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Learning	  Outcomes	  (Examinable	  Material	  *)	  
•  Familiarity	  with	  opera)ng	  system	  concepts	  	  

–  File	  
–  Process	  
–  Thread	  
–  Synchronisa)on	  
–  Memory	  
–  Paging	  
–  Socket	  
–  Port	  
	  

•  Datastructures	  /	  implementa)ons	  
–  Page	  table	  
–  Semaphore	  
–  Mutex	  
–  Socket	  



Perspec)ve	  
•  User	  perspec)ve	  *	  

–  Linux	  (posix	  compliant	  OS)	  
–  System	  calls	  (fork,	  wait,	  open,	  prinM)	  
–  Command	  line	  u)li)es	  (man	  <sec)on>)	  
–  C	  programs	  

•  Opera)ng	  system	  implementa)on	  perspec)ve	  
–  “Simple-‐OS”	  
	  



Lecture	  1	  :	  History	  and	  User	  Perspec)ve	  

Material	  from	  	  
Opera)ng	  Systems	  in	  Depth	  	  

(spec.	  Chapter	  1)	  	  
by	  

Thomas	  Doeppner	  
	  

GET	  THIS	  BOOK	  AND	  READ	  IT!	  
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What	  is	  an	  opera)ng	  system?	  
•  Opera)ng	  systems	  provide	  so_ware	  abstracts	  of	  

–  Processors	  
–  RAM	  (physical	  memory)	  
–  Disks	  (secondary	  storage)	  
–  Network	  interfaces	  	  
–  Display	  
–  Keyboards	  
–  Mice	  

•  Opera)ng	  systems	  allow	  for	  sharing	  
•  Opera)ng	  systems	  typically	  provide	  abstrac)ons	  for	  

–  Processes	  
–  Files	  
–  Sockets	  



Why	  should	  we	  study	  opera)ng	  systems?	  
•  “To	  a	  certain	  extent	  [building	  an	  opera)ng	  system	  is]	  a	  solved	  

problem”	  –	  Doeppner	  
•  “So	  too	  is	  bridge	  building”	  –	  Wood	  

–  History	  and	  its	  lessons	  
•  Capacity	  and	  correct	  usage	  

–  Improvement	  possible	  
•  New	  algorithms,	  new	  storage	  media,	  new	  peripherals	  
•  New	  concerns	  :	  security	  
•  New	  paradigms	  :	  the	  “cloud”	  



Review	  :	  Computer	  ≈	  Von	  Neumann	  Architecture	  	  

Image	  from	  hep://cse.iitkgp.ac.in/pds/notes/intro.html	  



Review	  :	  Machine	  Instruc)ons	  and	  Assembly	  Code	  
•  Machine	  code	  :	  instruc)ons	  directly	  executed	  by	  the	  CPU	  

–  From	  Wikipedia	  :	  	  
•  “the	  instruc)on	  below	  tells	  an	  x86/IA-‐32	  processor	  to	  move	  an	  immediate	  8-‐bit	  
value	  into	  a	  register.	  	  The	  binary	  code	  for	  this	  instruc)on	  is	  10110	  followed	  by	  a	  
3-‐bit	  iden)fier	  for	  which	  register	  to	  use.	  	  The	  iden)fier	  for	  the	  AL	  register	  is	  000,	  
so	  the	  following	  machine	  code	  loads	  the	  AL	  register	  with	  the	  data	  01100001.”	  

•  Assembly	  language	  :	  one-‐to-‐one	  mapping	  to	  machine	  code	  (nearly)	  
–  Mnemonics	  map	  directly	  to	  instruc)ons	  (MOV	  AL	  =	  10110	  000)	  
–  From	  Wikipedia	  :	  	  

•  “Move	  a	  copy	  of	  the	  following	  value	  into	  AL,	  and	  61	  is	  a	  hexadecimal	  
representa)on	  of	  the	  value	  01100001”	  

10110000	  01100001	  

MOV	  AL,	  61h	  	  	  	  	  	  	  ;	  Load	  AL	  with	  97	  decimal	  (61	  hex)	  



Compila)on	  and	  Linking	  
•  A	  compiler	  is	  a	  computer	  program	  that	  transforms	  source	  code	  

wrieen	  in	  a	  programming	  language	  into	  another	  computer	  
language	  
–  Examples	  :	  GNU	  compiler	  collec)on	  

•  A	  linker	  takes	  one	  or	  more	  object	  files	  generated	  by	  a	  compiler	  and	  
combines	  them	  into	  a	  single	  executable	  program	  
–  Gathers	  libraries,	  resolving	  symbols	  as	  it	  goes	  
–  Arranges	  objects	  in	  a	  program’s	  address	  space	  

•  Touches	  OS	  through	  libraries,	  virtual	  memory,	  program	  address	  
space	  defini)ons,	  etc.	  
–  Modern	  OS’	  provide	  dynamic	  linking;	  run)me	  resolu)on	  of	  unresolved	  

symbols	  

	  



History	  :	  1950’s	  
•  Earliest	  computers	  had	  no	  opera)ng	  systems	  
•  1954	  :	  OS	  for	  MIT’s	  “Whirlwind”	  computer	  	  

–  Manage	  reading	  of	  paper	  tapes	  avoiding	  human	  interven)on	  

•  1956	  :	  OS	  General	  Motors	  
–  Automated	  tape	  loading	  for	  an	  IBM	  701	  for	  sharing	  computer	  in	  15	  minute	  

)me	  alloca)ons	  

•  1959	  :	  “Time	  Sharing	  in	  Large	  Fast	  Computers”	  
–  Described	  mul)-‐programming	  

•  1959	  :	  McCarthy	  MIT-‐internal	  memo	  described	  “)me-‐share”	  usage	  
of	  IBM	  7090	  
–  Modern	  :	  interac)ve	  compu)ng	  by	  mul)ple	  concurrent	  users	  



Early	  OS	  Designs	  
•  Batch	  systems	  

–  Facilitated	  running	  mul)ple	  jobs	  sequen)ally	  

•  I/O	  boelenecks	  
–  Computa)on	  stopped	  to	  for	  I/O	  opera)ons	  

•  Interrupts	  invented	  
–  Allows	  no)fica)on	  of	  an	  asynchronous	  opera)on	  comple)on	  
–  First	  machine	  with	  interrupts	  :	  DYSEAC	  1954,	  standard	  soon	  therea_er	  

•  Mul)-‐programming	  followed	  
–  With	  interrupts,	  computa)on	  can	  take	  place	  concurrently	  with	  I/O	  
–  When	  one	  program	  does	  I/O	  another	  can	  be	  compu)ng	  
–  Second	  genera)on	  OS’s	  were	  batch	  systems	  that	  supported	  mul)-‐

programming	  



History	  :	  1960’s,	  the	  golden	  age	  of	  OS	  R&D	  
•  Terminology	  	  

–  “Core”	  memory	  refers	  to	  magne)c	  cores	  each	  holding	  one	  bit	  (primary)	  
–  Disks	  and	  drums	  (secondary)	  

•  1962	  :	  Atlas	  computer	  (Manchester)	  	  
–  “virtual	  memory”	  :	  programs	  were	  wrieen	  as	  if	  machine	  had	  lots	  of	  primary	  

storage	  and	  the	  OS	  shuffled	  data	  to	  and	  from	  secondary	  	  
•  1962	  :	  Compa)ble	  )me-‐sharing	  system	  (CTSS,	  MIT)	  

–  Helped	  prove	  sensibility	  of	  )me-‐sharing	  (3	  concurrent	  users)	  
•  1964	  :	  Mul)cs	  (GE,	  MIT,	  Bell	  labs;	  1970	  Honeywell)	  	  

–  Stated	  desiderata	  
•  Convenient	  remote	  terminal	  access	  	  
•  Con)nuous	  opera)on	  
•  Reliable	  storage	  (file	  system)	  
•  Selec)ve	  sharing	  of	  informa)on	  (access	  control	  /	  security)	  
•  Support	  for	  heterogeneous	  programming	  and	  user	  environments	  

–  Key	  conceptual	  breakthrough	  :	  unifica)on	  of	  file	  and	  virtual	  memory	  via	  
everything	  is	  a	  file	  



History	  :	  1960’s	  and	  1970’s	  
•  IBM	  Mainframes	  OS/360	  
•  DEC	  PDP-‐8/11	  

–  Small,	  purchasable	  for	  research	  

•  1969	  :	  UNIX	  
–  Ken	  Thompson	  and	  Dennis	  Ritchie;	  Mul)cs	  effort	  drop-‐outs	  
–  Wrieen	  in	  C	  
–  1975	  :	  6th	  edi)on	  released	  to	  universi)es	  very	  inexpensively	  
–  1988	  System	  V	  Release	  4	  	  

•  1996	  :	  BSD	  (Berkeley	  so_ware	  distribu)on)	  v4.4	  
–  Born	  from	  UNIX	  via	  DEC	  VAX-‐11/780	  and	  virtual	  memory	  



1980’s	  :	  Rise	  of	  the	  Personal	  Computer	  (PC)	  
•  1970’s	  :	  CP/M	  

–  One	  applica)on	  at	  a	  )me	  –	  no	  protec)on	  from	  applica)on	  
–  Three	  components	  

•  Console	  command	  process	  (CCP)	  
•  Basic	  disk	  opera)ng	  system	  (BDOS)	  
•  Basic	  input/output	  system	  (BIOS)	  

•  Apple	  DOS	  (a_er	  CP/M)	  
–  1978	  Apple	  DOS	  3.1	  ≈	  CP/M	  

•  Microso_	  	  
–  1975	  :	  Basic	  interpreter	  
–  1979	  :	  Licensed	  7-‐th	  edi)on	  Unix	  from	  AT&T,	  named	  it	  Xenix	  
–  1980	  :	  Microso_	  sells	  OS	  to	  IBM	  and	  buys	  QDOS	  (no	  Unix	  royal)es)	  to	  fulfill	  

•  QDOS	  =	  “Quick	  and	  dirty	  OS”	  
•  Called	  PC-‐DOS	  for	  IBM,	  MS-‐DOS	  licensed	  by	  Microso_	  



1980’s	  ‘)l	  now.	  
•  Early	  80’s	  state	  of	  affairs	  

–  Minicomputer	  OS’s	  
•  Virtual	  memory	  
•  Mul)-‐tasking	  
•  Access	  control	  for	  file-‐systems	  

–  PC	  OS’s	  
•  None	  of	  the	  above	  (roughly	  speaking)	  

•  Worksta)ons	  
–  Sun	  (SunOS,	  Bill	  Joy,	  Berkeley	  4.2	  BSD)	  

•  1984	  :	  Network	  file	  system	  (NFS)	  

•  1985	  :	  Microso_	  Windows	  
–  1.0	  :	  applica)on	  in	  MS-‐DOS	  

•  Allowed	  coopera)ve	  mul)-‐tasking,	  where	  applica)ons	  explicitly	  yield	  the	  processor	  to	  each	  other	  

•  1995	  :	  Windows	  ’95	  to	  ME	  
–  Preemp)ve	  mul)-‐tasking	  ()me-‐slicing),	  virtual	  memory	  (-‐ish),	  unprotected	  OS-‐space	  

•  1993	  :	  First	  release	  of	  Windows	  NT,	  subsequent	  Windows	  OS’s	  based	  on	  NT	  
•  1991	  :	  Linus	  Torvalds	  ported	  Minix	  to	  x86	  



•  Based	  on	  Unix	  (6th	  edi)on)	  
–  Monolithic	  

•  The	  OS	  is	  a	  single	  file	  loaded	  into	  
memory	  at	  boot	  )me	  

–  Interfaces	  
•  Traps	  originate	  from	  user	  
programs	  

•  Interrupts	  originate	  from	  
external	  devices	  	  

–  Modes	  
•  User	  
•  Privileged	  /	  System	  

–  Kernel	  
•  A	  subset	  of	  the	  OS	  that	  runs	  in	  
privileged	  mode	  

•  Or	  a	  subset	  of	  this	  subset	  

Implementa)on	  Perspec)ve	  :	  “Simple	  OS”	  

12 CHAPTER 1 Introduction

In 2003 SCO,10 which had acquired the rights to Unix, sued IBM, claiming that SCO’s code 
was in Linux and thus SCO was owed royalties. (Suing someone with lots of money may be a 
good idea. Suing someone who employs really good lawyers probably isn’t.) In August 2007 the 
judge ruled that SCO was not the rightful owner of the Unix copyright, Novell is. Novell then 
stated that there is no Unix source code in Linux.

Two other free versions of Unix also began development in the early 1990s (and continue 
to be developed): FreeBSD and NetBSD. Both are derived from the BSD project at Berkeley and 
are highly thought of, but neither has achieved the success of Linux.

Apple, in the meantime, was still selling a system whose operating system was derived from 
the original MacOS. Finally, in 2000, they released MacOS X, a Unix system. Its implementation 
was similar to that of OSF/1, combining both Mach and BSD Unix (in the form of NetBSD and 
FreeBSD) in the kernel. Apple fi nally had an operating system that supports virtual memory and 
multitasking and provides a protected fi le system, something it had almost achieved with Lisa OS 
in the early 1980s. Apple’s version of Unix is now the prevalent Unix operating system.

 

In this section we examine the abstractions provided by a relatively simple operating system and 
delve a bit into how they are implemented. Choosing an operating system, even one to discuss 
in a course, is fraught with controversy. What we discuss here is an early version of Unix, as it 
existed in the early 1970s. We choose this partly because of its simplicity and elegance, partly 
because (as we saw above) it had a major infl uence on modern operating systems, such as mod-
ern versions of Unix (Solaris, Linux, MacOS X, etc.) as well as Windows, and primarily because 
it is the earliest operating system whose later versions are still in common use. (Although the 
descendants of IBM’s OS/360 are still in use, few students in operating systems courses have 
direct access to them.) We call it simply Unix for now, though strictly speaking it is Sixth-Edition 
Unix (see Section 1.2.3 for why it is called this).

1.3.1 OS STRUCTURE

Many early operating systems were amazingly small: Sixth-Edition Unix, for instance, had to 
fi t into 64 KB of memory. Thus it made reasonable sense to structure it as a single executable in 
which all parts are stored as a single fi le from which they are loaded into the computer’s memory 
when it boots. This sort of structuring is known as the monolithic approach. As sketched in 
Figure 1.1, application programs call upon the operating system via traps; external devices, such 
as disks and clocks, call upon it via interrupts.

Almost all computers have at least two modes of execution, user mode (with the fewest 
privileges) and privileged mode (with the most). To limit the damage that errant programs can do 
to other programs and the system as a whole, the only code that runs in privileged mode is that 
which is part of the operating system. In simple systems such as Sixth-Edition Unix, we gener-
ally think of the whole operating system as running in privileged mode. Everything else is an 
application and runs in user mode. In other systems, such as modern Windows, major subsystems 
providing operating-system functionality run in user mode. We discuss this in Chapter 4.

We often use the word kernel, as in “operating-system kernel.” This generally means that 
portion of the operating system that runs in privileged mode, but sometimes it means a subset of 
this — some relatively small, key portion of the privileged-mode operating-system code. We will 
try to make it clear which defi nition we’re using.

10 SCO nominally stands for “Santa Cruz Operation,” but the original company of that name sold its Unix business to Caldera. 
SCO then changed its name to Tarantella, the name of the product it was now focusing on. Caldera subsequently changed its 
name to SCO.

1.3
A SIMPLE OS
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A SIMPLE OS

OS

Traps

Interrupts

FIGURE 1 .1  Simple 
OS structure.

Ch001.indd   12Ch001.indd   12 8/5/10   11:26:20 AM8/5/10   11:26:20 AM



Traps	  and	  System	  Calls	  (largely	  from	  user)	  
•  System	  calls	  *	  

–  Example	  

	  	  	  	  	  
requests	  the	  OS	  to	  send	  data	  to	  a	  file	  

•  Unintended	  requests	  for	  kernel	  service	  
–  Using	  a	  bad	  address	  
–  Dividing	  by	  zero	  
	  
	  

1.3.1.1 Traps
Traps are the general means for invoking the kernel from user code. We usually think of a trap as 
an unintended request for kernel service, say that caused by a programming error such as using 
a bad address or dividing by zero. However, for system calls, an important special kind of trap 
discussed below, user code intentionally invokes the kernel.

Traps always elicit some sort of response. For page faults, the operating system determines 
the status of the faulted page and takes appropriate action (such as fetching it from secondary 
storage). For programming errors, what happens depends upon what the program has previ-
ously set up. If nothing, then the program is immediately terminated. A program may establish 
a handler to be invoked in response to the error; the handler might clean up after the error and 
then terminate the process, or perhaps perform some sort of corrective action and continue with 
normal execution.

The response to faults caused by errors is dealt with in Unix via a mechanism called sig-
nals (which is also used in response to other actions; see Chapter 2). Signals allow the kernel to 
invoke code that’s part of the user program, a mechanism known as an upcall.

1.3.1.2 System Calls
We’ve already discussed the multiple layers of abstraction used in all systems. For layers imple-
mented strictly in user code, the actual invocation of functionality within a layer is straightfor-
ward: a simple procedure call or the like. But invocation of operating-system functionality in 
the kernel is more complex. Since the operating system has control over everything, we need 
to be careful about how it is invoked. What Unix and most other operating systems do is to 
provide a relatively small number of system calls through which user code accesses the kernel. 
This way any necessary checking on whether the request should be permitted can be done at 
just these points.

A typical example of a system call is the one used to send data to a fi le, the write system call:

if (write(FileDescriptor, BufferAddress, BufferLength) == -1) {

/* an error has occurred: do something appropriate */

printf("error: %d\n", errno) /* print error message */

}

Here we call write to request the operating system to write data to the fi le (we discuss later 
the meaning of the parameters). If the call fails for some reason, write returns −1, and an integer 
identifying the cause of the error is stored in the global variable errno. Otherwise it returns a non-
negative value: the number of bytes that were actually written to the fi le.

How write actually invokes the operating-system kernel depends on the underlying hard-
ware. What typically happens is that write itself is a normal procedure that contains a special 
machine instruction causing a trap. This trap transfers control to the kernel, which then fi gures 
out why it was invoked and proceeds to handle the invocation.

1.3.1.3 Interrupts
An interrupt is a request from an external device for a response from the processor. We discuss 
the mechanism in more detail in Chapter 3. Unlike a trap, which is handled as part of the program 
that caused it (though within the operating system in privileged mode), an interrupt is handled 
independently of any user program.

For example, a trap caused by dividing by zero is considered an action of the currently 
running program; any response directly affects that program. But the response to an interrupt 

1.3 A Simple OS 13
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Interrupts	  (largely	  from	  hardware)	  
•  Request	  from	  an	  external	  device	  for	  a	  response	  from	  the	  processor	  

–  Handled	  independently	  of	  any	  program	  

•  Examples	  
–  Keyboard	  input	  
–  Data	  available	  



Processes	  *	  
•  Abstrac)on	  that	  includes	  

–  Address	  space	  (virtual	  memory	  *)	  
–  Processors	  (threads	  of	  control	  *)	  

•  Usually	  disjoint	  
–  Processes	  usually	  cannot	  directly	  access	  each	  other’s	  memory	  

•  Parallel	  processing	  via	  pipes,	  shared	  memory,	  etc.	  

•  Running	  a	  program	  from	  the	  shell	  
–  Creates	  a	  “process”	  
–  Program	  is	  loaded	  from	  a	  file	  into	  the	  process’s	  address	  space	  
–  Process’s	  single	  thread	  of	  control	  then	  executes	  the	  program’s	  compiled	  

executable	  code	  



•  Text	  
–  Program	  code	  

•  Data	  
–  Ini)alized	  global	  variables	  

•  BSS	  (block	  started	  by	  symbol)	  
–  Unini)alized	  global	  variables	  

•  Dynamic	  (Heap)	  
–  Dynamically	  allocated	  storage	  

•  Stack	  (grows	  “downward”)	  
–  Local	  variables	  

•  Arrows	  indicate	  variable	  
placement	  

•  malloc()	  claims	  space	  in	  dynamic	  

Memory	  =	  Address	  Space	  =	  e.g.	  2^32	  words,	  etc.	  

stored in a fi le in the fi le system. When we run the program, a process is created and the program 
is loaded from the fi le into the process’s address space. The process’s single thread of control then 
executes the program’s code.

But how is the address space organized? The program consists of executable code and 
data. The code, once loaded, is never modifi ed. Since much of the data, on the other hand, can be 
modifi ed, it makes sense to segregate the two, putting the code in a special region of the address 
space that’s protected from modifi cation. We could simply put all the data in another readable and 
writable region, but we need to consider other issues too.

The variables nprimes and prime are both global, while i, j, and current are local. We know 
that the scope of global variables is the entire program, while the scope of local variables is just 
the block (delineated by curly braces in C) that contains them. In other words, the “lifetime” of 
global variables is the same as the lifetime of the program, while the lifetime of a local variable 
is only from when the thread enters its block to when it exits. So, we must set things up so that 
the portion of the address space allocated for global variables remains allocated for the lifetime 
of the program, but that portion allocated for a local variable remains allocated only while the 
thread is in the variable’s scope.

Thus when the program is loaded into the address space, we’ll permanently allocate space 
for the global variables, just beyond the space allocated for code. But there’s another useful 
distinction to make: nprimes has an initial value of 100, but prime has no initial value, though 
C semantics states that its initial value is thus zero. If we group all such uninitialized variables 
together, we can represent them effi ciently in the copy of the program stored in the fi le system by 
simply stating that we have n bytes of uninitialized data, which will actually be fi lled with zeros. 
For many programs, this will save a lot of space. We of course have to instantiate these variables 
when we load them into the address space, but there are ways to optimize this instantiation (we 
discuss them in Chapter 7).

The local variables can be allocated effi ciently by use of a run-time stack: each time our 
thread enters a new block, it pushes a frame on the stack containing space for local variables and 
perhaps procedure-linkage information. Such frames are popped off the stack when the thread 
exits the block. So what we’ll do is set up a region of the address space for the stack to reside. On 
most architectures, stacks range from high memory addresses to low memory addresses and thus 
stacks typically grown downwards.

Unix structures the address space as shown in Figure 1.2. The executable code, known as 
text, occupies the lower-addressed regions. The initialized data, known simply as data, follows 
the text. The uninitialized data is known, cryptically, as BSS (for “block started by symbol,” a 
mnemonic from an ancient IBM 704 assembler) and comes next, followed by a dynamic region 
that we explain shortly. Then comes a large hole in the address space and fi nally a region, starting 
at the top and growing downwards, containing the stack.

Let’s now modify the program a bit so that the number of primes we want to compute is 
passed as a parameter. Space is allocated for the primes dynamically, based on this parameter.

int nprimes;

int *prime;

int main(int argc, char *argv[]) {

int i;

int current = 2;

nprimes = atoi(argv[1]);

prime = (int *)malloc(nprimes*sizeof(int));

prime[0] = current;

for (i=1; i<nprimes; i++) {

int j;

Text

Data

BSS

Dynamic

Stack

FIGURE 1 .2  Unix 
address space.
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14 CHAPTER 1 Introduction

from a disk controller may or may not have an indirect effect on the currently running program 
and defi nitely has no direct effect (other than slowing it down a bit as the processor deals with 
the interrupt). 

1.3.2 PROCESSES, ADDRESS SPACES, AND THREADS

Probably the most important abstraction from the programmer’s point of view is the process. We 
think of it both as an abstraction of memory — as an address space — and as the abstraction of 
one or more processors — as threads (or threads of control). The term “address space” covers 
both the set of all addresses that a program can generate and the storage associated with these 
addresses. In modern operating systems, address spaces are usually disjoint (they are always dis-
joint in Sixth-Edition Unix): processes generally have no direct access to one another’s address 
spaces. How this is made to work has to do with address-translation hardware and its operating-
system support, subjects we discuss in Chapter 7.

A single thread per process provides a straightforward programming model and was all 
that most operating systems supported until the early 1990s. We cover multithreaded processes 
in considerable detail in Chapter 2, but for now we use the simple model of single-threaded 
processes.

Note that the meaning of the term “process” has evolved over the years. The term origi-
nally meant the same thing as the current meaning of “thread” — see (Dennis and Van Horn 
1966), who use the term “computation” to refer to what we now mean by “process.” Though 
some authors still use “process” in its original sense, few if any operating systems do.

What else is there to a process? To get an idea, consider the following simple C program 
that implements the “Sieve of Eratosthenes” to compute the fi rst one hundred primes. In its 
current form it’s not very useful since, after computing these primes, it immediately terminates 
without doing anything with them. We’ll make it more useful later.

const int nprimes = 100;

int prime[nprimes];

int main() {

int i;

int current = 2;

prime[0] = current;

for (i=1; i<nprimes; i++) {

int j;

NewCandidate:

current++;

for (j=0; prime[j]*prime[j] <= current; j++) {

if (current % prime[j] == 0)

goto NewCandidate; 

}

prime[i] = current;

}

return(0);

}

Our concern here is not prime numbers, but what the operating system must do to make 
this program work. The program is compiled and linked (we explain linking in Chapter 3) and 
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Processes	  and	  Threads	  ****	  (fork_example_1.c)	  
•  Processes	  are	  created	  via	  the	  system	  

call	  fork()	  
–  Any	  exact	  copy	  of	  the	  calling	  process	  is	  

made	  	  
•  Efficient	  –	  copy	  on	  write	  

–  fork()	  returns	  twice!	  
•  Once	  in	  the	  child	  (return	  value	  0)	  
•  Once	  in	  the	  parent	  (return	  value	  the	  PID	  

of	  the	  child	  process)	  

•  Processes	  report	  termina)on	  status	  via	  
the	  system	  call	  exit(ret_code)	  

•  Processes	  can	  wait()	  for	  the	  termina)on	  
of	  child	  processes	  

•  Example	  uses	  
–  Terminal	  /	  Windows	  
–  Apache	  cgi	  

18 CHAPTER 1 Introduction

Since a process’s return code actually means something, it’s important for other processes 
to fi nd out what it is. This is done via the wait system call, which allows a parent process to wait 
until one of its children terminates:

short pid;

if ((pid = fork()) == 0) {

/* some code is here for the child to execute */

exit(n);

} else {

int ReturnCode;

while(pid != wait(&ReturnCode))

;

/* the child has terminated with ReturnCode as its

   return code */

}

Here the parent process creates a child, then waits for it to terminate. Note that wait returns 
the process ID of the child that’s terminated, which might not be the one most recently created 
(the parent might have created others). Thus it calls wait repeatedly until the child it’s interested 
in terminates. The wait call returns the child process’s return code via its argument, which points 
to storage provided by the caller.

A process can wait only for its children to terminate: it has no means for waiting for the 
termination of other processes. This implies that the operating system must keep track of the par-
ent-child relationships among processes.

While a process is waiting for a child to terminate, it’s said to be in the “sleeping state”: it 
won’t be able to execute any further instructions until a terminating child wakes it up.

The act of termination is a bit tricky. One concern is the process ID. These are 16-bit val-
ues and thus must occasionally be reused. Suppose that when a process terminates (i.e., calls 
exit), its ID is immediately made available for assignment to new processes. It might  happen 
that before the process’s parent calls wait, the process ID is actually assigned to a new process. 
Thus there could be some ambiguity about which process is being referred to by the ID.

Another termination concern is the return code: where is it stored between the moments 
when a process terminates and when the code is picked up by the parent via wait? If all storage 
associated with the process is released on termination, we could have a problem.

These concerns are handled as follows. When a process calls exit it doesn’t completely 
disappear, but goes into what’s called the zombie state: it’s no longer active and its address space 
can be relinquished, but its process ID and return value are preserved in the operating system. 
Thus the process still exists, though the only meaningful data associated with it are its ID and 
return value. When the parent eventually calls wait, these values are fi nally released and all traces 
of the process disappear.

But what happens if the parent terminates before the child? This could mean that, since 
the parent is no longer around to perform the wait, the child will remain forever a zombie. To 
deal with this problem, process number 1 (the process whose ID is 1 and which is the ancestor 
of all other processes with greater IDs) inherits the children (including zombies) of terminated 
processes. It executes a loop, continually calling wait and fi nishing the termination of all its (step) 
children.

As shown in Figure 1.4, a process’s return code is kept in its process control block. Nothing 
is of course stored there until the process terminates. But when the process does terminate, its 
return code is copied to the PCB, which is linked to its parent’s queue of terminated children. By 

Ch001.indd   18Ch001.indd   18 8/5/10   11:26:26 AM8/5/10   11:26:26 AM



Loading	  Programs	  into	  Processes	  (fork_example_2.c)	  
•  execl()	  system	  call	  used	  to	  do	  this	  

•  execl()	  replaces	  the	  en)re	  contents	  of	  the	  
processes	  address	  space	  
–  the	  stack	  is	  ini)alized	  with	  the	  passed	  program	  args.	  
–  a	  special	  start	  rou)ne	  is	  called	  that	  itself	  calls	  main()	  
–  exec	  doesn’t	  return	  except	  if	  there	  is	  an	  error!	  

executing the wait system call, the parent selects the fi rst process from this queue, returning both 
the PID and return-code fi elds.

1.3.4 LOADING PROGRAMS INTO PROCESSES

We’ve briefl y discussed setting up an address space to contain a program; now let’s look at the 
user-level mechanism for doing so. A family of system calls known as exec is provided for this. 
Execs are typically used shortly after fork creates a new process to replace the program with a 
new one. Here’s an example of their use:

int pid;

if ((pid = fork()) == 0) {

/* we’ll soon discuss what might take place before exec

   is called */

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

Here we call execl, which takes a variable number of arguments — the “command-line” 
arguments mentioned above — and passes them to the program. The fi rst argument is the name 
of the fi le containing the program to be loaded. The second argument is the name of the program 
(while this seems a bit redundant, it allows one program to do different things depending on the 
name by which it is called). The remaining arguments are the remaining command-line argu-
ments, terminating with 0.

The effect of the exec call, as shown in Figure 1.5, is to replace the entire contents of the 
current process’s address space with the new program: the text region is replaced with the text of 
primes. The BSS and data regions are replaced with those supplied by primes. The dynamic area 
is replaced with an empty region. The stack is replaced with the arguments that are to be passed to 
main: the total number of arguments (two in this case), followed by a vector referring to their values 
(“primes” and “300”). The process’s thread continues execution by calling a special start routine 
(loaded with the primes program), which then calls main (so that on return from main it calls exit).

Note that since the prior contents of the address space are removed, there is no return from 
a successful call to exec: there’s nothing to return to! However, if exec does return, then (since 
the prior contents clearly weren’t removed) there must have been an error. What we do in such a 
case is simply call exit with a return code indicating an error. (This is certainly not a very helpful 
response, but our focus for the moment is on successful outcomes.)

The parent process waits until the child has completed (calling wait with an argument of 
zero means that the caller does not want the return code). The above code fragment shows what 
a command shell does in response to the command:

% primes 300

In other words, it creates a new process to run the command and waits for that process to 
terminate.
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executing the wait system call, the parent selects the fi rst process from this queue, returning both 
the PID and return-code fi elds.

1.3.4 LOADING PROGRAMS INTO PROCESSES

We’ve briefl y discussed setting up an address space to contain a program; now let’s look at the 
user-level mechanism for doing so. A family of system calls known as exec is provided for this. 
Execs are typically used shortly after fork creates a new process to replace the program with a 
new one. Here’s an example of their use:

int pid;

if ((pid = fork()) == 0) {

/* we’ll soon discuss what might take place before exec

   is called */

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

Here we call execl, which takes a variable number of arguments — the “command-line” 
arguments mentioned above — and passes them to the program. The fi rst argument is the name 
of the fi le containing the program to be loaded. The second argument is the name of the program 
(while this seems a bit redundant, it allows one program to do different things depending on the 
name by which it is called). The remaining arguments are the remaining command-line argu-
ments, terminating with 0.

The effect of the exec call, as shown in Figure 1.5, is to replace the entire contents of the 
current process’s address space with the new program: the text region is replaced with the text of 
primes. The BSS and data regions are replaced with those supplied by primes. The dynamic area 
is replaced with an empty region. The stack is replaced with the arguments that are to be passed to 
main: the total number of arguments (two in this case), followed by a vector referring to their values 
(“primes” and “300”). The process’s thread continues execution by calling a special start routine 
(loaded with the primes program), which then calls main (so that on return from main it calls exit).

Note that since the prior contents of the address space are removed, there is no return from 
a successful call to exec: there’s nothing to return to! However, if exec does return, then (since 
the prior contents clearly weren’t removed) there must have been an error. What we do in such a 
case is simply call exit with a return code indicating an error. (This is certainly not a very helpful 
response, but our focus for the moment is on successful outcomes.)

The parent process waits until the child has completed (calling wait with an argument of 
zero means that the caller does not want the return code). The above code fragment shows what 
a command shell does in response to the command:

% primes 300

In other words, it creates a new process to run the command and waits for that process to 
terminate.
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Files	  *	  
•  Files	  are	  Unix’s	  primary	  abstrac)on	  

for	  everything	  
–  Keyboard	  
–  Display	  
–  Other	  processes	  

•  Naming	  files	  
–  Filesystems	  generally	  are	  tree-‐

structured	  directory	  systems	  	  
–  Namespaces	  are	  generally	  shared	  by	  

all	  processes	  
•  Accessing	  files	  

–  The	  directory-‐system	  name-‐space	  is	  
outside	  the	  process	  
•  open(name)	  returns	  a	  file	  handle,	  

read(args)	  	  
•  OS	  checks	  permissions	  along	  path	  

20 CHAPTER 1 Introduction

1.3.5 FILES

As we’ve pointed out, our primes example isn’t very useful since it doesn’t leave the results 
of its computation where others (programs or people) can use them. What’s needed is access 
to someplace outside the process that’s shared with others. The notion of a fi le is our Unix 
system’s sole abstraction for this concept of “someplace outside the process” (modern 
Unix systems have additional abstractions). Unix uses fi les both as the abstraction of persistent 
data storage (such as on disks) and also as the means for fetching and storing data outside a 
 process, whether that data is stored on disk, in another process, or in some other device, such 
as a keyboard or display.

1.3.5.1 Naming Files
For our current discussion we’re concerned about both how to refer to such “places” outside 
the process and how programs transfer data to and from such places. Since the place is outside the 
process, we need a different space from the process’s address space. The nature of such spaces 
was an issue a number of decades ago, but pretty much all systems today use tree- structured 
directory systems for naming fi les and similar objects. These should be familiar to everyone 
with enough computer experience to have gotten this far in this text: a fi le is named by stringing 
together the names assigned to the edges forming a path from the root of the tree to the fi le.

Unix uses forward slashes as separators between the names; Windows uses back slashes. 
That the path starts at the root is indicated by starting the name with the separators. Such path 
names generally have the beginning (such as the root) at the left, though the Internet’s naming 
scheme (Domain Name System — DNS) has it on the right.

The name space provided by the directory system is generally shared by all processes 
running on a computer (and perhaps by all processes running on a number of computers). Unix 
provides a means to restrict a process to a subtree: one simply redefi nes what “root” means for 
the process. Thus fi les are identifi ed by their path names in the directory system.

Since the directory-system name space is outside the process, special means are required 
to access it. The usual model is that one provides the name of the desired fi le to the operating 
system, and the operating system returns a handle to be used to access the fi le. What’s going on 
behind the scenes is that the operating system, somewhat laboriously, follows the path provided 
by the name, checking to make certain that the process is allowed appropriate access along the 
path. The returned handle provides a direct reference to the fi le so that such expensive path-
 following and access verifi cation isn’t required on subsequent accesses.

This use of a handle to refer to an object managed by the kernel is fairly important. We’ll 
later see it generalized to the notion of a capability (Chapter 8). In abstract terms, possession 
of a handle gives the holder not only a reference to an object in the kernel, but also certain lim-
ited rights for using the object. In the case of fi les, as we discuss, a handle allows the holder to 
 perform certain actions on a fi le.

The following code uses the open system call to obtain a fi le’s handle, then uses the handle 
to read the fi le:

int fd;

char buffer[1024];

int count;

if ((fd = open("/home/twd/fi le", O_RDWR) == -1) {

/* the fi le couldn’t be opened */

perror("/home/twd/fi le");

exit(1);

}
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if ((count = read(fd, buffer, 1024)) == -1) {

/* the read failed */

perror("read");

exit(1);

}

/* buffer now contains count bytes read from the fi le */

Here we use the open system call to access the directory name space to get a handle for 
the fi le whose path name is “/home/twd/fi le”. We’ve indicated by the second argument that 
we want both read and write access to the fi le: if for some reason such access is not permitted, 
the open call fails. If it succeeds, fd contains the handle (known in Unix as a fi le descriptor) for 
the fi le.

We then use this handle as an argument to the read system call to identify the fi le and 
attempt to transfer its fi rst 1024 bytes into buffer. Read returns the number of bytes that were 
actually transferred: it could be less than what was asked for because, for example, the fi le might 
not be that large. The perror routine prints, to fi le descriptor 2, its argument followed by a mes-
sage explaining the error number currently in the global variable errno (recall that that’s how 
failing system calls leave the error number).

1.3.5.2 Using File Descriptors
These handles (or fi le descriptors) form what is essentially an extension to the process’s address 
space, allowing the process unhindered access to the associated fi les. This address-space exten-
sion survives execs. Thus fi les open before an exec takes place are open afterwards. This property 
is exploited as a way to pass the open fi les as additional parameters to the exec. File descriptors 
are small nonnegative integers that are allocated lowest-available-number fi rst. By convention, 
programs expect to read their primary input from fi le descriptor 0, to write their primary output 
to fi le descriptor 1, and to write error messages to fi le descriptor 2. By default, input from fi le 
descriptor 0 comes from the keyboard and output to fi le descriptors 1 and 2 goes to the display 
(or current window).

However, as shown in the following code, different associations can be established in a 
process before an exec:

if (fork() == 0) {

/* set up fi le descriptor 1 in the child process */

close(1);

if (open("/home/twd/Output", O_WRONLY) == -1) {

perror("/home/twd/Output");

exit(1);

}

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;
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Using	  File	  Descriptors	  (fork_example_2.c)	  
•  File	  descriptors	  survive	  exec()’s	  
•  Default	  file	  descriptors	  

–  0	  read	  (keyboard)	  
–  1	  write	  (primary,	  display)	  
–  2	  error	  (display)	  

•  Different	  associa)ons	  can	  be	  
established	  before	  fork()	  

if ((count = read(fd, buffer, 1024)) == -1) {

/* the read failed */

perror("read");

exit(1);

}

/* buffer now contains count bytes read from the fi le */

Here we use the open system call to access the directory name space to get a handle for 
the fi le whose path name is “/home/twd/fi le”. We’ve indicated by the second argument that 
we want both read and write access to the fi le: if for some reason such access is not permitted, 
the open call fails. If it succeeds, fd contains the handle (known in Unix as a fi le descriptor) for 
the fi le.

We then use this handle as an argument to the read system call to identify the fi le and 
attempt to transfer its fi rst 1024 bytes into buffer. Read returns the number of bytes that were 
actually transferred: it could be less than what was asked for because, for example, the fi le might 
not be that large. The perror routine prints, to fi le descriptor 2, its argument followed by a mes-
sage explaining the error number currently in the global variable errno (recall that that’s how 
failing system calls leave the error number).

1.3.5.2 Using File Descriptors
These handles (or fi le descriptors) form what is essentially an extension to the process’s address 
space, allowing the process unhindered access to the associated fi les. This address-space exten-
sion survives execs. Thus fi les open before an exec takes place are open afterwards. This property 
is exploited as a way to pass the open fi les as additional parameters to the exec. File descriptors 
are small nonnegative integers that are allocated lowest-available-number fi rst. By convention, 
programs expect to read their primary input from fi le descriptor 0, to write their primary output 
to fi le descriptor 1, and to write error messages to fi le descriptor 2. By default, input from fi le 
descriptor 0 comes from the keyboard and output to fi le descriptors 1 and 2 goes to the display 
(or current window).

However, as shown in the following code, different associations can be established in a 
process before an exec:

if (fork() == 0) {

/* set up fi le descriptor 1 in the child process */

close(1);

if (open("/home/twd/Output", O_WRONLY) == -1) {

perror("/home/twd/Output");

exit(1);

}

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;
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File	  Random	  Access	  	  
•  lseek()	  provides	  non-‐sequen)al	  access	  to	  files	  

•  Reverses	  a	  file	  

28 CHAPTER 1 Introduction

1.3.5.3 Random Access
As we’ve seen, the normal mode of access to fi les is sequential: successive reads or writes to a fi le 
are to successive locations in the fi le. Though this is probably what’s desired in most situations, 
sometimes we’d like to access a fi le randomly, reading or writing arbitrary locations within it. 
This turns out to be easily done, since the read and write system calls simply look at the contents 
of the fi le-location fi eld of the context structure and increment it after the operation.

Thus to read or write starting at an arbitrary location, all we have to do is provide a means 
for setting this fi le-location fi eld. This is done with the lseek system call. The example below 
shows using lseek to print the contents of a fi le backwards:11

fd = open("textfi le", O_RDONLY); 

/* go to last char in fi le */

fptr = lseek(fd, (off_t)–1, SEEK_END);

while (fptr != –1) {

read(fd, buf, 1);

write(1, buf, 1);

fptr = lseek(fd, (off_t)–2, SEEK_CUR);

}

The fi rst argument to lseek is the fi le descriptor, the second and third arguments (of type 
off_t, an integer type) indicate the value that goes into the fi le-location fi eld. The third argument 
specifi es where we are measuring the offset from (SEEK_SET indicates the offset is interpreted 
as from the beginning of the fi le, SEEK_CUR means from the current position in the fi le, and 
SEEK_END means from the end of the fi le). Note that lseek does no actual I/O; all it does is set 
the fi le-location fi eld.

What we’ve done in the example above is to start with the fi le location set to point to the 
last character in the fi le. After reading a byte, the location is advanced by one, so to get the previ-
ous character, we subtract two from it.

1.3.5.4 Pipes
An interesting construct based on the fi le notion is the pipe. A pipe is a means for one process to 
send data to another directly, as if it were writing to a fi le (see Figure 1.11). The process sending data 
behaves as if it has a fi le descriptor to a fi le that has been opened for writing. The process receiving 
data behaves as if it has a fi le descriptor referring to a fi le that has been opened for reading.

A pipe and the two fi le descriptors referring to it are set up using the pipe system call. 
This creates a pipe object in the kernel and returns, via an output parameter, the two fi le descrip-
tors that refer to it: one, set for write-only, referring to the input side and the other, set for read-
only, referring to the output end. Since this pipe object, though it behaves somewhat like a fi le, 
has no name, the only way for any process to refer to it is via these two fi le descriptors. Thus only the 
process that created it and its descendants (which inherit the fi le descriptors) can refer to the pipe.

FIGURE 1 .11 Communication via a pipe

pipesender receiver

11 This is defi nitely not a good way to print a fi le backwards! It simply illustrates what you can do with lseek.
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Pipes	  *	  (pipe_example.c)	  
•  A	  pipe	  is	  a	  means	  for	  one	  process	  to	  send	  data	  to	  another	  directly	  
•  pipe()	  returns	  two	  nameless	  file	  descriptors	  	  Here’s a simple pipe example:

int p[2];    /* array to hold pipe’s fi le descriptors */

pipe(p);     /* create a pipe; assume no errors */

/* p[0] refers to the output end of the pipe */

/* p[1] refers to the input end of the pipe */

if (fork() == 0) {

char buf[80];

close(p[1]);     /* not needed by the child */

while (read(p[0], buf, 80) > 0) {

/* use data obtained from parent */

…

}

} else {

char buf[80];

close(p[0]);  /* not needed by the parent */

for (;;) {

/* prepare data for child */

…

write(p[1], buf, 80);

}

}

1.3.5.5 Directories
A directory is essentially a fi le like the others we’ve been discussing, except that it is inter-
preted by the operating system as containing references to other fi les (some of which may 
well be other directories). From a logical perspective, a directory consists of an array of pairs 
of component name and inode number, where the latter identifi es the target fi le’s inode to the 
operating system (recall that an inode is a data structure maintained by the operating system 
to represent a fi le).

Every directory contains two special entries, “.” and “..”. The former refers to the directory 
itself, the latter to the directory’s parent. In Figure 1.12, the directory is the root directory and has 
no parent, and thus its “..” entry is a special case that refers to the directory itself.

1.3 A Simple OS 29

FIGURE 1 .12 Sample directory

Component name Inode number

Directory entry

unix 117

etc 4

home 18

pro 36

dev 93

. 1

.. 1
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Directories	  
•  A	  directory	  is	  a	  file	  that	  is	  interpreted	  as	  containing	  references	  to	  

other	  files	  by	  the	  OS	  	  
•  Consists	  of	  an	  array	  of	  	  

–  Component	  name	  
–  inode	  number	  

•  an	  inode	  is	  a	  datastructure	  maintained	  by	  the	  OS	  to	  represent	  a	  file	  

Here’s a simple pipe example:
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…

}
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preted by the operating system as containing references to other fi les (some of which may 
well be other directories). From a logical perspective, a directory consists of an array of pairs 
of component name and inode number, where the latter identifi es the target fi le’s inode to the 
operating system (recall that an inode is a data structure maintained by the operating system 
to represent a fi le).

Every directory contains two special entries, “.” and “..”. The former refers to the directory 
itself, the latter to the directory’s parent. In Figure 1.12, the directory is the root directory and has 
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Crea)ng	  Files	  
•  creat()	  and	  open()	  (with	  flags)	  are	  used	  to	  create	  files	  

•  “man	  2	  open”	  :	  	  

OPEN(2)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  BSD	  System	  Calls	  Manual	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  OPEN(2)	  
	  
NAME	  
	  	  	  	  	  open,	  openat	  -‐-‐	  open	  or	  create	  a	  file	  for	  reading	  or	  writing	  
	  
SYNOPSIS	  
	  	  	  	  	  #include	  <fcntl.h>	  
	  
	  	  	  	  	  int	  
	  	  	  	  	  open(const	  char	  *path,	  int	  oflag,	  ...);	  
	  
	  	  	  	  	  int	  
	  	  	  	  	  openat(int	  fd,	  const	  char	  *path,	  int	  oflag,	  ...);	  
	  
DESCRIPTION	  
	  	  	  	  	  The	  file	  name	  specified	  by	  path	  is	  opened	  for	  reading	  and/or	  writing,	  as	  specified	  by	  the	  argument	  oflag;	  
	  	  	  	  	  the	  file	  descriptor	  is	  returned	  to	  the	  calling	  process.	  
	  
	  	  	  	  	  The	  oflag	  argument	  may	  indicate	  that	  the	  file	  is	  to	  be	  created	  if	  it	  does	  not	  exist	  (by	  specifying	  the	  
	  	  	  	  	  O_CREAT	  flag).	  	  In	  this	  case,	  open()	  and	  openat()	  require	  an	  additional	  argument	  mode_t	  mode;	  the	  file	  is	  
	  	  	  	  	  created	  with	  mode	  mode	  as	  described	  in	  chmod(2)	  and	  modified	  by	  the	  process'	  umask	  value	  (see	  umask(2)).	  
	  
	  	  	  	  	  The	  openat()	  function	  is	  equivalent	  to	  the	  open()	  function	  except	  in	  the	  case	  where	  the	  path	  specifies	  a…	  



Review	  :	  User	  Perspec)ve	  on	  Simple	  OS	  
•  Rough	  idea	  of	  what	  goes	  inside	  an	  OS	  
•  Traps	  /	  system	  calls	  

–  exec()	  
–  fork()	  
–  open()	  
–  pipe()	  
–  exit()	  
–  close()	  
–  read()	  
–  write()	  
–  dup()	  
–  …	  

•  Next	  lecture	  :	  more	  user	  basics.	  	  	  
•  Final	  two	  lectures	  :	  OS	  implementa)on	  issues	  



Lecture	  2	  :	  Basics;	  Processes,	  Threads,	  …	  	  

Material	  from	  	  
Opera)ng	  Systems	  in	  Depth	  	  

(spec.	  Chapters	  2&3)	  	  	  
by	  

Thomas	  Doeppner	  
	  

GET	  THIS	  BOOK	  AND	  READ	  IT!	  



Threads	  *	  (thread_example_1.c)	  
•  What	  is	  a	  thread?	  

–  Mechanism	  for	  concurrency	  in	  user-‐level	  programs	  
–  “Lightweight	  process”	  
–  Processor(s)	  within	  a	  process	  
–  Share	  process	  memory	  with	  other	  threads	  

•  Why	  threads?	  
–  Can	  drama)cally	  simplify	  code	  

•  Mul)-‐threaded	  database	  concurrently	  handling	  requests	  
•  Server	  listening	  on	  a	  socket	  responding	  to	  client	  requests	  

–  Requires	  care	  
•  Synchroniza)on	  

•  POSIX	  (“portable	  opera)ng	  system	  interface”)	  specifica)on	  



Thread	  Crea)on	  

Alterna)ve	  specifica)ons	  exist;	  all	  conceptually	  similar	  
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Despite the advantages of programming with threads, only relatively recently have standard APIs 
for multithreaded programming been developed. The most important of these APIs in the Unix 
world is the one developed by a group originally called POSIX 1003.4a. This multi-year effort 
resulted in 1995 in an approved standard, now known by the number 1003.1c.

Microsoft produced as part of its Win-32 interface a threads package whose interface has 
little in common with that of POSIX. Moreover, there are signifi cant differences between the 
Microsoft and POSIX approaches — some of the constructs of one cannot be easily implemented 
in terms of the constructs of the other, and vice versa. Despite these incompatibilities, both 
approaches are useful for multithreaded programming.

2.2.1 THREAD CREATION AND TERMINATION

Creating a thread should be a pretty straightforward operation: in response to some sort of directive, 
a new thread is created and proceeds to execute code independently of its creator. There are, of 
course, a few additional details. We may want to pass parameters to the thread. A stack of some 
size must be created to be the thread’s execution context. Also, we need some mechanism for 
the thread to terminate and to make a termination value available to others.

2.2.1.1 Creating POSIX Threads
POSIX and Win-32 have similar interfaces for creating a thread. Suppose we wish to create a 
bunch of threads, each of which will execute code to provide some service. In POSIX, we do this 
as follows:

void start_servers( ) {

pthread_t thread;

int i;

for (i=0; i<nr_of_server_threads; i++)

pthread_create(

 &thread, // thread ID

 0, // default attributes

 server, // start routine

 argument); // argument

}

void *server(void *arg) {

// perform service

return (0);

}

Thus a thread is created by calling pthread_create. If it returns successfully (returns 0), a 
new thread has been created that is now executing independently of the caller. This thread’s ID 
is returned via the fi rst parameter (an output parameter that, in standard C programming style, is 
a pointer to where the result should be stored). The second parameter is a pointer to an attributes 
structure that defi nes various properties of the thread. Usually we can get by with the default 
properties, which we specify by supplying a null pointer. The third parameter is the address of 
the routine in which our new thread should start its execution. The last argument is the argument 
that is actually passed to the fi rst procedure of the thread.

If pthread_create fails, it returns a positive value indicating the cause of the failure.

2.2
PROGRAMMING 
WITH THREADS

2.2
PROGRAMMING 
WITH THREADS
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Passing	  Arguments	  to	  Threads	  
•  Care	  must	  be	  taken	  with	  

threads	  in	  general	  
•  Problem	  with	  this	  code	  

–  In	  and	  out	  are	  local	  variables	  
thus	  leave	  scope	  when	  rlogind	  
exits	  

2.2 Programming with Threads 45

2.2.1.2 Creating Win-32 Threads
An equivalent program written for Windows using the Win-32 interface is:

void start_servers( ) {

HANDLE thread;

DWORD id;

int i;

for (i=0; i<nr_of_server_threads; i++)

thread = CreateThread(

 0, // security attributes

 0, //  default # of stack pages allocated

 server, // start routine

 0, // argument

 0, // creation fl ags

 &id); // thread ID

}

DWORD WINAPI server(void *arg) {

// perform service

return(0);

}

Calls to CreateThread are used rather than pthread_create. A handle for the new thread is 
returned. A handle, as we discussed in Chapter 1, is similar to a Unix fi le descriptor: it refers to 
information belonging to the user process but maintained in the operating system. In this case, as 
we’ll see, the handle allows the holder to perform operations on the thread.

An ID is returned via the last (output) argument. It is a means of identifying the thread that 
gives the holder no ability to control that thread. Thus one process can make a thread ID available to 
another process so as to identify the thread but not give the second process any control over it.

The fi rst parameter is a pointer to the security attributes to be associated with the thread; 
we use 0 for this for now and discuss other possibilities later. The next parameter is the number 
of stack pages (in bytes) to allocate physical resources for (one megabyte of virtual memory is 
allocated; the parameter indicates how much of this initially has real memory and stack space 
supporting it); 0 means to use the default. The third parameter is the address of the fi rst routine 
our thread executes; the next parameter is the argument that’s passed to that routine. The next to 
the last parameter specifi es various creation fl ags; we don’t supply any here.

If CreateThread fails, indicated by returning a null handle, GetLastError can be used to 
determine the cause of the failure.

2.2.1.3 Handling Multiple Arguments
A problem comes up with both pthread_create and CreateThread when you want to pass 
more than one argument to a thread. Suppose you are creating threads for use with our two-
threaded implementation of rlogind (Section 2.1 above). One might be tempted to use the 
trick outlined below:

typedef struct {

int fi rst, second;

} two_ints_t;
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void rlogind(int r_in, int r_out, int l_in, int l_out) {

pthread_t in_thread, out_thread;

two_ints_t in={r_in, l_out}, out={l_in, r_out};

pthread_create(&in_thread,

0,

incoming,

&in);

pthread_create(&out_thread,

0,

outgoing,

&out);

}

Here we pack two arguments into a structure, then pass a pointer to it to pthread_create. 
This is an example of something that works in single-threaded programs but can cause disastrous 
failures in multithreaded programs. The variables in and out are local variables and thus are allo-
cated on the stack of the thread that called rlogind. When this fi rst thread returns from rlogind, 
these variables go out of scope — the stack locations might be used for other things. Thus when 
pthread_create is called, the addresses of in and out point to useful information. But by the time 
the threads created by the calls to pthread_create reference the data pointed to by their arguments 
(in and out), this data might no longer exist, since the fi rst thread is no longer in their scope. Thus 
our approach works only if we can be certain that fi rst thread does not leave the scope of the 
arguments while they are in use.

Is there a safe way to pass multiple arguments to a thread that works in all cases? Ideally, 
we’d like to copy all of a thread’s arguments onto its stack. But since neither pthread_create 
nor CreateThread provides a means for doing this for more than one argument, we need some 
other technique. (Other threads packages, for example  (Doeppner 1987), did provide a way to 
put multiple arguments on a thread’s stack.) Whatever approach we use, it must involve passing 
a pointer or some sort of pointer-sized identifi er to the thread, which then uses this identifi er 
to refer to the actual arguments (which must reside in storage that is available while the thread 
is executing).

One approach might be to use static or global storage for the arguments, so that there’s not 
a problem with them going out of scope. While this would work in some cases, suppose that in 
our example multiple threads are calling rlogind concurrently. All would use the same locations 
for storing the arguments to pthread_create, and the result would be chaos.

We might allocate storage dynamically for the arguments, using malloc in C or new in C++. 
This might seem to solve our problems, but who frees the storage, and when? The creating thread 
can do so safely only if the created thread is certain not to access the arguments at any point in 
the future. We can’t expect the created thread to free the storage unless its arguments are always 
in dynamically allocated storage.

In summary, we have four approaches for passing multiple arguments to a thread:

 1. copy all arguments to the thread’s stack: this always works, but isn’t supported in either 
POSIX or Win-32

 2. pass a pointer to local storage containing the arguments: this works only if we are certain 
this storage doesn’t go out of scope until the thread is fi nished with it

 3. pass a pointer to static or global storage containing the arguments: this works only if only 
one thread at a time is using the storage
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Variables	  on	  stack	  –	  when	  rlogind	  returns	  
These	  variables	  are	  popped	  off	  the	  stack	  
	  
Soln:	  Global	  variables	  or	  dynamically	  allocated	  variables	  
Laeer	  only	  works	  if	  someone	  frees	  said	  space	  
	  



Thread	  Termina)on	  (thread_example_2.c)	  
•  Space	  from	  caller	  must	  be	  provided	  for	  thread	  to	  place	  return	  

values	  

•  pthread_exit()	  terminates	  thread,	  exit()	  terminates	  process	  
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pthread_create(&createe, 0, CreateeProc, 0);

…

pthread_join(create, &result);

…

}

void *CreateeProc(void *arg) {

…

if (should_terminate_now)

pthread_exit((void *)1);

…

return((void *)2);

}

There is a big difference between pthread_exit and exit. The former terminates just the 
calling thread. The latter terminates the entire process, including all threads running in it. Note 
that if a thread returns from a program’s main procedure, it calls exit (it actually returns to 
code that then calls exit). So, consider the following code:

int main(int argc, char *argv[ ]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

return(0);

}

What happens here is that ten threads are created but the creating thread immediately 
returns from main, calls exit, and thus terminates the entire process. On a uniprocessor system, 
none of the ten child threads are likely to get a chance to run at all.

To create a bunch of threads and then terminate innocuously, one might do something like:

int main(int argc, char *argv[ ]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

pthread_exit(0);

return(0);

}

Here the fi rst thread again creates ten threads, but then quietly goes away (the call to return 
is required even though it won’t be executed, since main is defi ned as returning an int). The process 
terminates once all its component threads have terminated (or if one of them calls exit).

CH002.indd   48CH002.indd   48 8/2/10   8:26:14 PM8/2/10   8:26:14 PM

48 CHAPTER 2 Multithreaded Programming

pthread_create(&createe, 0, CreateeProc, 0);

…

pthread_join(create, &result);

…

}

void *CreateeProc(void *arg) {

…

if (should_terminate_now)

pthread_exit((void *)1);

…

return((void *)2);

}

There is a big difference between pthread_exit and exit. The former terminates just the 
calling thread. The latter terminates the entire process, including all threads running in it. Note 
that if a thread returns from a program’s main procedure, it calls exit (it actually returns to 
code that then calls exit). So, consider the following code:

int main(int argc, char *argv[ ]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

return(0);

}

What happens here is that ten threads are created but the creating thread immediately 
returns from main, calls exit, and thus terminates the entire process. On a uniprocessor system, 
none of the ten child threads are likely to get a chance to run at all.

To create a bunch of threads and then terminate innocuously, one might do something like:

int main(int argc, char *argv[ ]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

pthread_exit(0);

return(0);

}

Here the fi rst thread again creates ten threads, but then quietly goes away (the call to return 
is required even though it won’t be executed, since main is defi ned as returning an int). The process 
terminates once all its component threads have terminated (or if one of them calls exit).
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Thread	  Aeributes	  	  
•  “man	  pthread_attr_init”	  
•  e.g.	  to	  specify	  the	  stack	  size	  for	  a	  thread	  one	  ini)alizes	  an	  aeributes	  

datastructure	  
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happen, for example, if the thread places a call to a procedure with large local variables that aren’t 
immediately referenced. So we must be careful to give each thread a suffi ciently large stack (how 
large is large enough depends on the program and the architecture).

To specify the stack size for a thread, one sets up an attributes structure using pthread_attr_
setstacksize and supplies it to pthread_create:

pthread_t thread;

pthread_attr_t thr_attr;

pthread_attr_init(&thr_attr);

pthread_attr_setstacksize(&thr_attr, 20*1024*1024);

...

pthread_create(&thread, &thr_attr, startroutine, arg);

In this case we’ve created a thread with a twenty-megabyte stack.
How large is the default stack? This is not specifi ed in POSIX threads. Different implementa-

tions use different values, ranging from around 20 KB in Tru64 Unix to one megabyte in Solaris 
and eight megabytes in some Linux implementations.

Win-32 uses a different approach to stack size: the amount of address space allocated for 
each thread’s stack is a link-time parameter, not a run-time parameter. The “stacksize” argument 
to CreateThread indicates how many pages of primary memory are allocated to hold the stack 
when the thread starts execution. Additional pages of primary memory are allocated as neces-
sary as the thread runs, up to the maximum stack size. One cannot affect this level of detail using 
POSIX threads.

2.2.1.6 Example
Here is a simple complete multithreaded program that computes the product of two matrices. Our 
approach is to create one thread for each row of the product and have these threads compute the 
necessary inner products. (This isn’t a good way to compute the product of two matrices — it’s 
merely an example of a multithreaded program!)

#include <stdio.h>

#include <pthread.h> /* all POSIX threads declarations */

#include <string.h> /* needed to use strerror below */

#defi ne M 3

#defi ne N 4

#defi ne P 5

int A[M][N]; /* multiplier matrix */

int B[N][P]; /* multiplicand matrix */

int C[M][P]; /* product matrix */

void *matmult(void *);

int main( ) {

int i, j;
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Synchroniza)on	  ***	  (thread_example_3.c)	  	  
•  Remember:	  threads	  share	  access	  to	  common	  data	  structures	  
•  Mutual	  exclusion	  is	  a	  form	  of	  thread	  synchroniza)on	  

–  Makes	  sure	  two	  things	  don’t	  happen	  at	  once	  
–  Example,	  two	  threads	  each	  doing	  

Can	  result	  in	  1	  or	  2;	  reordering	  the	  assembly	  code	  shows	  why	  
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2.2.3.1 Mutual Exclusion
The mutual-exclusion problem involves making certain that two things don’t happen at once. A 
dramatic example arose in the fi ghter aircraft of World War I, as illustrated in Figure 2.4. Due to 
a number of constraints (e.g., machine guns tended to jam frequently and thus had to be near peo-
ple who could unjam them), machine guns were mounted directly in front of the pilot. However, 
blindly shooting a machine gun through a whirling propeller was not a good idea. At the begin-
ning of the war, pilots, being gentlemen, politely refrained from attacking fellow pilots. A bit later 
in the war, however, the Germans developed the tactic of gaining altitude on an opponent, diving 
at him, turning off the engine, then fi ring — without hitting the now-stationary propeller. Today 
this would be called coarse-grained synchronization. Later, the Germans developed technology 
that synchronized the fi ring of the gun with the whirling of the propeller, so that shots were fi red 
only when the propeller blades would not be in the way. This could well be the fi rst example of a 
mutual-exclusion mechanism providing fi ne-grained synchronization!

For a more computer-oriented example of the need for mutual exclusion, consider two 
threads, each performing the following operation:

x = x+1;

If the two threads perform the operation at the same time, what’s the fi nal value of x if its initial 
value was zero? We’d very much like the answer to be 2. However, consider the assembly-language 
version of the statement. It probably looks something like this:

ld r1,x

add r1,1

st r1,x

Thus to add 1 to the variable x, the machine must fi rst load the current contents of location x into 
a register, add 1 to the contents of the register, then store those contents back into the location contain-
ing x. If both threads do this at more or less the same time, the fi nal result stored in x is likely to be 1!

For the concurrent execution of the two assignment statements to behave as we want it to, 
we somehow have to insure that the effect of executing the three assembler instructions is atomic, 
i.e., that all three instructions take place at once without interference.

FIGURE 2 .4  World War I fi ghter aircraft. (Copyright © iStockphoto.)
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POSIX	  Mutexes	  ***	  
•  OS	  must	  support	  thread	  synchroniza)on	  mechanisms	  
•  POSIX	  defines	  a	  data	  type	  called	  a	  mutex	  (from	  “mutual	  exclusion”)	  
•  Mutexes	  can	  ensure	  

–  Only	  one	  thread	  is	  execu)ng	  a	  block	  of	  code	  (code	  locking)	  
–  Only	  one	  thread	  is	  accessing	  a	  par)cular	  data	  structure	  (data	  locking)	  

•  A	  mutex	  either	  belongs	  to	  a	  single	  thread	  or	  no	  thread	  
•  A	  thread	  may	  “lock”	  a	  mutex	  by	  calling	  pthread_mutex_lock()	  
•  A	  mutex	  may	  be	  unlocked	  by	  calling	  pthread_mutex_unlock()	  
•  A	  mutex	  datastructure	  can	  be	  ini)alized	  via	  pthread_mutex_init()	  
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We’re not going to show how to solve this problem right away. Instead, we introduce 
functionality from POSIX threads and Win-32 and show how we can use it to solve the problem. 
In Chapter 5 we show how this functionality is implemented.

POSIX threads defi nes a new data type called a mutex, which stands for mutual exclusion. 
A mutex is used to insure either that only one thread is executing a particular piece of code at 
once (code locking) or that only one thread is accessing a particular data structure at once (data 
locking). A mutex belongs either to a particular thread or to no thread (i.e., it is either locked 
or unlocked). A thread may lock a mutex by calling pthread_mutex_lock. If no other thread has 
the mutex locked, then the calling thread obtains the lock on the mutex and returns. Otherwise it 
waits until no other thread has the mutex, and fi nally returns with the mutex locked. There may, 
of course, be multiple threads waiting for the mutex to be unlocked. Only one thread can lock 
the mutex at a time; there is no specifi ed order for which thread gets the mutex next, though the 
ordering is assumed to be at least somewhat fair.

To unlock a mutex, a thread calls pthread_mutex_unlock. It is considered incorrect to 
unlock a mutex that is not held by the caller (i.e., to unlock someone else’s mutex). However, 
checking for this is costly, so most implementations, if they check at all, do so only when certain 
degrees of debugging are turned on.

Like any other data structure, mutexes must be initialized. This can be done via a call to 
pthread_mutex_init or can be done statically by assigning PTHREAD_MUTEX_INITIALIZER 
to a mutex. The initial state of such initialized mutexes is unlocked. Of course, a mutex should be 
initialized only once! (That is, make certain that, for each mutex, no more than one thread calls 
pthread_mutex_init.) If a mutex is dynamically initialized, a call should be made to pthread_
mutex_destroy when it is no longer needed.

Using mutexes, we can solve the problem of atomically adding 1 to a variable.

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

 // shared by both threads

int x; // ditto

pthread_mutex_lock(&m);

x = x+1;

pthread_mutex_unlock(&m);

Using a mutex to provide mutually exclusive access to a single data structure at a time is 
easy. Things get a bit more involved if we need to arrange for such access to multiple data struc-
tures at once. Consider the following example in which one thread is executing proc1 and another 
is executing proc2:

void proc1( ) {

pthread_mutex_lock(&m1);

/* use object 1 */

pthread_mutex_lock(&m2);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m2);

 pthread_mutex_unlock(&m1);

}

void proc2( ) {

pthread_mutex_lock(&m2);

/* use object 2 */

pthread_mutex_lock(&m1);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m1);

 pthread_mutex_unlock(&m2);

}
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Mutual	  exclusion	  can	  result	  in	  DEADLOCK!	  
•  In	  the	  following,	  “deadlock”	  can	  occur	  
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A mutex is used to insure either that only one thread is executing a particular piece of code at 
once (code locking) or that only one thread is accessing a particular data structure at once (data 
locking). A mutex belongs either to a particular thread or to no thread (i.e., it is either locked 
or unlocked). A thread may lock a mutex by calling pthread_mutex_lock. If no other thread has 
the mutex locked, then the calling thread obtains the lock on the mutex and returns. Otherwise it 
waits until no other thread has the mutex, and fi nally returns with the mutex locked. There may, 
of course, be multiple threads waiting for the mutex to be unlocked. Only one thread can lock 
the mutex at a time; there is no specifi ed order for which thread gets the mutex next, though the 
ordering is assumed to be at least somewhat fair.

To unlock a mutex, a thread calls pthread_mutex_unlock. It is considered incorrect to 
unlock a mutex that is not held by the caller (i.e., to unlock someone else’s mutex). However, 
checking for this is costly, so most implementations, if they check at all, do so only when certain 
degrees of debugging are turned on.

Like any other data structure, mutexes must be initialized. This can be done via a call to 
pthread_mutex_init or can be done statically by assigning PTHREAD_MUTEX_INITIALIZER 
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easy. Things get a bit more involved if we need to arrange for such access to multiple data struc-
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Deadlock	  is	  nasty,	  difficult	  to	  detect,	  and	  to	  be	  avoided	  at	  all	  cost	  

•  One	  useful	  avoidance	  mechanism	  is	  pthread_mutex_trylock()	  
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Thread 1

Thread 2

Mutex 1 Mutex 2

FIGURE 2 .5  Thread/mutex graph.

can’t possibly exist in the graph. This is easy to do: we simply arrange our mutexes in some order 
(for example, by assigning unique integers to them) and insist that all threads attempting to lock 
multiple resources do so in ascending order.

In most applications it is fairly easy to set things up so that all threads lock mutexes in 
ascending order. However, in some situations this is impossible, often because it is not known 
which mutex should be locked second until the fi rst one is locked. An approach that often works 
in such situations is to use conditional lock requests, as in:

proc1( ) {

pthread_mutex_lock(&m1);

/* use object 1 */

pthread_mutex_lock(&m2);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m2);

 pthread_mutex_unlock(&m1);

}

proc2( ) {

while (1) {

pthread_mutex_lock(&m2);

if (!pthread_mutex_trylock(&m1))

break;

 pthread_mutex_unlock(&m2);

}

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m1);

 pthread_mutex_unlock(&m2);

}

Here thread 1, executing proc1, obtains the mutexes in the correct order. Thread 2, executing 
proc2, must for some reason take the mutexes out of order. If it is holding mutex 2, it must be care-
ful about taking mutex 1. So, rather than call pthread_mutex_lock, it calls pthread_mutex_trylock, 
which always returns without blocking. If the mutex is available, pthread_mutex_trylock locks 
the mutex and returns 0. If the mutex is not available (that is, if it is locked by another thread), 
then pthread_mutex_trylock returns a nonzero error code (EBUSY). In the example above, if 
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Semaphores	  
•  A	  semaphore	  is	  a	  nonnega)ve	  integer	  with	  two	  atomic	  opera)ons	  

–  P	  (try	  to	  decrease)	  :	  thread	  waits	  un)l	  semaphore	  is	  posi)ve	  then	  subtracts	  1	  	  
•  []’s	  are	  nota)on	  for	  guards;	  that	  which	  happens	  between	  them	  is	  atomic,	  instantaneous,	  

and	  no	  other	  opera)on	  that	  might	  take	  interfere	  with	  it	  can	  take	  place	  while	  it	  is	  execu)ng	  

–  V	  (increase)	  

•  Mutexes	  can	  be	  implemented	  as	  semaphores	  
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on native Dutch speakers. According to (Dijkstra undated: early 1960s), P stands for prolagen, 
a made-up word derived from proberen te verlagen, “try to decrease” in Dutch. V stands for 
verhogen, “increase” in Dutch.) The P operation is somewhat complicated: a thread waits until it 
fi nds the value of the semaphore positive, then subtracts one from it. What’s really important is 
that when the active part of the operation starts, the semaphore’s value is defi nitely positive, and 
when this active part fi nishes, the value is exactly one less than when the operation started. It’s 
often described as an atomic or indivisible operation: it has no component parts and takes place 
as if it were happening instantaneously.

We use the following notation to describe the semantics of P:

when (semaphore > 0) [

semaphore = semaphore – 1;

]

This notation means that the operations in square brackets take place only when the expression 
following “when,” known as the guard, is true; the statements in square brackets, known as 
the command sequence, are effectively executed instantaneously: no other operation that might 
interfere with it can take place while it is executing. We call the entire construct a guarded 
command. 

The V operation is simpler: a thread atomically adds one to the value of the semaphore. 
We write this as

[semaphore = semaphore + 1]

There is no other means for manipulating the value of the semaphore (other than initializing 
its value in the fi rst place). Thus if the semaphore’s value is initially one and two threads concur-
rently execute P and V operations on it, the resulting value of the semaphore is guaranteed to be 
one. If its value is initially zero and the two threads concurrently execute P and V operations, the 
P operation must wait until the V operation makes the semaphore’s value positive. Then the P 
operation can complete, reducing the semaphore’s value to zero.

We can easily implement mutexes using semaphores:

semaphore S = 1;

void OneAtATime( ) {

P(S);

…

/* code executed mutually exclusively */

…

V(S);

}

If two threads call the OneAtATime routine, the fi rst one to execute the P operation fi nds S to 
be one, and so subtracts one from it, making it zero. If the second thread now attempts to execute 
the P operation, it fi nds S to be zero and thus must wait. Eventually the fi rst thread performs the V 
operation, adding one back to S, which enables the second thread to continue. It subtracts one from 
S and eventually executes the V and adds one back to it. When semaphores are used in such a way 
that their values are only zero and one, as here, they are known as binary semaphores.

When multiple threads attempt to execute a P operation, the effect must be as if they execute 
it one at a time while the semaphore’s value is positive. If its value is zero, they are queued up 
and, one at a time, they complete the P operation in response to V operations by other threads.
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POSIX	  Semaphores	  
•  Interface	  

•  Note	  :	  Mac’s	  use	  Mach	  spec.	  named-‐semaphore	  via	  sem_open()	  

2.2 Programming with Threads 63

We can easily generalize our above example to allow up to N threads to execute a block of 
code (or access a data structure) simultaneously:

semaphore S = N;

void NAtATime( ) {

P(S);

…

/* No more than N threads here at once */

…

V(S);

}

Semaphores used this way are known as counting semaphores.
A more interesting example of counting semaphores involves using them to solve the 

producer-consumer problem (see Figure 2.6 above). To keep things simple, let’s assume we 
have one producer and one consumer. We have a buffer with B slots. We use two semaphores: 
empty, representing the number of empty slots, and occupied, representing the number of occupied 
slots. Our solution is:

Semaphore empty = B;

Semaphore occupied  = 0;

int nextin = 0;

int nextout = 0;

void Produce(char item) {

P(empty);

buf[nextin] = item;

nextin = nextin + 1;

if (nextin == B)

nextin = 0;

V(occupied);

}

char Consume( ) {

char item;

P(occupied);

item = buf[nextout];

nextout = nextout + 1;

if (nextout == B)

nextout = 0;

V(empty);

return(item);

}

The fi rst P operation of Produce causes the thread to wait until there is at least one empty 
slot in the buffer; at this point the slot is “taken” and empty’s value is reduced by one. The producer 
puts its item in the buffer, then indicates there is one more occupied slot by performing a V operation 
on occupied. Similar actions take place inside of Consume.

POSIX provides an implementation of semaphores, but, strangely, it’s not part of POSIX 
threads (POSIX 1003.1c) but part of the POSIX real-time specifi cation (POSIX 1003.1b). This 
matters only because, depending on the system, you may need to include an additional library 
when you use semaphores.

The POSIX interface for semaphores is given below.

sem_t semaphore;

int err;
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err = sem_init(&semaphore, pshared, init);

err = sem_destroy(&semaphore);

err = sem_wait(&semaphore); // P operation

err = sem_trywait(&semaphore); // conditional P operation

err = sem_post(&semaphore); // V operation

Thus semaphores are of type sem_t. All operations on them return an integer error code. 
They must be dynamically initialized using sem_init (there is no static initialization such as 
is provided for mutexes). They take two arguments in addition to the semaphore itself: a fl ag, 
pshared, indicating whether the semaphore is to be used by threads of just one process (pshared = 
0) or by threads of multiple processes (pshared = 1). We assume the former for now, and discuss 
the latter later. Once a semaphore is no longer used, sem_destroy should be called to free whatever 
storage was allocated by sem_init.

The sem_wait operation is the P operation described above. What’s new is the sem_trywait 
operation, which is similar to pthread_mutex_trylock: if the semaphore’s value is positive and 
thus no waiting is required, it behaves just like sem_wait (the value of the semaphore is immediately 
reduced by one). However, if the semaphore’s value is zero, then, rather than waiting, the caller 
returns immediately with an error code (the value EAGAIN).

We discuss the Win-32 version of semaphores in the section on Win-32 Events, below.

POSIX Condition Variables Semaphores are a convenient way to express solutions to a 
number of synchronization problems, but using them can force amazingly complex solu-
tions for other problems. Thus most operating systems provide additional synchronization 
constructs. Here we describe POSIX’s condition variables; later we discuss the events of 
Win-32.

We described the semantics of semaphores using guarded commands. A general implementation 
of our guarded-command construct is, however, a rather tall order. Somehow we’d have to moni-
tor the values of all variables appearing in the guard (i.e., the expression following the when) so 
as to fi nd out when the guard becomes true. Then we’d have to make certain it remains true when 
we start executing the command sequence (the code in square brackets that follows), and make 
certain that this execution is indivisible.

Condition variables give programmers the tools needed to implement guarded commands. 
A condition variable is a queue of threads waiting for some sort of notifi cation. Threads waiting 
for a guard to become true join such queues. Threads that do something to change the value of a 
guard from false to true can then wake up the threads that were waiting.

The following code shows the general approach:

Guarded command POSIX implementation

when (guard) [

statement 1;

…

statement n;

]

pthread_mutex_lock(&mutex);

while(!guard)

pthread_cond_wait(

&cond_var, &mutex));

statement 1;

…

statement n;

pthread_mutex_unlock(&mutex);
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OS	  Implementa)on	  Problem	  :	  Producer-‐Consumer	  *	  
•  Buffer	  with	  a	  finite	  number	  of	  slots	  
•  Threads	  

–  Producer	  :	  puts	  things	  in	  the	  buffer	  
–  Consumer	  :	  removes	  things	  from	  the	  buffer	  

•  Producer	  must	  wait	  if	  buffer	  is	  full;	  consumer	  if	  buffer	  is	  empty	  

2.2 Programming with Threads 61

mutex 1 is not available, this is probably because it is currently held by thread 1. If thread 2 were 
to block waiting for the mutex, we have an excellent chance for deadlock. So, rather than block, 
thread 1 not only quits trying for mutex 1 but also unlocks mutex 2 (since thread 1 could well be 
waiting for it). It then starts all over again, fi rst taking mutex 2, then mutex 1.

Thread 2 thus repeatedly tries to lock both mutexes (in the wrong order) until it can do so 
without causing any problems. This could, of course, require a fair number of iterations. When 
this approach is used, the assumption (which must be validated) is that contention for locks is low 
and thus even two iterations are unlikely to occur. If lock contention is high, another solution is 
necessary, perhaps one that requires all threads to honor the locking order.

2.2.3.2 Beyond Mutual Exclusion
Though mutual exclusion is the most common form of synchronization, there are numerous 
situations that it cannot handle. One obvious extension to mutual exclusion is what’s known as 
the readers-writers problem: rather than requiring mutual exclusion for all accesses to a data 
structure, we can relax things a bit and insist on mutual exclusion only if the data structure is 
being modifi ed. Thus any number of threads (readers) may be just looking at the data structure at 
once, but any thread intending to modify it must have mutually exclusive access.

Another common (at least in texts such as this) synchronization problem is the pro-
ducer-consumer problem (sometimes called the bounded-buffer problem). Here we have a 
buffer containing a fi nite number of slots. As shown in Figure 2.6, a producer is a thread that 
wishes to put an item into the next empty slot of the buffer. A consumer is a thread that wishes 
to remove an item from the next occupied slot. The synchronization issue for producers is that 
if all slots in the buffer are occupied, then producer threads must wait until empty slots are 
available. Similarly, if all slots are empty, consumer threads must wait until occupied slots 
are available.

The next synchronization problem might seem a bit mundane, but it’s particularly important 
in many operating systems. It doesn’t have a common name; here we call it the event problem. 
A number of threads are waiting for a particular event to happen. Once the event has happened, 
we’d like to release all of the waiting threads. For example, a number of threads might be waiting 
for a read operation on a disk to complete. Once it’s completed, all threads are woken up and can 
use the data that was just read in.

Semaphores These problems, and many others, were fi rst identifi ed in the 1960s. The per-
son who did much of the early work in identifying and elegantly solving these problems was 
Edsger Dijkstra. The semaphore, a synchronization operation (Dijkstra undated: early 1960s) he 
described and used in an early system (Dijkstra 1968), has proven so useful that it continues to 
be used in most modern operating systems.

A semaphore is a nonnegative integer on which there are exactly two operations, called by 
Dijkstra P and V. (What P and V stand for isn’t obvious. While Dijkstra was Dutch and based 
his terminology on Dutch words, the mnemonic signifi cance of P and V seems to be lost even 

ProducerConsumer

FIGURE 2 .6  Producer-consumer problem.
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Semaphore	  sol’n	  to	  the	  producer-‐consumer	  problem	  	  
•  Example	  sheet	  
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We can easily generalize our above example to allow up to N threads to execute a block of 
code (or access a data structure) simultaneously:

semaphore S = N;

void NAtATime( ) {

P(S);

…

/* No more than N threads here at once */

…

V(S);

}

Semaphores used this way are known as counting semaphores.
A more interesting example of counting semaphores involves using them to solve the 

producer-consumer problem (see Figure 2.6 above). To keep things simple, let’s assume we 
have one producer and one consumer. We have a buffer with B slots. We use two semaphores: 
empty, representing the number of empty slots, and occupied, representing the number of occupied 
slots. Our solution is:

Semaphore empty = B;

Semaphore occupied  = 0;

int nextin = 0;

int nextout = 0;

void Produce(char item) {

P(empty);

buf[nextin] = item;

nextin = nextin + 1;

if (nextin == B)

nextin = 0;

V(occupied);

}

char Consume( ) {

char item;

P(occupied);

item = buf[nextout];

nextout = nextout + 1;

if (nextout == B)

nextout = 0;

V(empty);

return(item);

}

The fi rst P operation of Produce causes the thread to wait until there is at least one empty 
slot in the buffer; at this point the slot is “taken” and empty’s value is reduced by one. The producer 
puts its item in the buffer, then indicates there is one more occupied slot by performing a V operation 
on occupied. Similar actions take place inside of Consume.

POSIX provides an implementation of semaphores, but, strangely, it’s not part of POSIX 
threads (POSIX 1003.1c) but part of the POSIX real-time specifi cation (POSIX 1003.1b). This 
matters only because, depending on the system, you may need to include an additional library 
when you use semaphores.

The POSIX interface for semaphores is given below.

sem_t semaphore;

int err;
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Devia)ons	  
•  Signals	  

–  Force	  a	  user	  thread	  to	  put	  aside	  current	  ac)vity	  	  
–  Call	  a	  pre-‐arranged	  handler	  
–  Go	  back	  to	  what	  it	  was	  doing	  
–  Similar	  to	  interrupt	  handling	  inside	  the	  OS	  

•  Examples	  
–  Typing	  special	  characters	  on	  the	  keyboard	  (^c)	  
–  Signals	  sent	  by	  other	  threads	  (kill)	  
–  Program	  excep)ons	  (divide	  by	  zero,	  addressing	  excep)ons)	  

•  Background	  
–  Graceful	  termina)on	  via	  ^c	  and	  SIGINT	  



Signals	  and	  Handled	  by	  Handlers	  
•  Se�ng	  up	  a	  handler	  to	  be	  invoked	  upon	  receipt	  of	  a	  ^c	  signal	  

•  Signals	  can	  be	  used	  to	  communicate	  with	  a	  process	  
	  

80 CHAPTER 2 Multithreaded Programming

A process might set up a handler to be invoked when such a signal is delivered, as shown 
below:

int main( ) {

void handler(int);

sigset(SIGINT, handler);

/* long-running buggy code */

…

}

void handler(int sig) {

/* perform some cleanup actions */

…

exit(1);

}

The call to sigset in main causes handler to be registered as the signal handler for the 
SIGINT signal. Thus if you run this program and decide to terminate it early by typing Ctrl-C, a 
SIGINT signal is delivered to the process, causing it to put aside its current state and call handler; 
handler performs some cleanup actions (perhaps writing some key data to a fi le) and then terminates 
the process.

Signals can also be used as a means for communicating with a process, perhaps requesting 
it to do something:

computation_state_t state;

int main( ) {

void handler(int);

sigset(SIGINT, handler);

long_running_procedure( );

}

long_running_procedure( ) {

while (a_long_time) {

update_state(&state);

compute_more( );

}

}

void handler(int sig) {

display(&state);

}

In this code the main procedure establishes a handler for SIGINT, and then calls 
long_running_procedure, which might execute for several days. Occasionally the user of the 
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•  Signals	  are	  processed	  by	  a	  single	  thread	  of	  
execu)on	  

•  Communica)on	  at	  right	  not	  problem-‐free	  
because	  of	  asynchronous	  access	  to	  state	  

•  Mutex	  use	  will	  result	  in	  deadlock	  
•  Making	  rou)nes	  async-‐signal	  safe	  requires	  

making	  them	  so	  that	  the	  controlling	  thread	  
cannot	  be	  interrupted	  by	  a	  signal	  at	  certain	  
)mes	  (i.e.	  in	  update_state)	  
–  Signal	  handling	  turned	  on	  and	  off	  by	  

•  sigemptyset()	  
•  sigaddset()	  
•  Sigprocmask()	  

•  POSIX	  compliant	  OS’s	  implement	  60+	  async-‐
signal	  safe	  rou)nes	  

Async-‐signal	  safe	  rou)nes	  (OS	  implementa)on	  perspec)ve)	  

80 CHAPTER 2 Multithreaded Programming

A process might set up a handler to be invoked when such a signal is delivered, as shown 
below:

int main( ) {

void handler(int);

sigset(SIGINT, handler);

/* long-running buggy code */

…

}

void handler(int sig) {

/* perform some cleanup actions */

…

exit(1);

}

The call to sigset in main causes handler to be registered as the signal handler for the 
SIGINT signal. Thus if you run this program and decide to terminate it early by typing Ctrl-C, a 
SIGINT signal is delivered to the process, causing it to put aside its current state and call handler; 
handler performs some cleanup actions (perhaps writing some key data to a fi le) and then terminates 
the process.

Signals can also be used as a means for communicating with a process, perhaps requesting 
it to do something:

computation_state_t state;

int main( ) {

void handler(int);

sigset(SIGINT, handler);

long_running_procedure( );

}

long_running_procedure( ) {

while (a_long_time) {

update_state(&state);

compute_more( );

}

}

void handler(int sig) {
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}

In this code the main procedure establishes a handler for SIGINT, and then calls 
long_running_procedure, which might execute for several days. Occasionally the user of the 
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Other	  Basic	  OS	  Concepts	  
•  Context	  switching	  

–  Stack	  frames	  
–  System	  calls	  
–  Interrupts	  

•  I/O	  
•  Dynamic	  Storage	  Alloca)on	  

–  Best-‐fit,	  first-‐fit	  
•  Linking	  and	  loading	  
•  Boo)ng	  



Context	  Switching	  and	  stack	  frames	  
•  “Context”	  is	  the	  se�ng	  in	  which	  execu)on	  is	  currently	  taking	  place	  

–  Processor	  mode	  
–  Address	  space	  
–  Register	  contents	  
–  Thread	  or	  interrupt	  state	  

•  Intel	  x86	  Stack	  Frames	  
–  Subrou)ne	  context	  

•  Instruc)on	  pointer	  (reg.	  eip)	  
–  Address	  to	  which	  control	  should	  

return	  when	  subrou)ne	  is	  
complete	  

•  Frame	  pointer	  (reg.	  ebp)	  
–  Link	  to	  stack	  frame	  of	  caller	  

3.1 Context Switching 95

The picture above is idealized: not all portions of the stack frame are always used. For exam-
ple, registers are not saved if the subroutine doesn’t modify them, the frame pointer is not saved 
if it’s not used, etc. For more details, see the Intel architecture manuals (http://www.intel.com/
design/processor/manuals/253665.pdf).

Here’s possible unoptimized assembler code for the above C code:1

main:

    ; enter main, creating a new stack frame

    pushl %ebp ; Push frame pointer onto the stack;

 ; this means that the contents of the 

 ; stack-pointer register (esp) are

 ; reduced by 4 so that esp points to

 ; next lower word in the stack, then

 ; the contents of the frame-pointer

 ; register (ebp) are stored there.

    movl      %esp, %ebp ; Set frame pointer to point to new 

 ; frame: the address of the current end

 ; of the stack (in register esp) is

 ; copied to the frame-pointer register.

    pushl %esi ; Save esi register: its contents are 

 ; pushed onto the stack.

    pushl %edi ; Save edi register: its contents are 

 ; pushed onto the stack.

    subl $8, %esp ; Create space for local variables (i 

1 We use the syntax of the Gnu assembler. It’s similar to that of the Microsoft assembler (masm) except in the order of arguments: 
in the Gnu assembler, the fi rst argument is the source and the second is the destination; in the Microsoft assembler, the order is 
reversed.

FIGURE 3 .1  Intel x86 stack frames.
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System	  calls	  
•  Transfer	  control	  from	  user	  to	  system	  code	  and	  back	  

–  Typically	  does	  not	  involve	  thread	  switch	  	  
–  Typically	  uses	  a	  kernel	  stack	  frame	   3.1 Context Switching 103

The fi rst technique, allocating a stack, is ruled out for a number of reasons, not least that it 
is too time-consuming, though a variant is used in Solaris, as discussed below. Both the latter two 
approaches are used. A single system-wide interrupt stack was used on DEC’s VAX computers;2 
in most other architectures the interrupt handler borrows a stack (the kernel stack) from the thread 
that was interrupted (see Figure 3.6). If another interrupt handler was interrupted, its context is 
saved on the current stack, and that stack continues to be used for the new interrupt handler.

On those systems on which multiple interrupt handlers use the same stack, perhaps one 
borrowed from a thread, interrupt handlers must execute differently from normal thread execu-
tion. Because there is just one shared stack, there is just one interrupt context. We cannot suspend 
the execution of one handler and resume the execution of another: the handler of the most recent 
interrupt must run to completion. Then, when it has no further need of the stack, the handler of 
the next-most-recent interrupt completes its execution, and so forth.

That the execution of an interrupt handler cannot be suspended is signifi cant because it 
means that interrupt handling cannot yield to anything other than higher-priority interrupts. For 
example, on a uniprocessor system, if interrupt handler 2 interrupts interrupt handler 1 and then 
wakes up a high-priority thread that must immediately respond to an event, the thread cannot run 
until all interrupt handling completes, including that of interrupt handler 1.

If we could somehow give each interrupt handler its own stack, we wouldn’t have this 
problem. Solaris, as well as some real-time systems, has preallocated stacks for each possible 
interrupt level. Thus each has its own independent context and can yield to other processing, just 
as threads can. We discuss this in greater detail in Chapter 5. Most other general-purpose systems 
do not support this style of architecture. 

Another approach to getting interrupt handlers to yield to other execution is that the handler 
places a description of the work that must be done on a queue of some sort, then arranges for it 
to be done in some other context at a later time. This approach, which is used in many systems 
including Windows and Linux, is also discussed in Chapter 5.

2 Multiprocessor versions of the VAX had one interrupt stack per processor.

FIGURE 3 .5  System-call fl ow.

prog( ) {

. . .

write(fd, buffer, size);  trap(write_code);

. . .

}

write( ) {

. . .

. . .

}

prog frame

write

User stack

User
Kernel

trap_handler(code) {

. . .

if(code == write_code)

write_handler( );

. . .

}

trap_handler
frame

write_handler
frame

Kernel stack

FIGURE 3 .6  Interrupt 
handlers and stacks.

User
stack

frames

Current thread’s
user stack

Kernel
stack

frames

Interrupt
handler

1’s frame

Interrupt
handler

2’s frame

Current thread’s
kernel stack

CH003.indd   103CH003.indd   103 8/2/10   8:31:21 PM8/2/10   8:31:21 PM



•  On	  interrupt	  
–  Processor	  	  

•  Puts	  aside	  current	  context	  
•  Switches	  to	  interrupt	  context	  

•  Interrupts	  require	  stacks	  
–  OS’s	  differ	  
–  Common	  choice	  :	  kernel	  stack	  

Interrupts	  

3.1 Context Switching 103

The fi rst technique, allocating a stack, is ruled out for a number of reasons, not least that it 
is too time-consuming, though a variant is used in Solaris, as discussed below. Both the latter two 
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•  Memory-‐mapped	  
–  Each	  device	  has	  a	  controller	  
–  Each	  controller	  has	  registers	  
–  Registers	  appear	  to	  processor	  as	  

physical	  memory	  
–  Actually	  aeached	  via	  a	  bus	  

•  Categories	  of	  I/O	  devices	  
–  Programmed	  I/O	  (PIO)	  

•  One	  word	  per	  read/write	  
•  e.g.	  terminal	  

–  Direct	  memory	  access	  (DMA)	  
•  Controller	  directly	  manipulates	  
physical	  memory	  in	  loca)on	  
specified	  by	  processor	  

•  e.g.	  disk	  

I/O	  Architecture	  Types	  (Simplified)	  

104 CHAPTER 3 Basic Concepts

An important property of interrupts is that they can be masked, i.e., temporarily blocked. If an 
interrupt occurs while it is masked, the interrupt indication remains pending; once it is unmasked, the 
processor is interrupted. How interrupts are masked is architecture-dependent, but two approaches 
are common. One approach is that a hardware register implements a bit vector — each bit represents 
a class of interrupts. If a particular bit is set, then the corresponding class of interrupts is masked. 
Thus the kernel masks interrupts by setting bits in the register. When an interrupt does occur, the 
corresponding mask bit is set in the register and cleared when the handler returns — further occur-
rences of that class of interrupts are masked while the handler is running.

What’s more common are hierarchical interrupt levels. Each particular device issues inter-
rupts at a particular level. The processor masks interrupts by setting an interrupt priority level 
(IPL) in a hardware register: all devices whose interrupt level is less than or equal to this value 
have their interrupts masked. Thus the kernel masks a class of interrupts by setting the IPL to a 
particular value. When an interrupt does occur and the handler is invoked, the current IPL is set 
to that of the device, and restored to its previous value when the handler returns.

In this section we give a high-level, rather simplistic overview of common I/O architectures. Our 
intent is to provide just enough detail to discuss the responsibilities of the operating system in 
regard to I/O, but without covering the myriad arcane details of device management. To do this, 
we introduce a simple I/O architecture we have used in the past at Brown University for operating 
system projects.

A very simple architecture is the memory-mapped architecture: each device is controlled 
by a controller and each controller contains a set of registers for monitoring and controlling its 
operation (see Figure 3.7). These registers appear to the processor to occupy physical memory 
locations. In reality, however, each controller is connected to a bus. When the processor wants to 
access or modify a particular location, it broadcasts the address on the bus. Each controller listens 
for a fi xed set of addresses and, when one of its addresses has been broadcast, attends to what the 
processor wants to have done, e.g., read the data at a particular location or modify the data at a 
particular location. The memory controller, a special case, passes the bus requests to the actual 
primary memory. The other controllers respond to far fewer addresses, and the effect of reading 
and writing is to access and modify the various controller registers.

There are two categories of devices, programmed I/O (PIO) devices and direct memory 
access (DMA) devices. PIO devices do I/O by reading or writing data in the controller registers 
one byte or word at a time. In DMA devices the controller itself performs the I/O: the processor 
puts a description of the desired I/O operation into the controller’s registers, then the controller 
takes over and transfers data between a device and primary memory.

3.2
INPUT/OUTPUT 
ARCHITECTURES

3.2
INPUT/OUTPUT 
ARCHITECTURES

Bus

Memory Disk

Processor

ControllerControllerController

FIGURE 3 .7  Simple I/O architecture.
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PIO	  and	  DMA	  Example	  	  

3.2 Input/Output Architectures 105

Our architecture supports both PIO and DMA devices. The default confi guration has 
one PIO device (a terminal) and one DMA device (a disk). Each PIO device has four registers: 
Control, Status, Read, and Write, each one byte in length (see Figure 3.8). Each DMA device 
also has four registers: Control, Status, Memory Address, and Device Address (Figure 3.9). The 
control and status registers are each one byte long; the others are four bytes long (they hold 
addresses). Certain bits of the control registers are used to start certain functions, as shown in 
Figure 3.8 and Figure 3.9. Bits of the status registers are used to indicate whether the associated 
controller is ready or busy.

Control registerGoR GoW IER IEW

Status registerRdyR RdyW

Read register

Write register

Ready to write RdyW

Ready to readRdyR

Enable write-completion interruptsIEW

Enable read-completion interruptsIER

Go write (start a write operation)GoW

Go read (start a read operation)GoRLegend:

FIGURE 3 .8  PIO registers.

Op Code Control registerGo IE

Status registerRdy

Memory address register

Device address register 

Operation code (identifies the operation)Op Code

Controller is readyRdy

Enable interruptsIE

Start an operationGoLegend:

FIGURE 3 .9  DMA registers.
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addresses). Certain bits of the control registers are used to start certain functions, as shown in 
Figure 3.8 and Figure 3.9. Bits of the status registers are used to indicate whether the associated 
controller is ready or busy.

Control registerGoR GoW IER IEW

Status registerRdyR RdyW

Read register

Write register

Ready to write RdyW

Ready to readRdyR

Enable write-completion interruptsIEW

Enable read-completion interruptsIER

Go write (start a write operation)GoW

Go read (start a read operation)GoRLegend:

FIGURE 3 .8  PIO registers.

Op Code Control registerGo IE

Status registerRdy

Memory address register

Device address register 

Operation code (identifies the operation)Op Code

Controller is readyRdy

Enable interruptsIE

Start an operationGoLegend:

FIGURE 3 .9  DMA registers.
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•  Storage	  alloca)on	  is	  very	  
important	  in	  OS’s	  
–  Disk	  
–  Memory	  

•  Example	  
–  1000,	  1100,	  250	  bytes	  in	  order	  

•  Compe)ng	  approaches	  
–  First-‐fit	  
–  Best-‐fit	  

•  Knuth	  simula)ons	  revealed	  
(non-‐intui)vely)	  first-‐fit	  was	  
best	  

•  Intui)on	  :	  best-‐fit	  leaves	  too	  
many	  small	  gaps	  

(Dynamic)	  Storage	  Alloca)on	  
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In this version, the start_read and start_write methods return a handle identifying the 
operation that has started. A thread can, at some later point, call wait with the handle and wait 
until that operation has completed. Note that multiple threads might call wait with the same 
handle if all must wait for the same operation (for example, if all need the same block from 
a fi le).

A more sophisticated approach to I/O used in what are commonly called “mainframe” 
computers is to employ specialized I/O processors to handle much of the I/O work. This is par-
ticularly important in large data-processing applications where I/O costs dominate computation 
costs. These I/O processors are traditionally called channels and execute programs in primary 
storage called channel programs (see Figure 3.10).

Storage allocation is a very important concern in operating systems. Whenever a thread is cre-
ated, its stacks, control block, and other data structures must be allocated; whenever a thread 
terminates, these data structures must be freed. Since there are numerous other such dynamic 
data structures, both inside the operating system and within user applications, this allocation and 
liberation of storage must be done as quickly as possible.

The classic reference for most of this material is Donald Knuth’s The Art of Computer 
Programming, Vol. 1: Fundamental Algorithms. In this section we summarize Knuth’s results 
and discuss some additional operating-system concerns.

3.1.1 BEST-FIT AND FIRST-FIT ALGORITHMS

We start with the general problem of maintaining a pool of available memory and allocating vari-
able-size quantities from it. Following Knuth (this is his example), consider the memory pool in 
Figure 3.11 that has two blocks of free memory, one 1300 bytes long and the other 1200 bytes 
long. We’ll try two different algorithms to process series of allocation requests. The fi rst is called 
fi rst fi t — an allocation request is taken from the fi rst area of memory that is large enough to 
satisfy the request. The second is called best fi t — the request is taken from the smallest area of 
memory that is large enough to satisfy the request.

3.3
DYNAMIC 
STORAGE 
ALLOCATION

3.3
DYNAMIC 
STORAGE 
ALLOCATION

Memory

Processor

Channel Controller

Channel Controller

Channel Controller

FIGURE 3 .10 I/O with channels.

1300

1200

FIGURE 3 .11 Pool of 
free storage.
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On the principle that whatever requires the most work must be best, one might think that 
best fi t is the algorithm of choice. However, Figure 3.12 illustrates a case in which fi rst fi t 
behaves better than best fi t. We fi rst allocate 1000 bytes. Under the fi rst-fi t approach (on the left), 
this allocation is taken from the topmost region of free memory, leaving behind a region of 300 bytes 
of still unallocated memory. With the best-fi t approach (right), this allocation is taken from the 
bottommost region of free memory, leaving behind a region of 200 bytes of still unallocated 
memory. The next allocation is for 1100 bytes. Under fi rst fi t, we now have two regions of 300 bytes 
and 100 bytes. Under best fi t, we have two regions of 200 bytes. Finally, there is an allocation of 
250 bytes. First fi t leaves behind two regions of 50 bytes and 100 bytes, but best fi t cannot handle 
the allocation — neither remaining region is large enough.

Clearly one can come up with examples in which best fi t performs better. However, Knuth’s 
simulation studies have shown that, on the average, fi rst fi t works best. Intuitively, the reason for 
this is that best fi t tends to leave behind a large number of regions of memory that are too small 
to be useful, as in Figure 3.12.

The liberation of storage is more diffi cult than its allocation, for the reason shown in Figure 
3.13 (another example from Knuth). Here the shaded regions are unallocated memory. The region of 
storage A separating the two unallocated regions is about to be liberated. We’d like this to produce 
one large region of unallocated storage rather than three smaller adjacent regions. Thus the liberation 
algorithm must be able to determine if adjacent storage regions are allocated or free. An algorithm 
could simply walk through the list of free storage to determine if the adjacent areas are free, but a 
much cheaper approach is to tag the boundaries of storage regions to indicate whether they are 
allocated or free. Knuth calls this the boundary-tag method and provides an algorithm for it.

The shortcomings of best fi t illustrate a common issue in storage management: fragmenta-
tion. What we saw here is called external fragmentation, in which we end up with lots of small 
areas of storage that collectively are sizeable, but individually are too small to be of use. In 
the following sections we encounter internal fragmentation, in which storage is wasted because 
more must be allocated than is needed.

3.3.2 BUDDY SYSTEM

The buddy system is a simple dynamic storage allocation scheme that works surprisingly well. Storage 
is maintained in blocks whose sizes are powers of two. Requests are rounded up to the smallest such 
power greater than the request size. If a block of that size is free, it’s taken; otherwise, the smallest free 
block larger than the desired size is found and split in half — the two halves are called buddies. If the 
size of either buddy is what’s needed, one of them is allocated (the other remains free). Otherwise one 
of the buddies is split in half. This splitting continues until the appropriate size is reached.

300

1200

1300

200

100

300

100

50

200

200

1000 bytes

1100 bytes

250 bytes

First fit Best fit 

Stuck!

FIGURE 3 .12 Allocations using fi rst fi t and best fi t.

A free(A)

FIGURE 3 .13 Liberating storage.
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•  Knuth	  :	  “boundary-‐tag”	  
method	  and	  algorithm	  
–  Combines	  free	  segments	  greedily	  

upon	  release	  
–  Requires	  datastructure	  that	  

represents	  free	  or	  not-‐free	  

•  Helps	  avoid	  “fragmenta)on”	  
–  External	  

•  Free	  spaces	  too	  small	  
–  Internal	  

•  Allocated	  memory	  unnecessarily	  
too	  large	  (this	  situa)on	  arises	  in	  
different,	  not-‐covered	  alloca)on	  
approaches	  like	  the	  “slab”	  
approach)	  

Freeing	  Storage	  Is	  More	  Complex	  

hep://books.google.co.uk/books?
id=gJrdSueQjBEC&pg=PA328&lpg=PA328&dq=boundary+tag
+algorithm&source=bl&ots=VPIoDQOTqj&sig=NCPz__mnViO5ajj5Q-‐
P3KccBIhk&hl=en&sa=X&ei=j-‐
x4UdDlBcusPIzVgLgJ&ved=0CEsQ6AEwAw#v=onepage&q=boundary
%20tag%20algorithm&f=false	  



Linking	  and	  loading	  
•  ld	  links	  and	  relocates	  code	  by	  resolving	  addresses	  of	  variables	  and	  

procedures	  
•  Shared	  libraries	  require	  mechanisms	  that	  delay	  linking	  un)l	  run-‐

)me	  
•  Loading	  requires	  se�ng	  up	  address	  space	  then	  calling	  main	  



Boo)ng	  
	  

•  Thought	  to	  be	  derived	  from	  “to	  pull	  yourself	  up	  by	  your	  bootstraps”	  
•  Modern	  computers	  boot	  from	  BIOS	  read	  only	  memory	  (ROM)	  	  

–  Last	  64K	  of	  the	  first	  MB	  of	  address	  space	  

•  When	  the	  computer	  is	  powered	  on	  it	  starts	  execu)ng	  instruc)ons	  
at	  0xffff0	  

•  Looks	  for	  a	  boot	  device	  
–  Loads	  a	  master	  boot	  record	  (MBR)	  

•  Cylinder	  0,	  head	  0,	  sector	  1	  (hard	  disc)	  

•  Loads	  boot	  program	  
•  Transfers	  control	  to	  boot	  program	  
•  Boot	  progam	  (lilo,	  grub,	  etc.)	  loads	  OS	  
•  Transfers	  control	  
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The provider of the computer system supplies a BIOS chip residing on the “motherboard” con-
taining everything necessary to perform the three functions. Additional BIOS functions might 
reside on chips on add-on boards, providing access to additional devices.

The BIOS ROM is mapped into the last 64K of the fi rst megabyte of address space 
(starting at location 0xf0000). When the system is powered on, the processor starts executing 
instructions at location 0xffff0 — the last sixteen bytes of this mapped region. At this location is 
a branch instruction that transfers control to the beginning of the BIOS code. The fi rst thing the 
code does is the power-on self test, during which it initializes hardware, checks for problems, 
and computes the amount of primary storage.

The next step is to fi nd a boot device. This is probably a hard disk, but could be a fl oppy or 
diskette. The list of possibilities and the order to search are in the settings stored in non-volatile 
RAM.

Once the boot device is found, the master boot record (MBR) is loaded from the fi rst sector 
of a fl oppy or diskette, or from cylinder 0, head 0, sector 1 of a hard disk (see Chapter 6 for an 
explanation of these terms). The MBR (Figure 3.20) is 512 bytes long and contains:

a “magic number” identifying itself

a partition table listing up to four regions of the disk (identifying one as the active or boot 
partition)

executable boot program

The BIOS code transfers control to the boot program. What happens next depends, of 
course, on the boot program. In the original version (for MS-DOS), this program would fi nd 
the one active partition, load the fi rst sector from it (containing the volume boot program), and 
pass control to that program. This program would then load the operating system from that 
partition.

More recent boot programs allow more fl exibility. For example, both lilo (Linux Loader) 
and grub (Grand Unifi ed Boot Manager), allow one to choose from multiple systems to boot, 
so that, for example, one can choose between booting Linux or Windows. Lilo has the sector 
number of the kernel images included within its code and thus must be modifi ed if a kernel 
image moves. Grub understands a number of fi le systems and can fi nd the image given a 
path name.

•

•

•

Boot program

Partition table

Magic number

446 bytes

64 bytes

2 bytes

Partition 1

Partition 2

Partition 3

Partition 4
Master boot record 

FIGURE 3 .20 The mas-
ter boot record, residing 
in the fi rst sector of a 
bootable disk.
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Review	  
•  OS	  essen)als	  

–  Threads	  
–  Context	  switching	  for	  management	  of	  processors	  
–  I/O	  for	  file	  systems	  
–  Dynamic	  storage	  alloca)on	  


