
Introduc)on	

B16	
 Opera)ng	
 Systems	

Learning	
 Outcomes	
 (Examinable	
 Material	
 *)	

•  Familiarity	
 with	
 opera)ng	
 system	
 concepts	
 	

–  File	

–  Process	

–  Thread	

–  Synchronisa)on	

–  Memory	

–  Paging	

–  Socket	

–  Port	

	

•  Datastructures	
 /	
 implementa)ons	

–  Page	
 table	

–  Semaphore	

–  Mutex	

–  Socket	

Perspec)ve	

•  User	
 perspec)ve	
 *	

–  Linux	
 (posix	
 compliant	
 OS)	

–  System	
 calls	
 (fork,	
 wait,	
 open,	
 prinM)	

–  Command	
 line	
 u)li)es	
 (man	
 <sec)on>)	

–  C	
 programs	

•  Opera)ng	
 system	
 implementa)on	
 perspec)ve	

–  “Simple-­‐OS”	

	

Lecture	
 1	
 :	
 History	
 and	
 User	
 Perspec)ve	

Material	
 from	
 	

Opera)ng	
 Systems	
 in	
 Depth	
 	

(spec.	
 Chapter	
 1)	
 	

by	

Thomas	
 Doeppner	

	

GET	
 THIS	
 BOOK	
 AND	
 READ	
 IT!	

B16	
 Opera)ng	
 Systems	

What	
 is	
 an	
 opera)ng	
 system?	

•  Opera)ng	
 systems	
 provide	
 so_ware	
 abstracts	
 of	

–  Processors	

–  RAM	
 (physical	
 memory)	

–  Disks	
 (secondary	
 storage)	

–  Network	
 interfaces	
 	

–  Display	

–  Keyboards	

–  Mice	

•  Opera)ng	
 systems	
 allow	
 for	
 sharing	

•  Opera)ng	
 systems	
 typically	
 provide	
 abstrac)ons	
 for	

–  Processes	

–  Files	

–  Sockets	

Why	
 should	
 we	
 study	
 opera)ng	
 systems?	

•  “To	
 a	
 certain	
 extent	
 [building	
 an	
 opera)ng	
 system	
 is]	
 a	
 solved	

problem”	
 –	
 Doeppner	

•  “So	
 too	
 is	
 bridge	
 building”	
 –	
 Wood	

–  History	
 and	
 its	
 lessons	

•  Capacity	
 and	
 correct	
 usage	

–  Improvement	
 possible	

•  New	
 algorithms,	
 new	
 storage	
 media,	
 new	
 peripherals	

•  New	
 concerns	
 :	
 security	

•  New	
 paradigms	
 :	
 the	
 “cloud”	

Review	
 :	
 Computer	
 ≈	
 Von	
 Neumann	
 Architecture	
 	

Image	
 from	
 hep://cse.iitkgp.ac.in/pds/notes/intro.html	

Review	
 :	
 Machine	
 Instruc)ons	
 and	
 Assembly	
 Code	

•  Machine	
 code	
 :	
 instruc)ons	
 directly	
 executed	
 by	
 the	
 CPU	

–  From	
 Wikipedia	
 :	
 	

•  “the	
 instruc)on	
 below	
 tells	
 an	
 x86/IA-­‐32	
 processor	
 to	
 move	
 an	
 immediate	
 8-­‐bit	

value	
 into	
 a	
 register.	
 	
 The	
 binary	
 code	
 for	
 this	
 instruc)on	
 is	
 10110	
 followed	
 by	
 a	

3-­‐bit	
 iden)fier	
 for	
 which	
 register	
 to	
 use.	
 	
 The	
 iden)fier	
 for	
 the	
 AL	
 register	
 is	
 000,	

so	
 the	
 following	
 machine	
 code	
 loads	
 the	
 AL	
 register	
 with	
 the	
 data	
 01100001.”	

•  Assembly	
 language	
 :	
 one-­‐to-­‐one	
 mapping	
 to	
 machine	
 code	
 (nearly)	

–  Mnemonics	
 map	
 directly	
 to	
 instruc)ons	
 (MOV	
 AL	
 =	
 10110	
 000)	

–  From	
 Wikipedia	
 :	
 	

•  “Move	
 a	
 copy	
 of	
 the	
 following	
 value	
 into	
 AL,	
 and	
 61	
 is	
 a	
 hexadecimal	

representa)on	
 of	
 the	
 value	
 01100001”	

10110000	
 01100001	

MOV	
 AL,	
 61h	
 	
 	
 	
 	
 	
 	
 ;	
 Load	
 AL	
 with	
 97	
 decimal	
 (61	
 hex)	

Compila)on	
 and	
 Linking	

•  A	
 compiler	
 is	
 a	
 computer	
 program	
 that	
 transforms	
 source	
 code	

wrieen	
 in	
 a	
 programming	
 language	
 into	
 another	
 computer	

language	

–  Examples	
 :	
 GNU	
 compiler	
 collec)on	

•  A	
 linker	
 takes	
 one	
 or	
 more	
 object	
 files	
 generated	
 by	
 a	
 compiler	
 and	

combines	
 them	
 into	
 a	
 single	
 executable	
 program	

–  Gathers	
 libraries,	
 resolving	
 symbols	
 as	
 it	
 goes	

–  Arranges	
 objects	
 in	
 a	
 program’s	
 address	
 space	

•  Touches	
 OS	
 through	
 libraries,	
 virtual	
 memory,	
 program	
 address	

space	
 defini)ons,	
 etc.	

–  Modern	
 OS’	
 provide	
 dynamic	
 linking;	
 run)me	
 resolu)on	
 of	
 unresolved	

symbols	

	

History	
 :	
 1950’s	

•  Earliest	
 computers	
 had	
 no	
 opera)ng	
 systems	

•  1954	
 :	
 OS	
 for	
 MIT’s	
 “Whirlwind”	
 computer	
 	

–  Manage	
 reading	
 of	
 paper	
 tapes	
 avoiding	
 human	
 interven)on	

•  1956	
 :	
 OS	
 General	
 Motors	

–  Automated	
 tape	
 loading	
 for	
 an	
 IBM	
 701	
 for	
 sharing	
 computer	
 in	
 15	
 minute	

)me	
 alloca)ons	

•  1959	
 :	
 “Time	
 Sharing	
 in	
 Large	
 Fast	
 Computers”	

–  Described	
 mul)-­‐programming	

•  1959	
 :	
 McCarthy	
 MIT-­‐internal	
 memo	
 described	
 “)me-­‐share”	
 usage	

of	
 IBM	
 7090	

–  Modern	
 :	
 interac)ve	
 compu)ng	
 by	
 mul)ple	
 concurrent	
 users	

Early	
 OS	
 Designs	

•  Batch	
 systems	

–  Facilitated	
 running	
 mul)ple	
 jobs	
 sequen)ally	

•  I/O	
 boelenecks	

–  Computa)on	
 stopped	
 to	
 for	
 I/O	
 opera)ons	

•  Interrupts	
 invented	

–  Allows	
 no)fica)on	
 of	
 an	
 asynchronous	
 opera)on	
 comple)on	

–  First	
 machine	
 with	
 interrupts	
 :	
 DYSEAC	
 1954,	
 standard	
 soon	
 therea_er	

•  Mul)-­‐programming	
 followed	

–  With	
 interrupts,	
 computa)on	
 can	
 take	
 place	
 concurrently	
 with	
 I/O	

–  When	
 one	
 program	
 does	
 I/O	
 another	
 can	
 be	
 compu)ng	

–  Second	
 genera)on	
 OS’s	
 were	
 batch	
 systems	
 that	
 supported	
 mul)-­‐

programming	

History	
 :	
 1960’s,	
 the	
 golden	
 age	
 of	
 OS	
 R&D	

•  Terminology	
 	

–  “Core”	
 memory	
 refers	
 to	
 magne)c	
 cores	
 each	
 holding	
 one	
 bit	
 (primary)	

–  Disks	
 and	
 drums	
 (secondary)	

•  1962	
 :	
 Atlas	
 computer	
 (Manchester)	
 	

–  “virtual	
 memory”	
 :	
 programs	
 were	
 wrieen	
 as	
 if	
 machine	
 had	
 lots	
 of	
 primary	

storage	
 and	
 the	
 OS	
 shuffled	
 data	
 to	
 and	
 from	
 secondary	
 	

•  1962	
 :	
 Compa)ble	
)me-­‐sharing	
 system	
 (CTSS,	
 MIT)	

–  Helped	
 prove	
 sensibility	
 of	
)me-­‐sharing	
 (3	
 concurrent	
 users)	

•  1964	
 :	
 Mul)cs	
 (GE,	
 MIT,	
 Bell	
 labs;	
 1970	
 Honeywell)	
 	

–  Stated	
 desiderata	

•  Convenient	
 remote	
 terminal	
 access	
 	

•  Con)nuous	
 opera)on	

•  Reliable	
 storage	
 (file	
 system)	

•  Selec)ve	
 sharing	
 of	
 informa)on	
 (access	
 control	
 /	
 security)	

•  Support	
 for	
 heterogeneous	
 programming	
 and	
 user	
 environments	

–  Key	
 conceptual	
 breakthrough	
 :	
 unifica)on	
 of	
 file	
 and	
 virtual	
 memory	
 via	

everything	
 is	
 a	
 file	

History	
 :	
 1960’s	
 and	
 1970’s	

•  IBM	
 Mainframes	
 OS/360	

•  DEC	
 PDP-­‐8/11	

–  Small,	
 purchasable	
 for	
 research	

•  1969	
 :	
 UNIX	

–  Ken	
 Thompson	
 and	
 Dennis	
 Ritchie;	
 Mul)cs	
 effort	
 drop-­‐outs	

–  Wrieen	
 in	
 C	

–  1975	
 :	
 6th	
 edi)on	
 released	
 to	
 universi)es	
 very	
 inexpensively	

–  1988	
 System	
 V	
 Release	
 4	
 	

•  1996	
 :	
 BSD	
 (Berkeley	
 so_ware	
 distribu)on)	
 v4.4	

–  Born	
 from	
 UNIX	
 via	
 DEC	
 VAX-­‐11/780	
 and	
 virtual	
 memory	

1980’s	
 :	
 Rise	
 of	
 the	
 Personal	
 Computer	
 (PC)	

•  1970’s	
 :	
 CP/M	

–  One	
 applica)on	
 at	
 a	
)me	
 –	
 no	
 protec)on	
 from	
 applica)on	

–  Three	
 components	

•  Console	
 command	
 process	
 (CCP)	

•  Basic	
 disk	
 opera)ng	
 system	
 (BDOS)	

•  Basic	
 input/output	
 system	
 (BIOS)	

•  Apple	
 DOS	
 (a_er	
 CP/M)	

–  1978	
 Apple	
 DOS	
 3.1	
 ≈	
 CP/M	

•  Microso_	
 	

–  1975	
 :	
 Basic	
 interpreter	

–  1979	
 :	
 Licensed	
 7-­‐th	
 edi)on	
 Unix	
 from	
 AT&T,	
 named	
 it	
 Xenix	

–  1980	
 :	
 Microso_	
 sells	
 OS	
 to	
 IBM	
 and	
 buys	
 QDOS	
 (no	
 Unix	
 royal)es)	
 to	
 fulfill	

•  QDOS	
 =	
 “Quick	
 and	
 dirty	
 OS”	

•  Called	
 PC-­‐DOS	
 for	
 IBM,	
 MS-­‐DOS	
 licensed	
 by	
 Microso_	

1980’s	
 ‘)l	
 now.	

•  Early	
 80’s	
 state	
 of	
 affairs	

–  Minicomputer	
 OS’s	

•  Virtual	
 memory	

•  Mul)-­‐tasking	

•  Access	
 control	
 for	
 file-­‐systems	

–  PC	
 OS’s	

•  None	
 of	
 the	
 above	
 (roughly	
 speaking)	

•  Worksta)ons	

–  Sun	
 (SunOS,	
 Bill	
 Joy,	
 Berkeley	
 4.2	
 BSD)	

•  1984	
 :	
 Network	
 file	
 system	
 (NFS)	

•  1985	
 :	
 Microso_	
 Windows	

–  1.0	
 :	
 applica)on	
 in	
 MS-­‐DOS	

•  Allowed	
 coopera)ve	
 mul)-­‐tasking,	
 where	
 applica)ons	
 explicitly	
 yield	
 the	
 processor	
 to	
 each	
 other	

•  1995	
 :	
 Windows	
 ’95	
 to	
 ME	

–  Preemp)ve	
 mul)-­‐tasking	
 ()me-­‐slicing),	
 virtual	
 memory	
 (-­‐ish),	
 unprotected	
 OS-­‐space	

•  1993	
 :	
 First	
 release	
 of	
 Windows	
 NT,	
 subsequent	
 Windows	
 OS’s	
 based	
 on	
 NT	

•  1991	
 :	
 Linus	
 Torvalds	
 ported	
 Minix	
 to	
 x86	

•  Based	
 on	
 Unix	
 (6th	
 edi)on)	

–  Monolithic	

•  The	
 OS	
 is	
 a	
 single	
 file	
 loaded	
 into	

memory	
 at	
 boot	
)me	

–  Interfaces	

•  Traps	
 originate	
 from	
 user	

programs	

•  Interrupts	
 originate	
 from	

external	
 devices	
 	

–  Modes	

•  User	

•  Privileged	
 /	
 System	

–  Kernel	

•  A	
 subset	
 of	
 the	
 OS	
 that	
 runs	
 in	

privileged	
 mode	

•  Or	
 a	
 subset	
 of	
 this	
 subset	

Implementa)on	
 Perspec)ve	
 :	
 “Simple	
 OS”	

12 CHAPTER 1 Introduction

In 2003 SCO,10 which had acquired the rights to Unix, sued IBM, claiming that SCO’s code
was in Linux and thus SCO was owed royalties. (Suing someone with lots of money may be a
good idea. Suing someone who employs really good lawyers probably isn’t.) In August 2007 the
judge ruled that SCO was not the rightful owner of the Unix copyright, Novell is. Novell then
stated that there is no Unix source code in Linux.

Two other free versions of Unix also began development in the early 1990s (and continue
to be developed): FreeBSD and NetBSD. Both are derived from the BSD project at Berkeley and
are highly thought of, but neither has achieved the success of Linux.

Apple, in the meantime, was still selling a system whose operating system was derived from
the original MacOS. Finally, in 2000, they released MacOS X, a Unix system. Its implementation
was similar to that of OSF/1, combining both Mach and BSD Unix (in the form of NetBSD and
FreeBSD) in the kernel. Apple fi nally had an operating system that supports virtual memory and
multitasking and provides a protected fi le system, something it had almost achieved with Lisa OS
in the early 1980s. Apple’s version of Unix is now the prevalent Unix operating system.

In this section we examine the abstractions provided by a relatively simple operating system and
delve a bit into how they are implemented. Choosing an operating system, even one to discuss
in a course, is fraught with controversy. What we discuss here is an early version of Unix, as it
existed in the early 1970s. We choose this partly because of its simplicity and elegance, partly
because (as we saw above) it had a major infl uence on modern operating systems, such as mod-
ern versions of Unix (Solaris, Linux, MacOS X, etc.) as well as Windows, and primarily because
it is the earliest operating system whose later versions are still in common use. (Although the
descendants of IBM’s OS/360 are still in use, few students in operating systems courses have
direct access to them.) We call it simply Unix for now, though strictly speaking it is Sixth-Edition
Unix (see Section 1.2.3 for why it is called this).

1.3.1 OS STRUCTURE

Many early operating systems were amazingly small: Sixth-Edition Unix, for instance, had to
fi t into 64 KB of memory. Thus it made reasonable sense to structure it as a single executable in
which all parts are stored as a single fi le from which they are loaded into the computer’s memory
when it boots. This sort of structuring is known as the monolithic approach. As sketched in
Figure 1.1, application programs call upon the operating system via traps; external devices, such
as disks and clocks, call upon it via interrupts.

Almost all computers have at least two modes of execution, user mode (with the fewest
privileges) and privileged mode (with the most). To limit the damage that errant programs can do
to other programs and the system as a whole, the only code that runs in privileged mode is that
which is part of the operating system. In simple systems such as Sixth-Edition Unix, we gener-
ally think of the whole operating system as running in privileged mode. Everything else is an
application and runs in user mode. In other systems, such as modern Windows, major subsystems
providing operating-system functionality run in user mode. We discuss this in Chapter 4.

We often use the word kernel, as in “operating-system kernel.” This generally means that
portion of the operating system that runs in privileged mode, but sometimes it means a subset of
this — some relatively small, key portion of the privileged-mode operating-system code. We will
try to make it clear which defi nition we’re using.

10 SCO nominally stands for “Santa Cruz Operation,” but the original company of that name sold its Unix business to Caldera.
SCO then changed its name to Tarantella, the name of the product it was now focusing on. Caldera subsequently changed its
name to SCO.

1.3
A SIMPLE OS
1.3
A SIMPLE OS

OS

Traps

Interrupts

FIGURE 1 .1 Simple
OS structure.

Ch001.indd 12Ch001.indd 12 8/5/10 11:26:20 AM8/5/10 11:26:20 AM

Traps	
 and	
 System	
 Calls	
 (largely	
 from	
 user)	

•  System	
 calls	
 *	

–  Example	

	
 	
 	
 	
 	

requests	
 the	
 OS	
 to	
 send	
 data	
 to	
 a	
 file	

•  Unintended	
 requests	
 for	
 kernel	
 service	

–  Using	
 a	
 bad	
 address	

–  Dividing	
 by	
 zero	

	

	

1.3.1.1 Traps
Traps are the general means for invoking the kernel from user code. We usually think of a trap as
an unintended request for kernel service, say that caused by a programming error such as using
a bad address or dividing by zero. However, for system calls, an important special kind of trap
discussed below, user code intentionally invokes the kernel.

Traps always elicit some sort of response. For page faults, the operating system determines
the status of the faulted page and takes appropriate action (such as fetching it from secondary
storage). For programming errors, what happens depends upon what the program has previ-
ously set up. If nothing, then the program is immediately terminated. A program may establish
a handler to be invoked in response to the error; the handler might clean up after the error and
then terminate the process, or perhaps perform some sort of corrective action and continue with
normal execution.

The response to faults caused by errors is dealt with in Unix via a mechanism called sig-
nals (which is also used in response to other actions; see Chapter 2). Signals allow the kernel to
invoke code that’s part of the user program, a mechanism known as an upcall.

1.3.1.2 System Calls
We’ve already discussed the multiple layers of abstraction used in all systems. For layers imple-
mented strictly in user code, the actual invocation of functionality within a layer is straightfor-
ward: a simple procedure call or the like. But invocation of operating-system functionality in
the kernel is more complex. Since the operating system has control over everything, we need
to be careful about how it is invoked. What Unix and most other operating systems do is to
provide a relatively small number of system calls through which user code accesses the kernel.
This way any necessary checking on whether the request should be permitted can be done at
just these points.

A typical example of a system call is the one used to send data to a fi le, the write system call:

if (write(FileDescriptor, BufferAddress, BufferLength) == -1) {

/* an error has occurred: do something appropriate */

printf("error: %d\n", errno) /* print error message */

}

Here we call write to request the operating system to write data to the fi le (we discuss later
the meaning of the parameters). If the call fails for some reason, write returns −1, and an integer
identifying the cause of the error is stored in the global variable errno. Otherwise it returns a non-
negative value: the number of bytes that were actually written to the fi le.

How write actually invokes the operating-system kernel depends on the underlying hard-
ware. What typically happens is that write itself is a normal procedure that contains a special
machine instruction causing a trap. This trap transfers control to the kernel, which then fi gures
out why it was invoked and proceeds to handle the invocation.

1.3.1.3 Interrupts
An interrupt is a request from an external device for a response from the processor. We discuss
the mechanism in more detail in Chapter 3. Unlike a trap, which is handled as part of the program
that caused it (though within the operating system in privileged mode), an interrupt is handled
independently of any user program.

For example, a trap caused by dividing by zero is considered an action of the currently
running program; any response directly affects that program. But the response to an interrupt

1.3 A Simple OS 13

Ch001.indd 13Ch001.indd 13 8/5/10 11:26:21 AM8/5/10 11:26:21 AM

Interrupts	
 (largely	
 from	
 hardware)	

•  Request	
 from	
 an	
 external	
 device	
 for	
 a	
 response	
 from	
 the	
 processor	

–  Handled	
 independently	
 of	
 any	
 program	

•  Examples	

–  Keyboard	
 input	

–  Data	
 available	

Processes	
 *	

•  Abstrac)on	
 that	
 includes	

–  Address	
 space	
 (virtual	
 memory	
 *)	

–  Processors	
 (threads	
 of	
 control	
 *)	

•  Usually	
 disjoint	

–  Processes	
 usually	
 cannot	
 directly	
 access	
 each	
 other’s	
 memory	

•  Parallel	
 processing	
 via	
 pipes,	
 shared	
 memory,	
 etc.	

•  Running	
 a	
 program	
 from	
 the	
 shell	

–  Creates	
 a	
 “process”	

–  Program	
 is	
 loaded	
 from	
 a	
 file	
 into	
 the	
 process’s	
 address	
 space	

–  Process’s	
 single	
 thread	
 of	
 control	
 then	
 executes	
 the	
 program’s	
 compiled	

executable	
 code	

•  Text	

–  Program	
 code	

•  Data	

–  Ini)alized	
 global	
 variables	

•  BSS	
 (block	
 started	
 by	
 symbol)	

–  Unini)alized	
 global	
 variables	

•  Dynamic	
 (Heap)	

–  Dynamically	
 allocated	
 storage	

•  Stack	
 (grows	
 “downward”)	

–  Local	
 variables	

•  Arrows	
 indicate	
 variable	

placement	

•  malloc()	
 claims	
 space	
 in	
 dynamic	

Memory	
 =	
 Address	
 Space	
 =	
 e.g.	
 2^32	
 words,	
 etc.	

stored in a fi le in the fi le system. When we run the program, a process is created and the program
is loaded from the fi le into the process’s address space. The process’s single thread of control then
executes the program’s code.

But how is the address space organized? The program consists of executable code and
data. The code, once loaded, is never modifi ed. Since much of the data, on the other hand, can be
modifi ed, it makes sense to segregate the two, putting the code in a special region of the address
space that’s protected from modifi cation. We could simply put all the data in another readable and
writable region, but we need to consider other issues too.

The variables nprimes and prime are both global, while i, j, and current are local. We know
that the scope of global variables is the entire program, while the scope of local variables is just
the block (delineated by curly braces in C) that contains them. In other words, the “lifetime” of
global variables is the same as the lifetime of the program, while the lifetime of a local variable
is only from when the thread enters its block to when it exits. So, we must set things up so that
the portion of the address space allocated for global variables remains allocated for the lifetime
of the program, but that portion allocated for a local variable remains allocated only while the
thread is in the variable’s scope.

Thus when the program is loaded into the address space, we’ll permanently allocate space
for the global variables, just beyond the space allocated for code. But there’s another useful
distinction to make: nprimes has an initial value of 100, but prime has no initial value, though
C semantics states that its initial value is thus zero. If we group all such uninitialized variables
together, we can represent them effi ciently in the copy of the program stored in the fi le system by
simply stating that we have n bytes of uninitialized data, which will actually be fi lled with zeros.
For many programs, this will save a lot of space. We of course have to instantiate these variables
when we load them into the address space, but there are ways to optimize this instantiation (we
discuss them in Chapter 7).

The local variables can be allocated effi ciently by use of a run-time stack: each time our
thread enters a new block, it pushes a frame on the stack containing space for local variables and
perhaps procedure-linkage information. Such frames are popped off the stack when the thread
exits the block. So what we’ll do is set up a region of the address space for the stack to reside. On
most architectures, stacks range from high memory addresses to low memory addresses and thus
stacks typically grown downwards.

Unix structures the address space as shown in Figure 1.2. The executable code, known as
text, occupies the lower-addressed regions. The initialized data, known simply as data, follows
the text. The uninitialized data is known, cryptically, as BSS (for “block started by symbol,” a
mnemonic from an ancient IBM 704 assembler) and comes next, followed by a dynamic region
that we explain shortly. Then comes a large hole in the address space and fi nally a region, starting
at the top and growing downwards, containing the stack.

Let’s now modify the program a bit so that the number of primes we want to compute is
passed as a parameter. Space is allocated for the primes dynamically, based on this parameter.

int nprimes;

int *prime;

int main(int argc, char *argv[]) {

int i;

int current = 2;

nprimes = atoi(argv[1]);

prime = (int *)malloc(nprimes*sizeof(int));

prime[0] = current;

for (i=1; i<nprimes; i++) {

int j;

Text

Data

BSS

Dynamic

Stack

FIGURE 1 .2 Unix
address space.

1.3 A Simple OS 15

Ch001.indd 15Ch001.indd 15 8/5/10 11:26:22 AM8/5/10 11:26:22 AM

14 CHAPTER 1 Introduction

from a disk controller may or may not have an indirect effect on the currently running program
and defi nitely has no direct effect (other than slowing it down a bit as the processor deals with
the interrupt).

1.3.2 PROCESSES, ADDRESS SPACES, AND THREADS

Probably the most important abstraction from the programmer’s point of view is the process. We
think of it both as an abstraction of memory — as an address space — and as the abstraction of
one or more processors — as threads (or threads of control). The term “address space” covers
both the set of all addresses that a program can generate and the storage associated with these
addresses. In modern operating systems, address spaces are usually disjoint (they are always dis-
joint in Sixth-Edition Unix): processes generally have no direct access to one another’s address
spaces. How this is made to work has to do with address-translation hardware and its operating-
system support, subjects we discuss in Chapter 7.

A single thread per process provides a straightforward programming model and was all
that most operating systems supported until the early 1990s. We cover multithreaded processes
in considerable detail in Chapter 2, but for now we use the simple model of single-threaded
processes.

Note that the meaning of the term “process” has evolved over the years. The term origi-
nally meant the same thing as the current meaning of “thread” — see (Dennis and Van Horn
1966), who use the term “computation” to refer to what we now mean by “process.” Though
some authors still use “process” in its original sense, few if any operating systems do.

What else is there to a process? To get an idea, consider the following simple C program
that implements the “Sieve of Eratosthenes” to compute the fi rst one hundred primes. In its
current form it’s not very useful since, after computing these primes, it immediately terminates
without doing anything with them. We’ll make it more useful later.

const int nprimes = 100;

int prime[nprimes];

int main() {

int i;

int current = 2;

prime[0] = current;

for (i=1; i<nprimes; i++) {

int j;

NewCandidate:

current++;

for (j=0; prime[j]*prime[j] <= current; j++) {

if (current % prime[j] == 0)

goto NewCandidate;

}

prime[i] = current;

}

return(0);

}

Our concern here is not prime numbers, but what the operating system must do to make
this program work. The program is compiled and linked (we explain linking in Chapter 3) and

Ch001.indd 14Ch001.indd 14 8/5/10 11:26:22 AM8/5/10 11:26:22 AM

Processes	
 and	
 Threads	

 (fork_example_1.c)	

•  Processes	
 are	
 created	
 via	
 the	
 system	

call	
 fork()	

–  Any	
 exact	
 copy	
 of	
 the	
 calling	
 process	
 is	

made	
 	

•  Efficient	
 –	
 copy	
 on	
 write	

–  fork()	
 returns	
 twice!	

•  Once	
 in	
 the	
 child	
 (return	
 value	
 0)	

•  Once	
 in	
 the	
 parent	
 (return	
 value	
 the	
 PID	

of	
 the	
 child	
 process)	

•  Processes	
 report	
 termina)on	
 status	
 via	

the	
 system	
 call	
 exit(ret_code)	

•  Processes	
 can	
 wait()	
 for	
 the	
 termina)on	

of	
 child	
 processes	

•  Example	
 uses	

–  Terminal	
 /	
 Windows	

–  Apache	
 cgi	

18 CHAPTER 1 Introduction

Since a process’s return code actually means something, it’s important for other processes
to fi nd out what it is. This is done via the wait system call, which allows a parent process to wait
until one of its children terminates:

short pid;

if ((pid = fork()) == 0) {

/* some code is here for the child to execute */

exit(n);

} else {

int ReturnCode;

while(pid != wait(&ReturnCode))

;

/* the child has terminated with ReturnCode as its

 return code */

}

Here the parent process creates a child, then waits for it to terminate. Note that wait returns
the process ID of the child that’s terminated, which might not be the one most recently created
(the parent might have created others). Thus it calls wait repeatedly until the child it’s interested
in terminates. The wait call returns the child process’s return code via its argument, which points
to storage provided by the caller.

A process can wait only for its children to terminate: it has no means for waiting for the
termination of other processes. This implies that the operating system must keep track of the par-
ent-child relationships among processes.

While a process is waiting for a child to terminate, it’s said to be in the “sleeping state”: it
won’t be able to execute any further instructions until a terminating child wakes it up.

The act of termination is a bit tricky. One concern is the process ID. These are 16-bit val-
ues and thus must occasionally be reused. Suppose that when a process terminates (i.e., calls
exit), its ID is immediately made available for assignment to new processes. It might happen
that before the process’s parent calls wait, the process ID is actually assigned to a new process.
Thus there could be some ambiguity about which process is being referred to by the ID.

Another termination concern is the return code: where is it stored between the moments
when a process terminates and when the code is picked up by the parent via wait? If all storage
associated with the process is released on termination, we could have a problem.

These concerns are handled as follows. When a process calls exit it doesn’t completely
disappear, but goes into what’s called the zombie state: it’s no longer active and its address space
can be relinquished, but its process ID and return value are preserved in the operating system.
Thus the process still exists, though the only meaningful data associated with it are its ID and
return value. When the parent eventually calls wait, these values are fi nally released and all traces
of the process disappear.

But what happens if the parent terminates before the child? This could mean that, since
the parent is no longer around to perform the wait, the child will remain forever a zombie. To
deal with this problem, process number 1 (the process whose ID is 1 and which is the ancestor
of all other processes with greater IDs) inherits the children (including zombies) of terminated
processes. It executes a loop, continually calling wait and fi nishing the termination of all its (step)
children.

As shown in Figure 1.4, a process’s return code is kept in its process control block. Nothing
is of course stored there until the process terminates. But when the process does terminate, its
return code is copied to the PCB, which is linked to its parent’s queue of terminated children. By

Ch001.indd 18Ch001.indd 18 8/5/10 11:26:26 AM8/5/10 11:26:26 AM

Loading	
 Programs	
 into	
 Processes	
 (fork_example_2.c)	

•  execl()	
 system	
 call	
 used	
 to	
 do	
 this	

•  execl()	
 replaces	
 the	
 en)re	
 contents	
 of	
 the	

processes	
 address	
 space	

–  the	
 stack	
 is	
 ini)alized	
 with	
 the	
 passed	
 program	
 args.	

–  a	
 special	
 start	
 rou)ne	
 is	
 called	
 that	
 itself	
 calls	
 main()	

–  exec	
 doesn’t	
 return	
 except	
 if	
 there	
 is	
 an	
 error!	

executing the wait system call, the parent selects the fi rst process from this queue, returning both
the PID and return-code fi elds.

1.3.4 LOADING PROGRAMS INTO PROCESSES

We’ve briefl y discussed setting up an address space to contain a program; now let’s look at the
user-level mechanism for doing so. A family of system calls known as exec is provided for this.
Execs are typically used shortly after fork creates a new process to replace the program with a
new one. Here’s an example of their use:

int pid;

if ((pid = fork()) == 0) {

/* we’ll soon discuss what might take place before exec

 is called */

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

Here we call execl, which takes a variable number of arguments — the “command-line”
arguments mentioned above — and passes them to the program. The fi rst argument is the name
of the fi le containing the program to be loaded. The second argument is the name of the program
(while this seems a bit redundant, it allows one program to do different things depending on the
name by which it is called). The remaining arguments are the remaining command-line argu-
ments, terminating with 0.

The effect of the exec call, as shown in Figure 1.5, is to replace the entire contents of the
current process’s address space with the new program: the text region is replaced with the text of
primes. The BSS and data regions are replaced with those supplied by primes. The dynamic area
is replaced with an empty region. The stack is replaced with the arguments that are to be passed to
main: the total number of arguments (two in this case), followed by a vector referring to their values
(“primes” and “300”). The process’s thread continues execution by calling a special start routine
(loaded with the primes program), which then calls main (so that on return from main it calls exit).

Note that since the prior contents of the address space are removed, there is no return from
a successful call to exec: there’s nothing to return to! However, if exec does return, then (since
the prior contents clearly weren’t removed) there must have been an error. What we do in such a
case is simply call exit with a return code indicating an error. (This is certainly not a very helpful
response, but our focus for the moment is on successful outcomes.)

The parent process waits until the child has completed (calling wait with an argument of
zero means that the caller does not want the return code). The above code fragment shows what
a command shell does in response to the command:

% primes 300

In other words, it creates a new process to run the command and waits for that process to
terminate.

1.3 A Simple OS 19

exec(prog, args)

Before

FIGURE 1 .5 The effect
of exec.

After

prog’s text

prog’s data

prog’s BSS

args

Ch001.indd 19Ch001.indd 19 8/5/10 11:26:26 AM8/5/10 11:26:26 AM

executing the wait system call, the parent selects the fi rst process from this queue, returning both
the PID and return-code fi elds.

1.3.4 LOADING PROGRAMS INTO PROCESSES

We’ve briefl y discussed setting up an address space to contain a program; now let’s look at the
user-level mechanism for doing so. A family of system calls known as exec is provided for this.
Execs are typically used shortly after fork creates a new process to replace the program with a
new one. Here’s an example of their use:

int pid;

if ((pid = fork()) == 0) {

/* we’ll soon discuss what might take place before exec

 is called */

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

Here we call execl, which takes a variable number of arguments — the “command-line”
arguments mentioned above — and passes them to the program. The fi rst argument is the name
of the fi le containing the program to be loaded. The second argument is the name of the program
(while this seems a bit redundant, it allows one program to do different things depending on the
name by which it is called). The remaining arguments are the remaining command-line argu-
ments, terminating with 0.

The effect of the exec call, as shown in Figure 1.5, is to replace the entire contents of the
current process’s address space with the new program: the text region is replaced with the text of
primes. The BSS and data regions are replaced with those supplied by primes. The dynamic area
is replaced with an empty region. The stack is replaced with the arguments that are to be passed to
main: the total number of arguments (two in this case), followed by a vector referring to their values
(“primes” and “300”). The process’s thread continues execution by calling a special start routine
(loaded with the primes program), which then calls main (so that on return from main it calls exit).

Note that since the prior contents of the address space are removed, there is no return from
a successful call to exec: there’s nothing to return to! However, if exec does return, then (since
the prior contents clearly weren’t removed) there must have been an error. What we do in such a
case is simply call exit with a return code indicating an error. (This is certainly not a very helpful
response, but our focus for the moment is on successful outcomes.)

The parent process waits until the child has completed (calling wait with an argument of
zero means that the caller does not want the return code). The above code fragment shows what
a command shell does in response to the command:

% primes 300

In other words, it creates a new process to run the command and waits for that process to
terminate.

1.3 A Simple OS 19

exec(prog, args)

Before

FIGURE 1 .5 The effect
of exec.

After

prog’s text

prog’s data

prog’s BSS

args

Ch001.indd 19Ch001.indd 19 8/5/10 11:26:26 AM8/5/10 11:26:26 AM

Files	
 *	

•  Files	
 are	
 Unix’s	
 primary	
 abstrac)on	

for	
 everything	

–  Keyboard	

–  Display	

–  Other	
 processes	

•  Naming	
 files	

–  Filesystems	
 generally	
 are	
 tree-­‐

structured	
 directory	
 systems	
 	

–  Namespaces	
 are	
 generally	
 shared	
 by	

all	
 processes	

•  Accessing	
 files	

–  The	
 directory-­‐system	
 name-­‐space	
 is	

outside	
 the	
 process	

•  open(name)	
 returns	
 a	
 file	
 handle,	

read(args)	
 	

•  OS	
 checks	
 permissions	
 along	
 path	

20 CHAPTER 1 Introduction

1.3.5 FILES

As we’ve pointed out, our primes example isn’t very useful since it doesn’t leave the results
of its computation where others (programs or people) can use them. What’s needed is access
to someplace outside the process that’s shared with others. The notion of a fi le is our Unix
system’s sole abstraction for this concept of “someplace outside the process” (modern
Unix systems have additional abstractions). Unix uses fi les both as the abstraction of persistent
data storage (such as on disks) and also as the means for fetching and storing data outside a
 process, whether that data is stored on disk, in another process, or in some other device, such
as a keyboard or display.

1.3.5.1 Naming Files
For our current discussion we’re concerned about both how to refer to such “places” outside
the process and how programs transfer data to and from such places. Since the place is outside the
process, we need a different space from the process’s address space. The nature of such spaces
was an issue a number of decades ago, but pretty much all systems today use tree- structured
directory systems for naming fi les and similar objects. These should be familiar to everyone
with enough computer experience to have gotten this far in this text: a fi le is named by stringing
together the names assigned to the edges forming a path from the root of the tree to the fi le.

Unix uses forward slashes as separators between the names; Windows uses back slashes.
That the path starts at the root is indicated by starting the name with the separators. Such path
names generally have the beginning (such as the root) at the left, though the Internet’s naming
scheme (Domain Name System — DNS) has it on the right.

The name space provided by the directory system is generally shared by all processes
running on a computer (and perhaps by all processes running on a number of computers). Unix
provides a means to restrict a process to a subtree: one simply redefi nes what “root” means for
the process. Thus fi les are identifi ed by their path names in the directory system.

Since the directory-system name space is outside the process, special means are required
to access it. The usual model is that one provides the name of the desired fi le to the operating
system, and the operating system returns a handle to be used to access the fi le. What’s going on
behind the scenes is that the operating system, somewhat laboriously, follows the path provided
by the name, checking to make certain that the process is allowed appropriate access along the
path. The returned handle provides a direct reference to the fi le so that such expensive path-
 following and access verifi cation isn’t required on subsequent accesses.

This use of a handle to refer to an object managed by the kernel is fairly important. We’ll
later see it generalized to the notion of a capability (Chapter 8). In abstract terms, possession
of a handle gives the holder not only a reference to an object in the kernel, but also certain lim-
ited rights for using the object. In the case of fi les, as we discuss, a handle allows the holder to
 perform certain actions on a fi le.

The following code uses the open system call to obtain a fi le’s handle, then uses the handle
to read the fi le:

int fd;

char buffer[1024];

int count;

if ((fd = open("/home/twd/fi le", O_RDWR) == -1) {

/* the fi le couldn’t be opened */

perror("/home/twd/fi le");

exit(1);

}

Ch001.indd 20Ch001.indd 20 8/5/10 11:26:27 AM8/5/10 11:26:27 AM

if ((count = read(fd, buffer, 1024)) == -1) {

/* the read failed */

perror("read");

exit(1);

}

/* buffer now contains count bytes read from the fi le */

Here we use the open system call to access the directory name space to get a handle for
the fi le whose path name is “/home/twd/fi le”. We’ve indicated by the second argument that
we want both read and write access to the fi le: if for some reason such access is not permitted,
the open call fails. If it succeeds, fd contains the handle (known in Unix as a fi le descriptor) for
the fi le.

We then use this handle as an argument to the read system call to identify the fi le and
attempt to transfer its fi rst 1024 bytes into buffer. Read returns the number of bytes that were
actually transferred: it could be less than what was asked for because, for example, the fi le might
not be that large. The perror routine prints, to fi le descriptor 2, its argument followed by a mes-
sage explaining the error number currently in the global variable errno (recall that that’s how
failing system calls leave the error number).

1.3.5.2 Using File Descriptors
These handles (or fi le descriptors) form what is essentially an extension to the process’s address
space, allowing the process unhindered access to the associated fi les. This address-space exten-
sion survives execs. Thus fi les open before an exec takes place are open afterwards. This property
is exploited as a way to pass the open fi les as additional parameters to the exec. File descriptors
are small nonnegative integers that are allocated lowest-available-number fi rst. By convention,
programs expect to read their primary input from fi le descriptor 0, to write their primary output
to fi le descriptor 1, and to write error messages to fi le descriptor 2. By default, input from fi le
descriptor 0 comes from the keyboard and output to fi le descriptors 1 and 2 goes to the display
(or current window).

However, as shown in the following code, different associations can be established in a
process before an exec:

if (fork() == 0) {

/* set up fi le descriptor 1 in the child process */

close(1);

if (open("/home/twd/Output", O_WRONLY) == -1) {

perror("/home/twd/Output");

exit(1);

}

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

1.3 A Simple OS 21

Ch001.indd 21Ch001.indd 21 8/5/10 11:26:27 AM8/5/10 11:26:27 AM

Using	
 File	
 Descriptors	
 (fork_example_2.c)	

•  File	
 descriptors	
 survive	
 exec()’s	

•  Default	
 file	
 descriptors	

–  0	
 read	
 (keyboard)	

–  1	
 write	
 (primary,	
 display)	

–  2	
 error	
 (display)	

•  Different	
 associa)ons	
 can	
 be	

established	
 before	
 fork()	

if ((count = read(fd, buffer, 1024)) == -1) {

/* the read failed */

perror("read");

exit(1);

}

/* buffer now contains count bytes read from the fi le */

Here we use the open system call to access the directory name space to get a handle for
the fi le whose path name is “/home/twd/fi le”. We’ve indicated by the second argument that
we want both read and write access to the fi le: if for some reason such access is not permitted,
the open call fails. If it succeeds, fd contains the handle (known in Unix as a fi le descriptor) for
the fi le.

We then use this handle as an argument to the read system call to identify the fi le and
attempt to transfer its fi rst 1024 bytes into buffer. Read returns the number of bytes that were
actually transferred: it could be less than what was asked for because, for example, the fi le might
not be that large. The perror routine prints, to fi le descriptor 2, its argument followed by a mes-
sage explaining the error number currently in the global variable errno (recall that that’s how
failing system calls leave the error number).

1.3.5.2 Using File Descriptors
These handles (or fi le descriptors) form what is essentially an extension to the process’s address
space, allowing the process unhindered access to the associated fi les. This address-space exten-
sion survives execs. Thus fi les open before an exec takes place are open afterwards. This property
is exploited as a way to pass the open fi les as additional parameters to the exec. File descriptors
are small nonnegative integers that are allocated lowest-available-number fi rst. By convention,
programs expect to read their primary input from fi le descriptor 0, to write their primary output
to fi le descriptor 1, and to write error messages to fi le descriptor 2. By default, input from fi le
descriptor 0 comes from the keyboard and output to fi le descriptors 1 and 2 goes to the display
(or current window).

However, as shown in the following code, different associations can be established in a
process before an exec:

if (fork() == 0) {

/* set up fi le descriptor 1 in the child process */

close(1);

if (open("/home/twd/Output", O_WRONLY) == -1) {

perror("/home/twd/Output");

exit(1);

}

execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */

;

1.3 A Simple OS 21

Ch001.indd 21Ch001.indd 21 8/5/10 11:26:27 AM8/5/10 11:26:27 AM

File	
 Random	
 Access	
 	

•  lseek()	
 provides	
 non-­‐sequen)al	
 access	
 to	
 files	

•  Reverses	
 a	
 file	

28 CHAPTER 1 Introduction

1.3.5.3 Random Access
As we’ve seen, the normal mode of access to fi les is sequential: successive reads or writes to a fi le
are to successive locations in the fi le. Though this is probably what’s desired in most situations,
sometimes we’d like to access a fi le randomly, reading or writing arbitrary locations within it.
This turns out to be easily done, since the read and write system calls simply look at the contents
of the fi le-location fi eld of the context structure and increment it after the operation.

Thus to read or write starting at an arbitrary location, all we have to do is provide a means
for setting this fi le-location fi eld. This is done with the lseek system call. The example below
shows using lseek to print the contents of a fi le backwards:11

fd = open("textfi le", O_RDONLY);

/* go to last char in fi le */

fptr = lseek(fd, (off_t)–1, SEEK_END);

while (fptr != –1) {

read(fd, buf, 1);

write(1, buf, 1);

fptr = lseek(fd, (off_t)–2, SEEK_CUR);

}

The fi rst argument to lseek is the fi le descriptor, the second and third arguments (of type
off_t, an integer type) indicate the value that goes into the fi le-location fi eld. The third argument
specifi es where we are measuring the offset from (SEEK_SET indicates the offset is interpreted
as from the beginning of the fi le, SEEK_CUR means from the current position in the fi le, and
SEEK_END means from the end of the fi le). Note that lseek does no actual I/O; all it does is set
the fi le-location fi eld.

What we’ve done in the example above is to start with the fi le location set to point to the
last character in the fi le. After reading a byte, the location is advanced by one, so to get the previ-
ous character, we subtract two from it.

1.3.5.4 Pipes
An interesting construct based on the fi le notion is the pipe. A pipe is a means for one process to
send data to another directly, as if it were writing to a fi le (see Figure 1.11). The process sending data
behaves as if it has a fi le descriptor to a fi le that has been opened for writing. The process receiving
data behaves as if it has a fi le descriptor referring to a fi le that has been opened for reading.

A pipe and the two fi le descriptors referring to it are set up using the pipe system call.
This creates a pipe object in the kernel and returns, via an output parameter, the two fi le descrip-
tors that refer to it: one, set for write-only, referring to the input side and the other, set for read-
only, referring to the output end. Since this pipe object, though it behaves somewhat like a fi le,
has no name, the only way for any process to refer to it is via these two fi le descriptors. Thus only the
process that created it and its descendants (which inherit the fi le descriptors) can refer to the pipe.

FIGURE 1 .11 Communication via a pipe

pipesender receiver

11 This is defi nitely not a good way to print a fi le backwards! It simply illustrates what you can do with lseek.

Ch001.indd 28Ch001.indd 28 8/5/10 11:26:32 AM8/5/10 11:26:32 AM

Pipes	
 *	
 (pipe_example.c)	

•  A	
 pipe	
 is	
 a	
 means	
 for	
 one	
 process	
 to	
 send	
 data	
 to	
 another	
 directly	

•  pipe()	
 returns	
 two	
 nameless	
 file	
 descriptors	
 	
 Here’s a simple pipe example:

int p[2]; /* array to hold pipe’s fi le descriptors */

pipe(p); /* create a pipe; assume no errors */

/* p[0] refers to the output end of the pipe */

/* p[1] refers to the input end of the pipe */

if (fork() == 0) {

char buf[80];

close(p[1]); /* not needed by the child */

while (read(p[0], buf, 80) > 0) {

/* use data obtained from parent */

…

}

} else {

char buf[80];

close(p[0]); /* not needed by the parent */

for (;;) {

/* prepare data for child */

…

write(p[1], buf, 80);

}

}

1.3.5.5 Directories
A directory is essentially a fi le like the others we’ve been discussing, except that it is inter-
preted by the operating system as containing references to other fi les (some of which may
well be other directories). From a logical perspective, a directory consists of an array of pairs
of component name and inode number, where the latter identifi es the target fi le’s inode to the
operating system (recall that an inode is a data structure maintained by the operating system
to represent a fi le).

Every directory contains two special entries, “.” and “..”. The former refers to the directory
itself, the latter to the directory’s parent. In Figure 1.12, the directory is the root directory and has
no parent, and thus its “..” entry is a special case that refers to the directory itself.

1.3 A Simple OS 29

FIGURE 1 .12 Sample directory

Component name Inode number

Directory entry

unix 117

etc 4

home 18

pro 36

dev 93

. 1

.. 1

Ch001.indd 29Ch001.indd 29 8/5/10 11:26:33 AM8/5/10 11:26:33 AM

Directories	

•  A	
 directory	
 is	
 a	
 file	
 that	
 is	
 interpreted	
 as	
 containing	
 references	
 to	

other	
 files	
 by	
 the	
 OS	
 	

•  Consists	
 of	
 an	
 array	
 of	
 	

–  Component	
 name	

–  inode	
 number	

•  an	
 inode	
 is	
 a	
 datastructure	
 maintained	
 by	
 the	
 OS	
 to	
 represent	
 a	
 file	

Here’s a simple pipe example:

int p[2]; /* array to hold pipe’s fi le descriptors */

pipe(p); /* create a pipe; assume no errors */

/* p[0] refers to the output end of the pipe */

/* p[1] refers to the input end of the pipe */

if (fork() == 0) {

char buf[80];

close(p[1]); /* not needed by the child */

while (read(p[0], buf, 80) > 0) {

/* use data obtained from parent */

…

}

} else {

char buf[80];

close(p[0]); /* not needed by the parent */

for (;;) {

/* prepare data for child */

…

write(p[1], buf, 80);

}

}

1.3.5.5 Directories
A directory is essentially a fi le like the others we’ve been discussing, except that it is inter-
preted by the operating system as containing references to other fi les (some of which may
well be other directories). From a logical perspective, a directory consists of an array of pairs
of component name and inode number, where the latter identifi es the target fi le’s inode to the
operating system (recall that an inode is a data structure maintained by the operating system
to represent a fi le).

Every directory contains two special entries, “.” and “..”. The former refers to the directory
itself, the latter to the directory’s parent. In Figure 1.12, the directory is the root directory and has
no parent, and thus its “..” entry is a special case that refers to the directory itself.

1.3 A Simple OS 29

FIGURE 1 .12 Sample directory

Component name Inode number

Directory entry

unix 117

etc 4

home 18

pro 36

dev 93

. 1

.. 1

Ch001.indd 29Ch001.indd 29 8/5/10 11:26:33 AM8/5/10 11:26:33 AM

Crea)ng	
 Files	

•  creat()	
 and	
 open()	
 (with	
 flags)	
 are	
 used	
 to	
 create	
 files	

•  “man	
 2	
 open”	
 :	
 	

OPEN(2)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 BSD	
 System	
 Calls	
 Manual	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 OPEN(2)	

	

NAME	

	
 	
 	
 	
 	
 open,	
 openat	
 -­‐-­‐	
 open	
 or	
 create	
 a	
 file	
 for	
 reading	
 or	
 writing	

	

SYNOPSIS	

	
 	
 	
 	
 	
 #include	
 <fcntl.h>	

	

	
 	
 	
 	
 	
 int	

	
 	
 	
 	
 	
 open(const	
 char	
 *path,	
 int	
 oflag,	
 ...);	

	

	
 	
 	
 	
 	
 int	

	
 	
 	
 	
 	
 openat(int	
 fd,	
 const	
 char	
 *path,	
 int	
 oflag,	
 ...);	

	

DESCRIPTION	

	
 	
 	
 	
 	
 The	
 file	
 name	
 specified	
 by	
 path	
 is	
 opened	
 for	
 reading	
 and/or	
 writing,	
 as	
 specified	
 by	
 the	
 argument	
 oflag;	

	
 	
 	
 	
 	
 the	
 file	
 descriptor	
 is	
 returned	
 to	
 the	
 calling	
 process.	

	

	
 	
 	
 	
 	
 The	
 oflag	
 argument	
 may	
 indicate	
 that	
 the	
 file	
 is	
 to	
 be	
 created	
 if	
 it	
 does	
 not	
 exist	
 (by	
 specifying	
 the	

	
 	
 	
 	
 	
 O_CREAT	
 flag).	
 	
 In	
 this	
 case,	
 open()	
 and	
 openat()	
 require	
 an	
 additional	
 argument	
 mode_t	
 mode;	
 the	
 file	
 is	

	
 	
 	
 	
 	
 created	
 with	
 mode	
 mode	
 as	
 described	
 in	
 chmod(2)	
 and	
 modified	
 by	
 the	
 process'	
 umask	
 value	
 (see	
 umask(2)).	

	

	
 	
 	
 	
 	
 The	
 openat()	
 function	
 is	
 equivalent	
 to	
 the	
 open()	
 function	
 except	
 in	
 the	
 case	
 where	
 the	
 path	
 specifies	
 a…	

Review	
 :	
 User	
 Perspec)ve	
 on	
 Simple	
 OS	

•  Rough	
 idea	
 of	
 what	
 goes	
 inside	
 an	
 OS	

•  Traps	
 /	
 system	
 calls	

–  exec()	

–  fork()	

–  open()	

–  pipe()	

–  exit()	

–  close()	

–  read()	

–  write()	

–  dup()	

–  …	

•  Next	
 lecture	
 :	
 more	
 user	
 basics.	
 	
 	

•  Final	
 two	
 lectures	
 :	
 OS	
 implementa)on	
 issues	

Lecture	
 2	
 :	
 Basics;	
 Processes,	
 Threads,	
 …	
 	

Material	
 from	
 	

Opera)ng	
 Systems	
 in	
 Depth	
 	

(spec.	
 Chapters	
 2&3)	
 	
 	

by	

Thomas	
 Doeppner	

	

GET	
 THIS	
 BOOK	
 AND	
 READ	
 IT!	

Threads	
 *	
 (thread_example_1.c)	

•  What	
 is	
 a	
 thread?	

–  Mechanism	
 for	
 concurrency	
 in	
 user-­‐level	
 programs	

–  “Lightweight	
 process”	

–  Processor(s)	
 within	
 a	
 process	

–  Share	
 process	
 memory	
 with	
 other	
 threads	

•  Why	
 threads?	

–  Can	
 drama)cally	
 simplify	
 code	

•  Mul)-­‐threaded	
 database	
 concurrently	
 handling	
 requests	

•  Server	
 listening	
 on	
 a	
 socket	
 responding	
 to	
 client	
 requests	

–  Requires	
 care	

•  Synchroniza)on	

•  POSIX	
 (“portable	
 opera)ng	
 system	
 interface”)	
 specifica)on	

Thread	
 Crea)on	

Alterna)ve	
 specifica)ons	
 exist;	
 all	
 conceptually	
 similar	

44 CHAPTER 2 Multithreaded Programming

Despite the advantages of programming with threads, only relatively recently have standard APIs
for multithreaded programming been developed. The most important of these APIs in the Unix
world is the one developed by a group originally called POSIX 1003.4a. This multi-year effort
resulted in 1995 in an approved standard, now known by the number 1003.1c.

Microsoft produced as part of its Win-32 interface a threads package whose interface has
little in common with that of POSIX. Moreover, there are signifi cant differences between the
Microsoft and POSIX approaches — some of the constructs of one cannot be easily implemented
in terms of the constructs of the other, and vice versa. Despite these incompatibilities, both
approaches are useful for multithreaded programming.

2.2.1 THREAD CREATION AND TERMINATION

Creating a thread should be a pretty straightforward operation: in response to some sort of directive,
a new thread is created and proceeds to execute code independently of its creator. There are, of
course, a few additional details. We may want to pass parameters to the thread. A stack of some
size must be created to be the thread’s execution context. Also, we need some mechanism for
the thread to terminate and to make a termination value available to others.

2.2.1.1 Creating POSIX Threads
POSIX and Win-32 have similar interfaces for creating a thread. Suppose we wish to create a
bunch of threads, each of which will execute code to provide some service. In POSIX, we do this
as follows:

void start_servers() {

pthread_t thread;

int i;

for (i=0; i<nr_of_server_threads; i++)

pthread_create(

 &thread, // thread ID

 0, // default attributes

 server, // start routine

 argument); // argument

}

void *server(void *arg) {

// perform service

return (0);

}

Thus a thread is created by calling pthread_create. If it returns successfully (returns 0), a
new thread has been created that is now executing independently of the caller. This thread’s ID
is returned via the fi rst parameter (an output parameter that, in standard C programming style, is
a pointer to where the result should be stored). The second parameter is a pointer to an attributes
structure that defi nes various properties of the thread. Usually we can get by with the default
properties, which we specify by supplying a null pointer. The third parameter is the address of
the routine in which our new thread should start its execution. The last argument is the argument
that is actually passed to the fi rst procedure of the thread.

If pthread_create fails, it returns a positive value indicating the cause of the failure.

2.2
PROGRAMMING
WITH THREADS

2.2
PROGRAMMING
WITH THREADS

CH002.indd 44CH002.indd 44 8/2/10 8:26:13 PM8/2/10 8:26:13 PM

Passing	
 Arguments	
 to	
 Threads	

•  Care	
 must	
 be	
 taken	
 with	

threads	
 in	
 general	

•  Problem	
 with	
 this	
 code	

–  In	
 and	
 out	
 are	
 local	
 variables	

thus	
 leave	
 scope	
 when	
 rlogind	

exits	

2.2 Programming with Threads 45

2.2.1.2 Creating Win-32 Threads
An equivalent program written for Windows using the Win-32 interface is:

void start_servers() {

HANDLE thread;

DWORD id;

int i;

for (i=0; i<nr_of_server_threads; i++)

thread = CreateThread(

 0, // security attributes

 0, // default # of stack pages allocated

 server, // start routine

 0, // argument

 0, // creation fl ags

 &id); // thread ID

}

DWORD WINAPI server(void *arg) {

// perform service

return(0);

}

Calls to CreateThread are used rather than pthread_create. A handle for the new thread is
returned. A handle, as we discussed in Chapter 1, is similar to a Unix fi le descriptor: it refers to
information belonging to the user process but maintained in the operating system. In this case, as
we’ll see, the handle allows the holder to perform operations on the thread.

An ID is returned via the last (output) argument. It is a means of identifying the thread that
gives the holder no ability to control that thread. Thus one process can make a thread ID available to
another process so as to identify the thread but not give the second process any control over it.

The fi rst parameter is a pointer to the security attributes to be associated with the thread;
we use 0 for this for now and discuss other possibilities later. The next parameter is the number
of stack pages (in bytes) to allocate physical resources for (one megabyte of virtual memory is
allocated; the parameter indicates how much of this initially has real memory and stack space
supporting it); 0 means to use the default. The third parameter is the address of the fi rst routine
our thread executes; the next parameter is the argument that’s passed to that routine. The next to
the last parameter specifi es various creation fl ags; we don’t supply any here.

If CreateThread fails, indicated by returning a null handle, GetLastError can be used to
determine the cause of the failure.

2.2.1.3 Handling Multiple Arguments
A problem comes up with both pthread_create and CreateThread when you want to pass
more than one argument to a thread. Suppose you are creating threads for use with our two-
threaded implementation of rlogind (Section 2.1 above). One might be tempted to use the
trick outlined below:

typedef struct {

int fi rst, second;

} two_ints_t;

CH002.indd 45CH002.indd 45 8/2/10 8:26:14 PM8/2/10 8:26:14 PM

46 CHAPTER 2 Multithreaded Programming

void rlogind(int r_in, int r_out, int l_in, int l_out) {

pthread_t in_thread, out_thread;

two_ints_t in={r_in, l_out}, out={l_in, r_out};

pthread_create(&in_thread,

0,

incoming,

&in);

pthread_create(&out_thread,

0,

outgoing,

&out);

}

Here we pack two arguments into a structure, then pass a pointer to it to pthread_create.
This is an example of something that works in single-threaded programs but can cause disastrous
failures in multithreaded programs. The variables in and out are local variables and thus are allo-
cated on the stack of the thread that called rlogind. When this fi rst thread returns from rlogind,
these variables go out of scope — the stack locations might be used for other things. Thus when
pthread_create is called, the addresses of in and out point to useful information. But by the time
the threads created by the calls to pthread_create reference the data pointed to by their arguments
(in and out), this data might no longer exist, since the fi rst thread is no longer in their scope. Thus
our approach works only if we can be certain that fi rst thread does not leave the scope of the
arguments while they are in use.

Is there a safe way to pass multiple arguments to a thread that works in all cases? Ideally,
we’d like to copy all of a thread’s arguments onto its stack. But since neither pthread_create
nor CreateThread provides a means for doing this for more than one argument, we need some
other technique. (Other threads packages, for example (Doeppner 1987), did provide a way to
put multiple arguments on a thread’s stack.) Whatever approach we use, it must involve passing
a pointer or some sort of pointer-sized identifi er to the thread, which then uses this identifi er
to refer to the actual arguments (which must reside in storage that is available while the thread
is executing).

One approach might be to use static or global storage for the arguments, so that there’s not
a problem with them going out of scope. While this would work in some cases, suppose that in
our example multiple threads are calling rlogind concurrently. All would use the same locations
for storing the arguments to pthread_create, and the result would be chaos.

We might allocate storage dynamically for the arguments, using malloc in C or new in C++.
This might seem to solve our problems, but who frees the storage, and when? The creating thread
can do so safely only if the created thread is certain not to access the arguments at any point in
the future. We can’t expect the created thread to free the storage unless its arguments are always
in dynamically allocated storage.

In summary, we have four approaches for passing multiple arguments to a thread:

 1. copy all arguments to the thread’s stack: this always works, but isn’t supported in either
POSIX or Win-32

 2. pass a pointer to local storage containing the arguments: this works only if we are certain
this storage doesn’t go out of scope until the thread is fi nished with it

 3. pass a pointer to static or global storage containing the arguments: this works only if only
one thread at a time is using the storage

CH002.indd 46CH002.indd 46 8/2/10 8:26:14 PM8/2/10 8:26:14 PM

Variables	
 on	
 stack	
 –	
 when	
 rlogind	
 returns	

These	
 variables	
 are	
 popped	
 off	
 the	
 stack	

	

Soln:	
 Global	
 variables	
 or	
 dynamically	
 allocated	
 variables	

Laeer	
 only	
 works	
 if	
 someone	
 frees	
 said	
 space	

	

Thread	
 Termina)on	
 (thread_example_2.c)	

•  Space	
 from	
 caller	
 must	
 be	
 provided	
 for	
 thread	
 to	
 place	
 return	

values	

•  pthread_exit()	
 terminates	
 thread,	
 exit()	
 terminates	
 process	

48 CHAPTER 2 Multithreaded Programming

pthread_create(&createe, 0, CreateeProc, 0);

…

pthread_join(create, &result);

…

}

void *CreateeProc(void *arg) {

…

if (should_terminate_now)

pthread_exit((void *)1);

…

return((void *)2);

}

There is a big difference between pthread_exit and exit. The former terminates just the
calling thread. The latter terminates the entire process, including all threads running in it. Note
that if a thread returns from a program’s main procedure, it calls exit (it actually returns to
code that then calls exit). So, consider the following code:

int main(int argc, char *argv[]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

return(0);

}

What happens here is that ten threads are created but the creating thread immediately
returns from main, calls exit, and thus terminates the entire process. On a uniprocessor system,
none of the ten child threads are likely to get a chance to run at all.

To create a bunch of threads and then terminate innocuously, one might do something like:

int main(int argc, char *argv[]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

pthread_exit(0);

return(0);

}

Here the fi rst thread again creates ten threads, but then quietly goes away (the call to return
is required even though it won’t be executed, since main is defi ned as returning an int). The process
terminates once all its component threads have terminated (or if one of them calls exit).

CH002.indd 48CH002.indd 48 8/2/10 8:26:14 PM8/2/10 8:26:14 PM

48 CHAPTER 2 Multithreaded Programming

pthread_create(&createe, 0, CreateeProc, 0);

…

pthread_join(create, &result);

…

}

void *CreateeProc(void *arg) {

…

if (should_terminate_now)

pthread_exit((void *)1);

…

return((void *)2);

}

There is a big difference between pthread_exit and exit. The former terminates just the
calling thread. The latter terminates the entire process, including all threads running in it. Note
that if a thread returns from a program’s main procedure, it calls exit (it actually returns to
code that then calls exit). So, consider the following code:

int main(int argc, char *argv[]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

return(0);

}

What happens here is that ten threads are created but the creating thread immediately
returns from main, calls exit, and thus terminates the entire process. On a uniprocessor system,
none of the ten child threads are likely to get a chance to run at all.

To create a bunch of threads and then terminate innocuously, one might do something like:

int main(int argc, char *argv[]) {

int i;

pthread_t threads[10];

for (i=0; i< 10; i++)

pthread_create(&threads[i], 0, start_proc, (void *)i);

pthread_exit(0);

return(0);

}

Here the fi rst thread again creates ten threads, but then quietly goes away (the call to return
is required even though it won’t be executed, since main is defi ned as returning an int). The process
terminates once all its component threads have terminated (or if one of them calls exit).

CH002.indd 48CH002.indd 48 8/2/10 8:26:14 PM8/2/10 8:26:14 PM

Thread	
 Aeributes	
 	

•  “man	
 pthread_attr_init”	

•  e.g.	
 to	
 specify	
 the	
 stack	
 size	
 for	
 a	
 thread	
 one	
 ini)alizes	
 an	
 aeributes	

datastructure	

	

2.2 Programming with Threads 51

happen, for example, if the thread places a call to a procedure with large local variables that aren’t
immediately referenced. So we must be careful to give each thread a suffi ciently large stack (how
large is large enough depends on the program and the architecture).

To specify the stack size for a thread, one sets up an attributes structure using pthread_attr_
setstacksize and supplies it to pthread_create:

pthread_t thread;

pthread_attr_t thr_attr;

pthread_attr_init(&thr_attr);

pthread_attr_setstacksize(&thr_attr, 20*1024*1024);

...

pthread_create(&thread, &thr_attr, startroutine, arg);

In this case we’ve created a thread with a twenty-megabyte stack.
How large is the default stack? This is not specifi ed in POSIX threads. Different implementa-

tions use different values, ranging from around 20 KB in Tru64 Unix to one megabyte in Solaris
and eight megabytes in some Linux implementations.

Win-32 uses a different approach to stack size: the amount of address space allocated for
each thread’s stack is a link-time parameter, not a run-time parameter. The “stacksize” argument
to CreateThread indicates how many pages of primary memory are allocated to hold the stack
when the thread starts execution. Additional pages of primary memory are allocated as neces-
sary as the thread runs, up to the maximum stack size. One cannot affect this level of detail using
POSIX threads.

2.2.1.6 Example
Here is a simple complete multithreaded program that computes the product of two matrices. Our
approach is to create one thread for each row of the product and have these threads compute the
necessary inner products. (This isn’t a good way to compute the product of two matrices — it’s
merely an example of a multithreaded program!)

#include <stdio.h>

#include <pthread.h> /* all POSIX threads declarations */

#include <string.h> /* needed to use strerror below */

#defi ne M 3

#defi ne N 4

#defi ne P 5

int A[M][N]; /* multiplier matrix */

int B[N][P]; /* multiplicand matrix */

int C[M][P]; /* product matrix */

void *matmult(void *);

int main() {

int i, j;

CH002.indd 51CH002.indd 51 8/2/10 8:26:15 PM8/2/10 8:26:15 PM

Synchroniza)on	

 (thread_example_3.c)	
 	

•  Remember:	
 threads	
 share	
 access	
 to	
 common	
 data	
 structures	

•  Mutual	
 exclusion	
 is	
 a	
 form	
 of	
 thread	
 synchroniza)on	

–  Makes	
 sure	
 two	
 things	
 don’t	
 happen	
 at	
 once	

–  Example,	
 two	
 threads	
 each	
 doing	

Can	
 result	
 in	
 1	
 or	
 2;	
 reordering	
 the	
 assembly	
 code	
 shows	
 why	

	

	

2.2 Programming with Threads 57

2.2.3.1 Mutual Exclusion
The mutual-exclusion problem involves making certain that two things don’t happen at once. A
dramatic example arose in the fi ghter aircraft of World War I, as illustrated in Figure 2.4. Due to
a number of constraints (e.g., machine guns tended to jam frequently and thus had to be near peo-
ple who could unjam them), machine guns were mounted directly in front of the pilot. However,
blindly shooting a machine gun through a whirling propeller was not a good idea. At the begin-
ning of the war, pilots, being gentlemen, politely refrained from attacking fellow pilots. A bit later
in the war, however, the Germans developed the tactic of gaining altitude on an opponent, diving
at him, turning off the engine, then fi ring — without hitting the now-stationary propeller. Today
this would be called coarse-grained synchronization. Later, the Germans developed technology
that synchronized the fi ring of the gun with the whirling of the propeller, so that shots were fi red
only when the propeller blades would not be in the way. This could well be the fi rst example of a
mutual-exclusion mechanism providing fi ne-grained synchronization!

For a more computer-oriented example of the need for mutual exclusion, consider two
threads, each performing the following operation:

x = x+1;

If the two threads perform the operation at the same time, what’s the fi nal value of x if its initial
value was zero? We’d very much like the answer to be 2. However, consider the assembly-language
version of the statement. It probably looks something like this:

ld r1,x

add r1,1

st r1,x

Thus to add 1 to the variable x, the machine must fi rst load the current contents of location x into
a register, add 1 to the contents of the register, then store those contents back into the location contain-
ing x. If both threads do this at more or less the same time, the fi nal result stored in x is likely to be 1!

For the concurrent execution of the two assignment statements to behave as we want it to,
we somehow have to insure that the effect of executing the three assembler instructions is atomic,
i.e., that all three instructions take place at once without interference.

FIGURE 2 .4 World War I fi ghter aircraft. (Copyright © iStockphoto.)

CH002.indd 57CH002.indd 57 8/2/10 8:26:16 PM8/2/10 8:26:16 PM

2.2 Programming with Threads 57

2.2.3.1 Mutual Exclusion
The mutual-exclusion problem involves making certain that two things don’t happen at once. A
dramatic example arose in the fi ghter aircraft of World War I, as illustrated in Figure 2.4. Due to
a number of constraints (e.g., machine guns tended to jam frequently and thus had to be near peo-
ple who could unjam them), machine guns were mounted directly in front of the pilot. However,
blindly shooting a machine gun through a whirling propeller was not a good idea. At the begin-
ning of the war, pilots, being gentlemen, politely refrained from attacking fellow pilots. A bit later
in the war, however, the Germans developed the tactic of gaining altitude on an opponent, diving
at him, turning off the engine, then fi ring — without hitting the now-stationary propeller. Today
this would be called coarse-grained synchronization. Later, the Germans developed technology
that synchronized the fi ring of the gun with the whirling of the propeller, so that shots were fi red
only when the propeller blades would not be in the way. This could well be the fi rst example of a
mutual-exclusion mechanism providing fi ne-grained synchronization!

For a more computer-oriented example of the need for mutual exclusion, consider two
threads, each performing the following operation:

x = x+1;

If the two threads perform the operation at the same time, what’s the fi nal value of x if its initial
value was zero? We’d very much like the answer to be 2. However, consider the assembly-language
version of the statement. It probably looks something like this:

ld r1,x

add r1,1

st r1,x

Thus to add 1 to the variable x, the machine must fi rst load the current contents of location x into
a register, add 1 to the contents of the register, then store those contents back into the location contain-
ing x. If both threads do this at more or less the same time, the fi nal result stored in x is likely to be 1!

For the concurrent execution of the two assignment statements to behave as we want it to,
we somehow have to insure that the effect of executing the three assembler instructions is atomic,
i.e., that all three instructions take place at once without interference.

FIGURE 2 .4 World War I fi ghter aircraft. (Copyright © iStockphoto.)

CH002.indd 57CH002.indd 57 8/2/10 8:26:16 PM8/2/10 8:26:16 PM

POSIX	
 Mutexes	

•  OS	
 must	
 support	
 thread	
 synchroniza)on	
 mechanisms	

•  POSIX	
 defines	
 a	
 data	
 type	
 called	
 a	
 mutex	
 (from	
 “mutual	
 exclusion”)	

•  Mutexes	
 can	
 ensure	

–  Only	
 one	
 thread	
 is	
 execu)ng	
 a	
 block	
 of	
 code	
 (code	
 locking)	

–  Only	
 one	
 thread	
 is	
 accessing	
 a	
 par)cular	
 data	
 structure	
 (data	
 locking)	

•  A	
 mutex	
 either	
 belongs	
 to	
 a	
 single	
 thread	
 or	
 no	
 thread	

•  A	
 thread	
 may	
 “lock”	
 a	
 mutex	
 by	
 calling	
 pthread_mutex_lock()	

•  A	
 mutex	
 may	
 be	
 unlocked	
 by	
 calling	
 pthread_mutex_unlock()	

•  A	
 mutex	
 datastructure	
 can	
 be	
 ini)alized	
 via	
 pthread_mutex_init()	

58 CHAPTER 2 Multithreaded Programming

We’re not going to show how to solve this problem right away. Instead, we introduce
functionality from POSIX threads and Win-32 and show how we can use it to solve the problem.
In Chapter 5 we show how this functionality is implemented.

POSIX threads defi nes a new data type called a mutex, which stands for mutual exclusion.
A mutex is used to insure either that only one thread is executing a particular piece of code at
once (code locking) or that only one thread is accessing a particular data structure at once (data
locking). A mutex belongs either to a particular thread or to no thread (i.e., it is either locked
or unlocked). A thread may lock a mutex by calling pthread_mutex_lock. If no other thread has
the mutex locked, then the calling thread obtains the lock on the mutex and returns. Otherwise it
waits until no other thread has the mutex, and fi nally returns with the mutex locked. There may,
of course, be multiple threads waiting for the mutex to be unlocked. Only one thread can lock
the mutex at a time; there is no specifi ed order for which thread gets the mutex next, though the
ordering is assumed to be at least somewhat fair.

To unlock a mutex, a thread calls pthread_mutex_unlock. It is considered incorrect to
unlock a mutex that is not held by the caller (i.e., to unlock someone else’s mutex). However,
checking for this is costly, so most implementations, if they check at all, do so only when certain
degrees of debugging are turned on.

Like any other data structure, mutexes must be initialized. This can be done via a call to
pthread_mutex_init or can be done statically by assigning PTHREAD_MUTEX_INITIALIZER
to a mutex. The initial state of such initialized mutexes is unlocked. Of course, a mutex should be
initialized only once! (That is, make certain that, for each mutex, no more than one thread calls
pthread_mutex_init.) If a mutex is dynamically initialized, a call should be made to pthread_
mutex_destroy when it is no longer needed.

Using mutexes, we can solve the problem of atomically adding 1 to a variable.

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

 // shared by both threads

int x; // ditto

pthread_mutex_lock(&m);

x = x+1;

pthread_mutex_unlock(&m);

Using a mutex to provide mutually exclusive access to a single data structure at a time is
easy. Things get a bit more involved if we need to arrange for such access to multiple data struc-
tures at once. Consider the following example in which one thread is executing proc1 and another
is executing proc2:

void proc1() {

pthread_mutex_lock(&m1);

/* use object 1 */

pthread_mutex_lock(&m2);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m2);

 pthread_mutex_unlock(&m1);

}

void proc2() {

pthread_mutex_lock(&m2);

/* use object 2 */

pthread_mutex_lock(&m1);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m1);

 pthread_mutex_unlock(&m2);

}

CH002.indd 58CH002.indd 58 8/2/10 8:26:17 PM8/2/10 8:26:17 PM

Mutual	
 exclusion	
 can	
 result	
 in	
 DEADLOCK!	

•  In	
 the	
 following,	
 “deadlock”	
 can	
 occur	

58 CHAPTER 2 Multithreaded Programming

We’re not going to show how to solve this problem right away. Instead, we introduce
functionality from POSIX threads and Win-32 and show how we can use it to solve the problem.
In Chapter 5 we show how this functionality is implemented.

POSIX threads defi nes a new data type called a mutex, which stands for mutual exclusion.
A mutex is used to insure either that only one thread is executing a particular piece of code at
once (code locking) or that only one thread is accessing a particular data structure at once (data
locking). A mutex belongs either to a particular thread or to no thread (i.e., it is either locked
or unlocked). A thread may lock a mutex by calling pthread_mutex_lock. If no other thread has
the mutex locked, then the calling thread obtains the lock on the mutex and returns. Otherwise it
waits until no other thread has the mutex, and fi nally returns with the mutex locked. There may,
of course, be multiple threads waiting for the mutex to be unlocked. Only one thread can lock
the mutex at a time; there is no specifi ed order for which thread gets the mutex next, though the
ordering is assumed to be at least somewhat fair.

To unlock a mutex, a thread calls pthread_mutex_unlock. It is considered incorrect to
unlock a mutex that is not held by the caller (i.e., to unlock someone else’s mutex). However,
checking for this is costly, so most implementations, if they check at all, do so only when certain
degrees of debugging are turned on.

Like any other data structure, mutexes must be initialized. This can be done via a call to
pthread_mutex_init or can be done statically by assigning PTHREAD_MUTEX_INITIALIZER
to a mutex. The initial state of such initialized mutexes is unlocked. Of course, a mutex should be
initialized only once! (That is, make certain that, for each mutex, no more than one thread calls
pthread_mutex_init.) If a mutex is dynamically initialized, a call should be made to pthread_
mutex_destroy when it is no longer needed.

Using mutexes, we can solve the problem of atomically adding 1 to a variable.

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

 // shared by both threads

int x; // ditto

pthread_mutex_lock(&m);

x = x+1;

pthread_mutex_unlock(&m);

Using a mutex to provide mutually exclusive access to a single data structure at a time is
easy. Things get a bit more involved if we need to arrange for such access to multiple data struc-
tures at once. Consider the following example in which one thread is executing proc1 and another
is executing proc2:

void proc1() {

pthread_mutex_lock(&m1);

/* use object 1 */

pthread_mutex_lock(&m2);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m2);

 pthread_mutex_unlock(&m1);

}

void proc2() {

pthread_mutex_lock(&m2);

/* use object 2 */

pthread_mutex_lock(&m1);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m1);

 pthread_mutex_unlock(&m2);

}

CH002.indd 58CH002.indd 58 8/2/10 8:26:17 PM8/2/10 8:26:17 PM

Deadlock	
 is	
 nasty,	
 difficult	
 to	
 detect,	
 and	
 to	
 be	
 avoided	
 at	
 all	
 cost	

•  One	
 useful	
 avoidance	
 mechanism	
 is	
 pthread_mutex_trylock()	

60 CHAPTER 2 Multithreaded Programming

Thread 1

Thread 2

Mutex 1 Mutex 2

FIGURE 2 .5 Thread/mutex graph.

can’t possibly exist in the graph. This is easy to do: we simply arrange our mutexes in some order
(for example, by assigning unique integers to them) and insist that all threads attempting to lock
multiple resources do so in ascending order.

In most applications it is fairly easy to set things up so that all threads lock mutexes in
ascending order. However, in some situations this is impossible, often because it is not known
which mutex should be locked second until the fi rst one is locked. An approach that often works
in such situations is to use conditional lock requests, as in:

proc1() {

pthread_mutex_lock(&m1);

/* use object 1 */

pthread_mutex_lock(&m2);

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m2);

 pthread_mutex_unlock(&m1);

}

proc2() {

while (1) {

pthread_mutex_lock(&m2);

if (!pthread_mutex_trylock(&m1))

break;

 pthread_mutex_unlock(&m2);

}

/* use objects 1 and 2 */

 pthread_mutex_unlock(&m1);

 pthread_mutex_unlock(&m2);

}

Here thread 1, executing proc1, obtains the mutexes in the correct order. Thread 2, executing
proc2, must for some reason take the mutexes out of order. If it is holding mutex 2, it must be care-
ful about taking mutex 1. So, rather than call pthread_mutex_lock, it calls pthread_mutex_trylock,
which always returns without blocking. If the mutex is available, pthread_mutex_trylock locks
the mutex and returns 0. If the mutex is not available (that is, if it is locked by another thread),
then pthread_mutex_trylock returns a nonzero error code (EBUSY). In the example above, if

CH002.indd 60CH002.indd 60 8/2/10 8:26:18 PM8/2/10 8:26:18 PM

Semaphores	

•  A	
 semaphore	
 is	
 a	
 nonnega)ve	
 integer	
 with	
 two	
 atomic	
 opera)ons	

–  P	
 (try	
 to	
 decrease)	
 :	
 thread	
 waits	
 un)l	
 semaphore	
 is	
 posi)ve	
 then	
 subtracts	
 1	
 	

•  []’s	
 are	
 nota)on	
 for	
 guards;	
 that	
 which	
 happens	
 between	
 them	
 is	
 atomic,	
 instantaneous,	

and	
 no	
 other	
 opera)on	
 that	
 might	
 take	
 interfere	
 with	
 it	
 can	
 take	
 place	
 while	
 it	
 is	
 execu)ng	

–  V	
 (increase)	

•  Mutexes	
 can	
 be	
 implemented	
 as	
 semaphores	

62 CHAPTER 2 Multithreaded Programming

on native Dutch speakers. According to (Dijkstra undated: early 1960s), P stands for prolagen,
a made-up word derived from proberen te verlagen, “try to decrease” in Dutch. V stands for
verhogen, “increase” in Dutch.) The P operation is somewhat complicated: a thread waits until it
fi nds the value of the semaphore positive, then subtracts one from it. What’s really important is
that when the active part of the operation starts, the semaphore’s value is defi nitely positive, and
when this active part fi nishes, the value is exactly one less than when the operation started. It’s
often described as an atomic or indivisible operation: it has no component parts and takes place
as if it were happening instantaneously.

We use the following notation to describe the semantics of P:

when (semaphore > 0) [

semaphore = semaphore – 1;

]

This notation means that the operations in square brackets take place only when the expression
following “when,” known as the guard, is true; the statements in square brackets, known as
the command sequence, are effectively executed instantaneously: no other operation that might
interfere with it can take place while it is executing. We call the entire construct a guarded
command.

The V operation is simpler: a thread atomically adds one to the value of the semaphore.
We write this as

[semaphore = semaphore + 1]

There is no other means for manipulating the value of the semaphore (other than initializing
its value in the fi rst place). Thus if the semaphore’s value is initially one and two threads concur-
rently execute P and V operations on it, the resulting value of the semaphore is guaranteed to be
one. If its value is initially zero and the two threads concurrently execute P and V operations, the
P operation must wait until the V operation makes the semaphore’s value positive. Then the P
operation can complete, reducing the semaphore’s value to zero.

We can easily implement mutexes using semaphores:

semaphore S = 1;

void OneAtATime() {

P(S);

…

/* code executed mutually exclusively */

…

V(S);

}

If two threads call the OneAtATime routine, the fi rst one to execute the P operation fi nds S to
be one, and so subtracts one from it, making it zero. If the second thread now attempts to execute
the P operation, it fi nds S to be zero and thus must wait. Eventually the fi rst thread performs the V
operation, adding one back to S, which enables the second thread to continue. It subtracts one from
S and eventually executes the V and adds one back to it. When semaphores are used in such a way
that their values are only zero and one, as here, they are known as binary semaphores.

When multiple threads attempt to execute a P operation, the effect must be as if they execute
it one at a time while the semaphore’s value is positive. If its value is zero, they are queued up
and, one at a time, they complete the P operation in response to V operations by other threads.

CH002.indd 62CH002.indd 62 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

62 CHAPTER 2 Multithreaded Programming

on native Dutch speakers. According to (Dijkstra undated: early 1960s), P stands for prolagen,
a made-up word derived from proberen te verlagen, “try to decrease” in Dutch. V stands for
verhogen, “increase” in Dutch.) The P operation is somewhat complicated: a thread waits until it
fi nds the value of the semaphore positive, then subtracts one from it. What’s really important is
that when the active part of the operation starts, the semaphore’s value is defi nitely positive, and
when this active part fi nishes, the value is exactly one less than when the operation started. It’s
often described as an atomic or indivisible operation: it has no component parts and takes place
as if it were happening instantaneously.

We use the following notation to describe the semantics of P:

when (semaphore > 0) [

semaphore = semaphore – 1;

]

This notation means that the operations in square brackets take place only when the expression
following “when,” known as the guard, is true; the statements in square brackets, known as
the command sequence, are effectively executed instantaneously: no other operation that might
interfere with it can take place while it is executing. We call the entire construct a guarded
command.

The V operation is simpler: a thread atomically adds one to the value of the semaphore.
We write this as

[semaphore = semaphore + 1]

There is no other means for manipulating the value of the semaphore (other than initializing
its value in the fi rst place). Thus if the semaphore’s value is initially one and two threads concur-
rently execute P and V operations on it, the resulting value of the semaphore is guaranteed to be
one. If its value is initially zero and the two threads concurrently execute P and V operations, the
P operation must wait until the V operation makes the semaphore’s value positive. Then the P
operation can complete, reducing the semaphore’s value to zero.

We can easily implement mutexes using semaphores:

semaphore S = 1;

void OneAtATime() {

P(S);

…

/* code executed mutually exclusively */

…

V(S);

}

If two threads call the OneAtATime routine, the fi rst one to execute the P operation fi nds S to
be one, and so subtracts one from it, making it zero. If the second thread now attempts to execute
the P operation, it fi nds S to be zero and thus must wait. Eventually the fi rst thread performs the V
operation, adding one back to S, which enables the second thread to continue. It subtracts one from
S and eventually executes the V and adds one back to it. When semaphores are used in such a way
that their values are only zero and one, as here, they are known as binary semaphores.

When multiple threads attempt to execute a P operation, the effect must be as if they execute
it one at a time while the semaphore’s value is positive. If its value is zero, they are queued up
and, one at a time, they complete the P operation in response to V operations by other threads.

CH002.indd 62CH002.indd 62 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

62 CHAPTER 2 Multithreaded Programming

on native Dutch speakers. According to (Dijkstra undated: early 1960s), P stands for prolagen,
a made-up word derived from proberen te verlagen, “try to decrease” in Dutch. V stands for
verhogen, “increase” in Dutch.) The P operation is somewhat complicated: a thread waits until it
fi nds the value of the semaphore positive, then subtracts one from it. What’s really important is
that when the active part of the operation starts, the semaphore’s value is defi nitely positive, and
when this active part fi nishes, the value is exactly one less than when the operation started. It’s
often described as an atomic or indivisible operation: it has no component parts and takes place
as if it were happening instantaneously.

We use the following notation to describe the semantics of P:

when (semaphore > 0) [

semaphore = semaphore – 1;

]

This notation means that the operations in square brackets take place only when the expression
following “when,” known as the guard, is true; the statements in square brackets, known as
the command sequence, are effectively executed instantaneously: no other operation that might
interfere with it can take place while it is executing. We call the entire construct a guarded
command.

The V operation is simpler: a thread atomically adds one to the value of the semaphore.
We write this as

[semaphore = semaphore + 1]

There is no other means for manipulating the value of the semaphore (other than initializing
its value in the fi rst place). Thus if the semaphore’s value is initially one and two threads concur-
rently execute P and V operations on it, the resulting value of the semaphore is guaranteed to be
one. If its value is initially zero and the two threads concurrently execute P and V operations, the
P operation must wait until the V operation makes the semaphore’s value positive. Then the P
operation can complete, reducing the semaphore’s value to zero.

We can easily implement mutexes using semaphores:

semaphore S = 1;

void OneAtATime() {

P(S);

…

/* code executed mutually exclusively */

…

V(S);

}

If two threads call the OneAtATime routine, the fi rst one to execute the P operation fi nds S to
be one, and so subtracts one from it, making it zero. If the second thread now attempts to execute
the P operation, it fi nds S to be zero and thus must wait. Eventually the fi rst thread performs the V
operation, adding one back to S, which enables the second thread to continue. It subtracts one from
S and eventually executes the V and adds one back to it. When semaphores are used in such a way
that their values are only zero and one, as here, they are known as binary semaphores.

When multiple threads attempt to execute a P operation, the effect must be as if they execute
it one at a time while the semaphore’s value is positive. If its value is zero, they are queued up
and, one at a time, they complete the P operation in response to V operations by other threads.

CH002.indd 62CH002.indd 62 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

POSIX	
 Semaphores	

•  Interface	

•  Note	
 :	
 Mac’s	
 use	
 Mach	
 spec.	
 named-­‐semaphore	
 via	
 sem_open()	

2.2 Programming with Threads 63

We can easily generalize our above example to allow up to N threads to execute a block of
code (or access a data structure) simultaneously:

semaphore S = N;

void NAtATime() {

P(S);

…

/* No more than N threads here at once */

…

V(S);

}

Semaphores used this way are known as counting semaphores.
A more interesting example of counting semaphores involves using them to solve the

producer-consumer problem (see Figure 2.6 above). To keep things simple, let’s assume we
have one producer and one consumer. We have a buffer with B slots. We use two semaphores:
empty, representing the number of empty slots, and occupied, representing the number of occupied
slots. Our solution is:

Semaphore empty = B;

Semaphore occupied = 0;

int nextin = 0;

int nextout = 0;

void Produce(char item) {

P(empty);

buf[nextin] = item;

nextin = nextin + 1;

if (nextin == B)

nextin = 0;

V(occupied);

}

char Consume() {

char item;

P(occupied);

item = buf[nextout];

nextout = nextout + 1;

if (nextout == B)

nextout = 0;

V(empty);

return(item);

}

The fi rst P operation of Produce causes the thread to wait until there is at least one empty
slot in the buffer; at this point the slot is “taken” and empty’s value is reduced by one. The producer
puts its item in the buffer, then indicates there is one more occupied slot by performing a V operation
on occupied. Similar actions take place inside of Consume.

POSIX provides an implementation of semaphores, but, strangely, it’s not part of POSIX
threads (POSIX 1003.1c) but part of the POSIX real-time specifi cation (POSIX 1003.1b). This
matters only because, depending on the system, you may need to include an additional library
when you use semaphores.

The POSIX interface for semaphores is given below.

sem_t semaphore;

int err;

CH002.indd 63CH002.indd 63 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

64 CHAPTER 2 Multithreaded Programming

err = sem_init(&semaphore, pshared, init);

err = sem_destroy(&semaphore);

err = sem_wait(&semaphore); // P operation

err = sem_trywait(&semaphore); // conditional P operation

err = sem_post(&semaphore); // V operation

Thus semaphores are of type sem_t. All operations on them return an integer error code.
They must be dynamically initialized using sem_init (there is no static initialization such as
is provided for mutexes). They take two arguments in addition to the semaphore itself: a fl ag,
pshared, indicating whether the semaphore is to be used by threads of just one process (pshared =
0) or by threads of multiple processes (pshared = 1). We assume the former for now, and discuss
the latter later. Once a semaphore is no longer used, sem_destroy should be called to free whatever
storage was allocated by sem_init.

The sem_wait operation is the P operation described above. What’s new is the sem_trywait
operation, which is similar to pthread_mutex_trylock: if the semaphore’s value is positive and
thus no waiting is required, it behaves just like sem_wait (the value of the semaphore is immediately
reduced by one). However, if the semaphore’s value is zero, then, rather than waiting, the caller
returns immediately with an error code (the value EAGAIN).

We discuss the Win-32 version of semaphores in the section on Win-32 Events, below.

POSIX Condition Variables Semaphores are a convenient way to express solutions to a
number of synchronization problems, but using them can force amazingly complex solu-
tions for other problems. Thus most operating systems provide additional synchronization
constructs. Here we describe POSIX’s condition variables; later we discuss the events of
Win-32.

We described the semantics of semaphores using guarded commands. A general implementation
of our guarded-command construct is, however, a rather tall order. Somehow we’d have to moni-
tor the values of all variables appearing in the guard (i.e., the expression following the when) so
as to fi nd out when the guard becomes true. Then we’d have to make certain it remains true when
we start executing the command sequence (the code in square brackets that follows), and make
certain that this execution is indivisible.

Condition variables give programmers the tools needed to implement guarded commands.
A condition variable is a queue of threads waiting for some sort of notifi cation. Threads waiting
for a guard to become true join such queues. Threads that do something to change the value of a
guard from false to true can then wake up the threads that were waiting.

The following code shows the general approach:

Guarded command POSIX implementation

when (guard) [

statement 1;

…

statement n;

]

pthread_mutex_lock(&mutex);

while(!guard)

pthread_cond_wait(

&cond_var, &mutex));

statement 1;

…

statement n;

pthread_mutex_unlock(&mutex);

CH002.indd 64CH002.indd 64 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

OS	
 Implementa)on	
 Problem	
 :	
 Producer-­‐Consumer	
 *	

•  Buffer	
 with	
 a	
 finite	
 number	
 of	
 slots	

•  Threads	

–  Producer	
 :	
 puts	
 things	
 in	
 the	
 buffer	

–  Consumer	
 :	
 removes	
 things	
 from	
 the	
 buffer	

•  Producer	
 must	
 wait	
 if	
 buffer	
 is	
 full;	
 consumer	
 if	
 buffer	
 is	
 empty	

2.2 Programming with Threads 61

mutex 1 is not available, this is probably because it is currently held by thread 1. If thread 2 were
to block waiting for the mutex, we have an excellent chance for deadlock. So, rather than block,
thread 1 not only quits trying for mutex 1 but also unlocks mutex 2 (since thread 1 could well be
waiting for it). It then starts all over again, fi rst taking mutex 2, then mutex 1.

Thread 2 thus repeatedly tries to lock both mutexes (in the wrong order) until it can do so
without causing any problems. This could, of course, require a fair number of iterations. When
this approach is used, the assumption (which must be validated) is that contention for locks is low
and thus even two iterations are unlikely to occur. If lock contention is high, another solution is
necessary, perhaps one that requires all threads to honor the locking order.

2.2.3.2 Beyond Mutual Exclusion
Though mutual exclusion is the most common form of synchronization, there are numerous
situations that it cannot handle. One obvious extension to mutual exclusion is what’s known as
the readers-writers problem: rather than requiring mutual exclusion for all accesses to a data
structure, we can relax things a bit and insist on mutual exclusion only if the data structure is
being modifi ed. Thus any number of threads (readers) may be just looking at the data structure at
once, but any thread intending to modify it must have mutually exclusive access.

Another common (at least in texts such as this) synchronization problem is the pro-
ducer-consumer problem (sometimes called the bounded-buffer problem). Here we have a
buffer containing a fi nite number of slots. As shown in Figure 2.6, a producer is a thread that
wishes to put an item into the next empty slot of the buffer. A consumer is a thread that wishes
to remove an item from the next occupied slot. The synchronization issue for producers is that
if all slots in the buffer are occupied, then producer threads must wait until empty slots are
available. Similarly, if all slots are empty, consumer threads must wait until occupied slots
are available.

The next synchronization problem might seem a bit mundane, but it’s particularly important
in many operating systems. It doesn’t have a common name; here we call it the event problem.
A number of threads are waiting for a particular event to happen. Once the event has happened,
we’d like to release all of the waiting threads. For example, a number of threads might be waiting
for a read operation on a disk to complete. Once it’s completed, all threads are woken up and can
use the data that was just read in.

Semaphores These problems, and many others, were fi rst identifi ed in the 1960s. The per-
son who did much of the early work in identifying and elegantly solving these problems was
Edsger Dijkstra. The semaphore, a synchronization operation (Dijkstra undated: early 1960s) he
described and used in an early system (Dijkstra 1968), has proven so useful that it continues to
be used in most modern operating systems.

A semaphore is a nonnegative integer on which there are exactly two operations, called by
Dijkstra P and V. (What P and V stand for isn’t obvious. While Dijkstra was Dutch and based
his terminology on Dutch words, the mnemonic signifi cance of P and V seems to be lost even

ProducerConsumer

FIGURE 2 .6 Producer-consumer problem.

CH002.indd 61CH002.indd 61 8/2/10 8:26:18 PM8/2/10 8:26:18 PM

Semaphore	
 sol’n	
 to	
 the	
 producer-­‐consumer	
 problem	
 	

•  Example	
 sheet	

2.2 Programming with Threads 63

We can easily generalize our above example to allow up to N threads to execute a block of
code (or access a data structure) simultaneously:

semaphore S = N;

void NAtATime() {

P(S);

…

/* No more than N threads here at once */

…

V(S);

}

Semaphores used this way are known as counting semaphores.
A more interesting example of counting semaphores involves using them to solve the

producer-consumer problem (see Figure 2.6 above). To keep things simple, let’s assume we
have one producer and one consumer. We have a buffer with B slots. We use two semaphores:
empty, representing the number of empty slots, and occupied, representing the number of occupied
slots. Our solution is:

Semaphore empty = B;

Semaphore occupied = 0;

int nextin = 0;

int nextout = 0;

void Produce(char item) {

P(empty);

buf[nextin] = item;

nextin = nextin + 1;

if (nextin == B)

nextin = 0;

V(occupied);

}

char Consume() {

char item;

P(occupied);

item = buf[nextout];

nextout = nextout + 1;

if (nextout == B)

nextout = 0;

V(empty);

return(item);

}

The fi rst P operation of Produce causes the thread to wait until there is at least one empty
slot in the buffer; at this point the slot is “taken” and empty’s value is reduced by one. The producer
puts its item in the buffer, then indicates there is one more occupied slot by performing a V operation
on occupied. Similar actions take place inside of Consume.

POSIX provides an implementation of semaphores, but, strangely, it’s not part of POSIX
threads (POSIX 1003.1c) but part of the POSIX real-time specifi cation (POSIX 1003.1b). This
matters only because, depending on the system, you may need to include an additional library
when you use semaphores.

The POSIX interface for semaphores is given below.

sem_t semaphore;

int err;

CH002.indd 63CH002.indd 63 8/2/10 8:26:19 PM8/2/10 8:26:19 PM

Devia)ons	

•  Signals	

–  Force	
 a	
 user	
 thread	
 to	
 put	
 aside	
 current	
 ac)vity	
 	

–  Call	
 a	
 pre-­‐arranged	
 handler	

–  Go	
 back	
 to	
 what	
 it	
 was	
 doing	

–  Similar	
 to	
 interrupt	
 handling	
 inside	
 the	
 OS	

•  Examples	

–  Typing	
 special	
 characters	
 on	
 the	
 keyboard	
 (^c)	

–  Signals	
 sent	
 by	
 other	
 threads	
 (kill)	

–  Program	
 excep)ons	
 (divide	
 by	
 zero,	
 addressing	
 excep)ons)	

•  Background	

–  Graceful	
 termina)on	
 via	
 ^c	
 and	
 SIGINT	

Signals	
 and	
 Handled	
 by	
 Handlers	

•  Se�ng	
 up	
 a	
 handler	
 to	
 be	
 invoked	
 upon	
 receipt	
 of	
 a	
 ^c	
 signal	

•  Signals	
 can	
 be	
 used	
 to	
 communicate	
 with	
 a	
 process	

	

80 CHAPTER 2 Multithreaded Programming

A process might set up a handler to be invoked when such a signal is delivered, as shown
below:

int main() {

void handler(int);

sigset(SIGINT, handler);

/* long-running buggy code */

…

}

void handler(int sig) {

/* perform some cleanup actions */

…

exit(1);

}

The call to sigset in main causes handler to be registered as the signal handler for the
SIGINT signal. Thus if you run this program and decide to terminate it early by typing Ctrl-C, a
SIGINT signal is delivered to the process, causing it to put aside its current state and call handler;
handler performs some cleanup actions (perhaps writing some key data to a fi le) and then terminates
the process.

Signals can also be used as a means for communicating with a process, perhaps requesting
it to do something:

computation_state_t state;

int main() {

void handler(int);

sigset(SIGINT, handler);

long_running_procedure();

}

long_running_procedure() {

while (a_long_time) {

update_state(&state);

compute_more();

}

}

void handler(int sig) {

display(&state);

}

In this code the main procedure establishes a handler for SIGINT, and then calls
long_running_procedure, which might execute for several days. Occasionally the user of the

CH002.indd 80CH002.indd 80 8/2/10 8:26:23 PM8/2/10 8:26:23 PM

•  Signals	
 are	
 processed	
 by	
 a	
 single	
 thread	
 of	

execu)on	

•  Communica)on	
 at	
 right	
 not	
 problem-­‐free	

because	
 of	
 asynchronous	
 access	
 to	
 state	

•  Mutex	
 use	
 will	
 result	
 in	
 deadlock	

•  Making	
 rou)nes	
 async-­‐signal	
 safe	
 requires	

making	
 them	
 so	
 that	
 the	
 controlling	
 thread	

cannot	
 be	
 interrupted	
 by	
 a	
 signal	
 at	
 certain	

)mes	
 (i.e.	
 in	
 update_state)	

–  Signal	
 handling	
 turned	
 on	
 and	
 off	
 by	

•  sigemptyset()	

•  sigaddset()	

•  Sigprocmask()	

•  POSIX	
 compliant	
 OS’s	
 implement	
 60+	
 async-­‐
signal	
 safe	
 rou)nes	

Async-­‐signal	
 safe	
 rou)nes	
 (OS	
 implementa)on	
 perspec)ve)	

80 CHAPTER 2 Multithreaded Programming

A process might set up a handler to be invoked when such a signal is delivered, as shown
below:

int main() {

void handler(int);

sigset(SIGINT, handler);

/* long-running buggy code */

…

}

void handler(int sig) {

/* perform some cleanup actions */

…

exit(1);

}

The call to sigset in main causes handler to be registered as the signal handler for the
SIGINT signal. Thus if you run this program and decide to terminate it early by typing Ctrl-C, a
SIGINT signal is delivered to the process, causing it to put aside its current state and call handler;
handler performs some cleanup actions (perhaps writing some key data to a fi le) and then terminates
the process.

Signals can also be used as a means for communicating with a process, perhaps requesting
it to do something:

computation_state_t state;

int main() {

void handler(int);

sigset(SIGINT, handler);

long_running_procedure();

}

long_running_procedure() {

while (a_long_time) {

update_state(&state);

compute_more();

}

}

void handler(int sig) {

display(&state);

}

In this code the main procedure establishes a handler for SIGINT, and then calls
long_running_procedure, which might execute for several days. Occasionally the user of the

CH002.indd 80CH002.indd 80 8/2/10 8:26:23 PM8/2/10 8:26:23 PM

Other	
 Basic	
 OS	
 Concepts	

•  Context	
 switching	

–  Stack	
 frames	

–  System	
 calls	

–  Interrupts	

•  I/O	

•  Dynamic	
 Storage	
 Alloca)on	

–  Best-­‐fit,	
 first-­‐fit	

•  Linking	
 and	
 loading	

•  Boo)ng	

Context	
 Switching	
 and	
 stack	
 frames	

•  “Context”	
 is	
 the	
 se�ng	
 in	
 which	
 execu)on	
 is	
 currently	
 taking	
 place	

–  Processor	
 mode	

–  Address	
 space	

–  Register	
 contents	

–  Thread	
 or	
 interrupt	
 state	

•  Intel	
 x86	
 Stack	
 Frames	

–  Subrou)ne	
 context	

•  Instruc)on	
 pointer	
 (reg.	
 eip)	

–  Address	
 to	
 which	
 control	
 should	

return	
 when	
 subrou)ne	
 is	

complete	

•  Frame	
 pointer	
 (reg.	
 ebp)	

–  Link	
 to	
 stack	
 frame	
 of	
 caller	

3.1 Context Switching 95

The picture above is idealized: not all portions of the stack frame are always used. For exam-
ple, registers are not saved if the subroutine doesn’t modify them, the frame pointer is not saved
if it’s not used, etc. For more details, see the Intel architecture manuals (http://www.intel.com/
design/processor/manuals/253665.pdf).

Here’s possible unoptimized assembler code for the above C code:1

main:

 ; enter main, creating a new stack frame

 pushl %ebp ; Push frame pointer onto the stack;

 ; this means that the contents of the

 ; stack-pointer register (esp) are

 ; reduced by 4 so that esp points to

 ; next lower word in the stack, then

 ; the contents of the frame-pointer

 ; register (ebp) are stored there.

 movl %esp, %ebp ; Set frame pointer to point to new

 ; frame: the address of the current end

 ; of the stack (in register esp) is

 ; copied to the frame-pointer register.

 pushl %esi ; Save esi register: its contents are

 ; pushed onto the stack.

 pushl %edi ; Save edi register: its contents are

 ; pushed onto the stack.

 subl $8, %esp ; Create space for local variables (i

1 We use the syntax of the Gnu assembler. It’s similar to that of the Microsoft assembler (masm) except in the order of arguments:
in the Gnu assembler, the fi rst argument is the source and the second is the destination; in the Microsoft assembler, the order is
reversed.

FIGURE 3 .1 Intel x86 stack frames.

args

eip

Saved registers

Local variables

ebp

args

eip

Saved registers

Local variables

ebp

esp

ebp

Stack frame

CH003.indd 95CH003.indd 95 8/2/10 8:31:19 PM8/2/10 8:31:19 PM

Remember;	
 the	
 stack	
 grows	
 down	

System	
 calls	

•  Transfer	
 control	
 from	
 user	
 to	
 system	
 code	
 and	
 back	

–  Typically	
 does	
 not	
 involve	
 thread	
 switch	
 	

–  Typically	
 uses	
 a	
 kernel	
 stack	
 frame	
 3.1 Context Switching 103

The fi rst technique, allocating a stack, is ruled out for a number of reasons, not least that it
is too time-consuming, though a variant is used in Solaris, as discussed below. Both the latter two
approaches are used. A single system-wide interrupt stack was used on DEC’s VAX computers;2
in most other architectures the interrupt handler borrows a stack (the kernel stack) from the thread
that was interrupted (see Figure 3.6). If another interrupt handler was interrupted, its context is
saved on the current stack, and that stack continues to be used for the new interrupt handler.

On those systems on which multiple interrupt handlers use the same stack, perhaps one
borrowed from a thread, interrupt handlers must execute differently from normal thread execu-
tion. Because there is just one shared stack, there is just one interrupt context. We cannot suspend
the execution of one handler and resume the execution of another: the handler of the most recent
interrupt must run to completion. Then, when it has no further need of the stack, the handler of
the next-most-recent interrupt completes its execution, and so forth.

That the execution of an interrupt handler cannot be suspended is signifi cant because it
means that interrupt handling cannot yield to anything other than higher-priority interrupts. For
example, on a uniprocessor system, if interrupt handler 2 interrupts interrupt handler 1 and then
wakes up a high-priority thread that must immediately respond to an event, the thread cannot run
until all interrupt handling completes, including that of interrupt handler 1.

If we could somehow give each interrupt handler its own stack, we wouldn’t have this
problem. Solaris, as well as some real-time systems, has preallocated stacks for each possible
interrupt level. Thus each has its own independent context and can yield to other processing, just
as threads can. We discuss this in greater detail in Chapter 5. Most other general-purpose systems
do not support this style of architecture.

Another approach to getting interrupt handlers to yield to other execution is that the handler
places a description of the work that must be done on a queue of some sort, then arranges for it
to be done in some other context at a later time. This approach, which is used in many systems
including Windows and Linux, is also discussed in Chapter 5.

2 Multiprocessor versions of the VAX had one interrupt stack per processor.

FIGURE 3 .5 System-call fl ow.

prog() {

. . .

write(fd, buffer, size); trap(write_code);

. . .

}

write() {

. . .

. . .

}

prog frame

write

User stack

User
Kernel

trap_handler(code) {

. . .

if(code == write_code)

write_handler();

. . .

}

trap_handler
frame

write_handler
frame

Kernel stack

FIGURE 3 .6 Interrupt
handlers and stacks.

User
stack

frames

Current thread’s
user stack

Kernel
stack

frames

Interrupt
handler

1’s frame

Interrupt
handler

2’s frame

Current thread’s
kernel stack

CH003.indd 103CH003.indd 103 8/2/10 8:31:21 PM8/2/10 8:31:21 PM

•  On	
 interrupt	

–  Processor	
 	

•  Puts	
 aside	
 current	
 context	

•  Switches	
 to	
 interrupt	
 context	

•  Interrupts	
 require	
 stacks	

–  OS’s	
 differ	

–  Common	
 choice	
 :	
 kernel	
 stack	

Interrupts	

3.1 Context Switching 103

The fi rst technique, allocating a stack, is ruled out for a number of reasons, not least that it
is too time-consuming, though a variant is used in Solaris, as discussed below. Both the latter two
approaches are used. A single system-wide interrupt stack was used on DEC’s VAX computers;2
in most other architectures the interrupt handler borrows a stack (the kernel stack) from the thread
that was interrupted (see Figure 3.6). If another interrupt handler was interrupted, its context is
saved on the current stack, and that stack continues to be used for the new interrupt handler.

On those systems on which multiple interrupt handlers use the same stack, perhaps one
borrowed from a thread, interrupt handlers must execute differently from normal thread execu-
tion. Because there is just one shared stack, there is just one interrupt context. We cannot suspend
the execution of one handler and resume the execution of another: the handler of the most recent
interrupt must run to completion. Then, when it has no further need of the stack, the handler of
the next-most-recent interrupt completes its execution, and so forth.

That the execution of an interrupt handler cannot be suspended is signifi cant because it
means that interrupt handling cannot yield to anything other than higher-priority interrupts. For
example, on a uniprocessor system, if interrupt handler 2 interrupts interrupt handler 1 and then
wakes up a high-priority thread that must immediately respond to an event, the thread cannot run
until all interrupt handling completes, including that of interrupt handler 1.

If we could somehow give each interrupt handler its own stack, we wouldn’t have this
problem. Solaris, as well as some real-time systems, has preallocated stacks for each possible
interrupt level. Thus each has its own independent context and can yield to other processing, just
as threads can. We discuss this in greater detail in Chapter 5. Most other general-purpose systems
do not support this style of architecture.

Another approach to getting interrupt handlers to yield to other execution is that the handler
places a description of the work that must be done on a queue of some sort, then arranges for it
to be done in some other context at a later time. This approach, which is used in many systems
including Windows and Linux, is also discussed in Chapter 5.

2 Multiprocessor versions of the VAX had one interrupt stack per processor.

FIGURE 3 .5 System-call fl ow.

prog() {

. . .

write(fd, buffer, size); trap(write_code);

. . .

}

write() {

. . .

. . .

}

prog frame

write

User stack

User
Kernel

trap_handler(code) {

. . .

if(code == write_code)

write_handler();

. . .

}

trap_handler
frame

write_handler
frame

Kernel stack

FIGURE 3 .6 Interrupt
handlers and stacks.

User
stack

frames

Current thread’s
user stack

Kernel
stack

frames

Interrupt
handler

1’s frame

Interrupt
handler

2’s frame

Current thread’s
kernel stack

CH003.indd 103CH003.indd 103 8/2/10 8:31:21 PM8/2/10 8:31:21 PM

•  Memory-­‐mapped	

–  Each	
 device	
 has	
 a	
 controller	

–  Each	
 controller	
 has	
 registers	

–  Registers	
 appear	
 to	
 processor	
 as	

physical	
 memory	

–  Actually	
 aeached	
 via	
 a	
 bus	

•  Categories	
 of	
 I/O	
 devices	

–  Programmed	
 I/O	
 (PIO)	

•  One	
 word	
 per	
 read/write	

•  e.g.	
 terminal	

–  Direct	
 memory	
 access	
 (DMA)	

•  Controller	
 directly	
 manipulates	

physical	
 memory	
 in	
 loca)on	

specified	
 by	
 processor	

•  e.g.	
 disk	

I/O	
 Architecture	
 Types	
 (Simplified)	

104 CHAPTER 3 Basic Concepts

An important property of interrupts is that they can be masked, i.e., temporarily blocked. If an
interrupt occurs while it is masked, the interrupt indication remains pending; once it is unmasked, the
processor is interrupted. How interrupts are masked is architecture-dependent, but two approaches
are common. One approach is that a hardware register implements a bit vector — each bit represents
a class of interrupts. If a particular bit is set, then the corresponding class of interrupts is masked.
Thus the kernel masks interrupts by setting bits in the register. When an interrupt does occur, the
corresponding mask bit is set in the register and cleared when the handler returns — further occur-
rences of that class of interrupts are masked while the handler is running.

What’s more common are hierarchical interrupt levels. Each particular device issues inter-
rupts at a particular level. The processor masks interrupts by setting an interrupt priority level
(IPL) in a hardware register: all devices whose interrupt level is less than or equal to this value
have their interrupts masked. Thus the kernel masks a class of interrupts by setting the IPL to a
particular value. When an interrupt does occur and the handler is invoked, the current IPL is set
to that of the device, and restored to its previous value when the handler returns.

In this section we give a high-level, rather simplistic overview of common I/O architectures. Our
intent is to provide just enough detail to discuss the responsibilities of the operating system in
regard to I/O, but without covering the myriad arcane details of device management. To do this,
we introduce a simple I/O architecture we have used in the past at Brown University for operating
system projects.

A very simple architecture is the memory-mapped architecture: each device is controlled
by a controller and each controller contains a set of registers for monitoring and controlling its
operation (see Figure 3.7). These registers appear to the processor to occupy physical memory
locations. In reality, however, each controller is connected to a bus. When the processor wants to
access or modify a particular location, it broadcasts the address on the bus. Each controller listens
for a fi xed set of addresses and, when one of its addresses has been broadcast, attends to what the
processor wants to have done, e.g., read the data at a particular location or modify the data at a
particular location. The memory controller, a special case, passes the bus requests to the actual
primary memory. The other controllers respond to far fewer addresses, and the effect of reading
and writing is to access and modify the various controller registers.

There are two categories of devices, programmed I/O (PIO) devices and direct memory
access (DMA) devices. PIO devices do I/O by reading or writing data in the controller registers
one byte or word at a time. In DMA devices the controller itself performs the I/O: the processor
puts a description of the desired I/O operation into the controller’s registers, then the controller
takes over and transfers data between a device and primary memory.

3.2
INPUT/OUTPUT
ARCHITECTURES

3.2
INPUT/OUTPUT
ARCHITECTURES

Bus

Memory Disk

Processor

ControllerControllerController

FIGURE 3 .7 Simple I/O architecture.

CH003.indd 104CH003.indd 104 8/2/10 8:31:22 PM8/2/10 8:31:22 PM

PIO	
 and	
 DMA	
 Example	
 	

3.2 Input/Output Architectures 105

Our architecture supports both PIO and DMA devices. The default confi guration has
one PIO device (a terminal) and one DMA device (a disk). Each PIO device has four registers:
Control, Status, Read, and Write, each one byte in length (see Figure 3.8). Each DMA device
also has four registers: Control, Status, Memory Address, and Device Address (Figure 3.9). The
control and status registers are each one byte long; the others are four bytes long (they hold
addresses). Certain bits of the control registers are used to start certain functions, as shown in
Figure 3.8 and Figure 3.9. Bits of the status registers are used to indicate whether the associated
controller is ready or busy.

Control registerGoR GoW IER IEW

Status registerRdyR RdyW

Read register

Write register

Ready to write RdyW

Ready to readRdyR

Enable write-completion interruptsIEW

Enable read-completion interruptsIER

Go write (start a write operation)GoW

Go read (start a read operation)GoRLegend:

FIGURE 3 .8 PIO registers.

Op Code Control registerGo IE

Status registerRdy

Memory address register

Device address register

Operation code (identifies the operation)Op Code

Controller is readyRdy

Enable interruptsIE

Start an operationGoLegend:

FIGURE 3 .9 DMA registers.

CH003.indd 105CH003.indd 105 8/2/10 8:31:23 PM8/2/10 8:31:23 PM

3.2 Input/Output Architectures 105

Our architecture supports both PIO and DMA devices. The default confi guration has
one PIO device (a terminal) and one DMA device (a disk). Each PIO device has four registers:
Control, Status, Read, and Write, each one byte in length (see Figure 3.8). Each DMA device
also has four registers: Control, Status, Memory Address, and Device Address (Figure 3.9). The
control and status registers are each one byte long; the others are four bytes long (they hold
addresses). Certain bits of the control registers are used to start certain functions, as shown in
Figure 3.8 and Figure 3.9. Bits of the status registers are used to indicate whether the associated
controller is ready or busy.

Control registerGoR GoW IER IEW

Status registerRdyR RdyW

Read register

Write register

Ready to write RdyW

Ready to readRdyR

Enable write-completion interruptsIEW

Enable read-completion interruptsIER

Go write (start a write operation)GoW

Go read (start a read operation)GoRLegend:

FIGURE 3 .8 PIO registers.

Op Code Control registerGo IE

Status registerRdy

Memory address register

Device address register

Operation code (identifies the operation)Op Code

Controller is readyRdy

Enable interruptsIE

Start an operationGoLegend:

FIGURE 3 .9 DMA registers.

CH003.indd 105CH003.indd 105 8/2/10 8:31:23 PM8/2/10 8:31:23 PM

PIO	
 DMA	

•  Storage	
 alloca)on	
 is	
 very	

important	
 in	
 OS’s	

–  Disk	

–  Memory	

•  Example	

–  1000,	
 1100,	
 250	
 bytes	
 in	
 order	

•  Compe)ng	
 approaches	

–  First-­‐fit	

–  Best-­‐fit	

•  Knuth	
 simula)ons	
 revealed	

(non-­‐intui)vely)	
 first-­‐fit	
 was	

best	

•  Intui)on	
 :	
 best-­‐fit	
 leaves	
 too	

many	
 small	
 gaps	

(Dynamic)	
 Storage	
 Alloca)on	

3.3 Dynamic Storage Allocation 107

In this version, the start_read and start_write methods return a handle identifying the
operation that has started. A thread can, at some later point, call wait with the handle and wait
until that operation has completed. Note that multiple threads might call wait with the same
handle if all must wait for the same operation (for example, if all need the same block from
a fi le).

A more sophisticated approach to I/O used in what are commonly called “mainframe”
computers is to employ specialized I/O processors to handle much of the I/O work. This is par-
ticularly important in large data-processing applications where I/O costs dominate computation
costs. These I/O processors are traditionally called channels and execute programs in primary
storage called channel programs (see Figure 3.10).

Storage allocation is a very important concern in operating systems. Whenever a thread is cre-
ated, its stacks, control block, and other data structures must be allocated; whenever a thread
terminates, these data structures must be freed. Since there are numerous other such dynamic
data structures, both inside the operating system and within user applications, this allocation and
liberation of storage must be done as quickly as possible.

The classic reference for most of this material is Donald Knuth’s The Art of Computer
Programming, Vol. 1: Fundamental Algorithms. In this section we summarize Knuth’s results
and discuss some additional operating-system concerns.

3.1.1 BEST-FIT AND FIRST-FIT ALGORITHMS

We start with the general problem of maintaining a pool of available memory and allocating vari-
able-size quantities from it. Following Knuth (this is his example), consider the memory pool in
Figure 3.11 that has two blocks of free memory, one 1300 bytes long and the other 1200 bytes
long. We’ll try two different algorithms to process series of allocation requests. The fi rst is called
fi rst fi t — an allocation request is taken from the fi rst area of memory that is large enough to
satisfy the request. The second is called best fi t — the request is taken from the smallest area of
memory that is large enough to satisfy the request.

3.3
DYNAMIC
STORAGE
ALLOCATION

3.3
DYNAMIC
STORAGE
ALLOCATION

Memory

Processor

Channel Controller

Channel Controller

Channel Controller

FIGURE 3 .10 I/O with channels.

1300

1200

FIGURE 3 .11 Pool of
free storage.

CH003.indd 107CH003.indd 107 8/2/10 8:31:24 PM8/2/10 8:31:24 PM

Pool	
 of	
 Free	
 storage	

108 CHAPTER 3 Basic Concepts

On the principle that whatever requires the most work must be best, one might think that
best fi t is the algorithm of choice. However, Figure 3.12 illustrates a case in which fi rst fi t
behaves better than best fi t. We fi rst allocate 1000 bytes. Under the fi rst-fi t approach (on the left),
this allocation is taken from the topmost region of free memory, leaving behind a region of 300 bytes
of still unallocated memory. With the best-fi t approach (right), this allocation is taken from the
bottommost region of free memory, leaving behind a region of 200 bytes of still unallocated
memory. The next allocation is for 1100 bytes. Under fi rst fi t, we now have two regions of 300 bytes
and 100 bytes. Under best fi t, we have two regions of 200 bytes. Finally, there is an allocation of
250 bytes. First fi t leaves behind two regions of 50 bytes and 100 bytes, but best fi t cannot handle
the allocation — neither remaining region is large enough.

Clearly one can come up with examples in which best fi t performs better. However, Knuth’s
simulation studies have shown that, on the average, fi rst fi t works best. Intuitively, the reason for
this is that best fi t tends to leave behind a large number of regions of memory that are too small
to be useful, as in Figure 3.12.

The liberation of storage is more diffi cult than its allocation, for the reason shown in Figure
3.13 (another example from Knuth). Here the shaded regions are unallocated memory. The region of
storage A separating the two unallocated regions is about to be liberated. We’d like this to produce
one large region of unallocated storage rather than three smaller adjacent regions. Thus the liberation
algorithm must be able to determine if adjacent storage regions are allocated or free. An algorithm
could simply walk through the list of free storage to determine if the adjacent areas are free, but a
much cheaper approach is to tag the boundaries of storage regions to indicate whether they are
allocated or free. Knuth calls this the boundary-tag method and provides an algorithm for it.

The shortcomings of best fi t illustrate a common issue in storage management: fragmenta-
tion. What we saw here is called external fragmentation, in which we end up with lots of small
areas of storage that collectively are sizeable, but individually are too small to be of use. In
the following sections we encounter internal fragmentation, in which storage is wasted because
more must be allocated than is needed.

3.3.2 BUDDY SYSTEM

The buddy system is a simple dynamic storage allocation scheme that works surprisingly well. Storage
is maintained in blocks whose sizes are powers of two. Requests are rounded up to the smallest such
power greater than the request size. If a block of that size is free, it’s taken; otherwise, the smallest free
block larger than the desired size is found and split in half — the two halves are called buddies. If the
size of either buddy is what’s needed, one of them is allocated (the other remains free). Otherwise one
of the buddies is split in half. This splitting continues until the appropriate size is reached.

300

1200

1300

200

100

300

100

50

200

200

1000 bytes

1100 bytes

250 bytes

First fit Best fit

Stuck!

FIGURE 3 .12 Allocations using fi rst fi t and best fi t.

A free(A)

FIGURE 3 .13 Liberating storage.

CH003.indd 108CH003.indd 108 8/2/10 8:31:25 PM8/2/10 8:31:25 PM

Memory	
 /	
 File	

Start	

Alloca)on	
 through	
 finish	

•  Knuth	
 :	
 “boundary-­‐tag”	

method	
 and	
 algorithm	

–  Combines	
 free	
 segments	
 greedily	

upon	
 release	

–  Requires	
 datastructure	
 that	

represents	
 free	
 or	
 not-­‐free	

•  Helps	
 avoid	
 “fragmenta)on”	

–  External	

•  Free	
 spaces	
 too	
 small	

–  Internal	

•  Allocated	
 memory	
 unnecessarily	

too	
 large	
 (this	
 situa)on	
 arises	
 in	

different,	
 not-­‐covered	
 alloca)on	

approaches	
 like	
 the	
 “slab”	

approach)	

Freeing	
 Storage	
 Is	
 More	
 Complex	

hep://books.google.co.uk/books?
id=gJrdSueQjBEC&pg=PA328&lpg=PA328&dq=boundary+tag
+algorithm&source=bl&ots=VPIoDQOTqj&sig=NCPz__mnViO5ajj5Q-­‐
P3KccBIhk&hl=en&sa=X&ei=j-­‐
x4UdDlBcusPIzVgLgJ&ved=0CEsQ6AEwAw#v=onepage&q=boundary
%20tag%20algorithm&f=false	

Linking	
 and	
 loading	

•  ld	
 links	
 and	
 relocates	
 code	
 by	
 resolving	
 addresses	
 of	
 variables	
 and	

procedures	

•  Shared	
 libraries	
 require	
 mechanisms	
 that	
 delay	
 linking	
 un)l	
 run-­‐

)me	

•  Loading	
 requires	
 se�ng	
 up	
 address	
 space	
 then	
 calling	
 main	

Boo)ng	

	

•  Thought	
 to	
 be	
 derived	
 from	
 “to	
 pull	
 yourself	
 up	
 by	
 your	
 bootstraps”	

•  Modern	
 computers	
 boot	
 from	
 BIOS	
 read	
 only	
 memory	
 (ROM)	
 	

–  Last	
 64K	
 of	
 the	
 first	
 MB	
 of	
 address	
 space	

•  When	
 the	
 computer	
 is	
 powered	
 on	
 it	
 starts	
 execu)ng	
 instruc)ons	

at	
 0xffff0	

•  Looks	
 for	
 a	
 boot	
 device	

–  Loads	
 a	
 master	
 boot	
 record	
 (MBR)	

•  Cylinder	
 0,	
 head	
 0,	
 sector	
 1	
 (hard	
 disc)	

•  Loads	
 boot	
 program	

•  Transfers	
 control	
 to	
 boot	
 program	

•  Boot	
 progam	
 (lilo,	
 grub,	
 etc.)	
 loads	
 OS	

•  Transfers	
 control	

122 CHAPTER 3 Basic Concepts

The provider of the computer system supplies a BIOS chip residing on the “motherboard” con-
taining everything necessary to perform the three functions. Additional BIOS functions might
reside on chips on add-on boards, providing access to additional devices.

The BIOS ROM is mapped into the last 64K of the fi rst megabyte of address space
(starting at location 0xf0000). When the system is powered on, the processor starts executing
instructions at location 0xffff0 — the last sixteen bytes of this mapped region. At this location is
a branch instruction that transfers control to the beginning of the BIOS code. The fi rst thing the
code does is the power-on self test, during which it initializes hardware, checks for problems,
and computes the amount of primary storage.

The next step is to fi nd a boot device. This is probably a hard disk, but could be a fl oppy or
diskette. The list of possibilities and the order to search are in the settings stored in non-volatile
RAM.

Once the boot device is found, the master boot record (MBR) is loaded from the fi rst sector
of a fl oppy or diskette, or from cylinder 0, head 0, sector 1 of a hard disk (see Chapter 6 for an
explanation of these terms). The MBR (Figure 3.20) is 512 bytes long and contains:

a “magic number” identifying itself

a partition table listing up to four regions of the disk (identifying one as the active or boot
partition)

executable boot program

The BIOS code transfers control to the boot program. What happens next depends, of
course, on the boot program. In the original version (for MS-DOS), this program would fi nd
the one active partition, load the fi rst sector from it (containing the volume boot program), and
pass control to that program. This program would then load the operating system from that
partition.

More recent boot programs allow more fl exibility. For example, both lilo (Linux Loader)
and grub (Grand Unifi ed Boot Manager), allow one to choose from multiple systems to boot,
so that, for example, one can choose between booting Linux or Windows. Lilo has the sector
number of the kernel images included within its code and thus must be modifi ed if a kernel
image moves. Grub understands a number of fi le systems and can fi nd the image given a
path name.

•

•

•

Boot program

Partition table

Magic number

446 bytes

64 bytes

2 bytes

Partition 1

Partition 2

Partition 3

Partition 4
Master boot record

FIGURE 3 .20 The mas-
ter boot record, residing
in the fi rst sector of a
bootable disk.

CH003.indd 122CH003.indd 122 8/2/10 8:31:33 PM8/2/10 8:31:33 PM

Review	

•  OS	
 essen)als	

–  Threads	

–  Context	
 switching	
 for	
 management	
 of	
 processors	

–  I/O	
 for	
 file	
 systems	

–  Dynamic	
 storage	
 alloca)on	

