
Introduc)on	

B16	 Opera)ng	 Systems	

Learning	 Outcomes	 (Examinable	 Material	 *)	
•  Familiarity	 with	 opera)ng	 system	 concepts	 	

–  File	
–  Process	
–  Thread	
–  Synchronisa)on	
–  Memory	
–  Paging	
–  Socket	
–  Port	
	

•  Datastructures	 /	 implementa)ons	
–  Page	 table	
–  Semaphore	
–  Mutex	
–  Socket	

Perspec)ve	
•  User	 perspec)ve	 *	

–  Linux	 (posix	 compliant	 OS)	
–  System	 calls	 (fork,	 wait,	 open,	 prinM)	
–  Command	 line	 u)li)es	 (man	 <sec)on>)	
–  C	 programs	

•  Opera)ng	 system	 implementa)on	 perspec)ve	
–  “Simple-‐OS”	
	

Lecture	 1	 :	 History	 and	 User	 Perspec)ve	

Material	 from	 	
Opera)ng	 Systems	 in	 Depth	 	

(spec.	 Chapter	 1)	 	
by	

Thomas	 Doeppner	
	

GET	 THIS	 BOOK	 AND	 READ	 IT!	

B16	 Opera)ng	 Systems	

What	 is	 an	 opera)ng	 system?	
•  Opera)ng	 systems	 provide	 so_ware	 abstracts	 of	

–  Processors	
–  RAM	 (physical	 memory)	
–  Disks	 (secondary	 storage)	
–  Network	 interfaces	 	
–  Display	
–  Keyboards	
–  Mice	

•  Opera)ng	 systems	 allow	 for	 sharing	
•  Opera)ng	 systems	 typically	 provide	 abstrac)ons	 for	

–  Processes	
–  Files	
–  Sockets	

Why	 should	 we	 study	 opera)ng	 systems?	
•  “To	 a	 certain	 extent	 [building	 an	 opera)ng	 system	 is]	 a	 solved	

problem”	 –	 Doeppner	
•  “So	 too	 is	 bridge	 building”	 –	 Wood	

–  History	 and	 its	 lessons	
•  Capacity	 and	 correct	 usage	

–  Improvement	 possible	
•  New	 algorithms,	 new	 storage	 media,	 new	 peripherals	
•  New	 concerns	 :	 security	
•  New	 paradigms	 :	 the	 “cloud”	

Review	 :	 Computer	 ≈	 Von	 Neumann	 Architecture	 	

Image	 from	 hep://cse.iitkgp.ac.in/pds/notes/intro.html	

Review	 :	 Machine	 Instruc)ons	 and	 Assembly	 Code	
•  Machine	 code	 :	 instruc)ons	 directly	 executed	 by	 the	 CPU	

–  From	 Wikipedia	 :	 	
•  “the	 instruc)on	 below	 tells	 an	 x86/IA-‐32	 processor	 to	 move	 an	 immediate	 8-‐bit	
value	 into	 a	 register.	 	 The	 binary	 code	 for	 this	 instruc)on	 is	 10110	 followed	 by	 a	
3-‐bit	 iden)fier	 for	 which	 register	 to	 use.	 	 The	 iden)fier	 for	 the	 AL	 register	 is	 000,	
so	 the	 following	 machine	 code	 loads	 the	 AL	 register	 with	 the	 data	 01100001.”	

•  Assembly	 language	 :	 one-‐to-‐one	 mapping	 to	 machine	 code	 (nearly)	
–  Mnemonics	 map	 directly	 to	 instruc)ons	 (MOV	 AL	 =	 10110	 000)	
–  From	 Wikipedia	 :	 	

•  “Move	 a	 copy	 of	 the	 following	 value	 into	 AL,	 and	 61	 is	 a	 hexadecimal	
representa)on	 of	 the	 value	 01100001”	

10110000	 01100001	

MOV	 AL,	 61h	 	 	 	 	 	 	 ;	 Load	 AL	 with	 97	 decimal	 (61	 hex)	

Compila)on	 and	 Linking	
•  A	 compiler	 is	 a	 computer	 program	 that	 transforms	 source	 code	

wrieen	 in	 a	 programming	 language	 into	 another	 computer	
language	
–  Examples	 :	 GNU	 compiler	 collec)on	

•  A	 linker	 takes	 one	 or	 more	 object	 files	 generated	 by	 a	 compiler	 and	
combines	 them	 into	 a	 single	 executable	 program	
–  Gathers	 libraries,	 resolving	 symbols	 as	 it	 goes	
–  Arranges	 objects	 in	 a	 program’s	 address	 space	

•  Touches	 OS	 through	 libraries,	 virtual	 memory,	 program	 address	
space	 defini)ons,	 etc.	
–  Modern	 OS’	 provide	 dynamic	 linking;	 run)me	 resolu)on	 of	 unresolved	

symbols	

	

History	 :	 1950’s	
•  Earliest	 computers	 had	 no	 opera)ng	 systems	
•  1954	 :	 OS	 for	 MIT’s	 “Whirlwind”	 computer	 	

–  Manage	 reading	 of	 paper	 tapes	 avoiding	 human	 interven)on	

•  1956	 :	 OS	 General	 Motors	
–  Automated	 tape	 loading	 for	 an	 IBM	 701	 for	 sharing	 computer	 in	 15	 minute	

)me	 alloca)ons	

•  1959	 :	 “Time	 Sharing	 in	 Large	 Fast	 Computers”	
–  Described	 mul)-‐programming	

•  1959	 :	 McCarthy	 MIT-‐internal	 memo	 described	 “)me-‐share”	 usage	
of	 IBM	 7090	
–  Modern	 :	 interac)ve	 compu)ng	 by	 mul)ple	 concurrent	 users	

Early	 OS	 Designs	
•  Batch	 systems	

–  Facilitated	 running	 mul)ple	 jobs	 sequen)ally	

•  I/O	 boelenecks	
–  Computa)on	 stopped	 to	 for	 I/O	 opera)ons	

•  Interrupts	 invented	
–  Allows	 no)fica)on	 of	 an	 asynchronous	 opera)on	 comple)on	
–  First	 machine	 with	 interrupts	 :	 DYSEAC	 1954,	 standard	 soon	 therea_er	

•  Mul)-‐programming	 followed	
–  With	 interrupts,	 computa)on	 can	 take	 place	 concurrently	 with	 I/O	
–  When	 one	 program	 does	 I/O	 another	 can	 be	 compu)ng	
–  Second	 genera)on	 OS’s	 were	 batch	 systems	 that	 supported	 mul)-‐

programming	

History	 :	 1960’s,	 the	 golden	 age	 of	 OS	 R&D	
•  Terminology	 	

–  “Core”	 memory	 refers	 to	 magne)c	 cores	 each	 holding	 one	 bit	 (primary)	
–  Disks	 and	 drums	 (secondary)	

•  1962	 :	 Atlas	 computer	 (Manchester)	 	
–  “virtual	 memory”	 :	 programs	 were	 wrieen	 as	 if	 machine	 had	 lots	 of	 primary	

storage	 and	 the	 OS	 shuffled	 data	 to	 and	 from	 secondary	 	
•  1962	 :	 Compa)ble)me-‐sharing	 system	 (CTSS,	 MIT)	

–  Helped	 prove	 sensibility	 of)me-‐sharing	 (3	 concurrent	 users)	
•  1964	 :	 Mul)cs	 (GE,	 MIT,	 Bell	 labs;	 1970	 Honeywell)	 	

–  Stated	 desiderata	
•  Convenient	 remote	 terminal	 access	 	
•  Con)nuous	 opera)on	
•  Reliable	 storage	 (file	 system)	
•  Selec)ve	 sharing	 of	 informa)on	 (access	 control	 /	 security)	
•  Support	 for	 heterogeneous	 programming	 and	 user	 environments	

–  Key	 conceptual	 breakthrough	 :	 unifica)on	 of	 file	 and	 virtual	 memory	 via	
everything	 is	 a	 file	

History	 :	 1960’s	 and	 1970’s	
•  IBM	 Mainframes	 OS/360	
•  DEC	 PDP-‐8/11	

–  Small,	 purchasable	 for	 research	

•  1969	 :	 UNIX	
–  Ken	 Thompson	 and	 Dennis	 Ritchie;	 Mul)cs	 effort	 drop-‐outs	
–  Wrieen	 in	 C	
–  1975	 :	 6th	 edi)on	 released	 to	 universi)es	 very	 inexpensively	
–  1988	 System	 V	 Release	 4	 	

•  1996	 :	 BSD	 (Berkeley	 so_ware	 distribu)on)	 v4.4	
–  Born	 from	 UNIX	 via	 DEC	 VAX-‐11/780	 and	 virtual	 memory	

1980’s	 :	 Rise	 of	 the	 Personal	 Computer	 (PC)	
•  1970’s	 :	 CP/M	

–  One	 applica)on	 at	 a)me	 –	 no	 protec)on	 from	 applica)on	
–  Three	 components	

•  Console	 command	 process	 (CCP)	
•  Basic	 disk	 opera)ng	 system	 (BDOS)	
•  Basic	 input/output	 system	 (BIOS)	

•  Apple	 DOS	 (a_er	 CP/M)	
–  1978	 Apple	 DOS	 3.1	 ≈	 CP/M	

•  Microso_	 	
–  1975	 :	 Basic	 interpreter	
–  1979	 :	 Licensed	 7-‐th	 edi)on	 Unix	 from	 AT&T,	 named	 it	 Xenix	
–  1980	 :	 Microso_	 sells	 OS	 to	 IBM	 and	 buys	 QDOS	 (no	 Unix	 royal)es)	 to	 fulfill	

•  QDOS	 =	 “Quick	 and	 dirty	 OS”	
•  Called	 PC-‐DOS	 for	 IBM,	 MS-‐DOS	 licensed	 by	 Microso_	

1980’s	 ‘)l	 now.	
•  Early	 80’s	 state	 of	 affairs	

–  Minicomputer	 OS’s	
•  Virtual	 memory	
•  Mul)-‐tasking	
•  Access	 control	 for	 file-‐systems	

–  PC	 OS’s	
•  None	 of	 the	 above	 (roughly	 speaking)	

•  Worksta)ons	
–  Sun	 (SunOS,	 Bill	 Joy,	 Berkeley	 4.2	 BSD)	

•  1984	 :	 Network	 file	 system	 (NFS)	

•  1985	 :	 Microso_	 Windows	
–  1.0	 :	 applica)on	 in	 MS-‐DOS	

•  Allowed	 coopera)ve	 mul)-‐tasking,	 where	 applica)ons	 explicitly	 yield	 the	 processor	 to	 each	 other	

•  1995	 :	 Windows	 ’95	 to	 ME	
–  Preemp)ve	 mul)-‐tasking	 ()me-‐slicing),	 virtual	 memory	 (-‐ish),	 unprotected	 OS-‐space	

•  1993	 :	 First	 release	 of	 Windows	 NT,	 subsequent	 Windows	 OS’s	 based	 on	 NT	
•  1991	 :	 Linus	 Torvalds	 ported	 Minix	 to	 x86	

•  Based	 on	 Unix	 (6th	 edi)on)	
–  Monolithic	

•  The	 OS	 is	 a	 single	 file	 loaded	 into	
memory	 at	 boot)me	

–  Interfaces	
•  Traps	 originate	 from	 user	
programs	

•  Interrupts	 originate	 from	
external	 devices	 	

–  Modes	
•  User	
•  Privileged	 /	 System	

–  Kernel	
•  A	 subset	 of	 the	 OS	 that	 runs	 in	
privileged	 mode	

•  Or	 a	 subset	 of	 this	 subset	

Implementa)on	 Perspec)ve	 :	 “Simple	 OS”	

12 CHAPTER 1 Introduction

In 2003 SCO,10 which had acquired the rights to Unix, sued IBM, claiming that SCO’s code
was in Linux and thus SCO was owed royalties. (Suing someone with lots of money may be a
good idea. Suing someone who employs really good lawyers probably isn’t.) In August 2007 the
judge ruled that SCO was not the rightful owner of the Unix copyright, Novell is. Novell then
stated that there is no Unix source code in Linux.

Two other free versions of Unix also began development in the early 1990s (and continue
to be developed): FreeBSD and NetBSD. Both are derived from the BSD project at Berkeley and
are highly thought of, but neither has achieved the success of Linux.

Apple, in the meantime, was still selling a system whose operating system was derived from
the original MacOS. Finally, in 2000, they released MacOS X, a Unix system. Its implementation
was similar to that of OSF/1, combining both Mach and BSD Unix (in the form of NetBSD and
FreeBSD) in the kernel. Apple fi nally had an operating system that supports virtual memory and
multitasking and provides a protected fi le system, something it had almost achieved with Lisa OS
in the early 1980s. Apple’s version of Unix is now the prevalent Unix operating system.

In this section we examine the abstractions provided by a relatively simple operating system and
delve a bit into how they are implemented. Choosing an operating system, even one to discuss
in a course, is fraught with controversy. What we discuss here is an early version of Unix, as it
existed in the early 1970s. We choose this partly because of its simplicity and elegance, partly
because (as we saw above) it had a major infl uence on modern operating systems, such as mod-
ern versions of Unix (Solaris, Linux, MacOS X, etc.) as well as Windows, and primarily because
it is the earliest operating system whose later versions are still in common use. (Although the
descendants of IBM’s OS/360 are still in use, few students in operating systems courses have
direct access to them.) We call it simply Unix for now, though strictly speaking it is Sixth-Edition
Unix (see Section 1.2.3 for why it is called this).

1.3.1 OS STRUCTURE

Many early operating systems were amazingly small: Sixth-Edition Unix, for instance, had to
fi t into 64 KB of memory. Thus it made reasonable sense to structure it as a single executable in
which all parts are stored as a single fi le from which they are loaded into the computer’s memory
when it boots. This sort of structuring is known as the monolithic approach. As sketched in
Figure 1.1, application programs call upon the operating system via traps; external devices, such
as disks and clocks, call upon it via interrupts.

Almost all computers have at least two modes of execution, user mode (with the fewest
privileges) and privileged mode (with the most). To limit the damage that errant programs can do
to other programs and the system as a whole, the only code that runs in privileged mode is that
which is part of the operating system. In simple systems such as Sixth-Edition Unix, we gener-
ally think of the whole operating system as running in privileged mode. Everything else is an
application and runs in user mode. In other systems, such as modern Windows, major subsystems
providing operating-system functionality run in user mode. We discuss this in Chapter 4.

We often use the word kernel, as in “operating-system kernel.” This generally means that
portion of the operating system that runs in privileged mode, but sometimes it means a subset of
this — some relatively small, key portion of the privileged-mode operating-system code. We will
try to make it clear which defi nition we’re using.

10 SCO nominally stands for “Santa Cruz Operation,” but the original company of that name sold its Unix business to Caldera.
SCO then changed its name to Tarantella, the name of the product it was now focusing on. Caldera subsequently changed its
name to SCO.

1.3
A SIMPLE OS
1.3
A SIMPLE OS

OS

Traps

Interrupts

FIGURE 1 .1 Simple
OS structure.

Ch001.indd 12Ch001.indd 12 8/5/10 11:26:20 AM8/5/10 11:26:20 AM

Traps	 and	 System	 Calls	 (largely	 from	 user)	
•  System	 calls	 *	

–  Example	

	 	 	 	 	
requests	 the	 OS	 to	 send	 data	 to	 a	 file	

•  Unintended	 requests	 for	 kernel	 service	
–  Using	 a	 bad	 address	
–  Dividing	 by	 zero	
	
	

1.3.1.1 Traps
Traps are the general means for invoking the kernel from user code. We usually think of a trap as
an unintended request for kernel service, say that caused by a programming error such as using
a bad address or dividing by zero. However, for system calls, an important special kind of trap
discussed below, user code intentionally invokes the kernel.

Traps always elicit some sort of response. For page faults, the operating system determines
the status of the faulted page and takes appropriate action (such as fetching it from secondary
storage). For programming errors, what happens depends upon what the program has previ-
ously set up. If nothing, then the program is immediately terminated. A program may establish
a handler to be invoked in response to the error; the handler might clean up after the error and
then terminate the process, or perhaps perform some sort of corrective action and continue with
normal execution.

The response to faults caused by errors is dealt with in Unix via a mechanism called sig-
nals (which is also used in response to other actions; see Chapter 2). Signals allow the kernel to
invoke code that’s part of the user program, a mechanism known as an upcall.

1.3.1.2 System Calls
We’ve already discussed the multiple layers of abstraction used in all systems. For layers imple-
mented strictly in user code, the actual invocation of functionality within a layer is straightfor-
ward: a simple procedure call or the like. But invocation of operating-system functionality in
the kernel is more complex. Since the operating system has control over everything, we need
to be careful about how it is invoked. What Unix and most other operating systems do is to
provide a relatively small number of system calls through which user code accesses the kernel.
This way any necessary checking on whether the request should be permitted can be done at
just these points.

A typical example of a system call is the one used to send data to a fi le, the write system call:

if (write(FileDescriptor, BufferAddress, BufferLength) == -1) {

/* an error has occurred: do something appropriate */

printf("error: %d\n", errno) /* print error message */

}

Here we call write to request the operating system to write data to the fi le (we discuss later
the meaning of the parameters). If the call fails for some reason, write returns −1, and an integer
identifying the cause of the error is stored in the global variable errno. Otherwise it returns a non-
negative value: the number of bytes that were actually written to the fi le.

How write actually invokes the operating-system kernel depends on the underlying hard-
ware. What typically happens is that write itself is a normal procedure that contains a special
machine instruction causing a trap. This trap transfers control to the kernel, which then fi gures
out why it was invoked and proceeds to handle the invocation.

1.3.1.3 Interrupts
An interrupt is a request from an external device for a response from the processor. We discuss
the mechanism in more detail in Chapter 3. Unlike a trap, which is handled as part of the program
that caused it (though within the operating system in privileged mode), an interrupt is handled
independently of any user program.

For example, a trap caused by dividing by zero is considered an action of the currently
running program; any response directly affects that program. But the response to an interrupt

1.3 A Simple OS 13

Ch001.indd 13Ch001.indd 13 8/5/10 11:26:21 AM8/5/10 11:26:21 AM

Interrupts	 (largely	 from	 hardware)	
•  Request	 from	 an	 external	 device	 for	 a	 response	 from	 the	 processor	

–  Handled	 independently	 of	 any	 program	

•  Examples	
–  Keyboard	 input	
–  Data	 available	

Processes	 *	
•  Abstrac)on	 that	 includes	

–  Address	 space	 (virtual	 memory	 *)	
–  Processors	 (threads	 of	 control	 *)	

•  Usually	 disjoint	
–  Processes	 usually	 cannot	 directly	 access	 each	 other’s	 memory	

•  Parallel	 processing	 via	 pipes,	 shared	 memory,	 etc.	

•  Running	 a	 program	 from	 the	 shell	
–  Creates	 a	 “process”	
–  Program	 is	 loaded	 from	 a	 file	 into	 the	 process’s	 address	 space	
–  Process’s	 single	 thread	 of	 control	 then	 executes	 the	 program’s	 compiled	

executable	 code	

•  Text	
–  Program	 code	

•  Data	
–  Ini)alized	 global	 variables	

•  BSS	 (block	 started	 by	 symbol)	
–  Unini)alized	 global	 variables	

•  Dynamic	 (Heap)	
–  Dynamically	 allocated	 storage	

•  Stack	 (grows	 “downward”)	
–  Local	 variables	

•  Arrows	 indicate	 variable	
placement	

•  malloc()	 claims	 space	 in	 dynamic	

Memory	 =	 Address	 Space	 =	 e.g.	 2^32	 words,	 etc.	

stored in a fi le in the fi le system. When we run the program, a process is created and the program
is loaded from the fi le into the process’s address space. The process’s single thread of control then
executes the program’s code.

But how is the address space organized? The program consists of executable code and
data. The code, once loaded, is never modifi ed. Since much of the data, on the other hand, can be
modifi ed, it makes sense to segregate the two, putting the code in a special region of the address
space that’s protected from modifi cation. We could simply put all the data in another readable and
writable region, but we need to consider other issues too.

The variables nprimes and prime are both global, while i, j, and current are local. We know
that the scope of global variables is the entire program, while the scope of local variables is just
the block (delineated by curly braces in C) that contains them. In other words, the “lifetime” of
global variables is the same as the lifetime of the program, while the lifetime of a local variable
is only from when the thread enters its block to when it exits. So, we must set things up so that
the portion of the address space allocated for global variables remains allocated for the lifetime
of the program, but that portion allocated for a local variable remains allocated only while the
thread is in the variable’s scope.

Thus when the program is loaded into the address space, we’ll permanently allocate space
for the global variables, just beyond the space allocated for code. But there’s another useful
distinction to make: nprimes has an initial value of 100, but prime has no initial value, though
C semantics states that its initial value is thus zero. If we group all such uninitialized variables
together, we can represent them effi ciently in the copy of the program stored in the fi le system by
simply stating that we have n bytes of uninitialized data, which will actually be fi lled with zeros.
For many programs, this will save a lot of space. We of course have to instantiate these variables
when we load them into the address space, but there are ways to optimize this instantiation (we
discuss them in Chapter 7).

The local variables can be allocated effi ciently by use of a run-time stack: each time our
thread enters a new block, it pushes a frame on the stack containing space for local variables and
perhaps procedure-linkage information. Such frames are popped off the stack when the thread
exits the block. So what we’ll do is set up a region of the address space for the stack to reside. On
most architectures, stacks range from high memory addresses to low memory addresses and thus
stacks typically grown downwards.

Unix structures the address space as shown in Figure 1.2. The executable code, known as
text, occupies the lower-addressed regions. The initialized data, known simply as data, follows
the text. The uninitialized data is known, cryptically, as BSS (for “block started by symbol,” a
mnemonic from an ancient IBM 704 assembler) and comes next, followed by a dynamic region
that we explain shortly. Then comes a large hole in the address space and fi nally a region, starting
at the top and growing downwards, containing the stack.

Let’s now modify the program a bit so that the number of primes we want to compute is
passed as a parameter. Space is allocated for the primes dynamically, based on this parameter.

int nprimes;

int *prime;

int main(int argc, char *argv[]) {

int i;

int current = 2;

nprimes = atoi(argv[1]);

prime = (int *)malloc(nprimes*sizeof(int));

prime[0] = current;

for (i=1; i<nprimes; i++) {

int j;

Text

Data

BSS

Dynamic

Stack

FIGURE 1 .2 Unix
address space.

1.3 A Simple OS 15

Ch001.indd 15Ch001.indd 15 8/5/10 11:26:22 AM8/5/10 11:26:22 AM

14 CHAPTER 1 Introduction

from a disk controller may or may not have an indirect effect on the currently running program
and defi nitely has no direct effect (other than slowing it down a bit as the processor deals with
the interrupt).

1.3.2 PROCESSES, ADDRESS SPACES, AND THREADS

Probably the most important abstraction from the programmer’s point of view is the process. We
think of it both as an abstraction of memory — as an address space — and as the abstraction of
one or more processors — as threads (or threads of control). The term “address space” covers
both the set of all addresses that a program can generate and the storage associated with these
addresses. In modern operating systems, address spaces are usually disjoint (they are always dis-
joint in Sixth-Edition Unix): processes generally have no direct access to one another’s address
spaces. How this is made to work has to do with address-translation hardware and its operating-
system support, subjects we discuss in Chapter 7.

A single thread per process provides a straightforward programming model and was all
that most operating systems supported until the early 1990s. We cover multithreaded processes
in considerable detail in Chapter 2, but for now we use the simple model of single-threaded
processes.

Note that the meaning of the term “process” has evolved over the years. The term origi-
nally meant the same thing as the current meaning of “thread” — see (Dennis and Van Horn
1966), who use the term “computation” to refer to what we now mean by “process.” Though
some authors still use “process” in its original sense, few if any operating systems do.

What else is there to a process? To get an idea, consider the following simple C program
that implements the “Sieve of Eratosthenes” to compute the fi rst one hundred primes. In its
current form it’s not very useful since, after computing these primes, it immediately terminates
without doing anything with them. We’ll make it more useful later.

const int nprimes = 100;

int prime[nprimes];

int main() {

int i;

int current = 2;

prime[0] = current;

for (i=1; i<nprimes; i++) {

int j;

NewCandidate:

current++;

for (j=0; prime[j]*prime[j] <= current; j++) {

if (current % prime[j] == 0)

goto NewCandidate;

}

prime[i] = current;

}

return(0);

}

Our concern here is not prime numbers, but what the operating system must do to make
this program work. The program is compiled and linked (we explain linking in Chapter 3) and

Ch001.indd 14Ch001.indd 14 8/5/10 11:26:22 AM8/5/10 11:26:22 AM

Processes	 and	 Threads	 ****	 (fork_example_1.c)	
•  Processes	 are	 created	 via	 the	 system	

call	 fork()	
–  Any	 exact	 copy	 of	 the	 calling	 process	 is	

made	 	
•  Efficient	 –	 copy	 on	 write	

–  fork()	 returns	 twice!	
•  Once	 in	 the	 child	 (return	 value	 0)	
•  Once	 in	 the	 parent	 (return	 value	 the	 PID	

of	 the	 child	 process)	

•  Processes	 report	 termina)on	 status	 via	
the	 system	 call	 exit(ret_code)	

•  Processes	 can	 wait()	 for	 the	 termina)on	
of	 child	 processes	

•  Example	 uses	
–  Terminal	 /	 Windows	
–  Apache	 cgi	

18 CHAPTER 1 Introduction

Since a process’s return code actually means something, it’s important for other processes
to fi nd out what it is. This is done via the wait system call, which allows a parent process to wait
until one of its children terminates:

short pid;

if ((pid = fork()) == 0) {

/* some code is here for the child to execute */

exit(n);

} else {

int ReturnCode;

while(pid != wait(&ReturnCode))

;

/* the child has terminated with ReturnCode as its

 return code */

}

Here the parent process creates a child, then waits for it to terminate. Note that wait returns
the process ID of the child that’s terminated, which might not be the one most recently created
(the parent might have created others). Thus it calls wait repeatedly until the child it’s interested
in terminates. The wait call returns the child process’s return code via its argument, which points
to storage provided by the caller.

A process can wait only for its children to terminate: it has no means for waiting for the
termination of other processes. This implies that the operating system must keep track of the par-
ent-child relationships among processes.

While a process is waiting for a child to terminate, it’s said to be in the “sleeping state”: it
won’t be able to execute any further instructions until a terminating child wakes it up.

The act of termination is a bit tricky. One concern is the process ID. These are 16-bit val-
ues and thus must occasionally be reused. Suppose that when a process terminates (i.e., calls
exit), its ID is immediately made available for assignment to new processes. It might happen
that before the process’s parent calls wait, the process ID is actually assigned to a new process.
Thus there could be some ambiguity about which process is being referred to by the ID.

Another termination concern is the return code: where is it stored between the moments
when a process terminates and when the code is picked up by the parent via wait? If all storage
associated with the process is released on termination, we could have a problem.

These concerns are handled as follows. When a process calls exit it doesn’t completely
disappear, but goes into what’s called the zombie state: it’s no longer active and its address space
can be relinquished, but its process ID and return value are preserved in the operating system.
Thus the process still exists, though the only meaningful data associated with it are its ID and
return value. When the parent eventually calls wait, these values are fi nally released and all traces
of the process disappear.

But what happens if the parent terminates before the child? This could mean that, since
the parent is no longer around to perform the wait, the child will remain forever a zombie. To
deal with this problem, process number 1 (the process whose ID is 1 and which is the ancestor
of all other processes with greater IDs) inherits the children (including zombies) of terminated
processes. It executes a loop, continually calling wait and fi nishing the termination of all its (step)
children.

As shown in Figure 1.4, a process’s return code is kept in its process control block. Nothing
is of course stored there until the process terminates. But when the process does terminate, its
return code is copied to the PCB, which is linked to its parent’s queue of terminated children. By

Ch001.indd 18Ch001.indd 18 8/5/10 11:26:26 AM8/5/10 11:26:26 AM

Loading	 Programs	 into	 Processes	 (fork_example_2.c)	
•  execl()	 system	 call	 used	 to	 do	 this	

•  execl()	 replaces	 the	 en)re	 contents	 of	 the	
processes	 address	 space	
–  the	 stack	 is	 ini)alized	 with	 the	 passed	 program	 args.	
–  a	 special	 start	 rou)ne	 is	 called	 that	 itself	 calls	 main()	
–  exec	 doesn’t	 return	 except	 if	 there	 is	 an	 error!	

executing the wait system call, the parent selects the fi rst process from this queue, returning both
the PID and return-code fi elds.

1.3.4 LOADING PROGRAMS INTO PROCESSES

We’ve briefl y discussed setting up an address space to contain a program; now let’s look at the
user-level mechanism for doing so. A family of system calls known as exec is provided for this.
Execs are typically used shortly after fork creates a new process to replace the program with a
new one. Here’s an example of their use:

int pid;

if ((pid = fork()) == 0) {

/* we’ll soon discuss what might take place before exec

 is called */

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

Here we call execl, which takes a variable number of arguments — the “command-line”
arguments mentioned above — and passes them to the program. The fi rst argument is the name
of the fi le containing the program to be loaded. The second argument is the name of the program
(while this seems a bit redundant, it allows one program to do different things depending on the
name by which it is called). The remaining arguments are the remaining command-line argu-
ments, terminating with 0.

The effect of the exec call, as shown in Figure 1.5, is to replace the entire contents of the
current process’s address space with the new program: the text region is replaced with the text of
primes. The BSS and data regions are replaced with those supplied by primes. The dynamic area
is replaced with an empty region. The stack is replaced with the arguments that are to be passed to
main: the total number of arguments (two in this case), followed by a vector referring to their values
(“primes” and “300”). The process’s thread continues execution by calling a special start routine
(loaded with the primes program), which then calls main (so that on return from main it calls exit).

Note that since the prior contents of the address space are removed, there is no return from
a successful call to exec: there’s nothing to return to! However, if exec does return, then (since
the prior contents clearly weren’t removed) there must have been an error. What we do in such a
case is simply call exit with a return code indicating an error. (This is certainly not a very helpful
response, but our focus for the moment is on successful outcomes.)

The parent process waits until the child has completed (calling wait with an argument of
zero means that the caller does not want the return code). The above code fragment shows what
a command shell does in response to the command:

% primes 300

In other words, it creates a new process to run the command and waits for that process to
terminate.

1.3 A Simple OS 19

exec(prog, args)

Before

FIGURE 1 .5 The effect
of exec.

After

prog’s text

prog’s data

prog’s BSS

args

Ch001.indd 19Ch001.indd 19 8/5/10 11:26:26 AM8/5/10 11:26:26 AM

executing the wait system call, the parent selects the fi rst process from this queue, returning both
the PID and return-code fi elds.

1.3.4 LOADING PROGRAMS INTO PROCESSES

We’ve briefl y discussed setting up an address space to contain a program; now let’s look at the
user-level mechanism for doing so. A family of system calls known as exec is provided for this.
Execs are typically used shortly after fork creates a new process to replace the program with a
new one. Here’s an example of their use:

int pid;

if ((pid = fork()) == 0) {

/* we’ll soon discuss what might take place before exec

 is called */

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

Here we call execl, which takes a variable number of arguments — the “command-line”
arguments mentioned above — and passes them to the program. The fi rst argument is the name
of the fi le containing the program to be loaded. The second argument is the name of the program
(while this seems a bit redundant, it allows one program to do different things depending on the
name by which it is called). The remaining arguments are the remaining command-line argu-
ments, terminating with 0.

The effect of the exec call, as shown in Figure 1.5, is to replace the entire contents of the
current process’s address space with the new program: the text region is replaced with the text of
primes. The BSS and data regions are replaced with those supplied by primes. The dynamic area
is replaced with an empty region. The stack is replaced with the arguments that are to be passed to
main: the total number of arguments (two in this case), followed by a vector referring to their values
(“primes” and “300”). The process’s thread continues execution by calling a special start routine
(loaded with the primes program), which then calls main (so that on return from main it calls exit).

Note that since the prior contents of the address space are removed, there is no return from
a successful call to exec: there’s nothing to return to! However, if exec does return, then (since
the prior contents clearly weren’t removed) there must have been an error. What we do in such a
case is simply call exit with a return code indicating an error. (This is certainly not a very helpful
response, but our focus for the moment is on successful outcomes.)

The parent process waits until the child has completed (calling wait with an argument of
zero means that the caller does not want the return code). The above code fragment shows what
a command shell does in response to the command:

% primes 300

In other words, it creates a new process to run the command and waits for that process to
terminate.

1.3 A Simple OS 19

exec(prog, args)

Before

FIGURE 1 .5 The effect
of exec.

After

prog’s text

prog’s data

prog’s BSS

args

Ch001.indd 19Ch001.indd 19 8/5/10 11:26:26 AM8/5/10 11:26:26 AM

Files	 *	
•  Files	 are	 Unix’s	 primary	 abstrac)on	

for	 everything	
–  Keyboard	
–  Display	
–  Other	 processes	

•  Naming	 files	
–  Filesystems	 generally	 are	 tree-‐

structured	 directory	 systems	 	
–  Namespaces	 are	 generally	 shared	 by	

all	 processes	
•  Accessing	 files	

–  The	 directory-‐system	 name-‐space	 is	
outside	 the	 process	
•  open(name)	 returns	 a	 file	 handle,	

read(args)	 	
•  OS	 checks	 permissions	 along	 path	

20 CHAPTER 1 Introduction

1.3.5 FILES

As we’ve pointed out, our primes example isn’t very useful since it doesn’t leave the results
of its computation where others (programs or people) can use them. What’s needed is access
to someplace outside the process that’s shared with others. The notion of a fi le is our Unix
system’s sole abstraction for this concept of “someplace outside the process” (modern
Unix systems have additional abstractions). Unix uses fi les both as the abstraction of persistent
data storage (such as on disks) and also as the means for fetching and storing data outside a
 process, whether that data is stored on disk, in another process, or in some other device, such
as a keyboard or display.

1.3.5.1 Naming Files
For our current discussion we’re concerned about both how to refer to such “places” outside
the process and how programs transfer data to and from such places. Since the place is outside the
process, we need a different space from the process’s address space. The nature of such spaces
was an issue a number of decades ago, but pretty much all systems today use tree- structured
directory systems for naming fi les and similar objects. These should be familiar to everyone
with enough computer experience to have gotten this far in this text: a fi le is named by stringing
together the names assigned to the edges forming a path from the root of the tree to the fi le.

Unix uses forward slashes as separators between the names; Windows uses back slashes.
That the path starts at the root is indicated by starting the name with the separators. Such path
names generally have the beginning (such as the root) at the left, though the Internet’s naming
scheme (Domain Name System — DNS) has it on the right.

The name space provided by the directory system is generally shared by all processes
running on a computer (and perhaps by all processes running on a number of computers). Unix
provides a means to restrict a process to a subtree: one simply redefi nes what “root” means for
the process. Thus fi les are identifi ed by their path names in the directory system.

Since the directory-system name space is outside the process, special means are required
to access it. The usual model is that one provides the name of the desired fi le to the operating
system, and the operating system returns a handle to be used to access the fi le. What’s going on
behind the scenes is that the operating system, somewhat laboriously, follows the path provided
by the name, checking to make certain that the process is allowed appropriate access along the
path. The returned handle provides a direct reference to the fi le so that such expensive path-
 following and access verifi cation isn’t required on subsequent accesses.

This use of a handle to refer to an object managed by the kernel is fairly important. We’ll
later see it generalized to the notion of a capability (Chapter 8). In abstract terms, possession
of a handle gives the holder not only a reference to an object in the kernel, but also certain lim-
ited rights for using the object. In the case of fi les, as we discuss, a handle allows the holder to
 perform certain actions on a fi le.

The following code uses the open system call to obtain a fi le’s handle, then uses the handle
to read the fi le:

int fd;

char buffer[1024];

int count;

if ((fd = open("/home/twd/fi le", O_RDWR) == -1) {

/* the fi le couldn’t be opened */

perror("/home/twd/fi le");

exit(1);

}

Ch001.indd 20Ch001.indd 20 8/5/10 11:26:27 AM8/5/10 11:26:27 AM

if ((count = read(fd, buffer, 1024)) == -1) {

/* the read failed */

perror("read");

exit(1);

}

/* buffer now contains count bytes read from the fi le */

Here we use the open system call to access the directory name space to get a handle for
the fi le whose path name is “/home/twd/fi le”. We’ve indicated by the second argument that
we want both read and write access to the fi le: if for some reason such access is not permitted,
the open call fails. If it succeeds, fd contains the handle (known in Unix as a fi le descriptor) for
the fi le.

We then use this handle as an argument to the read system call to identify the fi le and
attempt to transfer its fi rst 1024 bytes into buffer. Read returns the number of bytes that were
actually transferred: it could be less than what was asked for because, for example, the fi le might
not be that large. The perror routine prints, to fi le descriptor 2, its argument followed by a mes-
sage explaining the error number currently in the global variable errno (recall that that’s how
failing system calls leave the error number).

1.3.5.2 Using File Descriptors
These handles (or fi le descriptors) form what is essentially an extension to the process’s address
space, allowing the process unhindered access to the associated fi les. This address-space exten-
sion survives execs. Thus fi les open before an exec takes place are open afterwards. This property
is exploited as a way to pass the open fi les as additional parameters to the exec. File descriptors
are small nonnegative integers that are allocated lowest-available-number fi rst. By convention,
programs expect to read their primary input from fi le descriptor 0, to write their primary output
to fi le descriptor 1, and to write error messages to fi le descriptor 2. By default, input from fi le
descriptor 0 comes from the keyboard and output to fi le descriptors 1 and 2 goes to the display
(or current window).

However, as shown in the following code, different associations can be established in a
process before an exec:

if (fork() == 0) {

/* set up fi le descriptor 1 in the child process */

close(1);

if (open("/home/twd/Output", O_WRONLY) == -1) {

perror("/home/twd/Output");

exit(1);

}

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

1.3 A Simple OS 21

Ch001.indd 21Ch001.indd 21 8/5/10 11:26:27 AM8/5/10 11:26:27 AM

Using	 File	 Descriptors	 (fork_example_2.c)	
•  File	 descriptors	 survive	 exec()’s	
•  Default	 file	 descriptors	

–  0	 read	 (keyboard)	
–  1	 write	 (primary,	 display)	
–  2	 error	 (display)	

•  Different	 associa)ons	 can	 be	
established	 before	 fork()	

if ((count = read(fd, buffer, 1024)) == -1) {

/* the read failed */

perror("read");

exit(1);

}

/* buffer now contains count bytes read from the fi le */

Here we use the open system call to access the directory name space to get a handle for
the fi le whose path name is “/home/twd/fi le”. We’ve indicated by the second argument that
we want both read and write access to the fi le: if for some reason such access is not permitted,
the open call fails. If it succeeds, fd contains the handle (known in Unix as a fi le descriptor) for
the fi le.

We then use this handle as an argument to the read system call to identify the fi le and
attempt to transfer its fi rst 1024 bytes into buffer. Read returns the number of bytes that were
actually transferred: it could be less than what was asked for because, for example, the fi le might
not be that large. The perror routine prints, to fi le descriptor 2, its argument followed by a mes-
sage explaining the error number currently in the global variable errno (recall that that’s how
failing system calls leave the error number).

1.3.5.2 Using File Descriptors
These handles (or fi le descriptors) form what is essentially an extension to the process’s address
space, allowing the process unhindered access to the associated fi les. This address-space exten-
sion survives execs. Thus fi les open before an exec takes place are open afterwards. This property
is exploited as a way to pass the open fi les as additional parameters to the exec. File descriptors
are small nonnegative integers that are allocated lowest-available-number fi rst. By convention,
programs expect to read their primary input from fi le descriptor 0, to write their primary output
to fi le descriptor 1, and to write error messages to fi le descriptor 2. By default, input from fi le
descriptor 0 comes from the keyboard and output to fi le descriptors 1 and 2 goes to the display
(or current window).

However, as shown in the following code, different associations can be established in a
process before an exec:

if (fork() == 0) {

/* set up fi le descriptor 1 in the child process */

close(1);

if (open("/home/twd/Output", O_WRONLY) == -1) {

perror("/home/twd/Output");

exit(1);

}

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

1.3 A Simple OS 21

Ch001.indd 21Ch001.indd 21 8/5/10 11:26:27 AM8/5/10 11:26:27 AM

File	 Random	 Access	 	
•  lseek()	 provides	 non-‐sequen)al	 access	 to	 files	

•  Reverses	 a	 file	

28 CHAPTER 1 Introduction

1.3.5.3 Random Access
As we’ve seen, the normal mode of access to fi les is sequential: successive reads or writes to a fi le
are to successive locations in the fi le. Though this is probably what’s desired in most situations,
sometimes we’d like to access a fi le randomly, reading or writing arbitrary locations within it.
This turns out to be easily done, since the read and write system calls simply look at the contents
of the fi le-location fi eld of the context structure and increment it after the operation.

Thus to read or write starting at an arbitrary location, all we have to do is provide a means
for setting this fi le-location fi eld. This is done with the lseek system call. The example below
shows using lseek to print the contents of a fi le backwards:11

fd = open("textfi le", O_RDONLY);

/* go to last char in fi le */

fptr = lseek(fd, (off_t)–1, SEEK_END);

while (fptr != –1) {

read(fd, buf, 1);

write(1, buf, 1);

fptr = lseek(fd, (off_t)–2, SEEK_CUR);

}

The fi rst argument to lseek is the fi le descriptor, the second and third arguments (of type
off_t, an integer type) indicate the value that goes into the fi le-location fi eld. The third argument
specifi es where we are measuring the offset from (SEEK_SET indicates the offset is interpreted
as from the beginning of the fi le, SEEK_CUR means from the current position in the fi le, and
SEEK_END means from the end of the fi le). Note that lseek does no actual I/O; all it does is set
the fi le-location fi eld.

What we’ve done in the example above is to start with the fi le location set to point to the
last character in the fi le. After reading a byte, the location is advanced by one, so to get the previ-
ous character, we subtract two from it.

1.3.5.4 Pipes
An interesting construct based on the fi le notion is the pipe. A pipe is a means for one process to
send data to another directly, as if it were writing to a fi le (see Figure 1.11). The process sending data
behaves as if it has a fi le descriptor to a fi le that has been opened for writing. The process receiving
data behaves as if it has a fi le descriptor referring to a fi le that has been opened for reading.

A pipe and the two fi le descriptors referring to it are set up using the pipe system call.
This creates a pipe object in the kernel and returns, via an output parameter, the two fi le descrip-
tors that refer to it: one, set for write-only, referring to the input side and the other, set for read-
only, referring to the output end. Since this pipe object, though it behaves somewhat like a fi le,
has no name, the only way for any process to refer to it is via these two fi le descriptors. Thus only the
process that created it and its descendants (which inherit the fi le descriptors) can refer to the pipe.

FIGURE 1 .11 Communication via a pipe

pipesender receiver

11 This is defi nitely not a good way to print a fi le backwards! It simply illustrates what you can do with lseek.

Ch001.indd 28Ch001.indd 28 8/5/10 11:26:32 AM8/5/10 11:26:32 AM

Pipes	 *	 (pipe_example.c)	
•  A	 pipe	 is	 a	 means	 for	 one	 process	 to	 send	 data	 to	 another	 directly	
•  pipe()	 returns	 two	 nameless	 file	 descriptors	 	 Here’s a simple pipe example:

int p[2]; /* array to hold pipe’s fi le descriptors */

pipe(p); /* create a pipe; assume no errors */

/* p[0] refers to the output end of the pipe */

/* p[1] refers to the input end of the pipe */

if (fork() == 0) {

char buf[80];

close(p[1]); /* not needed by the child */

while (read(p[0], buf, 80) > 0) {

/* use data obtained from parent */

…

}

} else {

char buf[80];

close(p[0]); /* not needed by the parent */

for (;;) {

/* prepare data for child */

…

write(p[1], buf, 80);

}

}

1.3.5.5 Directories
A directory is essentially a fi le like the others we’ve been discussing, except that it is inter-
preted by the operating system as containing references to other fi les (some of which may
well be other directories). From a logical perspective, a directory consists of an array of pairs
of component name and inode number, where the latter identifi es the target fi le’s inode to the
operating system (recall that an inode is a data structure maintained by the operating system
to represent a fi le).

Every directory contains two special entries, “.” and “..”. The former refers to the directory
itself, the latter to the directory’s parent. In Figure 1.12, the directory is the root directory and has
no parent, and thus its “..” entry is a special case that refers to the directory itself.

1.3 A Simple OS 29

FIGURE 1 .12 Sample directory

Component name Inode number

Directory entry

unix 117

etc 4

home 18

pro 36

dev 93

. 1

.. 1

Ch001.indd 29Ch001.indd 29 8/5/10 11:26:33 AM8/5/10 11:26:33 AM

Directories	
•  A	 directory	 is	 a	 file	 that	 is	 interpreted	 as	 containing	 references	 to	

other	 files	 by	 the	 OS	 	
•  Consists	 of	 an	 array	 of	 	

–  Component	 name	
–  inode	 number	

•  an	 inode	 is	 a	 datastructure	 maintained	 by	 the	 OS	 to	 represent	 a	 file	

Here’s a simple pipe example:

int p[2]; /* array to hold pipe’s fi le descriptors */

pipe(p); /* create a pipe; assume no errors */

/* p[0] refers to the output end of the pipe */

/* p[1] refers to the input end of the pipe */

if (fork() == 0) {

char buf[80];

close(p[1]); /* not needed by the child */

while (read(p[0], buf, 80) > 0) {

/* use data obtained from parent */

…

}

} else {

char buf[80];

close(p[0]); /* not needed by the parent */

for (;;) {

/* prepare data for child */

…

write(p[1], buf, 80);

}

}

1.3.5.5 Directories
A directory is essentially a fi le like the others we’ve been discussing, except that it is inter-
preted by the operating system as containing references to other fi les (some of which may
well be other directories). From a logical perspective, a directory consists of an array of pairs
of component name and inode number, where the latter identifi es the target fi le’s inode to the
operating system (recall that an inode is a data structure maintained by the operating system
to represent a fi le).

Every directory contains two special entries, “.” and “..”. The former refers to the directory
itself, the latter to the directory’s parent. In Figure 1.12, the directory is the root directory and has
no parent, and thus its “..” entry is a special case that refers to the directory itself.

1.3 A Simple OS 29

FIGURE 1 .12 Sample directory

Component name Inode number

Directory entry

unix 117

etc 4

home 18

pro 36

dev 93

. 1

.. 1

Ch001.indd 29Ch001.indd 29 8/5/10 11:26:33 AM8/5/10 11:26:33 AM

Crea)ng	 Files	
•  creat()	 and	 open()	 (with	 flags)	 are	 used	 to	 create	 files	

•  “man	 2	 open”	 :	 	

OPEN(2)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 BSD	 System	 Calls	 Manual	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 OPEN(2)	
	
NAME	
	 	 	 	 	 open,	 openat	 -‐-‐	 open	 or	 create	 a	 file	 for	 reading	 or	 writing	
	
SYNOPSIS	
	 	 	 	 	 #include	 <fcntl.h>	
	
	 	 	 	 	 int	
	 	 	 	 	 open(const	 char	 *path,	 int	 oflag,	 ...);	
	
	 	 	 	 	 int	
	 	 	 	 	 openat(int	 fd,	 const	 char	 *path,	 int	 oflag,	 ...);	
	
DESCRIPTION	
	 	 	 	 	 The	 file	 name	 specified	 by	 path	 is	 opened	 for	 reading	 and/or	 writing,	 as	 specified	 by	 the	 argument	 oflag;	
	 	 	 	 	 the	 file	 descriptor	 is	 returned	 to	 the	 calling	 process.	
	
	 	 	 	 	 The	 oflag	 argument	 may	 indicate	 that	 the	 file	 is	 to	 be	 created	 if	 it	 does	 not	 exist	 (by	 specifying	 the	
	 	 	 	 	 O_CREAT	 flag).	 	 In	 this	 case,	 open()	 and	 openat()	 require	 an	 additional	 argument	 mode_t	 mode;	 the	 file	 is	
	 	 	 	 	 created	 with	 mode	 mode	 as	 described	 in	 chmod(2)	 and	 modified	 by	 the	 process'	 umask	 value	 (see	 umask(2)).	
	
	 	 	 	 	 The	 openat()	 function	 is	 equivalent	 to	 the	 open()	 function	 except	 in	 the	 case	 where	 the	 path	 specifies	 a…	

Review	 :	 User	 Perspec)ve	 on	 Simple	 OS	
•  Rough	 idea	 of	 what	 goes	 inside	 an	 OS	
•  Traps	 /	 system	 calls	

–  exec()	
–  fork()	
–  open()	
–  pipe()	
–  exit()	
–  close()	
–  read()	
–  write()	
–  dup()	
–  …	

•  Next	 lecture	 :	 more	 user	 basics.	 	 	
•  Final	 two	 lectures	 :	 OS	 implementa)on	 issues	

Lecture	 2	 :	 Basics;	 Processes,	 Threads,	 …	 	

Material	 from	 	
Opera)ng	 Systems	 in	 Depth	 	

(spec.	 Chapters	 2&3)	 	 	
by	

Thomas	 Doeppner	
	

GET	 THIS	 BOOK	 AND	 READ	 IT!	

Threads	 *	 (thread_example_1.c)	
•  What	 is	 a	 thread?	

–  Mechanism	 for	 concurrency	 in	 user-‐level	 programs	
–  “Lightweight	 process”	
–  Processor(s)	 within	 a	 process	
–  Share	 process	 memory	 with	 other	 threads	

•  Why	 threads?	
–  Can	 drama)cally	 simplify	 code	

•  Mul)-‐threaded	 database	 concurrently	 handling	 requests	
•  Server	 listening	 on	 a	 socket	 responding	 to	 client	 requests	

–  Requires	 care	
•  Synchroniza)on	

•  POSIX	 (“portable	 opera)ng	 system	 interface”)	 specifica)on	

Thread	 Crea)on	

Alterna)ve	 specifica)ons	 exist;	 all	 conceptually	 similar	

44 CHAPTER 2 Multithreaded Programming

Despite the advantages of programming with threads, only relatively recently have standard APIs
for multithreaded programming been developed. The most important of these APIs in the Unix
world is the one developed by a group originally called POSIX 1003.4a. This multi-year effort
resulted in 1995 in an approved standard, now known by the number 1003.1c.

Microsoft produced as part of its Win-32 interface a threads package whose interface has
little in common with that of POSIX. Moreover, there are signifi cant differences between the
Microsoft and POSIX approaches — some of the constructs of one cannot be easily implemented
in terms of the constructs of the other, and vice versa. Despite these incompatibilities, both
approaches are useful for multithreaded programming.

2.2.1 THREAD CREATION AND TERMINATION

Creating a thread should be a pretty straightforward operation: in response to some sort of directive,
a new thread is created and proceeds to execute code independently of its creator. There are, of
course, a few additional details. We may want to pass parameters to the thread. A stack of some
size must be created to be the thread’s execution context. Also, we need some mechanism for
the thread to terminate and to make a termination value available to others.

2.2.1.1 Creating POSIX Threads
POSIX and Win-32 have similar interfaces for creating a thread. Suppose we wish to create a
bunch of threads, each of which will execute code to provide some service. In POSIX, we do this
as follows:

void start_servers() {

pthread_t thread;

int i;

for (i=0; i<nr_of_server_threads; i++)

pthread_create(

 &thread, // thread ID

 0, // default attributes

 server, // start routine

 argument); // argument

}

void *server(void *arg) {

// perform service

return (0);

}

Thus a thread is created by calling pthread_create. If it returns successfully (returns 0), a
new thread has been created that is now executing independently of the caller. This thread’s ID
is returned via the fi rst parameter (an output parameter that, in standard C programming style, is
a pointer to where the result should be stored). The second parameter is a pointer to an attributes
structure that defi nes various properties of the thread. Usually we can get by with the default
properties, which we specify by supplying a null pointer. The third parameter is the address of
the routine in which our new thread should start its execution. The last argument is the argument
that is actually passed to the fi rst procedure of the thread.

If pthread_create fails, it returns a positive value indicating the cause of the failure.

2.2
PROGRAMMING
WITH THREADS

2.2
PROGRAMMING
WITH THREADS

CH002.indd 44CH002.indd 44 8/2/10 8:26:13 PM8/2/10 8:26:13 PM

Passing	 Arguments	 to	 Threads	
•  Care	 must	 be	 taken	 with	

threads	 in	 general	
•  Problem	 with	 this	 code	

–  In	 and	 out	 are	 local	 variables	
thus	 leave	 scope	 when	 rlogind	
exits	

2.2 Programming with Threads 45

2.2.1.2 Creating Win-32 Threads
An equivalent program written for Windows using the Win-32 interface is:

void start_servers() {

HANDLE thread;

DWORD id;

int i;

for (i=0; i<nr_of_server_threads; i++)

thread = CreateThread(

 0, // security attributes

 0, // default # of stack pages allocated

 server, // start routine

 0, // argument

 0, // creation fl ags

 &id); // thread ID

}

DWORD WINAPI server(void *arg) {

// perform service

return(0);

}

Calls to CreateThread are used rather than pthread_create. A handle for the new thread is
returned. A handle, as we discussed in Chapter 1, is similar to a Unix fi le descriptor: it refers to
information belonging to the user process but maintained in the operating system. In this case, as
we’ll see, the handle allows the holder to perform operations on the thread.

An ID is returned via the last (output) argument. It is a means of identifying the thread that
gives the holder no ability to control that thread. Thus one process can make a thread ID available to
another process so as to identify the thread but not give the second process any control over it.

The fi rst parameter is a pointer to the security attributes to be associated with the thread;
we use 0 for this for now and discuss other possibilities later. The next parameter is the number
of stack pages (in bytes) to allocate physical resources for (one megabyte of virtual memory is
allocated; the parameter indicates how much of this initially has real memory and stack space
supporting it); 0 means to use the default. The third parameter is the address of the fi rst routine
our thread executes; the next parameter is the argument that’s passed to that routine. The next to
the last parameter specifi es various creation fl ags; we don’t supply any here.

If CreateThread fails, indicated by returning a null handle, GetLastError can be used to
determine the cause of the failure.

2.2.1.3 Handling Multiple Arguments
A problem comes up with both pthread_create and CreateThread when you want to pass
more than one argument to a thread. Suppose you are creating threads for use with our two-
threaded implementation of rlogind (Section 2.1 above). One might be tempted to use the
trick outlined below:

typedef struct {

int fi rst, second;

} two_ints_t;

CH002.indd 45CH002.indd 45 8/2/10 8:26:14 PM8/2/10 8:26:14 PM

46 CHAPTER 2 Multithreaded Programming

void rlogind(int r_in, int r_out, int l_in, int l_out) {

pthread_t in_thread, out_thread;

two_ints_t in={r_in, l_out}, out={l_in, r_out};

pthread_create(&in_thread,

0,

incoming,

&in);

pthread_create(&out_thread,

0,

outgoing,

&out);

}

Here we pack two arguments into a structure, then pass a pointer to it to pthread_create.
This is an example of something that works in single-threaded programs but can cause disastrous
failures in multithreaded programs. The variables in and out are local variables and thus are allo-
cated on the stack of the thread that called rlogind. When this fi rst thread returns from rlogind,
these variables go out of scope — the stack locations might be used for other things. Thus when
pthread_create is called, the addresses of in and out point to useful information. But by the time
the threads created by the calls to pthread_create reference the data pointed to by their arguments
(in and out), this data might no longer exist, since the fi rst thread is no longer in their scope. Thus
our approach works only if we can be certain that fi rst thread does not leave the scope of the
arguments while they are in use.

Is there a safe way to pass multiple arguments to a thread that works in all cases? Ideally,
we’d like to copy all of a thread’s arguments onto its stack. But since neither pthread_create
nor CreateThread provides a means for doing this for more than one argument, we need some
other technique. (Other threads packages, for example (Doeppner 1987), did provide a way to
put multiple arguments on a thread’s stack.) Whatever approach we use, it must involve passing
a pointer or some sort of pointer-sized identifi er to the thread, which then uses this identifi er
to refer to the actual arguments (which must reside in storage that is available while the thread
is executing).

One approach might be to use static or global storage for the arguments, so that there’s not
a problem with them going out of scope. While this would work in some cases, suppose that in
our example multiple threads are calling rlogind concurrently. All would use the same locations
for storing the arguments to pthread_create, and the result would be chaos.

We might allocate storage dynamically for the arguments, using malloc in C or new in C++.
This might seem to solve our problems, but who frees the storage, and when? The creating thread
can do so safely only if the created thread is certain not to access the arguments at any point in
the future. We can’t expect the created thread to free the storage unless its arguments are always
in dynamically allocated storage.

In summary, we have four approaches for passing multiple arguments to a thread:

 1. copy all arguments to the thread’s stack: this always works, but isn’t supported in either
POSIX or Win-32

 2. pass a pointer to local storage containing the arguments: this works only if we are certain
this storage doesn’t go out of scope until the thread is fi nished with it

 3. pass a pointer to static or global storage containing the arguments: this works only if only
one thread at a time is using the storage

CH002.indd 46CH002.indd 46 8/2/10 8:26:14 PM8/2/10 8:26:14 PM

Variables	 on	 stack	 –	 when	 rlogind	 returns	
These	 variables	 are	 popped	 off	 the	 stack	
	
Soln:	 Global	 variables	 or	 dynamically	 allocated	 variables	
Laeer	 only	 works	 if	 someone	 frees	 said	 space	
	

Thread	 Termina)on	 (thread_example_2.c)	
•  Space	 from	 caller	 must	 be	 provided	 for	 thread	 to	 place	 return	

values	

•  pthread_exit()	 terminates	 thread,	 exit()	 terminates	 process	

48 CHAPTER 2 Multithreaded Programming

pthread_create(&createe, 0, CreateeProc, 0);

…

pthread_join(create, &result);

…

}

void *CreateeProc(void *arg) {

…

if (should_terminate_now)

pthread_exit((void *)1);

…

return((void *)2);

}

There is a big difference between pthread_exit and exit. The former terminates just the
calling thread. The latter terminates the entire process, including all threads running in it. Note
that if a thread returns from a program’s main procedure, it calls exit (it actually returns to
code that then calls exit). So, consider the following code:

int main(int argc, char *argv[]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

return(0);

}

What happens here is that ten threads are created but the creating thread immediately
returns from main, calls exit, and thus terminates the entire process. On a uniprocessor system,
none of the ten child threads are likely to get a chance to run at all.

To create a bunch of threads and then terminate innocuously, one might do something like:

int main(int argc, char *argv[]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

pthread_exit(0);

return(0);

}

Here the fi rst thread again creates ten threads, but then quietly goes away (the call to return
is required even though it won’t be executed, since main is defi ned as returning an int). The process
terminates once all its component threads have terminated (or if one of them calls exit).

CH002.indd 48CH002.indd 48 8/2/10 8:26:14 PM8/2/10 8:26:14 PM

48 CHAPTER 2 Multithreaded Programming

pthread_create(&createe, 0, CreateeProc, 0);

…

pthread_join(create, &result);

…

}

void *CreateeProc(void *arg) {

…

if (should_terminate_now)

pthread_exit((void *)1);

…

return((void *)2);

}

There is a big difference between pthread_exit and exit. The former terminates just the
calling thread. The latter terminates the entire process, including all threads running in it. Note
that if a thread returns from a program’s main procedure, it calls exit (it actually returns to
code that then calls exit). So, consider the following code:

int main(int argc, char *argv[]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

return(0);

}

What happens here is that ten threads are created but the creating thread immediately
returns from main, calls exit, and thus terminates the entire process. On a uniprocessor system,
none of the ten child threads are likely to get a chance to run at all.

To create a bunch of threads and then terminate innocuously, one might do something like:

int main(int argc, char *argv[]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

pthread_exit(0);

return(0);

}

Here the fi rst thread again creates ten threads, but then quietly goes away (the call to return
is required even though it won’t be executed, since main is defi ned as returning an int). The process
terminates once all its component threads have terminated (or if one of them calls exit).

CH002.indd 48CH002.indd 48 8/2/10 8:26:14 PM8/2/10 8:26:14 PM

Thread	 Aeributes	 	
•  “man	 pthread_attr_init”	
•  e.g.	 to	 specify	 the	 stack	 size	 for	 a	 thread	 one	 ini)alizes	 an	 aeributes	

datastructure	

	

2.2 Programming with Threads 51

happen, for example, if the thread places a call to a procedure with large local variables that aren’t
immediately referenced. So we must be careful to give each thread a suffi ciently large stack (how
large is large enough depends on the program and the architecture).

To specify the stack size for a thread, one sets up an attributes structure using pthread_attr_
setstacksize and supplies it to pthread_create:

pthread_t thread;

pthread_attr_t thr_attr;

pthread_attr_init(&thr_attr);

pthread_attr_setstacksize(&thr_attr, 20*1024*1024);

...

pthread_create(&thread, &thr_attr, startroutine, arg);

In this case we’ve created a thread with a twenty-megabyte stack.
How large is the default stack? This is not specifi ed in POSIX threads. Different implementa-

tions use different values, ranging from around 20 KB in Tru64 Unix to one megabyte in Solaris
and eight megabytes in some Linux implementations.

Win-32 uses a different approach to stack size: the amount of address space allocated for
each thread’s stack is a link-time parameter, not a run-time parameter. The “stacksize” argument
to CreateThread indicates how many pages of primary memory are allocated to hold the stack
when the thread starts execution. Additional pages of primary memory are allocated as neces-
sary as the thread runs, up to the maximum stack size. One cannot affect this level of detail using
POSIX threads.

2.2.1.6 Example
Here is a simple complete multithreaded program that computes the product of two matrices. Our
approach is to create one thread for each row of the product and have these threads compute the
necessary inner products. (This isn’t a good way to compute the product of two matrices — it’s
merely an example of a multithreaded program!)

#include <stdio.h>

#include <pthread.h> /* all POSIX threads declarations */

#include <string.h> /* needed to use strerror below */

#defi ne M 3

#defi ne N 4

#defi ne P 5

int A[M][N]; /* multiplier matrix */

int B[N][P]; /* multiplicand matrix */

int C[M][P]; /* product matrix */

void *matmult(void *);

int main() {

int i, j;

CH002.indd 51CH002.indd 51 8/2/10 8:26:15 PM8/2/10 8:26:15 PM

Synchroniza)on	 ***	 (thread_example_3.c)	 	
•  Remember:	 threads	 share	 access	 to	 common	 data	 structures	
•  Mutual	 exclusion	 is	 a	 form	 of	 thread	 synchroniza)on	

–  Makes	 sure	 two	 things	 don’t	 happen	 at	 once	
–  Example,	 two	 threads	 each	 doing	

Can	 result	 in	 1	 or	 2;	 reordering	 the	 assembly	 code	 shows	 why	
	
	

2.2 Programming with Threads 57

2.2.3.1 Mutual Exclusion
The mutual-exclusion problem involves making certain that two things don’t happen at once. A
dramatic example arose in the fi ghter aircraft of World War I, as illustrated in Figure 2.4. Due to
a number of constraints (e.g., machine guns tended to jam frequently and thus had to be near peo-
ple who could unjam them), machine guns were mounted directly in front of the pilot. However,
blindly shooting a machine gun through a whirling propeller was not a good idea. At the begin-
ning of the war, pilots, being gentlemen, politely refrained from attacking fellow pilots. A bit later
in the war, however, the Germans developed the tactic of gaining altitude on an opponent, diving
at him, turning off the engine, then fi ring — without hitting the now-stationary propeller. Today
this would be called coarse-grained synchronization. Later, the Germans developed technology
that synchronized the fi ring of the gun with the whirling of the propeller, so that shots were fi red
only when the propeller blades would not be in the way. This could well be the fi rst example of a
mutual-exclusion mechanism providing fi ne-grained synchronization!

For a more computer-oriented example of the need for mutual exclusion, consider two
threads, each performing the following operation:

x = x+1;

If the two threads perform the operation at the same time, what’s the fi nal value of x if its initial
value was zero? We’d very much like the answer to be 2. However, consider the assembly-language
version of the statement. It probably looks something like this:

ld r1,x

add r1,1

st r1,x

Thus to add 1 to the variable x, the machine must fi rst load the current contents of location x into
a register, add 1 to the contents of the register, then store those contents back into the location contain-
ing x. If both threads do this at more or less the same time, the fi nal result stored in x is likely to be 1!

For the concurrent execution of the two assignment statements to behave as we want it to,
we somehow have to insure that the effect of executing the three assembler instructions is atomic,
i.e., that all three instructions take place at once without interference.

FIGURE 2 .4 World War I fi ghter aircraft. (Copyright © iStockphoto.)

CH002.indd 57CH002.indd 57 8/2/10 8:26:16 PM8/2/10 8:26:16 PM

2.2 Programming with Threads 57

2.2.3.1 Mutual Exclusion
The mutual-exclusion problem involves making certain that two things don’t happen at once. A
dramatic example arose in the fi ghter aircraft of World War I, as illustrated in Figure 2.4. Due to
a number of constraints (e.g., machine guns tended to jam frequently and thus had to be near peo-
ple who could unjam them), machine guns were mounted directly in front of the pilot. However,
blindly shooting a machine gun through a whirling propeller was not a good idea. At the begin-
ning of the war, pilots, being gentlemen, politely refrained from attacking fellow pilots. A bit later
in the war, however, the Germans developed the tactic of gaining altitude on an opponent, diving
at him, turning off the engine, then fi ring — without hitting the now-stationary propeller. Today
this would be called coarse-grained synchronization. Later, the Germans developed technology
that synchronized the fi ring of the gun with the whirling of the propeller, so that shots were fi red
only when the propeller blades would not be in the way. This could well be the fi rst example of a
mutual-exclusion mechanism providing fi ne-grained synchronization!

For a more computer-oriented example of the need for mutual exclusion, consider two
threads, each performing the following operation:

x = x+1;

If the two threads perform the operation at the same time, what’s the fi nal value of x if its initial
value was zero? We’d very much like the answer to be 2. However, consider the assembly-language
version of the statement. It probably looks something like this:

ld r1,x

add r1,1

st r1,x

Thus to add 1 to the variable x, the machine must fi rst load the current contents of location x into
a register, add 1 to the contents of the register, then store those contents back into the location contain-
ing x. If both threads do this at more or less the same time, the fi nal result stored in x is likely to be 1!

For the concurrent execution of the two assignment statements to behave as we want it to,
we somehow have to insure that the effect of executing the three assembler instructions is atomic,
i.e., that all three instructions take place at once without interference.

FIGURE 2 .4 World War I fi ghter aircraft. (Copyright © iStockphoto.)

CH002.indd 57CH002.indd 57 8/2/10 8:26:16 PM8/2/10 8:26:16 PM

POSIX	 Mutexes	 ***	
•  OS	 must	 support	 thread	 synchroniza)on	 mechanisms	
•  POSIX	 defines	 a	 data	 type	 called	 a	 mutex	 (from	 “mutual	 exclusion”)	
•  Mutexes	 can	 ensure	

–  Only	 one	 thread	 is	 execu)ng	 a	 block	 of	 code	 (code	 locking)	
–  Only	 one	 thread	 is	 accessing	 a	 par)cular	 data	 structure	 (data	 locking)	

•  A	 mutex	 either	 belongs	 to	 a	 single	 thread	 or	 no	 thread	
•  A	 thread	 may	 “lock”	 a	 mutex	 by	 calling	 pthread_mutex_lock()	
•  A	 mutex	 may	 be	 unlocked	 by	 calling	 pthread_mutex_unlock()	
•  A	 mutex	 datastructure	 can	 be	 ini)alized	 via	 pthread_mutex_init()	

58 CHAPTER 2 Multithreaded Programming

We’re not going to show how to solve this problem right away. Instead, we introduce
functionality from POSIX threads and Win-32 and show how we can use it to solve the problem.
In Chapter 5 we show how this functionality is implemented.

POSIX threads defi nes a new data type called a mutex, which stands for mutual exclusion.
A mutex is used to insure either that only one thread is executing a particular piece of code at
once (code locking) or that only one thread is accessing a particular data structure at once (data
locking). A mutex belongs either to a particular thread or to no thread (i.e., it is either locked
or unlocked). A thread may lock a mutex by calling pthread_mutex_lock. If no other thread has
the mutex locked, then the calling thread obtains the lock on the mutex and returns. Otherwise it
waits until no other thread has the mutex, and fi nally returns with the mutex locked. There may,
of course, be multiple threads waiting for the mutex to be unlocked. Only one thread can lock
the mutex at a time; there is no specifi ed order for which thread gets the mutex next, though the
ordering is assumed to be at least somewhat fair.

To unlock a mutex, a thread calls pthread_mutex_unlock. It is considered incorrect to
unlock a mutex that is not held by the caller (i.e., to unlock someone else’s mutex). However,
checking for this is costly, so most implementations, if they check at all, do so only when certain
degrees of debugging are turned on.

Like any other data structure, mutexes must be initialized. This can be done via a call to
pthread_mutex_init or can be done statically by assigning PTHREAD_MUTEX_INITIALIZER
to a mutex. The initial state of such initialized mutexes is unlocked. Of course, a mutex should be
initialized only once! (That is, make certain that, for each mutex, no more than one thread calls
pthread_mutex_init.) If a mutex is dynamically initialized, a call should be made to pthread_
mutex_destroy when it is no longer needed.

Using mutexes, we can solve the problem of atomically adding 1 to a variable.

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

 // shared by both threads

int x; // ditto

pthread_mutex_lock(&m);

x = x+1;

pthread_mutex_unlock(&m);

Using a mutex to provide mutually exclusive access to a single data structure at a time is
easy. Things get a bit more involved if we need to arrange for such access to multiple data struc-
tures at once. Consider the following example in which one thread is executing proc1 and another
is executing proc2:

void proc1() {

pthread_mutex_lock(&m1);

/* use object 1 */

pthread_mutex_lock(&m2);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m2);

 pthread_mutex_unlock(&m1);

}

void proc2() {

pthread_mutex_lock(&m2);

/* use object 2 */

pthread_mutex_lock(&m1);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m1);

 pthread_mutex_unlock(&m2);

}

CH002.indd 58CH002.indd 58 8/2/10 8:26:17 PM8/2/10 8:26:17 PM

Mutual	 exclusion	 can	 result	 in	 DEADLOCK!	
•  In	 the	 following,	 “deadlock”	 can	 occur	

58 CHAPTER 2 Multithreaded Programming

We’re not going to show how to solve this problem right away. Instead, we introduce
functionality from POSIX threads and Win-32 and show how we can use it to solve the problem.
In Chapter 5 we show how this functionality is implemented.

POSIX threads defi nes a new data type called a mutex, which stands for mutual exclusion.
A mutex is used to insure either that only one thread is executing a particular piece of code at
once (code locking) or that only one thread is accessing a particular data structure at once (data
locking). A mutex belongs either to a particular thread or to no thread (i.e., it is either locked
or unlocked). A thread may lock a mutex by calling pthread_mutex_lock. If no other thread has
the mutex locked, then the calling thread obtains the lock on the mutex and returns. Otherwise it
waits until no other thread has the mutex, and fi nally returns with the mutex locked. There may,
of course, be multiple threads waiting for the mutex to be unlocked. Only one thread can lock
the mutex at a time; there is no specifi ed order for which thread gets the mutex next, though the
ordering is assumed to be at least somewhat fair.

To unlock a mutex, a thread calls pthread_mutex_unlock. It is considered incorrect to
unlock a mutex that is not held by the caller (i.e., to unlock someone else’s mutex). However,
checking for this is costly, so most implementations, if they check at all, do so only when certain
degrees of debugging are turned on.

Like any other data structure, mutexes must be initialized. This can be done via a call to
pthread_mutex_init or can be done statically by assigning PTHREAD_MUTEX_INITIALIZER
to a mutex. The initial state of such initialized mutexes is unlocked. Of course, a mutex should be
initialized only once! (That is, make certain that, for each mutex, no more than one thread calls
pthread_mutex_init.) If a mutex is dynamically initialized, a call should be made to pthread_
mutex_destroy when it is no longer needed.

Using mutexes, we can solve the problem of atomically adding 1 to a variable.

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

 // shared by both threads

int x; // ditto

pthread_mutex_lock(&m);

x = x+1;

pthread_mutex_unlock(&m);

Using a mutex to provide mutually exclusive access to a single data structure at a time is
easy. Things get a bit more involved if we need to arrange for such access to multiple data struc-
tures at once. Consider the following example in which one thread is executing proc1 and another
is executing proc2:

void proc1() {

pthread_mutex_lock(&m1);

/* use object 1 */

pthread_mutex_lock(&m2);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m2);

 pthread_mutex_unlock(&m1);

}

void proc2() {

pthread_mutex_lock(&m2);

/* use object 2 */

pthread_mutex_lock(&m1);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m1);

 pthread_mutex_unlock(&m2);

}

CH002.indd 58CH002.indd 58 8/2/10 8:26:17 PM8/2/10 8:26:17 PM

Deadlock	 is	 nasty,	 difficult	 to	 detect,	 and	 to	 be	 avoided	 at	 all	 cost	

•  One	 useful	 avoidance	 mechanism	 is	 pthread_mutex_trylock()	

60 CHAPTER 2 Multithreaded Programming

Thread 1

Thread 2

Mutex 1 Mutex 2

FIGURE 2 .5 Thread/mutex graph.

can’t possibly exist in the graph. This is easy to do: we simply arrange our mutexes in some order
(for example, by assigning unique integers to them) and insist that all threads attempting to lock
multiple resources do so in ascending order.

In most applications it is fairly easy to set things up so that all threads lock mutexes in
ascending order. However, in some situations this is impossible, often because it is not known
which mutex should be locked second until the fi rst one is locked. An approach that often works
in such situations is to use conditional lock requests, as in:

proc1() {

pthread_mutex_lock(&m1);

/* use object 1 */

pthread_mutex_lock(&m2);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m2);

 pthread_mutex_unlock(&m1);

}

proc2() {

while (1) {

pthread_mutex_lock(&m2);

if (!pthread_mutex_trylock(&m1))

break;

 pthread_mutex_unlock(&m2);

}

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m1);

 pthread_mutex_unlock(&m2);

}

Here thread 1, executing proc1, obtains the mutexes in the correct order. Thread 2, executing
proc2, must for some reason take the mutexes out of order. If it is holding mutex 2, it must be care-
ful about taking mutex 1. So, rather than call pthread_mutex_lock, it calls pthread_mutex_trylock,
which always returns without blocking. If the mutex is available, pthread_mutex_trylock locks
the mutex and returns 0. If the mutex is not available (that is, if it is locked by another thread),
then pthread_mutex_trylock returns a nonzero error code (EBUSY). In the example above, if

CH002.indd 60CH002.indd 60 8/2/10 8:26:18 PM8/2/10 8:26:18 PM

Semaphores	
•  A	 semaphore	 is	 a	 nonnega)ve	 integer	 with	 two	 atomic	 opera)ons	

–  P	 (try	 to	 decrease)	 :	 thread	 waits	 un)l	 semaphore	 is	 posi)ve	 then	 subtracts	 1	 	
•  []’s	 are	 nota)on	 for	 guards;	 that	 which	 happens	 between	 them	 is	 atomic,	 instantaneous,	

and	 no	 other	 opera)on	 that	 might	 take	 interfere	 with	 it	 can	 take	 place	 while	 it	 is	 execu)ng	

–  V	 (increase)	

•  Mutexes	 can	 be	 implemented	 as	 semaphores	

62 CHAPTER 2 Multithreaded Programming

on native Dutch speakers. According to (Dijkstra undated: early 1960s), P stands for prolagen,
a made-up word derived from proberen te verlagen, “try to decrease” in Dutch. V stands for
verhogen, “increase” in Dutch.) The P operation is somewhat complicated: a thread waits until it
fi nds the value of the semaphore positive, then subtracts one from it. What’s really important is
that when the active part of the operation starts, the semaphore’s value is defi nitely positive, and
when this active part fi nishes, the value is exactly one less than when the operation started. It’s
often described as an atomic or indivisible operation: it has no component parts and takes place
as if it were happening instantaneously.

We use the following notation to describe the semantics of P:

when (semaphore > 0) [

semaphore = semaphore – 1;

]

This notation means that the operations in square brackets take place only when the expression
following “when,” known as the guard, is true; the statements in square brackets, known as
the command sequence, are effectively executed instantaneously: no other operation that might
interfere with it can take place while it is executing. We call the entire construct a guarded
command.

The V operation is simpler: a thread atomically adds one to the value of the semaphore.
We write this as

[semaphore = semaphore + 1]

There is no other means for manipulating the value of the semaphore (other than initializing
its value in the fi rst place). Thus if the semaphore’s value is initially one and two threads concur-
rently execute P and V operations on it, the resulting value of the semaphore is guaranteed to be
one. If its value is initially zero and the two threads concurrently execute P and V operations, the
P operation must wait until the V operation makes the semaphore’s value positive. Then the P
operation can complete, reducing the semaphore’s value to zero.

We can easily implement mutexes using semaphores:

semaphore S = 1;

void OneAtATime() {

P(S);

…

/* code executed mutually exclusively */

…

V(S);

}

If two threads call the OneAtATime routine, the fi rst one to execute the P operation fi nds S to
be one, and so subtracts one from it, making it zero. If the second thread now attempts to execute
the P operation, it fi nds S to be zero and thus must wait. Eventually the fi rst thread performs the V
operation, adding one back to S, which enables the second thread to continue. It subtracts one from
S and eventually executes the V and adds one back to it. When semaphores are used in such a way
that their values are only zero and one, as here, they are known as binary semaphores.

When multiple threads attempt to execute a P operation, the effect must be as if they execute
it one at a time while the semaphore’s value is positive. If its value is zero, they are queued up
and, one at a time, they complete the P operation in response to V operations by other threads.

CH002.indd 62CH002.indd 62 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

62 CHAPTER 2 Multithreaded Programming

on native Dutch speakers. According to (Dijkstra undated: early 1960s), P stands for prolagen,
a made-up word derived from proberen te verlagen, “try to decrease” in Dutch. V stands for
verhogen, “increase” in Dutch.) The P operation is somewhat complicated: a thread waits until it
fi nds the value of the semaphore positive, then subtracts one from it. What’s really important is
that when the active part of the operation starts, the semaphore’s value is defi nitely positive, and
when this active part fi nishes, the value is exactly one less than when the operation started. It’s
often described as an atomic or indivisible operation: it has no component parts and takes place
as if it were happening instantaneously.

We use the following notation to describe the semantics of P:

when (semaphore > 0) [

semaphore = semaphore – 1;

]

This notation means that the operations in square brackets take place only when the expression
following “when,” known as the guard, is true; the statements in square brackets, known as
the command sequence, are effectively executed instantaneously: no other operation that might
interfere with it can take place while it is executing. We call the entire construct a guarded
command.

The V operation is simpler: a thread atomically adds one to the value of the semaphore.
We write this as

[semaphore = semaphore + 1]

There is no other means for manipulating the value of the semaphore (other than initializing
its value in the fi rst place). Thus if the semaphore’s value is initially one and two threads concur-
rently execute P and V operations on it, the resulting value of the semaphore is guaranteed to be
one. If its value is initially zero and the two threads concurrently execute P and V operations, the
P operation must wait until the V operation makes the semaphore’s value positive. Then the P
operation can complete, reducing the semaphore’s value to zero.

We can easily implement mutexes using semaphores:

semaphore S = 1;

void OneAtATime() {

P(S);

…

/* code executed mutually exclusively */

…

V(S);

}

If two threads call the OneAtATime routine, the fi rst one to execute the P operation fi nds S to
be one, and so subtracts one from it, making it zero. If the second thread now attempts to execute
the P operation, it fi nds S to be zero and thus must wait. Eventually the fi rst thread performs the V
operation, adding one back to S, which enables the second thread to continue. It subtracts one from
S and eventually executes the V and adds one back to it. When semaphores are used in such a way
that their values are only zero and one, as here, they are known as binary semaphores.

When multiple threads attempt to execute a P operation, the effect must be as if they execute
it one at a time while the semaphore’s value is positive. If its value is zero, they are queued up
and, one at a time, they complete the P operation in response to V operations by other threads.

CH002.indd 62CH002.indd 62 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

62 CHAPTER 2 Multithreaded Programming

on native Dutch speakers. According to (Dijkstra undated: early 1960s), P stands for prolagen,
a made-up word derived from proberen te verlagen, “try to decrease” in Dutch. V stands for
verhogen, “increase” in Dutch.) The P operation is somewhat complicated: a thread waits until it
fi nds the value of the semaphore positive, then subtracts one from it. What’s really important is
that when the active part of the operation starts, the semaphore’s value is defi nitely positive, and
when this active part fi nishes, the value is exactly one less than when the operation started. It’s
often described as an atomic or indivisible operation: it has no component parts and takes place
as if it were happening instantaneously.

We use the following notation to describe the semantics of P:

when (semaphore > 0) [

semaphore = semaphore – 1;

]

This notation means that the operations in square brackets take place only when the expression
following “when,” known as the guard, is true; the statements in square brackets, known as
the command sequence, are effectively executed instantaneously: no other operation that might
interfere with it can take place while it is executing. We call the entire construct a guarded
command.

The V operation is simpler: a thread atomically adds one to the value of the semaphore.
We write this as

[semaphore = semaphore + 1]

There is no other means for manipulating the value of the semaphore (other than initializing
its value in the fi rst place). Thus if the semaphore’s value is initially one and two threads concur-
rently execute P and V operations on it, the resulting value of the semaphore is guaranteed to be
one. If its value is initially zero and the two threads concurrently execute P and V operations, the
P operation must wait until the V operation makes the semaphore’s value positive. Then the P
operation can complete, reducing the semaphore’s value to zero.

We can easily implement mutexes using semaphores:

semaphore S = 1;

void OneAtATime() {

P(S);

…

/* code executed mutually exclusively */

…

V(S);

}

If two threads call the OneAtATime routine, the fi rst one to execute the P operation fi nds S to
be one, and so subtracts one from it, making it zero. If the second thread now attempts to execute
the P operation, it fi nds S to be zero and thus must wait. Eventually the fi rst thread performs the V
operation, adding one back to S, which enables the second thread to continue. It subtracts one from
S and eventually executes the V and adds one back to it. When semaphores are used in such a way
that their values are only zero and one, as here, they are known as binary semaphores.

When multiple threads attempt to execute a P operation, the effect must be as if they execute
it one at a time while the semaphore’s value is positive. If its value is zero, they are queued up
and, one at a time, they complete the P operation in response to V operations by other threads.

CH002.indd 62CH002.indd 62 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

POSIX	 Semaphores	
•  Interface	

•  Note	 :	 Mac’s	 use	 Mach	 spec.	 named-‐semaphore	 via	 sem_open()	

2.2 Programming with Threads 63

We can easily generalize our above example to allow up to N threads to execute a block of
code (or access a data structure) simultaneously:

semaphore S = N;

void NAtATime() {

P(S);

…

/* No more than N threads here at once */

…

V(S);

}

Semaphores used this way are known as counting semaphores.
A more interesting example of counting semaphores involves using them to solve the

producer-consumer problem (see Figure 2.6 above). To keep things simple, let’s assume we
have one producer and one consumer. We have a buffer with B slots. We use two semaphores:
empty, representing the number of empty slots, and occupied, representing the number of occupied
slots. Our solution is:

Semaphore empty = B;

Semaphore occupied = 0;

int nextin = 0;

int nextout = 0;

void Produce(char item) {

P(empty);

buf[nextin] = item;

nextin = nextin + 1;

if (nextin == B)

nextin = 0;

V(occupied);

}

char Consume() {

char item;

P(occupied);

item = buf[nextout];

nextout = nextout + 1;

if (nextout == B)

nextout = 0;

V(empty);

return(item);

}

The fi rst P operation of Produce causes the thread to wait until there is at least one empty
slot in the buffer; at this point the slot is “taken” and empty’s value is reduced by one. The producer
puts its item in the buffer, then indicates there is one more occupied slot by performing a V operation
on occupied. Similar actions take place inside of Consume.

POSIX provides an implementation of semaphores, but, strangely, it’s not part of POSIX
threads (POSIX 1003.1c) but part of the POSIX real-time specifi cation (POSIX 1003.1b). This
matters only because, depending on the system, you may need to include an additional library
when you use semaphores.

The POSIX interface for semaphores is given below.

sem_t semaphore;

int err;

CH002.indd 63CH002.indd 63 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

64 CHAPTER 2 Multithreaded Programming

err = sem_init(&semaphore, pshared, init);

err = sem_destroy(&semaphore);

err = sem_wait(&semaphore); // P operation

err = sem_trywait(&semaphore); // conditional P operation

err = sem_post(&semaphore); // V operation

Thus semaphores are of type sem_t. All operations on them return an integer error code.
They must be dynamically initialized using sem_init (there is no static initialization such as
is provided for mutexes). They take two arguments in addition to the semaphore itself: a fl ag,
pshared, indicating whether the semaphore is to be used by threads of just one process (pshared =
0) or by threads of multiple processes (pshared = 1). We assume the former for now, and discuss
the latter later. Once a semaphore is no longer used, sem_destroy should be called to free whatever
storage was allocated by sem_init.

The sem_wait operation is the P operation described above. What’s new is the sem_trywait
operation, which is similar to pthread_mutex_trylock: if the semaphore’s value is positive and
thus no waiting is required, it behaves just like sem_wait (the value of the semaphore is immediately
reduced by one). However, if the semaphore’s value is zero, then, rather than waiting, the caller
returns immediately with an error code (the value EAGAIN).

We discuss the Win-32 version of semaphores in the section on Win-32 Events, below.

POSIX Condition Variables Semaphores are a convenient way to express solutions to a
number of synchronization problems, but using them can force amazingly complex solu-
tions for other problems. Thus most operating systems provide additional synchronization
constructs. Here we describe POSIX’s condition variables; later we discuss the events of
Win-32.

We described the semantics of semaphores using guarded commands. A general implementation
of our guarded-command construct is, however, a rather tall order. Somehow we’d have to moni-
tor the values of all variables appearing in the guard (i.e., the expression following the when) so
as to fi nd out when the guard becomes true. Then we’d have to make certain it remains true when
we start executing the command sequence (the code in square brackets that follows), and make
certain that this execution is indivisible.

Condition variables give programmers the tools needed to implement guarded commands.
A condition variable is a queue of threads waiting for some sort of notifi cation. Threads waiting
for a guard to become true join such queues. Threads that do something to change the value of a
guard from false to true can then wake up the threads that were waiting.

The following code shows the general approach:

Guarded command POSIX implementation

when (guard) [

statement 1;

…

statement n;

]

pthread_mutex_lock(&mutex);

while(!guard)

pthread_cond_wait(

&cond_var, &mutex));

statement 1;

…

statement n;

pthread_mutex_unlock(&mutex);

CH002.indd 64CH002.indd 64 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

OS	 Implementa)on	 Problem	 :	 Producer-‐Consumer	 *	
•  Buffer	 with	 a	 finite	 number	 of	 slots	
•  Threads	

–  Producer	 :	 puts	 things	 in	 the	 buffer	
–  Consumer	 :	 removes	 things	 from	 the	 buffer	

•  Producer	 must	 wait	 if	 buffer	 is	 full;	 consumer	 if	 buffer	 is	 empty	

2.2 Programming with Threads 61

mutex 1 is not available, this is probably because it is currently held by thread 1. If thread 2 were
to block waiting for the mutex, we have an excellent chance for deadlock. So, rather than block,
thread 1 not only quits trying for mutex 1 but also unlocks mutex 2 (since thread 1 could well be
waiting for it). It then starts all over again, fi rst taking mutex 2, then mutex 1.

Thread 2 thus repeatedly tries to lock both mutexes (in the wrong order) until it can do so
without causing any problems. This could, of course, require a fair number of iterations. When
this approach is used, the assumption (which must be validated) is that contention for locks is low
and thus even two iterations are unlikely to occur. If lock contention is high, another solution is
necessary, perhaps one that requires all threads to honor the locking order.

2.2.3.2 Beyond Mutual Exclusion
Though mutual exclusion is the most common form of synchronization, there are numerous
situations that it cannot handle. One obvious extension to mutual exclusion is what’s known as
the readers-writers problem: rather than requiring mutual exclusion for all accesses to a data
structure, we can relax things a bit and insist on mutual exclusion only if the data structure is
being modifi ed. Thus any number of threads (readers) may be just looking at the data structure at
once, but any thread intending to modify it must have mutually exclusive access.

Another common (at least in texts such as this) synchronization problem is the pro-
ducer-consumer problem (sometimes called the bounded-buffer problem). Here we have a
buffer containing a fi nite number of slots. As shown in Figure 2.6, a producer is a thread that
wishes to put an item into the next empty slot of the buffer. A consumer is a thread that wishes
to remove an item from the next occupied slot. The synchronization issue for producers is that
if all slots in the buffer are occupied, then producer threads must wait until empty slots are
available. Similarly, if all slots are empty, consumer threads must wait until occupied slots
are available.

The next synchronization problem might seem a bit mundane, but it’s particularly important
in many operating systems. It doesn’t have a common name; here we call it the event problem.
A number of threads are waiting for a particular event to happen. Once the event has happened,
we’d like to release all of the waiting threads. For example, a number of threads might be waiting
for a read operation on a disk to complete. Once it’s completed, all threads are woken up and can
use the data that was just read in.

Semaphores These problems, and many others, were fi rst identifi ed in the 1960s. The per-
son who did much of the early work in identifying and elegantly solving these problems was
Edsger Dijkstra. The semaphore, a synchronization operation (Dijkstra undated: early 1960s) he
described and used in an early system (Dijkstra 1968), has proven so useful that it continues to
be used in most modern operating systems.

A semaphore is a nonnegative integer on which there are exactly two operations, called by
Dijkstra P and V. (What P and V stand for isn’t obvious. While Dijkstra was Dutch and based
his terminology on Dutch words, the mnemonic signifi cance of P and V seems to be lost even

ProducerConsumer

FIGURE 2 .6 Producer-consumer problem.

CH002.indd 61CH002.indd 61 8/2/10 8:26:18 PM8/2/10 8:26:18 PM

Semaphore	 sol’n	 to	 the	 producer-‐consumer	 problem	 	
•  Example	 sheet	

2.2 Programming with Threads 63

We can easily generalize our above example to allow up to N threads to execute a block of
code (or access a data structure) simultaneously:

semaphore S = N;

void NAtATime() {

P(S);

…

/* No more than N threads here at once */

…

V(S);

}

Semaphores used this way are known as counting semaphores.
A more interesting example of counting semaphores involves using them to solve the

producer-consumer problem (see Figure 2.6 above). To keep things simple, let’s assume we
have one producer and one consumer. We have a buffer with B slots. We use two semaphores:
empty, representing the number of empty slots, and occupied, representing the number of occupied
slots. Our solution is:

Semaphore empty = B;

Semaphore occupied = 0;

int nextin = 0;

int nextout = 0;

void Produce(char item) {

P(empty);

buf[nextin] = item;

nextin = nextin + 1;

if (nextin == B)

nextin = 0;

V(occupied);

}

char Consume() {

char item;

P(occupied);

item = buf[nextout];

nextout = nextout + 1;

if (nextout == B)

nextout = 0;

V(empty);

return(item);

}

The fi rst P operation of Produce causes the thread to wait until there is at least one empty
slot in the buffer; at this point the slot is “taken” and empty’s value is reduced by one. The producer
puts its item in the buffer, then indicates there is one more occupied slot by performing a V operation
on occupied. Similar actions take place inside of Consume.

POSIX provides an implementation of semaphores, but, strangely, it’s not part of POSIX
threads (POSIX 1003.1c) but part of the POSIX real-time specifi cation (POSIX 1003.1b). This
matters only because, depending on the system, you may need to include an additional library
when you use semaphores.

The POSIX interface for semaphores is given below.

sem_t semaphore;

int err;

CH002.indd 63CH002.indd 63 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

Devia)ons	
•  Signals	

–  Force	 a	 user	 thread	 to	 put	 aside	 current	 ac)vity	 	
–  Call	 a	 pre-‐arranged	 handler	
–  Go	 back	 to	 what	 it	 was	 doing	
–  Similar	 to	 interrupt	 handling	 inside	 the	 OS	

•  Examples	
–  Typing	 special	 characters	 on	 the	 keyboard	 (^c)	
–  Signals	 sent	 by	 other	 threads	 (kill)	
–  Program	 excep)ons	 (divide	 by	 zero,	 addressing	 excep)ons)	

•  Background	
–  Graceful	 termina)on	 via	 ^c	 and	 SIGINT	

Signals	 and	 Handled	 by	 Handlers	
•  Se�ng	 up	 a	 handler	 to	 be	 invoked	 upon	 receipt	 of	 a	 ^c	 signal	

•  Signals	 can	 be	 used	 to	 communicate	 with	 a	 process	
	

80 CHAPTER 2 Multithreaded Programming

A process might set up a handler to be invoked when such a signal is delivered, as shown
below:

int main() {

void handler(int);

sigset(SIGINT, handler);

/* long-running buggy code */

…

}

void handler(int sig) {

/* perform some cleanup actions */

…

exit(1);

}

The call to sigset in main causes handler to be registered as the signal handler for the
SIGINT signal. Thus if you run this program and decide to terminate it early by typing Ctrl-C, a
SIGINT signal is delivered to the process, causing it to put aside its current state and call handler;
handler performs some cleanup actions (perhaps writing some key data to a fi le) and then terminates
the process.

Signals can also be used as a means for communicating with a process, perhaps requesting
it to do something:

computation_state_t state;

int main() {

void handler(int);

sigset(SIGINT, handler);

long_running_procedure();

}

long_running_procedure() {

while (a_long_time) {

update_state(&state);

compute_more();

}

}

void handler(int sig) {

display(&state);

}

In this code the main procedure establishes a handler for SIGINT, and then calls
long_running_procedure, which might execute for several days. Occasionally the user of the

CH002.indd 80CH002.indd 80 8/2/10 8:26:23 PM8/2/10 8:26:23 PM

•  Signals	 are	 processed	 by	 a	 single	 thread	 of	
execu)on	

•  Communica)on	 at	 right	 not	 problem-‐free	
because	 of	 asynchronous	 access	 to	 state	

•  Mutex	 use	 will	 result	 in	 deadlock	
•  Making	 rou)nes	 async-‐signal	 safe	 requires	

making	 them	 so	 that	 the	 controlling	 thread	
cannot	 be	 interrupted	 by	 a	 signal	 at	 certain	
)mes	 (i.e.	 in	 update_state)	
–  Signal	 handling	 turned	 on	 and	 off	 by	

•  sigemptyset()	
•  sigaddset()	
•  Sigprocmask()	

•  POSIX	 compliant	 OS’s	 implement	 60+	 async-‐
signal	 safe	 rou)nes	

Async-‐signal	 safe	 rou)nes	 (OS	 implementa)on	 perspec)ve)	

80 CHAPTER 2 Multithreaded Programming

A process might set up a handler to be invoked when such a signal is delivered, as shown
below:

int main() {

void handler(int);

sigset(SIGINT, handler);

/* long-running buggy code */

…

}

void handler(int sig) {

/* perform some cleanup actions */

…

exit(1);

}

The call to sigset in main causes handler to be registered as the signal handler for the
SIGINT signal. Thus if you run this program and decide to terminate it early by typing Ctrl-C, a
SIGINT signal is delivered to the process, causing it to put aside its current state and call handler;
handler performs some cleanup actions (perhaps writing some key data to a fi le) and then terminates
the process.

Signals can also be used as a means for communicating with a process, perhaps requesting
it to do something:

computation_state_t state;

int main() {

void handler(int);

sigset(SIGINT, handler);

long_running_procedure();

}

long_running_procedure() {

while (a_long_time) {

update_state(&state);

compute_more();

}

}

void handler(int sig) {

display(&state);

}

In this code the main procedure establishes a handler for SIGINT, and then calls
long_running_procedure, which might execute for several days. Occasionally the user of the

CH002.indd 80CH002.indd 80 8/2/10 8:26:23 PM8/2/10 8:26:23 PM

Other	 Basic	 OS	 Concepts	
•  Context	 switching	

–  Stack	 frames	
–  System	 calls	
–  Interrupts	

•  I/O	
•  Dynamic	 Storage	 Alloca)on	

–  Best-‐fit,	 first-‐fit	
•  Linking	 and	 loading	
•  Boo)ng	

Context	 Switching	 and	 stack	 frames	
•  “Context”	 is	 the	 se�ng	 in	 which	 execu)on	 is	 currently	 taking	 place	

–  Processor	 mode	
–  Address	 space	
–  Register	 contents	
–  Thread	 or	 interrupt	 state	

•  Intel	 x86	 Stack	 Frames	
–  Subrou)ne	 context	

•  Instruc)on	 pointer	 (reg.	 eip)	
–  Address	 to	 which	 control	 should	

return	 when	 subrou)ne	 is	
complete	

•  Frame	 pointer	 (reg.	 ebp)	
–  Link	 to	 stack	 frame	 of	 caller	

3.1 Context Switching 95

The picture above is idealized: not all portions of the stack frame are always used. For exam-
ple, registers are not saved if the subroutine doesn’t modify them, the frame pointer is not saved
if it’s not used, etc. For more details, see the Intel architecture manuals (http://www.intel.com/
design/processor/manuals/253665.pdf).

Here’s possible unoptimized assembler code for the above C code:1

main:

 ; enter main, creating a new stack frame

 pushl %ebp ; Push frame pointer onto the stack;

 ; this means that the contents of the

 ; stack-pointer register (esp) are

 ; reduced by 4 so that esp points to

 ; next lower word in the stack, then

 ; the contents of the frame-pointer

 ; register (ebp) are stored there.

 movl %esp, %ebp ; Set frame pointer to point to new

 ; frame: the address of the current end

 ; of the stack (in register esp) is

 ; copied to the frame-pointer register.

 pushl %esi ; Save esi register: its contents are

 ; pushed onto the stack.

 pushl %edi ; Save edi register: its contents are

 ; pushed onto the stack.

 subl $8, %esp ; Create space for local variables (i

1 We use the syntax of the Gnu assembler. It’s similar to that of the Microsoft assembler (masm) except in the order of arguments:
in the Gnu assembler, the fi rst argument is the source and the second is the destination; in the Microsoft assembler, the order is
reversed.

FIGURE 3 .1 Intel x86 stack frames.

args

eip

Saved registers

Local variables

ebp

args

eip

Saved registers

Local variables

ebp

esp

ebp

Stack frame

CH003.indd 95CH003.indd 95 8/2/10 8:31:19 PM8/2/10 8:31:19 PM

Remember;	 the	 stack	 grows	 down	

System	 calls	
•  Transfer	 control	 from	 user	 to	 system	 code	 and	 back	

–  Typically	 does	 not	 involve	 thread	 switch	 	
–  Typically	 uses	 a	 kernel	 stack	 frame	 3.1 Context Switching 103

The fi rst technique, allocating a stack, is ruled out for a number of reasons, not least that it
is too time-consuming, though a variant is used in Solaris, as discussed below. Both the latter two
approaches are used. A single system-wide interrupt stack was used on DEC’s VAX computers;2
in most other architectures the interrupt handler borrows a stack (the kernel stack) from the thread
that was interrupted (see Figure 3.6). If another interrupt handler was interrupted, its context is
saved on the current stack, and that stack continues to be used for the new interrupt handler.

On those systems on which multiple interrupt handlers use the same stack, perhaps one
borrowed from a thread, interrupt handlers must execute differently from normal thread execu-
tion. Because there is just one shared stack, there is just one interrupt context. We cannot suspend
the execution of one handler and resume the execution of another: the handler of the most recent
interrupt must run to completion. Then, when it has no further need of the stack, the handler of
the next-most-recent interrupt completes its execution, and so forth.

That the execution of an interrupt handler cannot be suspended is signifi cant because it
means that interrupt handling cannot yield to anything other than higher-priority interrupts. For
example, on a uniprocessor system, if interrupt handler 2 interrupts interrupt handler 1 and then
wakes up a high-priority thread that must immediately respond to an event, the thread cannot run
until all interrupt handling completes, including that of interrupt handler 1.

If we could somehow give each interrupt handler its own stack, we wouldn’t have this
problem. Solaris, as well as some real-time systems, has preallocated stacks for each possible
interrupt level. Thus each has its own independent context and can yield to other processing, just
as threads can. We discuss this in greater detail in Chapter 5. Most other general-purpose systems
do not support this style of architecture.

Another approach to getting interrupt handlers to yield to other execution is that the handler
places a description of the work that must be done on a queue of some sort, then arranges for it
to be done in some other context at a later time. This approach, which is used in many systems
including Windows and Linux, is also discussed in Chapter 5.

2 Multiprocessor versions of the VAX had one interrupt stack per processor.

FIGURE 3 .5 System-call fl ow.

prog() {

. . .

write(fd, buffer, size); trap(write_code);

. . .

}

write() {

. . .

. . .

}

prog frame

write

User stack

User
Kernel

trap_handler(code) {

. . .

if(code == write_code)

write_handler();

. . .

}

trap_handler
frame

write_handler
frame

Kernel stack

FIGURE 3 .6 Interrupt
handlers and stacks.

User
stack

frames

Current thread’s
user stack

Kernel
stack

frames

Interrupt
handler

1’s frame

Interrupt
handler

2’s frame

Current thread’s
kernel stack

CH003.indd 103CH003.indd 103 8/2/10 8:31:21 PM8/2/10 8:31:21 PM

•  On	 interrupt	
–  Processor	 	

•  Puts	 aside	 current	 context	
•  Switches	 to	 interrupt	 context	

•  Interrupts	 require	 stacks	
–  OS’s	 differ	
–  Common	 choice	 :	 kernel	 stack	

Interrupts	

3.1 Context Switching 103

The fi rst technique, allocating a stack, is ruled out for a number of reasons, not least that it
is too time-consuming, though a variant is used in Solaris, as discussed below. Both the latter two
approaches are used. A single system-wide interrupt stack was used on DEC’s VAX computers;2
in most other architectures the interrupt handler borrows a stack (the kernel stack) from the thread
that was interrupted (see Figure 3.6). If another interrupt handler was interrupted, its context is
saved on the current stack, and that stack continues to be used for the new interrupt handler.

On those systems on which multiple interrupt handlers use the same stack, perhaps one
borrowed from a thread, interrupt handlers must execute differently from normal thread execu-
tion. Because there is just one shared stack, there is just one interrupt context. We cannot suspend
the execution of one handler and resume the execution of another: the handler of the most recent
interrupt must run to completion. Then, when it has no further need of the stack, the handler of
the next-most-recent interrupt completes its execution, and so forth.

That the execution of an interrupt handler cannot be suspended is signifi cant because it
means that interrupt handling cannot yield to anything other than higher-priority interrupts. For
example, on a uniprocessor system, if interrupt handler 2 interrupts interrupt handler 1 and then
wakes up a high-priority thread that must immediately respond to an event, the thread cannot run
until all interrupt handling completes, including that of interrupt handler 1.

If we could somehow give each interrupt handler its own stack, we wouldn’t have this
problem. Solaris, as well as some real-time systems, has preallocated stacks for each possible
interrupt level. Thus each has its own independent context and can yield to other processing, just
as threads can. We discuss this in greater detail in Chapter 5. Most other general-purpose systems
do not support this style of architecture.

Another approach to getting interrupt handlers to yield to other execution is that the handler
places a description of the work that must be done on a queue of some sort, then arranges for it
to be done in some other context at a later time. This approach, which is used in many systems
including Windows and Linux, is also discussed in Chapter 5.

2 Multiprocessor versions of the VAX had one interrupt stack per processor.

FIGURE 3 .5 System-call fl ow.

prog() {

. . .

write(fd, buffer, size); trap(write_code);

. . .

}

write() {

. . .

. . .

}

prog frame

write

User stack

User
Kernel

trap_handler(code) {

. . .

if(code == write_code)

write_handler();

. . .

}

trap_handler
frame

write_handler
frame

Kernel stack

FIGURE 3 .6 Interrupt
handlers and stacks.

User
stack

frames

Current thread’s
user stack

Kernel
stack

frames

Interrupt
handler

1’s frame

Interrupt
handler

2’s frame

Current thread’s
kernel stack

CH003.indd 103CH003.indd 103 8/2/10 8:31:21 PM8/2/10 8:31:21 PM

•  Memory-‐mapped	
–  Each	 device	 has	 a	 controller	
–  Each	 controller	 has	 registers	
–  Registers	 appear	 to	 processor	 as	

physical	 memory	
–  Actually	 aeached	 via	 a	 bus	

•  Categories	 of	 I/O	 devices	
–  Programmed	 I/O	 (PIO)	

•  One	 word	 per	 read/write	
•  e.g.	 terminal	

–  Direct	 memory	 access	 (DMA)	
•  Controller	 directly	 manipulates	
physical	 memory	 in	 loca)on	
specified	 by	 processor	

•  e.g.	 disk	

I/O	 Architecture	 Types	 (Simplified)	

104 CHAPTER 3 Basic Concepts

An important property of interrupts is that they can be masked, i.e., temporarily blocked. If an
interrupt occurs while it is masked, the interrupt indication remains pending; once it is unmasked, the
processor is interrupted. How interrupts are masked is architecture-dependent, but two approaches
are common. One approach is that a hardware register implements a bit vector — each bit represents
a class of interrupts. If a particular bit is set, then the corresponding class of interrupts is masked.
Thus the kernel masks interrupts by setting bits in the register. When an interrupt does occur, the
corresponding mask bit is set in the register and cleared when the handler returns — further occur-
rences of that class of interrupts are masked while the handler is running.

What’s more common are hierarchical interrupt levels. Each particular device issues inter-
rupts at a particular level. The processor masks interrupts by setting an interrupt priority level
(IPL) in a hardware register: all devices whose interrupt level is less than or equal to this value
have their interrupts masked. Thus the kernel masks a class of interrupts by setting the IPL to a
particular value. When an interrupt does occur and the handler is invoked, the current IPL is set
to that of the device, and restored to its previous value when the handler returns.

In this section we give a high-level, rather simplistic overview of common I/O architectures. Our
intent is to provide just enough detail to discuss the responsibilities of the operating system in
regard to I/O, but without covering the myriad arcane details of device management. To do this,
we introduce a simple I/O architecture we have used in the past at Brown University for operating
system projects.

A very simple architecture is the memory-mapped architecture: each device is controlled
by a controller and each controller contains a set of registers for monitoring and controlling its
operation (see Figure 3.7). These registers appear to the processor to occupy physical memory
locations. In reality, however, each controller is connected to a bus. When the processor wants to
access or modify a particular location, it broadcasts the address on the bus. Each controller listens
for a fi xed set of addresses and, when one of its addresses has been broadcast, attends to what the
processor wants to have done, e.g., read the data at a particular location or modify the data at a
particular location. The memory controller, a special case, passes the bus requests to the actual
primary memory. The other controllers respond to far fewer addresses, and the effect of reading
and writing is to access and modify the various controller registers.

There are two categories of devices, programmed I/O (PIO) devices and direct memory
access (DMA) devices. PIO devices do I/O by reading or writing data in the controller registers
one byte or word at a time. In DMA devices the controller itself performs the I/O: the processor
puts a description of the desired I/O operation into the controller’s registers, then the controller
takes over and transfers data between a device and primary memory.

3.2
INPUT/OUTPUT
ARCHITECTURES

3.2
INPUT/OUTPUT
ARCHITECTURES

Bus

Memory Disk

Processor

ControllerControllerController

FIGURE 3 .7 Simple I/O architecture.

CH003.indd 104CH003.indd 104 8/2/10 8:31:22 PM8/2/10 8:31:22 PM

PIO	 and	 DMA	 Example	 	

3.2 Input/Output Architectures 105

Our architecture supports both PIO and DMA devices. The default confi guration has
one PIO device (a terminal) and one DMA device (a disk). Each PIO device has four registers:
Control, Status, Read, and Write, each one byte in length (see Figure 3.8). Each DMA device
also has four registers: Control, Status, Memory Address, and Device Address (Figure 3.9). The
control and status registers are each one byte long; the others are four bytes long (they hold
addresses). Certain bits of the control registers are used to start certain functions, as shown in
Figure 3.8 and Figure 3.9. Bits of the status registers are used to indicate whether the associated
controller is ready or busy.

Control registerGoR GoW IER IEW

Status registerRdyR RdyW

Read register

Write register

Ready to write RdyW

Ready to readRdyR

Enable write-completion interruptsIEW

Enable read-completion interruptsIER

Go write (start a write operation)GoW

Go read (start a read operation)GoRLegend:

FIGURE 3 .8 PIO registers.

Op Code Control registerGo IE

Status registerRdy

Memory address register

Device address register

Operation code (identifies the operation)Op Code

Controller is readyRdy

Enable interruptsIE

Start an operationGoLegend:

FIGURE 3 .9 DMA registers.

CH003.indd 105CH003.indd 105 8/2/10 8:31:23 PM8/2/10 8:31:23 PM

3.2 Input/Output Architectures 105

Our architecture supports both PIO and DMA devices. The default confi guration has
one PIO device (a terminal) and one DMA device (a disk). Each PIO device has four registers:
Control, Status, Read, and Write, each one byte in length (see Figure 3.8). Each DMA device
also has four registers: Control, Status, Memory Address, and Device Address (Figure 3.9). The
control and status registers are each one byte long; the others are four bytes long (they hold
addresses). Certain bits of the control registers are used to start certain functions, as shown in
Figure 3.8 and Figure 3.9. Bits of the status registers are used to indicate whether the associated
controller is ready or busy.

Control registerGoR GoW IER IEW

Status registerRdyR RdyW

Read register

Write register

Ready to write RdyW

Ready to readRdyR

Enable write-completion interruptsIEW

Enable read-completion interruptsIER

Go write (start a write operation)GoW

Go read (start a read operation)GoRLegend:

FIGURE 3 .8 PIO registers.

Op Code Control registerGo IE

Status registerRdy

Memory address register

Device address register

Operation code (identifies the operation)Op Code

Controller is readyRdy

Enable interruptsIE

Start an operationGoLegend:

FIGURE 3 .9 DMA registers.

CH003.indd 105CH003.indd 105 8/2/10 8:31:23 PM8/2/10 8:31:23 PM

PIO	 DMA	

•  Storage	 alloca)on	 is	 very	
important	 in	 OS’s	
–  Disk	
–  Memory	

•  Example	
–  1000,	 1100,	 250	 bytes	 in	 order	

•  Compe)ng	 approaches	
–  First-‐fit	
–  Best-‐fit	

•  Knuth	 simula)ons	 revealed	
(non-‐intui)vely)	 first-‐fit	 was	
best	

•  Intui)on	 :	 best-‐fit	 leaves	 too	
many	 small	 gaps	

(Dynamic)	 Storage	 Alloca)on	

3.3 Dynamic Storage Allocation 107

In this version, the start_read and start_write methods return a handle identifying the
operation that has started. A thread can, at some later point, call wait with the handle and wait
until that operation has completed. Note that multiple threads might call wait with the same
handle if all must wait for the same operation (for example, if all need the same block from
a fi le).

A more sophisticated approach to I/O used in what are commonly called “mainframe”
computers is to employ specialized I/O processors to handle much of the I/O work. This is par-
ticularly important in large data-processing applications where I/O costs dominate computation
costs. These I/O processors are traditionally called channels and execute programs in primary
storage called channel programs (see Figure 3.10).

Storage allocation is a very important concern in operating systems. Whenever a thread is cre-
ated, its stacks, control block, and other data structures must be allocated; whenever a thread
terminates, these data structures must be freed. Since there are numerous other such dynamic
data structures, both inside the operating system and within user applications, this allocation and
liberation of storage must be done as quickly as possible.

The classic reference for most of this material is Donald Knuth’s The Art of Computer
Programming, Vol. 1: Fundamental Algorithms. In this section we summarize Knuth’s results
and discuss some additional operating-system concerns.

3.1.1 BEST-FIT AND FIRST-FIT ALGORITHMS

We start with the general problem of maintaining a pool of available memory and allocating vari-
able-size quantities from it. Following Knuth (this is his example), consider the memory pool in
Figure 3.11 that has two blocks of free memory, one 1300 bytes long and the other 1200 bytes
long. We’ll try two different algorithms to process series of allocation requests. The fi rst is called
fi rst fi t — an allocation request is taken from the fi rst area of memory that is large enough to
satisfy the request. The second is called best fi t — the request is taken from the smallest area of
memory that is large enough to satisfy the request.

3.3
DYNAMIC
STORAGE
ALLOCATION

3.3
DYNAMIC
STORAGE
ALLOCATION

Memory

Processor

Channel Controller

Channel Controller

Channel Controller

FIGURE 3 .10 I/O with channels.

1300

1200

FIGURE 3 .11 Pool of
free storage.

CH003.indd 107CH003.indd 107 8/2/10 8:31:24 PM8/2/10 8:31:24 PM

Pool	 of	 Free	 storage	

108 CHAPTER 3 Basic Concepts

On the principle that whatever requires the most work must be best, one might think that
best fi t is the algorithm of choice. However, Figure 3.12 illustrates a case in which fi rst fi t
behaves better than best fi t. We fi rst allocate 1000 bytes. Under the fi rst-fi t approach (on the left),
this allocation is taken from the topmost region of free memory, leaving behind a region of 300 bytes
of still unallocated memory. With the best-fi t approach (right), this allocation is taken from the
bottommost region of free memory, leaving behind a region of 200 bytes of still unallocated
memory. The next allocation is for 1100 bytes. Under fi rst fi t, we now have two regions of 300 bytes
and 100 bytes. Under best fi t, we have two regions of 200 bytes. Finally, there is an allocation of
250 bytes. First fi t leaves behind two regions of 50 bytes and 100 bytes, but best fi t cannot handle
the allocation — neither remaining region is large enough.

Clearly one can come up with examples in which best fi t performs better. However, Knuth’s
simulation studies have shown that, on the average, fi rst fi t works best. Intuitively, the reason for
this is that best fi t tends to leave behind a large number of regions of memory that are too small
to be useful, as in Figure 3.12.

The liberation of storage is more diffi cult than its allocation, for the reason shown in Figure
3.13 (another example from Knuth). Here the shaded regions are unallocated memory. The region of
storage A separating the two unallocated regions is about to be liberated. We’d like this to produce
one large region of unallocated storage rather than three smaller adjacent regions. Thus the liberation
algorithm must be able to determine if adjacent storage regions are allocated or free. An algorithm
could simply walk through the list of free storage to determine if the adjacent areas are free, but a
much cheaper approach is to tag the boundaries of storage regions to indicate whether they are
allocated or free. Knuth calls this the boundary-tag method and provides an algorithm for it.

The shortcomings of best fi t illustrate a common issue in storage management: fragmenta-
tion. What we saw here is called external fragmentation, in which we end up with lots of small
areas of storage that collectively are sizeable, but individually are too small to be of use. In
the following sections we encounter internal fragmentation, in which storage is wasted because
more must be allocated than is needed.

3.3.2 BUDDY SYSTEM

The buddy system is a simple dynamic storage allocation scheme that works surprisingly well. Storage
is maintained in blocks whose sizes are powers of two. Requests are rounded up to the smallest such
power greater than the request size. If a block of that size is free, it’s taken; otherwise, the smallest free
block larger than the desired size is found and split in half — the two halves are called buddies. If the
size of either buddy is what’s needed, one of them is allocated (the other remains free). Otherwise one
of the buddies is split in half. This splitting continues until the appropriate size is reached.

300

1200

1300

200

100

300

100

50

200

200

1000 bytes

1100 bytes

250 bytes

First fit Best fit

Stuck!

FIGURE 3 .12 Allocations using fi rst fi t and best fi t.

A free(A)

FIGURE 3 .13 Liberating storage.

CH003.indd 108CH003.indd 108 8/2/10 8:31:25 PM8/2/10 8:31:25 PM

Memory	 /	 File	

Start	

Alloca)on	 through	 finish	

•  Knuth	 :	 “boundary-‐tag”	
method	 and	 algorithm	
–  Combines	 free	 segments	 greedily	

upon	 release	
–  Requires	 datastructure	 that	

represents	 free	 or	 not-‐free	

•  Helps	 avoid	 “fragmenta)on”	
–  External	

•  Free	 spaces	 too	 small	
–  Internal	

•  Allocated	 memory	 unnecessarily	
too	 large	 (this	 situa)on	 arises	 in	
different,	 not-‐covered	 alloca)on	
approaches	 like	 the	 “slab”	
approach)	

Freeing	 Storage	 Is	 More	 Complex	

hep://books.google.co.uk/books?
id=gJrdSueQjBEC&pg=PA328&lpg=PA328&dq=boundary+tag
+algorithm&source=bl&ots=VPIoDQOTqj&sig=NCPz__mnViO5ajj5Q-‐
P3KccBIhk&hl=en&sa=X&ei=j-‐
x4UdDlBcusPIzVgLgJ&ved=0CEsQ6AEwAw#v=onepage&q=boundary
%20tag%20algorithm&f=false	

Linking	 and	 loading	
•  ld	 links	 and	 relocates	 code	 by	 resolving	 addresses	 of	 variables	 and	

procedures	
•  Shared	 libraries	 require	 mechanisms	 that	 delay	 linking	 un)l	 run-‐

)me	
•  Loading	 requires	 se�ng	 up	 address	 space	 then	 calling	 main	

Boo)ng	
	

•  Thought	 to	 be	 derived	 from	 “to	 pull	 yourself	 up	 by	 your	 bootstraps”	
•  Modern	 computers	 boot	 from	 BIOS	 read	 only	 memory	 (ROM)	 	

–  Last	 64K	 of	 the	 first	 MB	 of	 address	 space	

•  When	 the	 computer	 is	 powered	 on	 it	 starts	 execu)ng	 instruc)ons	
at	 0xffff0	

•  Looks	 for	 a	 boot	 device	
–  Loads	 a	 master	 boot	 record	 (MBR)	

•  Cylinder	 0,	 head	 0,	 sector	 1	 (hard	 disc)	

•  Loads	 boot	 program	
•  Transfers	 control	 to	 boot	 program	
•  Boot	 progam	 (lilo,	 grub,	 etc.)	 loads	 OS	
•  Transfers	 control	

122 CHAPTER 3 Basic Concepts

The provider of the computer system supplies a BIOS chip residing on the “motherboard” con-
taining everything necessary to perform the three functions. Additional BIOS functions might
reside on chips on add-on boards, providing access to additional devices.

The BIOS ROM is mapped into the last 64K of the fi rst megabyte of address space
(starting at location 0xf0000). When the system is powered on, the processor starts executing
instructions at location 0xffff0 — the last sixteen bytes of this mapped region. At this location is
a branch instruction that transfers control to the beginning of the BIOS code. The fi rst thing the
code does is the power-on self test, during which it initializes hardware, checks for problems,
and computes the amount of primary storage.

The next step is to fi nd a boot device. This is probably a hard disk, but could be a fl oppy or
diskette. The list of possibilities and the order to search are in the settings stored in non-volatile
RAM.

Once the boot device is found, the master boot record (MBR) is loaded from the fi rst sector
of a fl oppy or diskette, or from cylinder 0, head 0, sector 1 of a hard disk (see Chapter 6 for an
explanation of these terms). The MBR (Figure 3.20) is 512 bytes long and contains:

a “magic number” identifying itself

a partition table listing up to four regions of the disk (identifying one as the active or boot
partition)

executable boot program

The BIOS code transfers control to the boot program. What happens next depends, of
course, on the boot program. In the original version (for MS-DOS), this program would fi nd
the one active partition, load the fi rst sector from it (containing the volume boot program), and
pass control to that program. This program would then load the operating system from that
partition.

More recent boot programs allow more fl exibility. For example, both lilo (Linux Loader)
and grub (Grand Unifi ed Boot Manager), allow one to choose from multiple systems to boot,
so that, for example, one can choose between booting Linux or Windows. Lilo has the sector
number of the kernel images included within its code and thus must be modifi ed if a kernel
image moves. Grub understands a number of fi le systems and can fi nd the image given a
path name.

•

•

•

Boot program

Partition table

Magic number

446 bytes

64 bytes

2 bytes

Partition 1

Partition 2

Partition 3

Partition 4
Master boot record

FIGURE 3 .20 The mas-
ter boot record, residing
in the fi rst sector of a
bootable disk.

CH003.indd 122CH003.indd 122 8/2/10 8:31:33 PM8/2/10 8:31:33 PM

Review	
•  OS	 essen)als	

–  Threads	
–  Context	 switching	 for	 management	 of	 processors	
–  I/O	 for	 file	 systems	
–  Dynamic	 storage	 alloca)on	

