primarily
because the advantages of segmentation have turned out not to outweigh the extra costs of the
complexity of the hardware and software used to manage it.

There is also a compromise approach, paged segmentation, in which each segment is divided
into pages. This approach makes segmentation a more viable alternative, but not viable enough.
Few if any systems use it today. We restrict our discussion to strictly page-based schemes.

So, we assume our virtual-memory systems are based on paging. Somehow we must map
virtual addresses into real addresses. The most straightforward way of providing such a map-
ping is via a page table. A page table consists of one entry per page of the virtual address space.
Suppose we have a 32-bit virtual address and a page size of 4096 bytes. The 32-bit address is
thus split into two parts: a 20-bit page number and a 12-bit offset within the page. When a thread
generates an address, the hardware uses the page-number portion as an index into the page-table
array to select a page-table entry, as shown in Figure 7.4.

If the page is in primary storage (i.e. the translation is valid), then the validity bit in the
page-table entry is set, and the page-frame-number portion of the page-table entry is the high-
order bits of the location in primary memory where the page resides. (Primary memory is thought
of as being subdivided into pieces called page frames, each exactly big enough to hold a page; the
address of each of these page frames is at a “page boundary,” so that its low-order bits are zeros.)
The hardware then appends the offset from the original virtual address to the page-frame number
to form the fi nal, real address.

If the validity bit of the selected page-table entry is zero, then a page fault occurs and the
operating system takes over. Other bits in a typical page-table entry include a reference bit, which
is set by the hardware whenever the page is referenced by a thread, and a modifi ed bit, which
is set whenever the page is modifi ed. We will see how these bits are used in Section 7.3 below.
The page-protection bits indicate who is allowed access to the page and what sort of access is
allowed. For example, the page can be restricted for use only by the operating system, or a page
containing executable code can be write-protected, meaning that read accesses are allowed but
not write accesses.

Page no. Offset

Virtual
address

V M R Prot Page frame no.

FIGURE 7 .4 A simple
page table, showing
the validity bit (V),
modifi ed bit (M),
reference bit (R), page
protection bits (Prot),
and page frame number.

CH007.indd 290CH007.indd 290 8/6/10 12:19:44 PM8/6/10 12:19:44 PM

On	 a	 32-‐bit	 arch.	 the	 page	 table	
is	 2^20	 *	 4	 bytes	 =	 4MB.	
	
What	 about	 a	 64-‐bit	
architecture?	 *	
	

28/01/16	

20	

Forward-‐Mapped	 Page	 Tables	
•  Lower-‐overhead	 approach	
•  Each	 virtual	 address	 divided	 into	 two	 10-‐bit	 numbers	

–  L1	 page	 number	
–  L2	 page	 number	
–  Offset	

•  Advantages	
–  Lower	 overhead	 –	 e.g.	 not	 all	 L2	 pages	 need	 be	 in	 memory	 at	 once	 	

•  Disadvantages	
–  More	 lookups	

Before we get too excited about page tables, we need to determine what they cost. One
measure is how much memory is used merely to hold the page table. In our example, the page
table must have 220 entries, each 4 bytes long. Thus the size of the table is 222 bytes — 4 mega-
bytes. Though today this is an almost trivial amount,2 in the not-too-distant past it was far more
than could be afforded, particularly for such a per-process overhead function. If we consider
64-bit architectures (see Section 7.2.5), the cost of memory to hold a complete page table again
becomes prohibitive (to put it mildly).

7.2.1 FORWARD-MAPPED PAGE TABLES

Rather than having a complete page table in primary memory, we might have just those pieces of
it that are required to map the portion of the address space currently being used. One approach
for doing this is the forward-mapped or multilevel scheme in which the page tables form a tree,
as shown in Figure 7.5. Here the virtual address is divided into three pieces: a level-1 (L1) page
number, a level-2 (L2) page number, and an offset. Each valid entry in the L1 page table refers
to an L2 page table, and each valid entry of the L2 page tables refers to a page frame. Thus a
virtual-to-real translation consists of using the L1-page-number fi eld of the virtual address as an
index into the L1 page table to select an L2 page table. Then the L2-page-number fi eld is used as
an index into the L2 page table to select a page frame. Finally, the offset is used to select a loca-
tion within the page frame.

The advantage of this scheme is that not all L2 page tables need to be in real memory at
once, just those mapping portions of the address space in current use. If the L1 and L2 page
numbers are each 10 bits long (as in the most commonly used address-translation scheme of the
Intel x86 architecture), then each page table requires 4 kilobytes of storage. Since each page
table contains 1024 (! 210) entries, each L2 page table maps 4 megabytes (! 210 " 212 bytes) of
virtual memory. A simple Unix or Windows process would require one L2 page table to map the
low-address portion of its address space (text, BSS, data, and dynamic in Unix, assuming they
require less than 4 megabytes) and another one to map the high-address portion (containing the
stack, also assuming it requires less than 4 megabytes). Thus the total overhead is 12 kilobytes
(one L1 and two L2 page tables) — an appreciable savings over the 4 megabytes of overhead
required for one-level paging.

2 At $12/gigabyte, a reasonable price at the time of this writing, four megabytes is 5 cents’ worth of memory — hardly worth wor-
rying about. However, in the early 1980s it was around $40,000 worth of memory and totally out of the question.

L1 page # L2 page # Offset

L1 page table

L2 page tables Page frame

FIGURE 7 .5 Forward-mapped page table.

7.2 Hardware Support for Virtual Memory 291

CH007.indd 291CH007.indd 291 8/6/10 12:19:45 PM8/6/10 12:19:45 PM

Note	 :	 memory	 access	 is	 slow;	 caching	 is	 impera0ve	
•  Hardware	 supports	 address	 transla0on	 via	 “transla0on	 lookaside	

buffers”	
–  Fast	 processor-‐based	 memory	 containing	 some	 entries	 of	 address	 transla0on	

table	

64-‐Bit	 Issues	
•  Assume	 8-‐Kb	 pages,	 how	 big	 is	 a	 page	 table	 for	 a	 64-‐bit	 arch?	

–  (Example	 sheet)	
–  One	 solu0on:	 298 CHAPTER 7 Memory Management

of the architecture are limited to no more that 48-bit addresses. With this limitation, four levels of
page tables are used with 4KB pages (Figure 7.13) and three levels are used with 2MB pages
(Figure 7.14). The small page size minimizes internal fragmentation, at the expense of an extra
level of page tables. The large page size reduces the number of levels, at the expense of internal
fragmentation. It also reduces the number of TLB entries needed for a range of addresses. An
operating system might use the larger page size for its own address space, so as to leave more of
the TLB for user processes. Both Linux and Windows do this, and they also let user processes
specify the use of the larger page size when mapping fi les into their address spaces.

unused

0112029384763

Page map
table

Page
directory

pointer table Page
directory table

Page table

Physical page

FIGURE 7 .13 x64 virtual address format (4KB pages).

Physical
page

unused

02029384763

Page map
table

Page
directory

pointer table Page
directory table

FIGURE 7 .14 x64 virtual address format (2MB pages).

CH007.indd 298CH007.indd 298 8/6/10 12:19:49 PM8/6/10 12:19:49 PM

X64	 virtual	 address	 format	

Opera0ng-‐System	 Issues	
•  OS	 responsible	 for	 ensuring	 programs	 execute	 at	 reasonable	 speed	
•  OS	 must	 determine	 which	 pages	 should	 be	 in	 primary	 memory	
•  OS	 virtual	 memory	 policy	 decisions	

–  Fetch	
–  Placement	
–  Replacement	

•  Simple	 approaches	
–  Demand	 paging	

•  Fetch	 only	 when	 a	 thread	 references	 something	 in	 that	 page	

–  Placement	
•  Anywhere	 	

–  Replacement	
•  When	 full,	 eject	 page	 in	 memory	 longest	 (FIFO)	

–  Problem?	

28/01/16	

21	

OS	 Response	 to	 a	 Page	 Fault	
•  Steps	

–  Detect	 page	 fault	
–  Find	 a	 free	 page	 frame	
–  Write	 a	 page	 out	 to	 secondary	 storage	 if	 none	 free	
–  Fetch	 desired	 page	 from	 secondary	 storage	
–  Return	 from	 trap	

•  Laher	 steps	 very	 costly	
–  Read	 in	 extra	 pages	

•  Prepaging	 –	 How?	 	 Why?	

–  Write-‐out	 pages	 preemp0vely	
•  Dedicate	 a	 page-‐out	 thread	

Page	 Caching	 Implementa0on	 Strategy	
•  Op0mal	 replacement	 strategies	 are	 imprac0cal	
•  Least-‐recently-‐used	 (LRU)	 good	 in	 prac0ce	

–  Except	 coun0ng	 references	 is	 imprac0cal	

•  Two-‐handed	 clock	 algorithm	 used	 in	 prac0ce	
–  OS	 uses	 page-‐out	 thread	 	

•  One	 hand	 sets	 reference	 bit	 to	 0	
•  Other	 hand	 triggers	 page	 flush	 if	 another	 thread	 hasn’t	 set	 reference	 bit	 to	 1	

The best we can do is to make a good guess. What seems reasonable is that Belady’s page,
the page whose next reference is farthest in the future, is the page whose most recent reference was
the farthest in the past. This clearly isn’t always true, but it has the advantage of being something
we have a hope of implementing and something that might work reasonably well in practice. This
approach is known as least-recently used (LRU) and has applications in other areas as well.

An exact implementation of LRU would require the operating system to keep track of all
references to page frames and to be able to order them by time of last reference. Without rather
expensive hardware support, doing this would be so time-consuming as to negate any possible
benefi t. However, we can approximate LRU without undue expense.

Rather than ordering page frames by their time of last reference, let’s use a coarser approach
and divide time into discrete periods, each long enough for there to be thousands of references.
Most virtual-memory architectures support a reference bit in their translation entries, set to 1 by
the translation hardware each time the entry is used (i.e., when the corresponding page frame is
referenced). At the end of each period we can examine the reference bits and determine which
page frames have been used. At the same time we zero these bits, so we can do the same thing in
the next period. This coarse measure of LRU works well enough, particularly when we remember
that LRU itself is just a way to get an educated guess about which page is least likely to be used
in the near future.

Rather than implement the approximate LRU algorithm exactly as we’ve described it,
many systems use a continual approach known as the clock algorithm. All active page frames
are conceptually arranged in a circularly linked list. The page-out thread slowly traverses the
list. In the “one-handed” version of the clock algorithm, each time it encounters a page, it checks
the reference bit in the corresponding translation entry: if the bit is set, it clears it. If the bit is
clear, it adds the page to the free list (writing it back to secondary storage fi rst, if necessary).

A problem with the one-handed version is that, in systems with large amounts of primary
storage, it might take too long for the page-out thread to work its way all around the list of page
frames before it can recognize that a page has not been recently referenced. In the two-handed
version of the clock algorithm, the page-out thread implements a second hand some distance
behind the fi rst. The front hand simply clears reference bits. The second (back) hand removes
those pages whose reference bits have not been set to one by the time the hand reaches the page
frame (see Figure 7.18).

Front hand:
reference bit ! 0

Back hand:
if (reference bit !! 0)
 remove page

FIGURE 7 .18 Two-handed clock algorithm.

7.3 Operating-System Issues 303

CH007.indd 303CH007.indd 303 8/6/10 12:19:51 PM8/6/10 12:19:51 PM

Efficient	 Fork	 via	 Copy-‐on-‐Write	
•  Can	 fork()	 be	 made	 less	 expensive	 to	 implement?	

–  Remember	 fork()	 copies	 a	 process’	 en0re	 memory	 space	

•  Lazy	 evalua0on	
–  Let	 copies	 share	 address	 space	
–  Mark	 all	 pages	 read	 only	
–  On	 write	 make	 copies	
–  OS	 bookkeeping	 requires	 care	
	

Shared	 Memory	 and	 mmap()	 ***	 (mmap_shared_memory_example.c)	

•  mmap()	 maps	 files	 to	 con0guous	 virtual	 memory	 	
•  Files	 may	 be	 mapped	 to	 address	 space	 shared	 across	 processes!	

–  Shared	
•  Modifica0ons	 seen	 by	 all	 forked	 processes	 (parallel	 processing!)	

–  Private	
•  Modifica0ons	 remain	 private	 to	 each	 forked	 process	 (copy	 on	 write)	

28/01/16	

22	

Review	
•  Process	 management	

–  Entails	 mul0plexing	 threads,	 interrupts,	 and	 system	 calls	 to	 available	
processors	

	

•  Memory	 management	
–  Virtual	 memory	 allows	 large	 programs	 to	 run	 on	 systems	 with	 small	 amounts	

of	 primary	 storage	
–  Virtual	 memory	 allows	 co-‐existence	 of	 mul0ple	 programs	
–  Memory	 mapping	 allows	 parallel	 processing	

Lecture	 4	 :	 File	 Systems	 &	 Networking	

Material	 from	 	
Opera0ng	 Systems	 in	 Depth	 	

(spec.	 Chapters	 6	 and	 9)	 	
by	

Thomas	 Doeppner	
	

GET	 THIS	 BOOK	 AND	 READ	 IT!	

File	 Systems	
•  Purpose	

–  Provide	 easy-‐to-‐use	 permanent	 storage	 with	 modest	 func0onality	
–  Performance	 of	 file	 system	 cri0cal	 to	 system	 performance	
–  Crash	 tolerance	 a	 func0on	 of	 file	 system	 capabili0es	
–  Security	 a	 major	 concern	

•  Criteria	
–  Easy	 	

•  File	 abstrac0on	 should	 be	 easy	 to	 use	
–  High	 performance	

•  No	 waste	 of	 space,	 maximum	 u0liza0on	 of	 resource	

–  Permanence	
•  Dependable	

–  Security	
•  Access	 control	 should	 be	 strict	

Basics	
•  Pedagogical	 review	 of	 Unix	 system	 5	 File	 System	 (S5FS)	
•  Revolu0onary,	 simplifying	 Unix	 file	 abstrac0on	

–  A	 file	 is	 an	 array	 of	 bytes,	 period.	
•  File	 system	 layout	

–  Boot	 block	
•  First-‐level	 boot	 program	 that	 reads	 OS	 into	 memory	

–  Superblock	
•  Describes	 layout	 of	 remaining	 filesystem	

–  i-‐list	
•  Array	 of	 index	 nodes	 (inodes)	

–  Data	 region	
•  Disk	 blocks	 holding	 file	 contents	

6.1 The Basics of File Systems 219

does poorly on all but the fi rst of the criteria listed above. We use it here as a starting point to
discuss how modern fi le-systems handle these concerns.

The Unix fi le abstraction is simple — a revolutionary feature in Unix’s early days. Files are
arrays of bytes. User applications need not know how fi les are physically represented on disks.
Other fi le systems of the time forced the user to be aware of the record size — the amount of data
transferred to or from the application in each fi le request — as well as the block size — the unit
by which data is transferred to or from the disk. Unix just had bytes. Applications read or wrote
as many bytes as necessary. It was up to the fi le system to implement such requests effi ciently
using the available disk storage. Rather than making programs allocate space for fi les before using
them, Unix fi les grow implicitly: writing beyond the current end of a fi le makes it bigger. Files
are named by their paths in a single, system-wide directory hierarchy.

The architecture of the underlying storage medium is, of course, pretty important in fi le-
system design. We assume here that it’s a disk organized as a collection of sectors, each of the same
size — 512 bytes is typical. As detailed in Section 6.1.2 below, disks are accessed by moving disk
heads to the appropriate cylinder and then waiting for the disk to rotate until the desired disk sec-
tor is under one of the heads. Thus the time required to access a sector depends on the distance of
the current position of the disk heads from the desired sector. One of the things that make S5FS so
simple is that it does not take this distance into account when allocating space for fi les. It considers
a disk to be a sequence of sectors each of which can be accessed in the same amount of time as all
the others; the only optimization done is to minimize the number of disk accesses. No attempt is
made to minimize the time spent waiting for disk heads to be properly positioned (the seek time) or
the time waiting for the desired sector to be under the disk head (the rotational latency).

This simplifi es things a lot. All sectors are equal; thus we can think of a disk as a large
array. Accessing this array is a bit expensive compared to accessing primary storage, but the
design of on-disk data structures needn’t differ substantially from the data structures in primary
storage. (This, of course, is a simplifi cation used in S5FS; it doesn’t apply to all fi le systems!)

Figure 6.1 shows the basic format of a fi le system on disk.1 The fi rst disk block contains a
boot block; this has nothing to do with the fi le system, but contains the fi rst-level boot program
that reads the operating system’s binary image into primary memory from the fi le system. The
next block, the superblock, describes the layout of the rest of the fi le system and contains the heads
of the free lists. Following this are two large areas. The fi rst is the i-list, an array of index nodes (inodes)
each of which, if in use, represents a fi le. Second is the data region, which contains the disk blocks
holding or referring to fi le contents.

1 Note that one physical disk is often partitioned to hold multiple fi le-system instances. Thus what is shown in Figure 6.1 is a
single fi le-system instance within a region of a partitioned disk.

Data region

I-list

Superblock
Boot block

FIGURE 6 .1 S5FS
layout.

CH006.indd 219CH006.indd 219 8/6/10 12:11:07 PM8/6/10 12:11:07 PM

28/01/16	

23	

Unix’s	 S5FS	
•  Each	 file	 is	 described	 by	 an	 inode	
•  Directories	 are	 files	 containing	

names	 and	 inode	 numbers	
•  Diskmap	

–  Maps	 logical	 blocks	 numbered	
rela0ve	 to	 the	 beginning	 of	 the	 file	
to	 physical	 blocks	 numbered	 rela0ve	
to	 the	 beginning	 of	 the	 file	 system	

–  Assume	
•  Block	 length	 =	 1024	 bytes	
•  13	 pointers	

–  First	 10	 point	 directly	 to	 disk	 blocks	
–  Next	 singly	 indirect	
–  Doubly	
–  Triply	

–  0	 pointer	 counts	 as	 block	 of	 all	 zeros	
•  Efficient	 for	 sparse	 files	

220 CHAPTER 6 File Systems

0
1
2
3
4
5
6
7
8
9

10
11
12

Triple indirect
block Double indirect

blocks
Indirect blocks Data blocks

Disk map
(in inode)

FIGURE 6 .3 S5FS disk map. Each of the indirect blocks (including double and triple
indirect blocks) contains up to 256 pointers.

Device

Inode number

Mode

Link count

Owner, Group

Size

Diskmap

FIGURE 6.2 S5FS inode.

Each fi le is described by an inode; thus a fi le is referred to internally by its inode, which is
done via the inode’s index in the i-list. As we saw in Chapter 1, directories are otherwise normal
fi les containing pairs of directory-component names and inode numbers. Thus following a path
in the directory hierarchy involves reading the contents of a directory fi le (contained in sectors
taken from the data region) to look up the next component of the path. Associated with that compo-
nent in the fi le is an inode number that is used to identify the inode of the fi le containing the next
directory in the path.

The layout of an inode is shown in Figure 6.2. What’s important to us at the moment is the
disk map (Figure 6.3), which refers to the disk blocks containing the fi le’s data. The disk map
maps logical blocks numbered relative to the beginning of a fi le into physical blocks numbered
relative to the beginning of the fi le system. Each block is 1024 (1 K) bytes long. (It was 512 bytes
long in the original Unix fi le system.) The data structure allows fast access when a fi le is accessed
sequentially and, with the help of caching, reasonably fast access when the fi le is used for paging
and other “random” access.

The disk map contains 13 pointers to disk blocks. The fi rst ten of these pointers point to
the fi rst 10 blocks of the fi le, so that the fi rst 10 KB of a fi le are accessed directly. If the fi le is
larger than 10 KB, then pointer number 10 points to a disk block called an indirect block. This
block contains up to 256 (4-byte) pointers to data blocks (i.e., 256 KB of data). If the fi le is big-
ger than this (256 KB ! 10 KB " 266 KB), then pointer number 11 points to a double indirect
block containing 256 pointers to indirect blocks, each of which contains 256 pointers to data
blocks (64 MB of data). If the fi le is bigger than this (64 MB ! 256 KB ! 10 KB), then pointer
number 12 points to a triple indirect block containing up to 256 pointers to double indirect blocks,
each of which contains up to 256 pointers pointing to single indirect blocks, each of which contains

CH006.indd 220CH006.indd 220 8/6/10 12:11:07 PM8/6/10 12:11:07 PM

220 CHAPTER 6 File Systems

0
1
2
3
4
5
6
7
8
9

10
11
12

Triple indirect
block Double indirect

blocks
Indirect blocks Data blocks

Disk map
(in inode)

FIGURE 6 .3 S5FS disk map. Each of the indirect blocks (including double and triple
indirect blocks) contains up to 256 pointers.

Device

Inode number

Mode

Link count

Owner, Group

Size

Diskmap

FIGURE 6.2 S5FS inode.

Each fi le is described by an inode; thus a fi le is referred to internally by its inode, which is
done via the inode’s index in the i-list. As we saw in Chapter 1, directories are otherwise normal
fi les containing pairs of directory-component names and inode numbers. Thus following a path
in the directory hierarchy involves reading the contents of a directory fi le (contained in sectors
taken from the data region) to look up the next component of the path. Associated with that compo-
nent in the fi le is an inode number that is used to identify the inode of the fi le containing the next
directory in the path.

The layout of an inode is shown in Figure 6.2. What’s important to us at the moment is the
disk map (Figure 6.3), which refers to the disk blocks containing the fi le’s data. The disk map
maps logical blocks numbered relative to the beginning of a fi le into physical blocks numbered
relative to the beginning of the fi le system. Each block is 1024 (1 K) bytes long. (It was 512 bytes
long in the original Unix fi le system.) The data structure allows fast access when a fi le is accessed
sequentially and, with the help of caching, reasonably fast access when the fi le is used for paging
and other “random” access.

The disk map contains 13 pointers to disk blocks. The fi rst ten of these pointers point to
the fi rst 10 blocks of the fi le, so that the fi rst 10 KB of a fi le are accessed directly. If the fi le is
larger than 10 KB, then pointer number 10 points to a disk block called an indirect block. This
block contains up to 256 (4-byte) pointers to data blocks (i.e., 256 KB of data). If the fi le is big-
ger than this (256 KB ! 10 KB " 266 KB), then pointer number 11 points to a double indirect
block containing 256 pointers to indirect blocks, each of which contains 256 pointers to data
blocks (64 MB of data). If the fi le is bigger than this (64 MB ! 256 KB ! 10 KB), then pointer
number 12 points to a triple indirect block containing up to 256 pointers to double indirect blocks,
each of which contains up to 256 pointers pointing to single indirect blocks, each of which contains

CH006.indd 220CH006.indd 220 8/6/10 12:11:07 PM8/6/10 12:11:07 PM

Organizing	 Free	 Storage	 on	 Disk	
•  Free	 disk	 blocks	 are	 represented	 as	

a	 linked	 list	
•  Superblock	

–  Contains	 addresses	 of	 up	 to	 100	 free	
disk	 blocks	

–  Last	 pointer	 points	 to	 another	 block	
containing	 free	 disk	 blocks	

–  Contains	 cache	 of	 indices	 of	 free	
inodes	

•  Inodes	
–  Simply	 marked	 as	 free	 or	 not	 on	 disk	
–  Disk	 writes	 required	 for	 alloca0on	 and	

frees	
•  Aids	 crash	 tolerance	 –	 inode	 updates	
are	 immediate	

222 CHAPTER 6 File Systems

98
97

99

0
98
97

99

0
Superblock

FIGURE 6 .4 S5FS free list.

Superblock

11
6

12
4

13

16
15
14
13
12
11
10

9
8
7
6
5
4
3
2

0

0
0
0

0

0

0

1
I-list

FIGURE 6 .5 S5FS free inode list.

the inode is marked as allocated. If the cache is empty, then the i-list is scanned for suffi cient free
inodes to refi ll it. To aid this scan, the cache contains the index of the fi rst free inode in the i-list.
Freeing an inode involves simply marking the on-disk inode as free and adding its index to the
cache, if there’s room.

Why are inodes handled this way? In particular, why use a technique that requires a disk
write every time an inode is allocated or freed? There are two reasons. First, inodes are allocated
and freed much less often than data blocks, so there’s less need for a relatively complex technique

CH006.indd 222CH006.indd 222 8/6/10 12:11:08 PM8/6/10 12:11:08 PM

Disk	 Architecture	
•  File	 systems	 op0mize	 performance	

by	 being	 aware	 of	 disk	
architecture	

•  Architecture	
–  Many	 plahers	 (top	 and	 bohom)	
–  Many	 tracks	 per	 plaher	
–  Tracks	 divided	 into	 equal	 length	

sectors	
–  Read	 a	 write	 heads	 per	 surface	
–  One	 head	 ac0ve	 at	 a	 0me	
–  Set	 of	 tracks	 selected	 by	 heads	 at	

one	 moment	 calls	 a	 cylinder	
•  Nomenclature	

–  Seek	 0me	 :	 0me	 to	 posi0on	 the	
heads	 over	 the	 correct	 cylinder	

–  Rota0onal	 latency	 :	 0me	 ‘0l	 desired	
sector	 is	 underneath	 head	

–  Transfer	 0me	 :	 0me	 for	 sector	 to	
pass	 under	 head	

224 CHAPTER 6 File Systems

 2. Rotate the disk platter until the desired sector is underneath the read/write head. The time
required for this is known as the rotational latency.

 3. Rotate the disk platter further so the head can read or write the entire sector, transferring
data between it and the computer’s memory. The time required for this is known as the
transfer time.

The seek time is usually the dominant factor. Back in the days when S5FS was popular and FFS
was being developed (the early 1980s), average seek times (i.e., the time required to move from
one randomly selected cylinder to another) were typically in the neighborhood of 30 milliseconds.
At the time of this writing, average seek times are from 2 to 10 milliseconds. It takes less time to
move the disk heads a shorter distance than a longer distance, but the relationship is not linear:
we must take into account the time required for acceleration and deceleration of the disk heads
and other factors as well. A typical disk drive might have 25,000 cylinders. The time to move the
heads one cylinder might be .2 milliseconds, yet the average seek time might still be 4 milliseconds.
For our purposes, however, it suffi ces to say that closer means faster.

Rotational latency times depend on the speed at which disks spin. In the early 1980s this was
pretty much always 3600 RPM. Today’s spin rates range from 5200 to 15,000 RPM. Assuming
that the average rotational latency is the time required for half a revolution, rotational latency has
gone from 8.3 milliseconds in the early 1980s to as little as 2 milliseconds today.

The transfer time depends both on rotational latency and on the number of sectors per
track: the more sectors on a track, the smaller the fraction of a full revolution the platter must spin
to pass one complete sector underneath a head. Since modern disks have more sectors in outer
tracks than in inner tracks, the transfer time depends upon which track the sector is in. A typical
drive might have 500 sectors in the inner tracks and 1000 in the outer tracks, with a sector size of
512 bytes. Thus at 10,000 RPM, the transfer rate can be as high as almost 85 MB/second, though
this rate can be maintained only for as much data as there is in a track. Transferring data that is
spread out on multiple tracks requires additional positioning time.

Many disk controllers automatically cache the contents of the current track: as soon as a
disk head is selected after a seek to a new cylinder, a buffer in the controller begins to fi ll with
the contents of the sectors passing under the head. Thus after one complete revolution, the entire
contents of the track are in the buffers and each sector can be read without further delay.

This form of caching is innocuous in the sense that it can only help performance and has
no effect on the semantics of disk operations. Another form of caching — write-behind caching
— is used by many modern disk controllers (particularly SATA) to cache disk writes, allowing
the writer to proceed without having to wait for the data to be written to the actual disk. This can

FIGURE 6 .7 Disk architecture.

Track

Sector

Disk heads
(on top and bottom
of each platter)

Cylinder

CH006.indd 224CH006.indd 224 8/6/10 12:11:09 PM8/6/10 12:11:09 PM

2013	 Disk	 Performance	 	
•  Tricks	 of	 the	 trade	

–  Maximizing	 throughput	
•  Head	 skewing	

–  Sectors	 offset	 on	 each	 head	 by	 some	
number	 of	 sectors	 to	 account	 for	 head	
switch	 0me	

•  Cylinder	 skewing	
–  Sectors	 offset	 by	 some	 amount	 to	

account	 for	 one	 track	 seek	 0me	

6.1 The Basics of File Systems 225

speed things up a fair amount, but can be a problem if, for example, there is a power failure and
the data does not actually get to disk. Worse yet, data may be written to disk in a different order
from what the writer intended (we discuss the consequences of this in Section 6.2.1). Some fi le
systems (such as ZFS (Section 6.6.6)) cope with this correctly, others do not.

Keep in mind that typical processor speeds in the early 1980s were over a thousand times
lower than they are today. Even though disk technology has improved since then, processor
technology has improved even more and thus the discrepancy between processor speed and disk
speed has increased dramatically.

We now see where we must work so as to improve fi le access times. The biggest issue is
seek time: we need to minimize how often and how far the disk heads move while satisfying disk
requests. A lesser but still important issue is rotational latency: we need to position fi le data on
disk so as to minimize it.

6.1.2.1 The Rhinopias Disk Drive
We now specify a disk drive to use as a running example so that we can be specifi c in examining
fi le-system performance. We want our drive to be representative of drives available today, though
it will undoubtedly be obsolete soon. We also need to give it a name: we’ll call it the Rhinopias
drive. Our drive has the following characteristics:2

Rotation speed 10,000 RPM

Number of surfaces 8

Sector size 512 bytes

Sectors/track 500–1000; 750 average

Tracks/surface 100,000

Storage capacity 307.2 billion bytes

Average seek time 4 milliseconds

One-track seek time .2 milliseconds

Maximum seek time 10 milliseconds

From this information we compute its maximum transfer rate, which occurs when we transfer
consecutive sectors from one track, as 85.33 million bytes/sec. Of course, this occurs only on
outer tracks. A better fi gure might be the maximum transfer rate on the average track of 750 sectors:
64 million bytes/sec.

What is the maximum transfer rate when we’re transferring data that occupies more than
one track? Let’s fi rst consider data that resides in a single cylinder. Though we can switch read/
write heads quickly to go from one track to another in a cylinder, this requires some time, enough
that by the time the drive switches from the read/write head for surface 1 to the head for surface 2,
the disk has rotated some distance into the next sector. Thus if we want to access that next sector,
we have to wait for the disk to spin almost one complete revolution.

What current disk drives (and thus our Rhinopias drive) do to avoid this problem is a trick
called head skewing. Sector 1 on track 2 is not in the same relative position on the track as sector
1 of track 1; instead, it’s offset by one sector. Thus, after accessing sectors 1 through 750 on one
750-sector track, by the time the drive switches to the disk head of the next track, the disk has
rotated so that sector number 1 is just about to pass under the head. Thus to compute the time
required to transfer all the data in one cylinder, we must add to the transfer time for all but the last

2 We use the prefi xes kilo-, mega-, and giga- to refer to powers of two: 210, 220, and 230. The terms thousand, million, and billion
refer to powers of ten: 103, 106, and 109.

CH006.indd 225CH006.indd 225 8/6/10 12:11:10 PM8/6/10 12:11:10 PM

28/01/16	

24	

S5FS	 Problems	 and	 Improvements	
•  File	 alloca0on	 strategy	 results	 in	 slow	 file	 access	
•  Small	 block	 size	 results	 in	 slow	 file	 access	
•  Lack	 of	 resilience	 in	 the	 face	 of	 crashes	 is	 a	 killer	

•  Possible	 improvements	
–  Increase	 block	 size	

•  Fragmenta0on	 becomes	 an	 issue	

–  Rearrange	 disk	 layout	 to	 op0mize	 performance	

	

Dynamic	 Inodes	
•  S5FS	 inode	 table	 is	 a	 fixed	 array	

–  Requires	 predic0ng	 number	 of	 files	 the	 system	 will	 have	
–  Can’t	 add	 more	 disk	 space	 to	 the	 file	 system	

•  Solu0on	
–  Treat	 inode	 array	 as	 a	 file	
–  Keep	 inode	 for	 the	 inode	 file	 at	 a	 fixed	 loca0on	 on	 disk	 	

•  Backup	
	

Crash	 Resiliency	
•  To	 recover	 from	 a	 crash	 means	 to	 bring	 the	 file	 system’s	 metadata	 into	 a	

consistent	 state	
•  Some	 opera0ons	 (rename())	 require	 many	 steps,	 requiring	 mul0ple	

writes	
•  Approaches	

–  Consistency	 preserving	
–  Transac0onal	

•  Transac0on	 support	 common	 in	 databases	
–  Journaling	

•  New	 value	 –	 modifica0on	 steps	 are	 recorded	 in	 a	 journal	 first,	 then	 applied	
•  Old	 value	 –	 old	 blocks	 are	 recorded	 in	 a	 journal,	 then	 filesystem	 updated	

–  Shadow-‐paging	
•  Original	 versions	 of	 modified	 items	 retained	
•  New	 versions	 not	 integrated	 into	 the	 file	 system	 un0l	 the	 transac0on	 is	 commihed	

(single	 write)	

Journaled	 File	 Systems	
•  Many	 file	 systems	 use	 journaling	 for	 crash	 tolerance	
•  Journaling	 may	 be	 used	 to	 protect	 	

–  Metadata	
–  User	 data	
–  Both	

•  Ext3	 example	
–  Updates	 grouped	 into	 0me-‐delimited	 transac0ons	
–  Separate	 commit	 thread	 copies	 from	 file-‐system	 block	 cache	 to	 a	 journal	
–  Back-‐links	 are	 maintained	 to	 cache	 that	 allowing	 freeing	 journal	 space	 upon	

final	 commit	
–  Upon	 crash	 any	 journaled	 updates	 are	 processed	

28/01/16	

25	

Shadow-‐Paged	 File	 Systems	
•  Also	 called	 copy-‐on-‐write	 file	

systems	
–  e.g.	 WAFL	 and	 ZFS	

•  Filesystem	 updates	 result	 in	
en0rely	 new	 inode	 indirect	
reference	 tree	

•  Snapshot	 root	 always	 allows	
recovery	 of	 a	 consistent	
filesystem	

6.3 Directories and Naming 253

Root

Inode file
indirect
blocks

Inode file
data blocks

Regular file
indirect blocks

Regular file
data blocks

Snapshot root

FIGURE 6 .35 A leaf
node in a shadow-page
tree is modifi ed, step 2.
Copies are made of the
leaf node and its ances-
tors all the way up to
the root. A copy of the
old root is maintained,
pointing to a snapshot
of the old version of the
fi le system.

The root itself is at a known location on disk and is modifi ed directly, in a single disk write.
Thus, note two things:

 1. If the system crashes after any non-root nodes have been modifi ed but before the root is
modifi ed, then when the system comes back up the root refers to the unmodifi ed fi le-system
tree. No changes take effect on disk until the überblock is modifi ed. Thus we have a transaction
— the modifi ed copies of the nodes are the shadow pages.

 2. A copy of the unmodifi ed root refers to the fi le-system tree as it was before the modifi cations
took place. Thus we have a snapshot of the earlier state of the fi le system. Such snapshots
can be kept around to let us recover inadvertently deleted fi les and can also provide a consistent
copy of the fi le system for backup to a tape drive.

Note also that the transactions don’t require extra disk writes, as the journaling approach does.
As mentioned in Section 6.2.2 above, (Brown, Kolling, et al. 1985) argued that though fewer
disk writes are required, those that were necessary were expensive because they are not to con-
tiguous locations. But fi le-system technology has improved greatly since 1985. In particular,
log-structured fi le systems have shown that we can simply group a bunch of seemingly unre-
lated fi le pages together and write them as a sequence of contiguous blocks. This and other
techniques are used in both WAFL and ZFS to provide good performance, as we discuss in
Sections 6.6.5 and 6.6.6 below.

Naming in fi le systems is pretty straightforward: fi les are named by their path names in a basically
tree-structured naming hierarchy. We could certainly think of other naming techniques — for
example, names could be completely unstructured with no notion of directories — but the organizing
power of directories has proven itself over the past few decades and seems here to stay.

We note briefl y that fi le systems are not database systems. File systems organize fi les for
easy browsing and retrieval based on names. They do not provide the sophisticated search facilities
of database systems. The emphasis in fi le systems is much more on effi cient management of
individual fi les than on information management in general. Thus, by database standards, the
organization of fi le systems only on the basis of fi le names is pretty simplistic. But implementing
such naming well is extremely important to the operating system.

The implementation of a fi le-system name space has all the requirements of the rest of the fi le
system: it must be fast, miserly with space, crash tolerant, and easy to use. The key components are
directories and various means for piecing different name spaces together — that is, the notion of

6.3
DIRECTORIES
AND NAMING

6.3
DIRECTORIES
AND NAMING

CH006.indd 253CH006.indd 253 8/6/10 12:11:37 PM8/6/10 12:11:37 PM

Directories	 and	 Naming	
•  Opening	 a	 file	 requires	 	

–  Following	 its	 pathname	
–  Opening	 directory	 files	

•  Crea0ng	 a	 file	
–  Verifying	 pathname	
–  Inser0ng	 component	 in	 last	

•  S5FS	
–  Linear	 sequence	 of	 fixed	 length	 names	 and	 inode	 numbers	
–  Dele0ng	 entries	 involved	 marking	 slots	 as	 free	
–  No	 directory	 space	 ever	 given	 back	 to	 filesystem!	
–  Sequen0al	 search!	

•  Subsequent	 genera0on	 directory	 structure	
–  Variable	 length	 names	
–  First	 fit	 replacement	

•  Directory	 opera0ons	 were	 a	 major	 bohleneck!	

Hashing	
•  Extensible	 hashing	

–  Sequence	 of	 hash	 func0ons	 	
•  h0,	 h1,	 h2,	 …,	 hi,	 	

–  Low	 order	 bits	 of	 hi	 are	 enforced	 to	 be	 the	 same	 as	 hi-‐1	
–  hi	 hashes	 to	 2i	 buckets	

•  Example	 :	 Adding	 Fritz	 (hashed	 to	 bucket	 2)	
–  Indirect	 buckets	 used	 to	 efficiently	 and	 compactly	 implement	 rehashing	 by	

replica0ng	 non-‐split	 bucket	 pointers	

6.3 Directories and Naming 257

Harry inode index

Betty inode index

Alice inode index

George inode index

Ralph inode index

inode indexLily

Adam inode index

Indirect buckets

h2

Buckets

0

1

2

3

FIGURE 6 .37 Extensible hashing example, part 1. Here we have four buckets and hence are using h2,
which actually computes indexes into the array of indirect buckets, which, in turn, lead to the appropriate
bucket. Each of our buckets holds two items. We are about to add an entry for Fritz. However, h2(Fritz) is
2 and the bucket that leads to it is already full.

Harry inode index

Betty inode index

Alice inode index

inode indexGeorge

Ralph inode index

inode indexLily

Adam inode index

Indirect buckets

h3

Fritz inode index

Buckets

0

1

2

3

4

FIGURE 6.38 Extensible hashing example, part 2. Here we’ve added an entry for Fritz to the directory of
Figure 6.37. Since the bucket Fritz was to go in under h2 was full, we’ve switched to h3, which maps names
into eight buckets. However, rather than double the number of buckets and rehash the contents of all the old
buckets, we take advantage of the array of indirect buckets. We double their number, but, initially, the new
ones point to the same buckets as the old ones do: indirect buckets 0 and 4 point to bucket 0, indirect buckets
1 and 5 point to bucket 1, and so forth. For Fritz’s sake we add a new (direct) bucket which we label 4.
We rehash Fritz and the prior contents of bucket 2 under h3, with the result that Fritz and George end up in
the bucket referred to by indirect bucket 6, while Alice stays in the bucket referred to by indirect bucket 2.
Thus, we set indirect bucket 6 to refer to the new bucket 4. If, for example, we add another name that would
go into bucket 0, we’d have to add another bucket to hold it and rehash the current contents of bucket 0.

CH006.indd 257CH006.indd 257 8/6/10 12:11:39 PM8/6/10 12:11:39 PM

6.3 Directories and Naming 257

Harry inode index

Betty inode index

Alice inode index

George inode index

Ralph inode index

inode indexLily

Adam inode index

Indirect buckets

h2

Buckets

0

1

2

3

FIGURE 6 .37 Extensible hashing example, part 1. Here we have four buckets and hence are using h2,
which actually computes indexes into the array of indirect buckets, which, in turn, lead to the appropriate
bucket. Each of our buckets holds two items. We are about to add an entry for Fritz. However, h2(Fritz) is
2 and the bucket that leads to it is already full.

Harry inode index

Betty inode index

Alice inode index

inode indexGeorge

Ralph inode index

inode indexLily

Adam inode index

Indirect buckets

h3

Fritz inode index

Buckets

0

1

2

3

4

FIGURE 6.38 Extensible hashing example, part 2. Here we’ve added an entry for Fritz to the directory of
Figure 6.37. Since the bucket Fritz was to go in under h2 was full, we’ve switched to h3, which maps names
into eight buckets. However, rather than double the number of buckets and rehash the contents of all the old
buckets, we take advantage of the array of indirect buckets. We double their number, but, initially, the new
ones point to the same buckets as the old ones do: indirect buckets 0 and 4 point to bucket 0, indirect buckets
1 and 5 point to bucket 1, and so forth. For Fritz’s sake we add a new (direct) bucket which we label 4.
We rehash Fritz and the prior contents of bucket 2 under h3, with the result that Fritz and George end up in
the bucket referred to by indirect bucket 6, while Alice stays in the bucket referred to by indirect bucket 2.
Thus, we set indirect bucket 6 to refer to the new bucket 4. If, for example, we add another name that would
go into bucket 0, we’d have to add another bucket to hold it and rehash the current contents of bucket 0.

CH006.indd 257CH006.indd 257 8/6/10 12:11:39 PM8/6/10 12:11:39 PM

B+	 Trees	
•  Balanced	 tree	

–  Node-‐degree	 requirement	 :	 each	 node	 fits	 in	 a	 block	
–  Node-‐size	 requirement	 :	 each	 block	 must	 be	 at	 least	 half	 full	
–  Leaves	 are	 linked	 together	

•  Example	 tree	 with	 block	 size	 3	
–  Consider	 inser0ng	 Lucy	
–  Consider	 dele0on	

6.3 Directories and Naming 259

example of Figure 6.39. But if there’s no room, we need to add a new directory block and fi t this
block into the search tree.

Adding a directory block requires a bit of work. Suppose we add the name Lucy. Since
the directory block it should go into does not have enough free space to hold it, we create a new
block and move everything greater than Lucy, namely Matthew and Nicole, from the old block to
the new one, and put Lucy in the old one. We now have two blocks where we used to have one.
If the parent node, c, of the just-copied block had room for it, we could simply modify c’s ranges
to refer to the new block as well as the old one and we’d be done — we wouldn’t have increased
the length of any search path, so the tree would still be balanced.

However, in our case, this parent-node c has no room. So we split it into two nodes, c
and c!, and add a range for the new node to the appropriate parent — c! in this case. We again
have two nodes where we used to have one. So we must go to the parent of c and c! to accom-
modate c!. As before, if this parent has room, we’re done, otherwise we have to split it and
continue on.

If we reach the root and have to split it, we create a new root node with two ranges, each
referring to one of the halves of the former root. We’ve thus increased the number of levels in the
tree by one, yet maintained its balance. In our example, we have to split node a into nodes a and
a!, and thus create a new root, r — see Figure 6.40.

When deleting an entry, we must make certain we maintain the invariant that all nodes
are at least half full. Let’s suppose we remove Paula and Otto in Figure 6.40. This causes the
directory block containing them to become empty. We could simply leave the empty block in the
directory — this is what S5FS and FFS do, after all. But it’s certainly cleaner and more space
effi cient to remove it, so let’s do so (though note that many systems don’t bother rebalancing after
a deletion, but simply delete the storage when a block is completely free).

We free the block and remove its range from the parent node that points to it, c!. If this
node were more than half full, we’d be done. In our case it’s not, so we examine the parent’s
adjacent siblings (there must be at least one — just node d in our case). Can we combine the
contents of nodes c! and d to form a single node? If we can’t, we would move just enough entries
from d to c! so that it is at least half full (since each node must have room for at least three

Ivan

R
ichard

Lisa

O
tto

D
anielle

G
aston

Virginie

—

D
anielle

Frances

Earl

A
lex

C
harlie

B
onnie

Lisa

N
icole

M
atthew

Ivan

K
arl

Jeanne

Virginie

—

W
alter

R
ichard

Tom
as

S
hary

P
aula

O
tto

—

H
erm

ine

G
aston

—

a:

b: c: d:

FIGURE 6 .39 A B+
tree representing a
directory. To simplify
the fi gure, all entries
occupy the same amount
of space.

CH006.indd 259CH006.indd 259 8/6/10 12:11:41 PM8/6/10 12:11:41 PM

28/01/16	

26	

Introduc0on	 to	 Networking	
•  Defini0on	

–  A	 way	 to	 interconnect	 computers	 so	 that	 they	 can	 exchange	 informa0on	

•  Types	
–  Circuit	 (old	 phone	 networks)	

•  Actual	 circuit	 between	 devices	 established	
–  Packet	 switching	 (currently	 most	 common)	

•  Data	 is	 divided	 into	 marked	 packets	 that	 are	 transported	 independently	

•  Challenges	
–  Data	 can	 be	 lost	 or	 reordered	
–  To	 much	 traffic	 can	 clog	 network	
–  Base	 /	 Home	 networks	 are	 heterogenous	

Standardiza0on	
•  Interna0onal	 Standards	 Organiza0on	 (ISO)	

Open	 Systems	 Interconnect	 (OSI)	 7-‐layer	
network	 model	

•  Layers	
1.  Physical	 layer	 (the	 wire,	 EM,	 etc.)	
2.  Data	 link	 layer	 (e.g.	 ethernet)	

•  Means	 for	 moving	 data	 on	 and	 off	 wire	
•  Info.	 representa0on	 scheme	 in	 EM	 waves	 	

–  Sequences	 of	 bits	 known	 as	 frames	
•  Sharing	 mechanisms	
•  Medium	 access	 control	 (MAC)	 addresses	

–  Used	 to	 decide	 who	 should	 get	 what	
3.  Network	 layer	

•  Addressing,	 delivery,	 packets	
4.  Transport	 layer	

•  Ensures	 communica0on	 is	 reliable	
5.  Session	 layer	

•  Dialogue	 control	 (who	 talks	 when),	
synchroniza0on	 (error	 recovery),	 etc.	

6.  Presenta0on	 layer	
•  Deals	 with	 transforming	 datastructures	

(endianness,	 floa0ng	 point	 numbers,	 …)	
7.  Applica0on	 layer	 (e.g.	 hhp)	

•  High-‐level	 applica0on	 (support)	 sobware	

352 CHAPTER 9 Introduction to Networking

Data passing through the network can be lost or reordered.

Too much traffi c can overwhelm the routers and switches.

These concerns and others were addressed by a committee operating under the auspices of the
International Organization for Standardization (known as ISO4) in the 1970s by defi ning a network
model consisting of seven layers, known as the Open Systems Interconnect (OSI) model (Figure 9.1).
Each layer is built on top of the next lower layer and provides certain types of functionality. Protocols
can then be designed and implemented to provide the functionality of a particular layer.

Here’s a brief description of the OSI model’s layers.

 1. The physical layer corresponds to the “wire.” Concerns here have to do with electromagnetic
waves and the medium through which they are propagating.

 2. The data link layer provides the means for putting data on the wire (and for taking it off).
An example is the Ethernet. Concerns here include how to represent bits as electromagnetic
waves. Data is represented as sequences of bits known as frames. If, as in the Ethernet, the
physical layer can be shared with potentially more than one other computer, some means for
sharing must be provided; doing this properly is known as medium access control (MAC).
The MAC address is used to indicate who should receive a frame. Important parameters
include the form of the MAC address and the maximum and minimum frame sizes.

 3. The network layer sees to it that the data travels to the intended destination (perhaps via a
number of intermediate points). It deals with data in units known as packets. Some notion
of a network address is needed here to identify other computers.

 4. The transport layer is responsible for making sure that communication is reliable, i.e., that
what’s sent is received unchanged.

4 One might think it should be known as IOS, but it’s supposed to be an international organization, and IOS would make sense in
English, but, for example, not in French. So, “ISO” is chosen as its abbreviation: the three letters are derived from “isos,” which
means “equal” in Greek. (See http://www.iso.org/iso/about/discover-iso_isos-name.htm.)

•

•

application

presentation

session

transport

network

data link

physical

application

presentation

session

transport

network

data link

physical

network

data link

physical

network

data link

physical1

2

3

4

5

6

7

FIGURE 9 .1 ISO’s open systems interconnect (OSI) model.

CH009.indd 352CH009.indd 352 8/9/10 10:35:18 AM8/9/10 10:35:18 AM

Internet	 Protocols	
•  Dis0nc0ons	 in	 top	 three	 layers	

ignored	
•  Base	 network	 combines	 OSI	 1&2	

–  Called	 internet	 protocol	 (IP)	
–  Protocol	 data	 unit	 (packet)	

•  IP	 Packet	
–  Header	 (addresses)	
–  Data	 (PDU	 of	 higher	 layer)	

•  Called	 a	 segment	
•  Packaging	

–  Normally	 a	 header	 is	 added	 to	 a	
segment	

–  If	 a	 segment	 is	 too	 large	 it	 is	 split	
•  e.g.	 ethernet’s	 maximum	 transfer	

unit	 (MTU)	 is	 1500	 bytes	
•  Rou0ng	

–  Controlled	 externally	
–  Picked	 from	 rou0ng	 tables	

9.1 Network Basics 353

 5. The session layer builds on the reliable connection provided by the transport layer. Among
the services provided here can be dialog control, which indicates whose turn it is to transmit,
and synchronization, which tracks progress for error recovery. For example, if the transport
connection fails, a new one can be established under the same session as the original.

 6. The presentation layer deals with the representation of data. It copes with the different ways
machines represent basic data items (such as integers and fl oating-point numbers) and pro-
vides a means for communicating more complicated data items, such as arrays and structure.

 7. The application layer is not necessarily where the application resides, but rather where
high-level software used by the application for network access resides. For example, the
HTTP protocol used for web browsing can be considered to reside here.

The bottom three layers (layers 1–3) are sometimes called the communications subnet. Data that
must pass through a number of machines on its way to the destination is forwarded by an
implementation of protocols in these lower layers on each intermediate machine.

The distinctions among the top three layers are in general pretty much ignored. Many
applications use remote-procedure-call and similar protocols that are built on top of the transport
layer and incorporate all the functionality of layers 5 through 7.

The OSI model is useful in helping us understand a number of networking issues, but as a
model it’s not strictly followed in practice, where “practice” means the Internet. The Internet’s model
is considerably simpler and more specifi c: while the OSI model was intended as the basis of any
number of network protocols, the Internet model was designed as a model for the Internet, period.

The OSI model can be considered an a priori model in the sense that it came fi rst, with
the idea that protocols were to follow. With the Internet model, the reverse happened: fi rst there
were protocols, then a model to describe them. This is an a posteriori model: the model came
after the protocols.

The protocols used on the Internet are known as the Internet protocols (also called TCP/
IP). They don’t fi t precisely into the OSI model (for example, there is no analog of the session
and presentation layers), but the rough correspondence is shown in Figure 9.2.

There was much speculation in the 1980s that protocols designed to fi t in the OSI model
not only would be competitors of the Internet protocols, but would replace them. Today one hears
very little of the OSI protocols (though the OSI seven-layer terminology is much used); whatever
competition there was between the OSI protocols and the Internet protocols was defi nitely won
by the latter.

Application

End-to-end

Internet

Net interface

Application

End-to-end

Internet

Net interface

Internet

Net interface

Internet

Net interface

OSI Layers 5-7

OSI Layer 4

OSI Layer 3

OSI Layers 1-2

FIGURE 9 .2 The Internet’s networking model.

CH009.indd 353CH009.indd 353 8/9/10 10:35:19 AM8/9/10 10:35:19 AM

354 CHAPTER 9 Introduction to Networking

9.1.1.1 The Internet Protocol (IP)
What we called a “base network” earlier is abstracted by OSI layers 1 and 2. Thus the peculiarities
of a particular base network are handled by protocols at OSI layer 3. The Internet has exactly
one protocol defi ned for this layer, the internet protocol (IP). It is, however, evolving. Version 4
is currently in use (versions 1 through 3 were never in common use), but may be replaced by
version 6 (version 5 was never in common use either). Here we discuss version 4.

First, we say a few words about what’s called a protocol data unit (PDU). This is the
information sent as one unit by a protocol at a particular level. The PDU of IP, sitting at the network
layer, is known as a packet. In general, PDUs contain control information as well as data. This
control information is usually segregated from the data and placed at the beginning, where it’s
called a header; however, sometimes some or all of it may be at the end of the PDU, where it’s called
a trailer. What’s important is that the data portion of a PDU is the PDU of the next-higher-layer
protocol. In particular, the data portion of an IP packet is the PDU of the transport layer (where
the PDU is called a segment). Similarly, the network-layer packet is the data portion of the data-
link-layer PDU (a frame).

IP forms packets from the segments given it by the transport protocol. Ordinarily IP simply
takes the segment as is and puts a header in the front (see Figure 9.3, where the transport layer’s
segment is called data). However, if the resulting packet would be too large for the data-link layer
to handle (for example, Ethernet’s maximum transfer unit (MTU) is 1500 bytes, meaning that its
frames cannot be larger than that), IP breaks the segment into some number of fragments, so that
each, when combined with IP and Ethernet headers, is no larger than the MTU, and transmits each
as a separate packet. When forwarding packets on a router, IP ordinarily simply takes them and
forwards them on to their destination. However, if the packet is too large for the outgoing
data-link layer, it again breaks the packet data into appropriately sized fragments and forwards
each separately. It’s the responsibility of the ultimate destination’s IP to reassemble the fragments
into the segment expected by the transport protocol. The fragment offset fi eld of the IP header
(Figure 9.3) indicates the byte offset relative to the beginning of the original segment of the
data portion of a fragmented IP packet. The identifi cation fi eld identifi es the original segment of
which this is a fragment.

IP’s primary job is forwarding: getting packets to their destination. Each packet contains
the source and destination addresses. Based on the destination address, IP either keeps the packet,
sending it up to the higher-level protocol, or forwards it on to the next hop in its route.

Determining the route is the tough part. Routing information is not maintained by IP, but
supplied either by a separate routing protocol or by an administrator. In either case, routes are
stored in a table for IP’s use. If the destination is another host on a directly connected network, IP

vers hlen type of serv total length

identification flags fragment offset

time-to-live protocol header checksum

source address

destination address

options padding

data

FIGURE 9 .3 IP packet showing header.

CH009.indd 354CH009.indd 354 8/9/10 10:35:19 AM8/9/10 10:35:19 AM

IPv4	 Addresses	
•  Structured	 32-‐bit	 numbers	
•  Allows	

–  2113658	 networks	
–  3189604356	 hosts	

•  Issues	
–  Too	 many	 (large	 rou0ng	 tables)	
–  Too	 few	 (not	 enough	 hosts)	

•  IPv6	 =	 128	 bit	 addresses	

9.1 Network Basics 355

forwards it directly to that host. Otherwise it checks the routing table for either an entry
containing a route to the given address or, if that’s not present, an entry giving a route to the
base network of the destination. If neither is present, then there should be a default entry giving
a route to a router with more information. Ultimately this leads to one of a set of routers
(originally called core routers) without default entries in their tables, but with routes to all
known base networks.

Internet addresses are structured 32-bit values usually written in dot notation, in which
each byte, from most signifi cant to least, is written in decimal and is separated from the next by
a dot. For example, 0x8094400a is written as 128.148.64.10. The original idea was that these
addresses were split into three fi elds: a class identifi er, a network number (identifying a base net-
work), and a host number (Figure 9.4). Three classes of addresses, known as A, B, and C, were
defi ned, each providing a different split between the bits identifying the network and the bits
identifying a host on that network. Each network uses just one class of addresses — networks are
referred to as class-A, class-B, or class-C. A fourth class of addresses, class D, was also defi ned,
as explained below.

Class-A networks have 7 bits to identify the network and 24 to identify the host on that
network. Thus there could be up to 27–2 class-A networks (the all-zeros and all-ones addresses
are special), each with 224–2 hosts. Class-B networks have 14 bits to identify the network and
16 bits to identify the host. Class-C networks have 21 bits for the network and 8 bits for the
host. Thus there could be 214–2 class-B networks, each with 216–2 hosts, and 221–2 class-C networks,
each with 28–2 hosts. Class-D addresses are used for multicast: one-to-many communication.
Not counting the multicast addresses, this scheme allows a total of 2,113,658 networks and
3,189,604,356 hosts.

There are two problems with these address classes. The fi rst is that the numbers are too big.
The other is that they’re too small. They’re too big because they require huge routing tables and
too small because there aren’t enough usable addresses.

Since the core routers must have routes for all networks, their routing tables potentially
have 2,113,658 entries. What’s more, the routing protocols require that the core routers periodi-
cally exchange their tables. The memory and communication costs for this were prohibitive in the
1980s (though they are not that bad now).

Making the problem of not enough network addresses even worse was that a fair portion
of the class-A and class-B addresses were wasted. This was because few if any class-A networks
had anything close to 224–2 hosts on them, or could even contemplate having that many. Even
with class-B networks, 216–2 hosts were far more than was reasonable.

hostnetwork0Class A

hostnetwork10Class B

24 bits7 bits

16 bits14 bits

hostnetwork110Class C

8 bits21 bits

multicast group ID1110Class D

28 bits

FIGURE 9 .4 Class-based Internet addresses.

CH009.indd 355CH009.indd 355 8/9/10 10:35:20 AM8/9/10 10:35:20 AM

28/01/16	

27	

Internet	 Transport	 Protocols	
•  User	 datagram	 protocol	 (UDP)	

–  Not	 reliable	
–  Provides	 checksum	 only	
–  Allows	 one	 to	 implement	 own	 reliability	 scheme	

•  Transmission	 control	 protocol	 (TCP)	
–  Reliable	 communica0on	
–  Copes	 with	 network	 conges0on	
–  32	 bit	 sequence	 number	 transmihed	 from	

sender	 to	 receiver	 indica0ng	 how	 many	 bytes	
have	 been	 transmihed	

–  Response	 returned	 indica0ng	 successful	 receipt	
of	 the	 whole	 sequence	 numbered	 less	 than	 the	
returned	 value	

–  Sequence	 numbers	 must	 be	 reused	
•  Gives	 rise	 to	 a	 maximum	 segment	 life0me	 (set	

“by	 fiat”	 to	 2	 min.)	
–  Star0ng	 sequence	 number	 decided	 in	 handshake	

•  Both	 augment	 IP	 addresses	 with	 16	 bit	 port	
numbers	

358 CHAPTER 9 Introduction to Networking

while some of the segments are still in transit. Then we start again, “reincarnating” the session.
If we start with the same sequence number as we started with previously, the late-arriving segments
from the previous session may be mistaken for segments belonging to the current session. So,
when starting a new session, we need to choose an initial sequence number that we know is not
in a previously transmitted segment that’s still out on the Internet.

It might seem reasonable to keep track of the last sequence number used and use one
greater than that for the next connection to a particular destination. But this would mean keeping
track of sequence numbers of all recently terminated connections. This probably wouldn’t be all
that unreasonable today, but was considered so in 1981. It also wouldn’t completely solve the
problem, as explained below.

What was done instead was to guess the maximum speed at which sequence numbers are
being consumed and then assign initial sequence numbers assuming that any previous connec-
tion ran at that speed. The speed chosen was 250,000 bytes/second. So, for example, a connection
starting at time 0 was given an initial sequence number of 0. If that connection terminated for
some reason and a new connection was made 1000 seconds after the fi rst one started, since
the old connection must have transmitted less than 250,000,000 bytes, the new one was safely
given an initial sequence number of 250,000,000. This approach is known as using an initial-
sequence-number (ISN) generator. Of course, if the actual communication speed was greater
than 250,000 bytes/second, or if the ISN generator wrapped around completely (it had a period
of 4.55 hours) while a connection was still active, there still might be a duplicate sequence-number
problem. However, in 1981, communication that fast and that long-lasting didn’t happen, so this
approach worked.

There were other problems, though. If a system crashed and then restarted, the ISN
generator would be restarted as well. One might think that the generator could be based on a
time-of-day clock that survives crashes, but this has problems as well. So, the suggestion was to
wait an MSL after rebooting before starting up TCP. In practice, machines took far longer than
an MSL to reboot, so such a delay was not needed. A more serious problem has to do with
sequence-number-guessing attacks — see RFC 1948.7

Let’s look at how TCP actually works. Figure 9.5 shows a typical TCP segment, including
its header. There’s no need for IP addresses, since these are in the IP header; but the header does
contain the sending and receiving port numbers. The fl ags fi eld contains various control bits. Two
of these bits — the SYN and FIN fl ags — appear in the sequence number space and thus are sent

7 http://tools.ietf.org/html/rfc1948.

source port

sequence number

acknowledgment sequence number

checksum

options

data

destination port

padding

window sizeoffset reserved flags

urgent pointer

FIGURE 9 .5 TCP segment with header.

CH009.indd 358CH009.indd 358 8/9/10 10:35:22 AM8/9/10 10:35:22 AM

9.1 Network Basics 359

reliably if set. If the ACK fl ag is set, then the acknowledgment sequence number fi eld contains an
acknowledgment as described above: all data bytes and control bits with sequence numbers less
than this have been received. The RST (reset) bit, used to indicate something has gone wrong,
generally means that the connection is being unilaterally terminated. The PSH (push) bit indicates
that the segment should be passed to the application without delay. The URG (urgent data) bit
indicates that the urgent pointer fi eld is meaningful. If the URG bit is set, then the urgent-pointer
fi eld contains the sequence number of the end of “urgent data” that should be delivered to the
application even before data with earlier sequence numbers. (The urgent data begins at the beginning
of the fi rst segment with the URG fl ag set.)

The checksum fi eld is a checksum not only on the TCP header, but on the TCP data and
on the address portions of the IP header as well. If a receiver determines the checksum is
bad, it discards the packet and relies on the sender to retransmit it. The options fi eld contains
variable-length optional information that we won’t discuss. Finally, the window-size fi eld
indicates how much buffer space the sender has to receive additional data. We discuss this in
more detail below.

TCP’s actions are controlled by the rather elaborate state machine shown in Figure 9.6.
Here the edges between states are labeled with the event causing a state transition as well as
the action performed when changing states. An entity using TCP starts with its connection in the
closed state. If it’s a server, it performs what’s called a passive open and goes to the listen state,
where it’s ready to receive connections from clients.

It’s the client that actually initiates a connection. It starts a “three-way handshake” in which
both parties come up with a suitable initial sequence number and reliably communicate it to the
other. The client performs an active open, in which it sends a special synchronize segment to
the server and goes to the syn-sent state. This synchronize segment has the SYN bit set in the
header’s fl ags and contains the client’s initial sequence number — thus the SYN bit itself has this
number. When the synchronize segment reaches the server, it responds with its own synchronize
segment and goes to the syn-received state. Its synchronize segment has the SYN and ACK bits
set in the fl ags, contains the server’s initial sequence number, and acknowledges the client’s
initial sequence number (that is, its acknowledgment-sequence-number fi eld contains a value

closed

syn sent syn received listen

established

fin wait 2 closing last ack

time wait

fin wait 1 close wait

closed

active open:
init state

send SYN

close:
clear state

passive open: init state
close:

clear state

recv SYN:
send ACK

recv SYN:
send SYN, ACK

recv ACK of SYN

recv SYN, ACK:
send ACK

CLOSE:
send FIN

recv FIN:
send ACK

recv FIN:
send ACK

recv FIN, ACK:
send ACK

recv FIN:
send ACK

timeout

rev ACK

CLOSE:
send FIN

recv ACK of FIN

recv ACK

FIGURE 9 .6 TCP state machine.

CH009.indd 359CH009.indd 359 8/9/10 10:35:23 AM8/9/10 10:35:23 AM

