B16 Operating Systems

Introduction

Learning Outcomes (Examinable Material *)

* Familiarity with operating system concepts
— File
— Process
— Thread
— Synchronisation
— Memory
— Paging
— Socket
— Port

* Datastructures / implementations
— Page table
— Semaphore
— Mutex
— Socket

Perspective

e User perspective *
— Linux (posix compliant OS)
— System calls (fork, wait, open, printf)
— Command line utilities (man <section>)
— C programs

* Operating system implementation perspective
— “Simple-0S”

B16 Operating Systems

Lecture 1 : History and User Perspective

What is an operating system?

e QOperating systems provide software abstracts of
— Processors
— RAM (physical memory)
— Disks (secondary storage)
— Network interfaces
— Display
— Keyboards
— Mice
* Operating systems allow for sharing
e Operating systems typically provide abstractions for

— Processes
— Files
— Sockets

Why should we study operating systems?

* “To a certain extent [building an operating system is] a solved
problem” — Doeppner

 “So toois bridge building” — Wood

— History and its lessons
* Capacity and correct usage
— Improvement possible
* New algorithms, new storage media, new peripherals
* New concerns : security
* New paradigms : the “cloud”

Review : Computer = Von Neumann Architecture

Control Unit Mouse
Memory Input
Devices
Display
Registers Secondary|, |

] — Memory .
[| | | Printer
I | | | Storage Output
Devices

Central Processing Unit B
(CPU) e

Image from http://cse.iitkgp.ac.in/pds/notes/intro.html

Review : Machine Instructions and Assembly Code

 Machine code : instructions directly executed by the CPU
— From Wikipedia :

* “the instruction below tells an x86/1A-32 processor to move an immediate 8-bit
value into a register. The binary code for this instruction is 10110 followed by a
3-bit identifier for which register to use. The identifier for the AL register is 000,
so the following machine code loads the AL register with the data 01100001.”

10110000 01100001

 Assembly language : one-to-one mapping to machine code (nearly)
— Mnemonics map directly to instructions (MOV AL = 10110 000)
— From Wikipedia :

* “Move a copy of the following value into AL, and 61 is a hexadecimal
representation of the value 01100001”

MOV AL, 61h ; Load AL with 97 decimal (61 hex)

Compilation and Linking

A compilerisacomputer program that transforms source code
written in a programming language into another computer
language

— Examples : GNU compiler collection

* Alinker takes one or more object files generated by a compiler and
combines them into a single executable program
— Gathers libraries, resolving symbols as it goes
— Arranges objects in a program’s address space

* Touches OS through libraries, virtual memory, program address
space definitions, etc.

— Modern OS’ provide dynamic linking; runtime resolution of unresolved
symbols

History : 1950’s

Earliest computers had no operating systems
1954 : OS for MIT’s “Whirlwind” computer

— Manage reading of paper tapes avoiding human intervention

1956 : OS General Motors

— Automated tape loading for an IBM 701 for sharing computer in 15 minute
time allocations

1959 : “Time Sharing in Large Fast Computers”
— Described multi-programming

1959 : McCarthy MIT-internal memo described “time-share” usage
of IBM 7090

— Modern : interactive computing by multiple concurrent users

Early OS Designs

Batch systems
— Facilitated running multiple jobs sequentially

|/O bottlenecks

— Computation stopped to for |/O operations

Interrupts invented
— Allows notification of an asynchronous operation completion
— First machine with interrupts : DYSEAC 1954, standard soon thereafter

Multi-programming followed
— With interrupts, computation can take place concurrently with I/O
— When one program does I/O another can be computing

— Second generation OS’s were batch systems that supported multi-
programming

History : 1960’s, the golden age of OS R&D

Terminology
— “Core” memory refers to magnetic cores each holding one bit (primary)
— Disks and drums (secondary)

1962 : Atlas computer (Manchester)

— “virtual memory” : programs were written as if machine had lots of primary
storage and the OS shuffled data to and from secondary

1962 : Compatible time-sharing system (CTSS, MIT)
— Helped prove sensibility of time-sharing (3 concurrent users)

1964 : Multics (GE, MIT, Bell labs; 1970 Honeywell)

— Stated desiderata
e Convenient remote terminal access
* Continuous operation
* Reliable storage (file system)
» Selective sharing of information (access control / security)
* Support for heterogeneous programming and user environments

— Key conceptual breakthrough : unification of file and virtual memory via
everything is a file

History : 1960’s and 1970’s

IBM Mainframes OS/360
DEC PDP-8/11

— Small, purchasable for research

1969 : UNIX

— Ken Thompson and Dennis Ritchie; Multics effort drop-outs
— Writtenin C

— 1975 : 6th edition released to universities very inexpensively
— 1988 System V Release 4

1996 : BSD (Berkeley software distribution) v4.4

— Born from UNIX via DEC VAX-11/780 and virtual memory

1980’s : Rise of the Personal Computer (PC)
» 1970’s : CP/M

— One application at a time — no protection from application

— Three components
* Console command process (CCP)
» Basic disk operating system (BDOS)
* Basic input/output system (BIOS)

e Apple DOS (after CP/M)
— 1978 Apple DOS 3.1 = CP/M

e Microsoft

— 1975 : Basic interpreter

— 1979 : Licensed 7-th edition Unix from AT&T, named it Xenix

— 1980 : Microsoft sells OS to IBM and buys QDOS (no Unix royalties) to fulfill
* QDOS = “Quick and dirty OS”
e Called PC-DOS for IBM, MS-DOS licensed by Microsoft

1980’s ‘til now.

Early 80’s state of affairs
— Minicomputer OS’s
e Virtual memory
e Multi-tasking
* Access control for file-systems
— PCOS’s
* None of the above (roughly speaking)
Workstations
— Sun (SunQSs, Bill Joy, Berkeley 4.2 BSD)
e 1984 : Network file system (NFS)
1985 : Microsoft Windows
— 1.0 : application in MS-DOS
* Allowed cooperative multi-tasking, where applications explicitly yield the processor to each other

1995 : Windows "95 to ME
— Preemptive multi-tasking (time-slicing), virtual memory (-ish), unprotected OS-space

1993 : First release of Windows NT, subsequent Windows OS’s based on NT
1991 : Linus Torvalds ported Minix to x86

Implementation Perspective

e Based on Unix (6t edition)

Monolithic

* The OS is a single file loaded into
memory at boot time

Interfaces

* Traps originate from user
programs

* Interrupts originate from
external devices

Modes

* User

* Privileged / System
Kernel

* A subset of the OS that runs in
privileged mode

e Or a subset of this subset

. “Simple 0S”

Interrupts

Traps and System Calls (largely from user)

e System calls *
— Example

if (write(FileDescriptor, BufferAddress, BufferLength) == -1) {
/* an error has occurred: do something appropriate */
printf ("error: %d\n", errno) /* print error message */

}

requests the OS to send data to a file

* Unintended requests for kernel service

— Using a bad address
— Dividing by zero

Interrupts (largely from hardware)

 Request from an external device for a response from the processor
— Handled independently of any program
 Examples

— Keyboard input
— Data available

Processes *

* Abstraction that includes
— Address space (virtual memory *)
— Processors (threads of control *)
e Usually disjoint
— Processes usually cannot directly access each other’s memory
* Parallel processing via pipes, shared memory, etc.
* Running a program from the shell
— Creates a “process”

— Program is loaded from a file into the process’s address space

— Process’s single thread of control then executes the program’s compiled
executable code

Memory = Address Space = e.g. 2232 words, etc.

Text const int nprimes = 100;

int prime[nprimes];

— Program code

int main() {
Data int i;
9no._ Mo . i = 2¢

— Initialized global variables e CurreRg

prime[0] = current;
BSS (block started by symbol) for (i=1; i<nprimes; it+) {
— Uninitialized global variables =9 3

NewCandidate:
Dynamic (Heap) current++;

— Dynamically allocated storage for (J=0; prime[J] PaimeNiNe= current; j++) {

Q

if (current % prime[j] == 0)

Stack (grows “downward”) et NewCandldae;
— Local variables } -
prime[i] = current; tac
} v
Arrows indicate variable return (0) ; $
placement b Dynamic
malloc() claims space in dynamic BSS
Data
Text

Processes and Threads **** (fork_example 1.c)

Processes are created via the system
call fork()

— Any exact copy of the calling process is
made
» Efficient — copy on write
— fork() returns twice!

* Once in the child (return value 0)

* Once in the parent (return value the PID
of the child process)

Processes report termination status via
the system call exit(ret_code)

Processes can wait() for the termination
of child processes

Example uses
— Terminal / Windows
— Apache cgi

short pid;

if ((pid = fork()) == 0) {
/* some code is here for the child to execute */
exit (n);

} else {

int ReturnCode;

while (pid != wait (&ReturnCode))

/* the child has terminated with ReturnCode as 1its

return code */

Loading Programs into Processes (fork _example 2.c)

» execl() system call used to do this

int pid;
if ((pid = fork()) == 0) {

/* we’ll soon discuss what might take place before exec v

is called */ 4

execl ("/home/twd/bin/primes", "primes", "300", 0);

exit (1) ;
}

exec (prog, args)

/* parent continues here */
Before

while (pid != wait(0)) /* ignore the return code */ args
v
» execl() replaces the entire contents of the ,
processes address space prog's BSS
rog’s data
— the stack is initialized with the passed program args. ZZH

After

— a special start routine is called that itself calls main()
— exec doesn’t return except if there is an error!

Files *

Files are Unix’s primary abstraction
for everything
— Keyboard
— Display
— Other processes
Naming files
— Filesystems generally are tree-
structured directory systems
— Namespaces are generally shared by
all processes
Accessing files

— The directory-system name-space is
outside the process
* open(name) returns a file handle,
read(args)
* OS checks permissions along path

int fd;

char buffer[1024];

int count;

if ((fd = open("/home/twd/file",
/* the file couldn’t be opened */

O_RDWR)

perror ("/home/twd/file") ;
exit (1) ;
}

if ((count = read(fd, buffer, 1024)) ==
/* the read failed */
perror ("read") ;
exit (1) ;

}

/* buffer now contains count bytes read

from the file */

Using File Descriptors (fork _example 2.c)

File descriptors survive exec()’s
Default file descriptors

— Oread (keyboard)

— 1 write (primary, display)

— 2 error (display)

Different associations can be
established before fork()

if

/*

(fork() == 0) {
/* set up file descriptor 1 in the child process */
close (1) ;
if (open("/home/twd/Output", O_WRONLY) == -1) {
perror (" /home/twd/Output") ;
exit (1) ;
execl ("/home/twd/bin/primes", "primes", "300", 0);
exit (1) ;

parent continues here */

while (pid != wait (0)) /* ignore the return code */

File Random Access

Iseek() provides non-sequential access to files

fd = open("textfile", O_RDONLY) ;
/* go to last char in file */
fptr = lseek(fd, (off_t)-1, SEEK_END) ;
while (fptr !'= -1) {
read(fd, buf, 1);
write(l, buf, 1);
fptr = lseek(fd, (off_t)-2, SEEK_CUR) ;

Reverses a file

Pipes * (pipe_example.c)

* A pipeis a means for one process to send data to another directly

pipe() returns two nameless file descriptors

int pl[2]; /* array to hold pipe’s file descriptors */

pipe (p) ; /* create a pipe; assume no errors */
/* pl0] refers to the output end of the pipe */

/* pll] refers to the input end of the pipe */

if (fork() == 0) {
char buf[80];
close(pl[l]); /* not needed by the child */
while (read(p[0], buf, 80) > 0) {

/* use data obtained from parent */

}

} else {
char buf[80];
close(pl[0]);

for (;;) {
/* prepare data for child */

/* not needed by the parent */

write(p[l], buf, 80);

 Adirectory is a file that is interpreted as containing references to

Directories

other files by the OS
Consists of an array of

— Component name
— inode number

* aninode is a datastructure maintained by the OS to represent a file

Component name

Inode number

Directory entry

.

.

unix

117

etc

home

18

pro

36

dev

93

Creating Files

e creat() and open() (with flags) are used to create files

* “man 2 open”:

OPEN(2) BSD System Calls Manual OPEN(2)
NAME

open, openat -- open or create a file for reading or writing
SYNOPSIS

#include <fcntl.h>

int
open(const char *path, int oflag, ...);

int
openat(int fd, const char *path, int oflag, ...);
DESCRIPTION

The file name specified by path is opened for reading and/or writing, as specified by the argument oflag;
the file descriptor is returned to the calling process.

The oflag argument may indicate that the file is to be created if it does not exist (by specifying the
O_CREAT flag). In this case, open() and openat() require an additional argument mode_t mode; the file is

created with mode mode as described in chmod(2) and modified by the process' umask value (see umask(2)).

The openat() function is equivalent to the open() function except in the case where the path specifies a.

Review : User Perspective on Simple OS

* Rough idea of what goes inside an OS

* Traps / system calls
— exec()
— fork()
— open()
— pipe()
— exit()
— close()

— read()
— write()

— dup()

 Next lecture : more user basics.
* Final two lectures : OS implementation issues

Lecture 2 : Basics; Processes, Threads, ...

Threads * (thread example 1.c)

* Whatis a thread?
— Mechanism for concurrency in user-level programs
— “Lightweight process”
— Processor(s) within a process
— Share process memory with other threads

e Why threads?

— Can dramatically simplify code
e Multi-threaded database concurrently handling requests
* Server listening on a socket responding to client requests
— Requires care

* Synchronization

* POSIX (“portable operating system interface”) specification

Thread Creation

void start servers() {
pthread t thread;

int 1i;

for (1=0; i<nr of server threads; i++)

pthread_create

&thread, // thread ID

0, // default attributes
server, // start routine
argument) ; // argument

void *server (void *arg) {
// perform service
return (0);

}
Alternative specifications exist; all conceptually similar

Passing Arguments to Threads

* Care must be taken with A il |
. int first, second;
threads in general) two_ints_t;
° Problem With this Code void rlogind(int r_in, int r out, int 1_in, int 1_out) {
pthread_t in_thread, out_thread;
— |In and out are local variables t‘”i—inZS—t in:iffin'hl—ozt}' out={l_in, r_out};
. pthread_create (&in_thread,
thus leave scope when rlogind 0
eXItS incoming,
&in) ;

pthread_create (&out_thread,
O r
outgoing,

&out) ;

Thread Termination (thread _example 2.c)

* Space from caller must be provided for thread to place return
values

pthread_create(&createe, 0, CreateeProc, 0);

pthread join(create, &result);

 pthread_exit() terminates thread, exit() terminates process

void *CreateeProc (void *arg) {

if (should terminate now)

pthread_exit ((void *)1);

return ((void *)2);

Thread Attributes

e “man pthread attr_init”

* e.g.to specify the stack size for a thread one initializes an attributes
datastructure

pthread t thread;
pthread_attr t thr attr;

pthread_attr_init (&thr_attr);
pthread_attr_setstacksize (&thr_attr, 20*1024*1024) ;

pthread_create (&thread, &thr_attr, startroutine, arg);

Synchronization *** (thread example 3.c)

* Remember: threads share access to common data structures
* Mutual exclusion is a form of thread synchronization

— Makes sure two things don’t happen at once

— Example, two threads each doing

X = X+1;

Canresultin 1 or 2; reordering the assembly code shows why

1d rl,x
add rl,1

st rl,x

POSIX Mutexes ***

OS must support thread synchronization mechanisms
POSIX defines a data type called a mutex (from “mutual exclusion”)

Mutexes can ensure
— Only one thread is executing a block of code (code locking)
— Only one thread is accessing a particular data structure (data locking)

A mutex either belongs to a single thread or no thread

A thread may “lock” a mutex by calling pthread _mutex_lock()

A mutex may be unlocked by calling pthread_mutex_unlock()

A mutex datastructure can be initialized via pthread_mutex_init()

pthread mutex t m = PTHREAD_ MUTEX_ INITIALIZER;
// shared by both threads
int x; // ditto

pthread_mutex_lock (&m) ;
X = X+1;

pthread_mutex_unlock (&m) ;

Mutual exclusion can result in DEADLOCK!

* Inthe following, “deadlock” can occur

void procl() { void proc2() {
pthread_mutex_lock (&ml) ; pthread_mutex_lock (&m2) ;
/* use object 1 */ /* use object 2 */
pthread_mutex_lock (&m2) ; pthread_mutex_lock (&ml) ;
/* use objects 1 and 2 */ /* use objects 1 and 2 */
pthread_mutex_unlock (&m2) ; pthread_mutex_unlock (&ml) ;

pthread_mutex_unlock (&ml) ; pthread_mutex_unlock (&m2) ;

Deadlock is nasty, difficult to detect, and to be avoided at all cost

* One useful avoidance mechanism is pthread_mutex_trylock()

procl() {
pthread_mutex_ lock (&ml) ;
/* use object 1 */
pthread_mutex_lock (&m2) ;
/* use objects 1 and 2 */
pthread_mutex_unlock (&m2) ;

pthread_mutex_unlock (&ml) ;

proc2() {
while (1) {
pthread_mutex_lock (&m2) ;
if (!pthread_mutex_trylock (&ml))
break;
pthread_mutex_unlock (&m2) ;

}

/* use objects 1 and 2 */

pthread_mutex_unlock (&ml) ;
pthread_mutex_unlock (&m2) ;

}

Semaphores

A semaphore is a nonnegative integer with two atomic operations

— P (try to decrease) : thread waits until semaphore is positive then subtracts 1

* [|’s are notation for guards; that which happens between them is atomic, instantaneous,
and no other operation that might take interfere with it can take place while it is executing

when (semaphore > 0) [

semaphore = semaphore - 1;

— V (increase)

[semaphore = semaphore + 1]

Mutexes can be implemented as semaphores

semaphore S = 1;
void OneAtATime() {
P(S) ;

/* code executed mutually exclusively */

V(S) ;

POSIX Semaphores
Interface

sem_t semaphore;

int err;

err = sem_1init (&semaphore, pshared, 1nit);

err = sem_destroy (&semaphore) ;

err = sem _wailt (&semaphore) ; // P operation

err = sem_trywailt (&semaphore) ; // conditional P operation
err = sem_post (&semaphore) ; // V operation

Note : Mac’s use Mach spec. named-semaphore via sem_open()

OS Implementation Problem : Producer-Consumer *

e Buffer with a finite number of slots

e Threads

— Producer : puts things in the buffer
— Consumer : removes things from the buffer

* Producer must wait if buffer is full; consumer if buffer is empty

Semaphore sol’n to the producer-consumer problem

* Example sheet

Deviations

* Signals
— Force a user thread to put aside current activity
— Call a pre-arranged handler
— Go back to what it was doing
— Similar to interrupt handling inside the OS

e Examples
— Typing special characters on the keyboard (”c)
— Signals sent by other threads (kill)
— Program exceptions (divide by zero, addressing exceptions)

 Background
— Graceful termination via ~c and SIGINT

Signals and Handled by Handlers

Setting up a handler to be invoked upon receipt of a *c signal

int main() {
void handler (int) ;

sigset (SIGINT, handler) ;

/* long-running buggy code */

}

void handler (int sig) {

/* perform some cleanup actions */

exit (1) ;
}

Signals can be used to communicate with a process

Async-signal safe routines (OS implementation perspective)

Signals are processed by a single thread of

' computation state t state;
execution

Communication at right not problem-free
because of asynchronous access to state

int main() {

void handler (int) ;
Mutex use will result in deadlock

Making routines async-signal safe requires sigset (SIGINT, handler);
making them so that the controlling thread

cannot be interrupted by a signal at certain
times (i.e. in update_state)

long_running procedure() ;

}
— Signal handling turned on and off by
* sigemptyset() ,
N long_running_procedure() {
Sigprocmask() while (a_long_time) {
POSIX compliant OS’s implement 60+ async- update_state (&state) ;
signal safe routines compute_more () ;
}
}

void handler (int sig) {

display (&state) ;

Other Basic OS Concepts

Context switching
— Stack frames

— System calls

— Interrupts

/O

Dynamic Storage Allocation
— Best-fit, first-fit

Linking and loading
Booting

Context Switching and stack frames

“Context” is the setting in which execution is currently taking place

— Processor mode

— Address space -~ x
— Register contents ld
ebp > Stack frame
— Thread or interrupt state Saved registers
Local variables)
args
eip
Intel x86 Stack Frames e “—ap
— Subroutine context Saved registers
Local variables 4——esp
 Instruction pointer (reg. eip) i
— Address to which control should
return when subroutine is
complete Remember; the stack grows down

* Frame pointer (reg. ebp)
— Link to stack frame of caller

System calls

* Transfer control from user to system code and back
— Typically does not involve thread switch
— Typically uses a kernel stack frame

rog() write ()
o { { prog frame
write (fd, buffer, size); trap(write code); write
} } v
User stack
User
Kernel
trap handler (code) { trap_handler
frame
if (code == write code) write_handler
write handler(); fraine

Kernel stack

Interrupts

User

* Oninterrupt
stack
— Processor frames

e Puts aside current context i
e Switches to interrupt context
¢ Interrupts require stacks
— 0OS’s differ

— Common choice : kernel stack Current thread's

user stack

Kernel
stack
frames

Interrupt
handler
1’s frame

Interrupt
handler
2’s frame

!

Current thread’s
kernel stack

/O Architecture Types (Simplified)

Memory-mapped
— Each device has a controller
— Each controller has registers

— Registers appear to processor as
physical memory

— Actually attached via a bus

Categories of 1/0O devices
— Programmed I/O (P1O)
* One word per read/write
* e.g.terminal
— Direct memory access (DMA)

* Controller directly manipulates
physical memory in location
specified by processor

e e.g. disk

Bus

&

Processor

Controller

Controller

Controller

Memory

PIO and DMA Example

PIO DMA

Control register

Status register

Device address register

H‘l_‘ Memory address register

. | Go | IE | Op Code
| GoR | GoW | IER | IEW | | | | | Control register
v | [| | |
| RdyR |RdyW| | | | | | Status register | | | | | | |
| [[[[|
I R N R O
| | | | | | | | Read register | | | | | |
Lt [[[[|
| | | | | | | | Write register | | | | | | |
[|
Legend: GoR Go read (start a read operation) Legend: Go Start an operation
GoW Go write (start a write operation) Op Code Operation code (identifies the operation)
IER Enable read-completion interrupts IE Enable interrupts
IEW Enable write-completion interrupts Rdy Controller is ready
RdyR Ready to read

RdyW

Ready to write

(Dynamic) Storage Allocation

Storage allocation is very

important in OS’s Start
— Disk Memory / File
— Memory Pool of Free storage 1300
1200
Example

— 1000, 1100, 250 bytes in order

) Allocation through finish
Competmg approaches =

— First-fit First fit Best fit
— Best-fit - 1000 bytes 1300
o . 1200 200

Knuth simulations revealed

. .l . . 300 200
(non-intuitively) first-fit was 0 1100 bytes oo
best .

* |ntuition : best-fit leaves too 250 bytes Stuck!

100

many small gaps

Freeing Storage Is More Complex

* Knuth : “boundary-tag”
method and algorithm
— Combines free segments greedily
upon release

— Requires datastructure that
represents free or not-free

* Helps avoid “fragmentation”
— External
* Free spaces too small
— Internal

* Allocated memory unnecessarily
too large (this situation arises in
different, not-covered allocation
approaches like the “slab”
approach)

A
LENGTH-2 F.
0 if free,
LENGTH DATA A ifinuse
- LENGTH-2 F
(d) Structwre of a segment
TAG TAG (changed)
FREE
TAG
TAG
ALLOCATED release FREE
TaG | [T
TAG
FREE
TAG TAG (changed)

(B Coalescence of adjacent segments

FIGURE C-2. THE BOUNDARY TAG METHOD

Linking and loading

1d links and relocates code by resolving addresses of variables and
procedures

Shared libraries require mechanisms that delay linking until run-
time

Loading requires setting up address space then calling main

Booting

Thought to be derived from “to pull yourself up by your bootstraps”

Modern computers boot from BIOS read only memory (ROM)

— Last 64K of the first MB of address space
When the computer is powered on it starts executing instructions
at Oxffffo

Looks for a boot device

— Loads a master boot record (MBR) s
* Cylinder 0, head 0, sector 1 (hard disc)

Loads boot program

446 bytes < Boot program

Transfers control to boot program
Boot progam (lilo, grub, etc.) loads OS

Partition 1

Tra N Sfe 'S con t o I 64 bytes i Partition table Partition 2

Partition 3
2 bytes

Magic number Partition 4

Master boot record

Review

* OS essentials
— Threads
— Context switching for management of processors
— 1/0 for file systems
— Dynamic storage allocation

