
B16 Object Oriented Programming
 Frank Wood

fwood@robots.ox.ac.uk

http://www.robots.ox.ac.uk/~fwood/teaching/

Hilary 2015

This course will introduce object-oriented
programming (OOP).

It will introduce C++, including
classes,
methods, function and operator overloading,
constructors,
and program organisation.

We’ll discuss data hiding (encapsulation), covering
public and private data,
and accessor methods.

We’ll also cover inheritance, along with
polymorphism.

The course will conclude by covering templates, in particular
The Standard Template Library and Design Patterns.

The course will aim to give a good understanding of
basic design methods in object-oriented programming,
reinforcing principles with examples in C++.

Specifically, by the end of the course students should:
o  understand concepts of and advantages of object-oriented design

including:
o  Data hiding (encapsulation)
o  Inheritance and polymorphism
o  Templates.

o  understand how specific object oriented constructs are implemented
using C++.

o  Be able to understand C++ programs.
o  Be able to write small C++ programs.

There are many useful textbooks.

•  http://www.stroustrup.com/

4thContents.html
•  Lipmann and Lajoie, C++ Primer, Addison-

Wesley, 2005.
•  Goodrich et al., Data structures and

algorithms in C++, Wiley, 2004
•  Stroustrup, The C++ Programming

Language, Addison-Wesley, 2000
•  Meyers, Effective C++, Addison-Wesley,

1998
•  Gamma et al., Design Patterns: elements of

reusable object-oriented software, Addison-
Wesley, 1995

Topic 1: Programming
Paradigms

Top down design means breaking the problem
down into components (modules) recursively.

Each module should comprise data and functions that are all
related: OOP makes this explicit.

The designer needs to specify how components interact – what
their dependencies are, and what the interfaces between them
are.

Minimising dependencies, and making interfaces as simple as
possible are both desirable to facilitate modularity.

By minimising the ways in which modules can
interact, we limit the overall complexity, and
hence limit unexpected behaviour, increasing
robustness.

Because a particular module interacts with other modules in a
carefully defined manner, it becomes easier to test/validate, and
can become a reusable component.

A key part of this course will emphasize how C++ provides
tools to help the designer/programmer explicitly separate
interface and implementation, and so create more modular
code.

Consider the general engineering principles of
abstraction and modularity.

The idea behind abstraction is to distil the software down to its
fundamental parts, and describe these parts precisely, but without
cluttering the description with unnecessary details such as exactly
how it is implemented.

The abstraction specifies what operations a module is for, without
specifying how the operations are performed.

Consider the general engineering principles of
abstraction and modularity.

The aim of modularity is to define a set of modules each
encapsulates a particular functionality, and which interacts with
other modules in well defined ways.

The more complicated the set of possible interactions between
modules, the harder it will be to understand.

Humans are only capable of understanding and managing a certain
degree of complexity; it is quite easy (but bad practice) to write
software that exceeds this capability!

1.  Architectural design: identifying the building blocks.

2.  Abstract specification: describe the data/functions and
their constraints.

3.  Interfaces: define how the modules fit together.

4.  Component design: recursively design each block.

Top-down design achieves abstraction and
modularity via four steps.

Let’s map out programming paradigms, mindful
of the fact that these are fuzzily defined.
Paradigm Description Examples
Imperative A defined sequence of commands for a

computer to perform, directly changing
the state (all stored information) e.g.
featuring goto statements.

BASIC

Functional Programs are like mathematical
functions: they cannot change the state.

Lisp,
Anglican

Structured Improves upon imperative approach by
adding loops, subroutines, block
structures. Procedures are still
separated from data.

Matlab, C

Object-
Oriented

Data, and procedures for acting upon
them (methods), are united in objects.

C++, Java

Topic 2: Foundational
Concepts in Object-oriented

Programming

In structural programming, structures contain
only data, and we separately create functions to
act on them. Objects contain both data and
functions (methods) to operate upon them.

Structural
programming

Object-oriented
programming

Fruit

An object is an instance of a class,
declared for use.

An object interface defines how an object can be
interacted with, providing an explicit separation of how
an object is used from the implementation details.

Classes are a mechanism for building compound
data structures i.e. user-defined types.

Like C’s struct, C++ provides a compound data structure to
encapsulate related data into a single “thing”: a class.

C++ goes further by also allowing a class to contain functions on
the data (methods).

C++ also allows a means to control access to the components
(the data and methods) of the class (private and public
keywords). This is important in creating a well-defined interface
for an object (i.e. defining the ways in which other objects and
code can use and interact with the object).

Matlab also supports classes.

C++ predefines a set of atomic types
(primitives) e.g. bool, char, int, float, double.
These cannot be broken down further.

 C++ libraries also define non-atomic types, such
as strings (comprised of chars).

C++ provides mechanisms so that user-defined
types (classes) can behave like the predefined
non-atomic types.

C++ uses static typing, as you’ve seen in B16:
Structured Programming.

It defines how an object of this type will look (and behave).

The data elements that make up the class are known as fields.

class Complex {
 public:
 double re, im;

};

Don’t confuse with creating an instance (i.e. declaring)

int i;
Complex z;

A class is a user-defined data type which
encapsulates related data into a single entity.

Class definition

Create an object (an instance) of this type

Fields

Let’s represent the current state as,
say, a triple of numbers and a bool:
 (position, velocity, mass, landed).

class State {
 public:
 double pos, vel, mass;
 bool landed;

};

State s;

♣ Example: Vertical take-off and landing (VTOL)
aircraft state.

Controller

Simulator

Display

state

state thrust

We could represent the state as four separate variables.
However this would not capture the conceptual relationship
between the variables, and would result in code that has a more
complicated interface.
The controller would need to take 4 input variables instead of one!
Likewise the simulator output would be four quantities.
This would be harder to understand and less close to our data flow
diagram.

♣ Example: Vertical take-off and landing (VTOL)
aircraft state.

class State {
 public:
 double pos, vel, mass;
 bool landed;
};

State s;

Controller

Simulator

Display

state

state thrust

Class members are accessed using the member
selection operator (which is a dot).

State s;

s.pos = 1.0;
s.vel = -20.0;
s.mass = 1000.0;
s.landed = false;

s.pos = s.pos +
s.vel*deltat;

Thrust =
ComputeThrust(s);

Structures in Matlab are
very similar: but don’t
require initialisation. You
can jump straight to:

s.pos = 1.0;
s.vel = -20.0;
…

s is an instance of
type (class) State.

Class members are accessed using the member
selection operator (which is a dot).

State s;

s.pos = 1.0;
s.vel = -20.0;
s.mass = 1000.0;
s.landed = false;

s.pos = s.pos +
s.vel*deltat;

Thrust =
ComputeThrust(s);

We’ll see later that this kind
of access to data members is
discouraged in C++. Instead
the better practice is have
data declared private and
accessed only through the
class’ methods.

An aside: in C++, we print to screen as per

cout is a special object that represents the
screen/terminal.
<< is the output operator. Anything sent to
cout by the << operator will be printed on the
screen.
endl (‘end line’) moves the cursor to the
next line.

cout << "Hello world!" << endl;

Recall that in C++ a class encapsulates related
data and functions that operate on the data.

A class member function is called a method.

Methods (like data fields) are called using the
dot operator.

class Complex {
 public:
 double re, im;

 double Mag() { return sqrt(re*re + im*im); }
 double Phase() { return atan2(im, re); }

};

Complex z;
cout << “Magnitude=“ << z.Mag() << endl;

Notice that the fields re and im are used without the z.
within the methods. When a method is invoked, it is invoked by
a specific object (in this case z), so we already know which
object’s fields are being referred to; the z. is implicit.

re and im do not need z., which is implicitly
passed to the function via a special pointer
(this).

class Complex {
 public:
 double re, im;

 double Mag() { return sqrt(re*re + im*im); }
 double Phase() { return atan2(im, re); }

};

Complex z;
cout << “Magnitude=“ << z.Mag() << endl;

When an object’s method is called, a pointer to the calling object
is always passed in as a parameter. In the rare event that you
need access to the whole object, you can do so via the this
pointer.

Let’s recap pointers and references.

int * p = & n; Define pointer p as the address
where integer n is stored.

int & r = n; Define reference r as “another
name” for integer n. It provides a
dereferenced pointer to the address
of n (that can’t be redirected).

& n The address (in memory) of
variable n.

* p Dereference pointer p (giving the
contents of the pointed-to memory).

A reference gives “another name” for a variable.
It provides a dereferenced pointer to the address
of the variable (that can’t be redirected).
int nasty_long_name = 3;
int & r = nasty_long_name ;
// r is a reference to nasty_long_name

nasty_long_name = 2;
// nasty_long_name is now 2
r = 7;
// nasty_long_name is now 7

cout << nasty_long_name ; // prints 7
nasty_long_name++;
cout << r; // prints 8

Topic 3: Encapsulation

Information hiding / data hiding / encapsulation is
the ability to make object data available only on
a “need to know” basis.

Encapsulation has made OOP the programming
paradigm of choice for large projects.

By specifying the object interfaces clearly in the
design phase of a project, teams of
programmers can then implement the
components with some assurance that the
components will all work together.

Recall side-effects, which break the intended
function-like semantics of our programs.

Input parameters Output values

Function,
as desired

Hidden input Hidden output

Global variable

Function,
with side-effects

Input parameters Output values

Encapsulation means that software components
hide the internal details of their implementation.

In procedural programming, we treat a function as a
black box with a well-defined interface, and use these
functions as building blocks to create programs.
We then need to take care to avoid side-effects.

In object-oriented programming, a class defines a black
box data structure, which has:

1.  a public interface;
2.  private data.

Other software components in the program can only
access the class through a well-defined interface,
minimising side-effects.

The private data fields (re and im) of an
instance of the Complex class cannot be
accessed by other software components.
class Complex {

 public:
 double Re() { return re; }
 double Im() { return im; }
 double Mag() { return sqrt(re*re + im*im);}
 double Phase() { return atan2(im, re);
 }
 private:
 double re, im;

};

Private members can be accessed only through the public
interface: the (read-only) accessor methods Re() and Im().

Complex z;
cout << “Real part=“ << z.Re() << endl;
cout << “Magnitude=“ << z.Mag() << endl;

This may seem like we are adding an
unnecessary layer of complexity, but we do so
in order that the interface of the object is as
unambiguously defined as possible.

 class Complex { public:

 double Re() { return re; }
 double Im() { return im; }
 double Mag() { return sqrt(re*re + im*im);}
 double Phase() { return atan2(im, re);
 }
 private:
 double re, im;

};

Complex z;
cout << “Real part=“ << z.Re() << endl;
cout << “Magnitude=“ << z.Mag() << endl;

Code that used “z.re” or “z.im” would produce an error.

Here, we have changed the internal
representation, but the interface has remained
unaltered: other components are unaffected.
class Complex {

 public:
 double Re() { return r*cos(theta); }
 double Im() { return r*sin(theta); }
 double Mag() { return r;}
 double Phase() { return theta; }
 }
 private:
 double r, theta;

};

Complex z;
cout << “Magnitude=“ << z.Mag() << endl;
cout << “Real part=“ << z.Re() << endl;

Unchanged!!

Internal implentation
now in polar coords

This is the essence of encapsulation: the
interface captures all that is required for other
program components to use the class.
class Complex {

 public:
 double Re() { return r*cos(theta); }
 double Im() { return r*sin(theta); }
 double Mag() { return r;}
 double Phase() { return theta; }
 }
 private:
 double r, theta;

};

Complex z;
cout << “Magnitude=“ << z.Mag() << endl;
cout << “Real part=“ << z.Re() << endl;

Unchanged!!

Internal implentation
now in polar coords

Topic 4: Constructors

Recall our definition of the Complex class.

class Complex {

 public:
 double Re() { return re; }
 double Im() { return im; }
 double Mag() { return sqrt(re*re + im*im);}
 double Phase() { return atan2(im, re);
 }
 private:
 double re, im;

};

Complex z;
cout << “Magnitude=“ << z.Mag() << endl;
cout << “Real part=“ << z.Re() << endl;

Code that used “z.re” or “z.im” would produce an error.

As re is private, we can no longer say
 z.re = 1.0;

so how can we get values into an object?

Whenever a variable is created (declared),
 int i;

1.  at compile time, the code is checked to ensure data
is used correctly;

2.  at run time, memory space is allocated for the
variable, creating an object.

However the above will not initialise the variable.
Instead, we need to do e.g.
 int i = 10;

In general, this is the job of the constructor function.

For the predefined types, the constructor is
automatically defined and so we never mention
it e.g.
 int i = 10;

In general, we can initialise using a constructor,
a member function of the class:
 int i(10);

A constructor gives the programmer control
over what happens when a user-defined type is
created.

The constructor is a special function with the
same name as the class and no return type. It
must be defined in the class definition like any
other method.

Complex(double x, double y) {
 re = x; im = y;
}

The constructor must be called once each
time an instance (or object) of the class is
created.

class Complex {
 public:
 Complex(double x, double y) : re(x), im(y)
 {}

 private:
 double re, im;
};

An initialisation list is an implicit way of making a
constructor using other constructors.

Although a little less readable, this approach is generally
preferred as it allows
1.  the initialisation of const variables,
2.  the initialisation of reference member variables,
3.  composition and
4.  inheritance (more on all these later).

NB: no semicolon

using constructors of double class

Let’s add a constructor to the interface for
Complex.
class Complex {

 public:
 Complex(double x, double y) { re = x; im = y; }
 double Re() { return re; }
 double Im() { return im; }
 double Mag() { return sqrt(re*re + im*im);}
 double Phase() { return atan2(im, re);
 }
 private:
 double re, im;

};

Complex z(10.0, 8.0);
cout << “Magnitude=“ << z.Mag() << endl;
cout << “Real part=“ << z.Re() << endl;

When the constructor is called, it receives parameters 10.0 and 8.0. The
code in the constructor sets the value of re to be the first formal parameter
(x) and the value of im to be the second formal parameter (y). Hence we
have declared (instantiated) an object of type Complex, with value 10 + j 8.

Changing to polar coordinates requires changing
the workings of methods, including the
constructor. The interface is unchanged.
class Complex {

 public:
 Complex(double x, double y) {
 r = sqrt(x*x + y*y);
 theta = atan2(y,x);
 }
 double Re() { return r*cos(theta); }
 double Im() { return r*sin(theta); }
 double Mag() { return r;}
 double Phase() { return theta; }
 }
 private:
 double r, theta;

};

Complex z(10.0,8.0);
cout << “Magnitude=“ << z.Mag() << endl;
cout << “Real part=“ << z.Re() << endl;

The interface
is unchanged!
Hence all
other code
using
Complex
need not be
altered.

The internal
implentation is
now in polar
coords.

class Complex {
 public:
 Complex(double x = 0.0, double y = 0.0);
 { re = x; im = y; }
 private:
 double re, im;
};

We can define our constructor to supply default values
for data.

class Complex {
 public:
 Complex(double x = 0.0, double y = 0.0);
 { re = x; im = y; }
 private:
 double re, im;
};

Hence our constructor can act as a default constructor
in the absence of some or all input parameters.

Complex cDefault; // will call Complex(0, 0)
Complex cSix(6); // will call Complex(6, 0)
Complex cFivePlusThreej(5,3); // will call
Complex(5,3)

The copy constructor is a particular constructor that
takes as its single argument an instance of the class;
typically, it copies its data into the new instance.

Complex(Complex& z) {
 re = z.Re(); im = z.Im();
}

Complex(Complex& z) : re(z.Re()), im(z.Im()) {}

The compiler creates a copy constructor by
default, but it’s not always what we want.

We need to take extra care when dealing with
objects that contain dynamically allocated
components.

For example, if an object has a pointer as a field,
the memory address will be copied by default,
rather than the contents.

Hence any change to the contents will affect
both the original and the copy.

In C++, parameters are usually passed by value. This
means a copy (requiring a call to the copy constructor)
of the parameter value is put on the stack.

Alternatively, you can pass by reference, meaning that a
reference is placed on the stack.

void foo(int x) {...} // passing by value

void foo(int & x) {...}
 // passing by reference

Note the copy constructor is passed its parameter z by
reference.

Were z to be passed instead by value, a copy of z would have to
be placed on the stack. To make that copy, the copy constructor
would be called. Which means you’d have to pass another z by
value, which would mean another copy would have to be made
etc.

Complex(Complex& z) {
 re = z.Re(); im = z.Im();
}

Complex(Complex& z) : re(z.Re()), im(z.Im())
{}

This must be a
reference to z
(or else infinite
recursion results!).

class Complex {
 public:
 Complex(double x,
 double y)…
 Complex(Complex& z)…

 double Re() …
 double Im() …
 double Mag() …
 double Phase() …
 private:
 double r, theta;

};

class Complex {
 public:
 Complex(double x,
 double y)…
 Complex(Complex& z)…

 double Re() …
 double Im() …
 double Mag() …
 double Phase() …
 private:
 double re, im;

};

Cartesian Polar

Complex z(10.0,8.0);
cout << “Magnitude=“ << z.Mag() << endl;
cout << “Real part=“ << z.Re() << endl;

Note that we have now defined two (constructor) functions with the
same name. This is called overloading, and it’s possible because the
compiler looks at both the name of the function and the types of the
arguments when deciding which function to call. More later!

Both

Topic 5: Implementation
and Interface

In C++ programs, the header file (.h) plays a much
more important role than in C. Every program element
that uses the Complex class needs to know its
interface, specified in the header.

Complex.h:

class Complex {
 public:
 Complex(double x, double y);
 double Re();

 double Im();
 double Mag();

 double Phase();

 private:
 double re, im;

};

The implementation of each method in a class
appears in the .cpp file.

In order to understand how to use a class, the programmer
usually doesn’t need to look at the .cpp file (the
implementation); instead, they can simply look at the uncluttered
header file defining the interface.

Whenever a programmer wants to use the Complex class, they
can simply import the header into the code via the

 #include “Complex.h”
compiler directive, and the compiler knows everything it needs
to know about legal uses of the class.

It is the job of the linker to join the implementation details of
the class (that lives in Complex.cpp) with the rest of the code.

The implementation of each method in the Complex
class appears in the .cpp file.

Complex.cpp

#include “Complex.h”

Complex::Complex(double x, double y) {
 re = x; im = y;

}
double Complex::Re() { return re; }
double Complex::Im() { return im; }
double Complex::Mag() {
 return sqrt(re*re+im*im);

}
double Complex::Phase() { return atan2(im,re); }

The class scoping operator “::” is
used to inform the compiler that
each function is a method belonging
to class Complex.

C/C++ parameters are passed by value (i.e. a copy of
the parameter value is put on the stack).

Arrays are an exception: they are passed by reference,
meaning that a reference is placed on the stack.

Arrays can be very big, and hence putting a copy of the
whole array onto the stack can take much processing
and be wasteful of stack space.

Instead, it is cheap both in memory and processing to
put a reference onto the stack, hence the exception.
Another exception is found in large classes, for similar
reasons.

void foo(int x) {...} // passing by value

void foo(int & x) {...}
 // passing by reference

The problem with passing by reference is that there is
nothing to prevent the code in a function changing
values of x, causing a side-effect.

When FooPassByRef(y) is called, its internal x
becomes a reference to y. Hence whatever is done to
x is also done to y!

void FooPassByVal(int x) { // passing by value
 x++;

}

void FooPassByRef(int &x) { // passing by reference.

x++;
}

Below we see an example of a side-effect caused by
passing by reference. Maybe that’s what we want, but
usually it’s not!

void FooPassByVal(int x) { // passing by value
 x++;

}

void FooPassByRef(int &x) { // passing by reference.

x++;
}

int main() {

int x = 3;
FooPassByVal(x);
cout << x << endl; // prints 3
FooPassByRef(x);
cout << x << endl; // prints 4
return 0;

}

As a solution, an object (variable) can be
declared as const, meaning the compiler will
complain if its value is ever changed.
 This is the standard way of passing large objects into a function.

const int i(44);
i = i+1; /// compile time error!

It is good practice to declare constants explicitly. It is also good
practice to declare formal parameters const if the function does
not change them.

 int foo(BigClass& x);
 versus
 int foo(const BigClass& x);

In C++, const plays an important part in
defining the class interface.

Class member functions can (and sometimes must) be
declared as const. This means they do not change
the value of the calling object, which is enforced by the
compiler.

Notice that as far as code in a class member function is
concerned, data fields are a bit like global variables:
they can be changed in ways that are not reflected by
the function prototype. The use of const can help to
control this.

We might declare a Complex variable z to be
const. This would be a sensible thing to do if its
value never changes, and will mean that the
compiler will ensure its value can’t be changed.

class Complex {
 public:
 Complex(double x, double y) { re = x; im = y; }
 double Re() { return re; }
 double Im() { return im; }
 double Mag() { return sqrt(re*re + im*im);}
 double Phase() { return atan2(im, re);
 }
 private:
 double re, im;

};

const Complex z(10.0, 8.0);

However, this can often lead to difficult-to-find
compile-time errors e.g. the code below.

class Complex {

 public:
 Complex(double x, double y) { re = x; im = y; }
 double Re() { return re; }
 }
 private:
 double re, im;

};

const Complex z(10.0, 8.0);
cout << “Real part=“ << z.Re() << endl;

The reason is that the compiler doesn’t analyse the semantics of
each function, so it can’t be sure that the accessor function
z.Re() doesn’t change the internal values (re=10.0 and
im=8.0) of the object z.
The way to avoid this is to declare the accessor methods as
const functions.

Error!

To fix this ‘problem’, we add const after the
function name for functions that don’t change
the value; these are const methods, telling the
programmer and the compiler that these
functions do not modify any of the object’s data.
 class Complex {

 public:
 Complex(double x, double y) { re = x; im = y; }
 double Re() const { return re; }
 double Im() const { return im; }
 double Mag() const { return sqrt(re*re + im*im);}
 double Phase() const { return atan2(im, re);
 }
 private:
 double re, im;

};

const Complex z(10.0, 8.0);
cout << “Real part=“ << z.Re() << endl;

Code should
now compile

Faced with an error like above, you may be
tempted to make all data public (and not use
const). Don’t! The grief caused by doing
things ‘properly’ will be minor compared to the
potential problems created by code that abuses
the interface.

class Complex {

 public:
 double re, im;
 Complex(double x, double y) { re = x; im = y; }
 double Re() { return re; }
 double Im() { return im; }
 double Mag() { return sqrt(re*re + im*im);}
 double Phase() { return atan2(im, re);
 }

};

Topic 6: Functions
and Operators

C++ allows several functions to share the same
name, but accept different argument types: this
is function overloading.

void foo(int x);

void foo(int &x, int &y);

void foo(double x, const Complex c);

The function name and types of arguments
together yield a signature that tells the compiler
if a given function call in the code is valid, and
which version is being referred to.

As an example, we can define (the already
defined) exp for the Complex class.
NB: exp(x + i y) = exp(x) exp(i y)

#include <cmath>

Complex exp(const Complex z)
{
 double r = exp(z.Re());
 Complex zout(r*cos(z.Im()),
 r*sin(z.Im()));
 return zout;

}

When should we use a member function and
when should we use a non-member function?

That is, when should we define the non-member
exp(z) and when the member z.exp()?

Consider carefully how it will be used. Does it modify
the instance? If so, a non-member function is
preferable. Which presents the most natural interface?

For this example, I would go for exp(z): instance
modification seems more natural.

Note that non-member functions are a slight
abandonment of the OOP paradigm.

As you know, C++ (and Matlab etc.) provide
operators (functions, except with disallowed
names and/or different calling syntax).

Arithmetic

Relational

Boolean

Assignment

I/O streaming

+ - * / %

== !=
< > <= >=

&& || !

=

<< >>

C++ aims for user-defined types to mimic, as far
as possible, the predefined types.

Suppose we want to add two Complex variables together. We
could create a function:

Complex Add(const Complex z1, const Complex z2) {
 Complex zout(z1.Re()+z2.Re(),
 z1.Im()+z2.Im());
 return zout;

}

However, it would be much cleaner to use the + operator to
write:

Complex z3;
z3 = z1+z2;

We can achieve this by operator overloading.

In C++, the infix notation, e.g. a+b, is defined as a
shorthand for a function expressed using prefix
notation e.g. operator+(a,b).

Since an operator is just a function, we can overload it:

Complex operator+(const Complex z1,
 const Complex z2) {
 Complex zout(z1.Re()+z2.Re(),
 z1.Im()+z2.Im());
 return zout;

}

Hence we can write
Complex z3;
z3 = z1 + z2;

The assignment operator = is used to copy the
values from one object to another already
defined object.

Note that if the object is not already defined,
the copy constructor is called instead.

Complex z1, z2, z3;
z3 = z1 + z2; // assignment operator

// the copy constructor is called for
both of the following
Complex z4(z3);
Complex z5 = z1 + z2;

The assignment operator = is used to copy the
values from one object to another already
defined object.

Complex z1, z2, z3;
z3 = z1 + z2;

This is the definition of the assignment operator = for
the Complex class.

Complex& Complex::operator=(const Complex& z1)
{

 re = z1.Re();
 im = z1.Im();
 return *this;

}

The definition of the operator =
is one of the few common uses
for the this pointer. Here it is
dereferenced and returned.

z2 = z1 is shorthand for z2.operator=(z1).

operator= must be a member function.

The left hand side (here z2) is implicitly passed in to
this function.

The return value of z2.operator=(z1) is a
reference to z2. That way we can concatenate
assignments as in z3=z2=z1 which assigns the value
of z1 to z2 and to z3, as

 (z3 = (z2 = z1)) which is
z3.operator=(z2.operator=(z1));

C++ does no array bounds checking (leading to
possible segmentation faults). Let’s create our own safe
array class by overloading the array index operator
[].
 class SafeFloatArray {
 public:
 …
 float & operator[](int i) {
 if (i<0 || i>=10) {
 cerr << “Oops!” << endl;
 exit(1);
 }
 return a[i];
 }

 private:
 float a[10];

};

We can use this array as:

This compiles but at
runtime the last call
generates the error
message “Oops!” and
the program exits.

SafeFloatArray s;

s[0] = 10.0;
s[5] = s[0]+22.4;
s[15] = 12.0;

Returns a reference to a float.
Defines a 10-long array of floats

Topic 7: A Complete
Complex Example

Let’s bring it all together by creating program to
calculate the frequency response of the transfer
function H(jw) = 1/(1+jw).

We’ll need three files, two modules:
1.  Complex.h and Complex.cpp
2.  Filter.cpp

The first two files define the Complex interface (.h) and the
method implementations (.cpp), respectively.

 % g++ -c Complex.cpp
 % g++ -c Filter.cpp
 % g++ -o Filter Complex.o Filter.o -lm

Compile source to
object files (.o)

Link object files together with maths library (-lm) to
create executable

// Complex.h
// Define Complex class and function prototypes
//

class Complex {
 public:
 Complex(const double x=0.0, const double y=0.0);
 double Re() const;
 double Im() const;
 double Mag() const;
 double Phase() const;
 Complex &operator=(const Complex z);

 private:
 double _re, _im;
};

// Complex maths
Complex operator+(const Complex z1, const Complex z2);
Complex operator-(const Complex z1, const Complex z2);
Complex operator*(const Complex z1, const double r);
Complex operator*(const double r, const Complex z1);
Complex operator*(const Complex z1, const Complex z2);
Complex operator/(const Complex z1, const Complex z2);

This is Complex.h and defines the interface. Any
program that wants to use the Complex class should
include this file: #include “Complex.h”.

Note that
default values
are supplied
only in the
header.

The
underscore is
just used to
denote a
private field (it’s
just an
arbitrary part
of a name).

#include <cmath>
#include <iostream>
#include "Complex.h"

// First implement the member functions
// Constructors
Complex::Complex(const double x, const double y) : _re(x), _im(y) {}
Complex::Complex(const Complex& z) : _re(z.Re()), _im(z.Im()) {}

double Complex::Re() const { return _re; }
double Complex::Im() const { return _im; }
double Complex::Mag() const { return sqrt(_re*_re + _im*_im); }
double Complex::Phase() const { return atan2(_im, _re); }

// Assignment
Complex& Complex::operator=(const Complex z)
{
 _re = z.Re();
 _im = z.Im();
 return *this;
}

This is Complex.cpp, containing the
implementation of the various methods in the
class interface Complex.h.
 We include maths (so we

can use e.g. sqrt) and
input/output (so we can use
e.g. cout) libraries.

A library is just a
pre-packaged
bundle of useful
code.

// Complex .cpp continued

// Now implement the non-member arithmetic functions
// Complex addition
Complex operator+(const Complex z1, const Complex z2)
{
 Complex zout(z1.Re()+z2.Re(), z1.Im()+z2.Im());
 return zout;
}
// Complex subtraction
Complex operator-(const Complex z1, const Complex z2)
{
 Complex zout(z1.Re()-z2.Re(),
 z1.Im()-z2.Im());
 return zout;
}

// scalar multiplication of Complex
Complex operator*(const Complex z1, const double r)
{
 Complex zout(r*z1.Re(), r*z1.Im());
 return zout;
}

Complex operator*(const double r, const Complex z1)
{
 Complex zout(r*z1.Re(), r*z1.Im());
 return zout;
}

Overloading to
be able to put
the scalar in
either input.

// Complex multiplication
Complex operator*(const Complex z1, const Complex z2)
{
 Complex zout(z1.Re()*z2.Re() - z1.Im()*z2.Im(),
 z1.Re()*z2.Im() + z1.Im()*z2.Re());
 return zout;
}

// Complex division
Complex operator/(const Complex z1, const Complex z2)
{
 double denom(z2.Mag()*z2.Mag());
 Complex zout((z1.Re()*z2.Re() + z1.Im()*z2.Im())/denom,
 (z1.Re()*z2.Im() - z1.Im()*z2.Re())/denom);
 return zout;
}

// end of file Complex.cpp

#include <iostream>
#include "Complex.h"

using namespace std;

Complex H(double w)
{
 const Complex numerator(1.0);
 const Complex denominator(1.0, 0.1*w);
 Complex z(numerator/denominator);
 return z;
}

int main(int argc, char *argv[])
{
 double w=0.0;
 const double stepsize=0.01;
 Complex z;

 for (double w=0.0; w<100.0; w+=stepsize) {
 z = H(w);
 cout << w << " " << z.Mag() << " " << z.Phase() << endl;
 }
}

main.cpp contains code that uses the
Complex class.

Topic 8: Inheritance
and Composition

Inheritance is the ability to create class
hierarchies, such that the inheriting (or child,
sub-, derived) class is an instance of the ancestor
(or base, super-, parent) class.

A class in C++ inherits from another class using
the : operator in the class definition.

Hierarchical relationships often arise between classes. Object-
oriented design supports this through inheritance.

An derived class is one that has the functionality of its parent
class but with some extra data or methods.

In C++

class A : public B {
…
};

The code above reads “class A inherits from class B”, or “class A
is derived from class B”. Inheritance encodes an “is a”
relationship.

class Window

Data: width, height
 posx, posy

Methods: raise(), hide()
 select(), iconify()

class TextWindow

Data: cursor_x, cursor_y

Methods: redraw(), clear()
 backspace(), delete()

class GraphicsWindow

Data: background_colour
 Methods: redraw(), clear()
 fill()

class InteractiveGraphicsWindow

Data:
 Methods: MouseClick(), MouseDrag()

♣ Example: Windows.

Base class

Has data fields posx,
posy, width, height,
background_colour

In C++, you can use the protected access
specifier to limit access to member functions of
derived classes, and those of the same class.
Previously, we used public for universal access and private
to limit access to member functions from the same class.
protected is a relaxed version of private in which derived
classes are also granted access.
class Window{
protected:
 double width, height;
 };

class TextWindow : public Window {
public:
 double GetTextWidth() const {return 0.9 * width;}
 ...
 };

Inheritance allows code re-use without the
dangers of copy-and-pasting.

Copy-and-pasting results in having to maintain multiple
copies of the same code: improvements or bug-fixes
have to be applied to each copy separately. It’s also
easy to forget that some copies even exist!

Inheritance allows you to re-use code without these
dangers: any changes to the parent class are
automatically propagated to all derived classes.

Each derived class need only be defined by its
difference from the parent class, rather than having to
redefine everything: this leads to shorter, neater, code.

Inheritance is an “is a” relationship.

Every instance of a derived class is also an instance of the
parent class e.g.

Every instance of a Car is also an instance of a
Vehicle.

A Car object has all the properties of a Vehicle.

class Vehicle;
class Car : public Vehicle { … };

Composition is an “has a” relationship.

Wheels, Light and Seat are all (small, simple) classes
in their own right.

class Vehicle {
private:
 Wheels w;
 Light frontLight;
 Light backLight;
 Seat s;

};

Composition allows for abstraction and
modularity.

Each class can be kept simple and dedicated to a
single task, making it easier to write and debug.

Using composition, some classes that may not
be very useful on their own may nonetheless be
re-usable within many other classes e.g.
Wheels. This encourages code re-use.

Topic 9: Polymorphism

Polymorphism is the ability of objects in the
same class hierarchy to respond in tailored ways
to the same events. It allows us to hide
alternative implementations behind a common
interface.

Polymorphism is Greek for “many forms”.

class Window

Data: width, height
 posx, posy

Methods: raise(), hide()
 select(), iconify()

class TextWindow

Data: cursor_x, cursor_y

Methods: redraw(), clear()
 backspace(), delete()

class GraphicsWindow

Data: background_colour
 Methods: redraw(), clear()
 fill()

Both TextWindow and GraphicsWindow have a
method redraw(), but redrawing a TextWindow is
different from redrawing a GraphicsWindow.
Polymorphism permits the two different window types
to share the interface redraw() , but allows them to
implement it in different ways.

Let A be a base class; B and C derive from A.

Every instance of a B object

is also an A object.

Every instance of a C

object is also an A
object.

class A

class B class C

The call y.func() will invoke the func method
belonging to class B, because y is an instance of class
B. Likewise z.func()will call class C’s func().
 #include <iostream>

using namespace std;

class A {
 public:

 void func() {
 cout << “A\n”;
 }

};

class B : public A {
 public:

 void func() {cout<<"B\n"; }
};

class C: public A {
 public:

 void func() {cout << "C\n"; }
};

void callfunc(A param)
{

 param.func();
}

int main(int argc, char*
argv[])
{

 A x;
 B y;
 C z;

 x.func();
 y.func();
 z.func();

 callfunc(x);
 callfunc(y);
 callfunc(z);

 return 0;

}

callfunc(x) passes an object of type A into
callfunc. The effect is to call the func()
method of class A.

#include <iostream>
using namespace std;

class A {
 public:

 void func() {
 cout << “A\n”;
 }

};

class B : public A {
 public:

 void func() {cout<<"B\n"; }
};

class C: public A {
 public:

 void func() {cout << "C\n"; }
};

void callfunc(A param)
{

 param.func();
}

int main(int argc, char*
argv[])
{

 A x;
 B y;
 C z;

 x.func();
 y.func();
 z.func();

 callfunc(x);
 callfunc(y);
 callfunc(z);

 return 0;

}

callfunc(y) passes an object of type B into the function.
Because every B is also an A this is acceptable, but only the bit
of y that is an A is put onto the stack. The “B bits” are left
behind, so as far as callfunc is concerned, it’s received an
object of type A, and param.func() will call A’s func().

#include <iostream>
using namespace std;

class A {
 public:

 void func() {
 cout << “A\n”;
 }

};

class B : public A {
 public:

 void func() {cout<<"B\n"; }
};

class C: public A {
 public:

 void func() {cout << "C\n"; }
};

void callfunc(A param)
{

 param.func();
}

int main(int argc, char*
argv[])
{

 A x;
 B y;
 C z;

 x.func();
 y.func();
 z.func();

 callfunc(x);
 callfunc(y);
 callfunc(z);

 return 0;

}

Memory

CODE

DATA

machine code

global variables

STACK

local variable m

local variable 1
return location

return value n

return value 1

parameter x

parameter 1

…

…

…
 Activation

record

Recall that when a function is called, parameters,
return location and other stuff are put onto the stack
in the activation record.

Let’s re-examine the previous example.

class A

class B class C
B y;
callfunc(y)

local variable m

local variable 1

return location
parameter (y|A)

…

callfunc activation
record

void callfunc(A param)
{
 param.func();

}

callfunc takes a value parameter of
class A.

The call above is legitimate but only the
bit of y that is an A will be copied
onto the stack.

Once “inside” the function, the
parameter can only behave as an A.

Note that here there is no return value
because callfunc returns void.

So far, no polymorphism! callfunc treats
derived classes B and C just as if they were the
parent class A.

In C++, run-time polymorphism is invoked by
the programmer via virtual functions.

class Window {
 …
 virtual void redraw();

};

func() in the base class A has been designated as a
virtual function, and the parameter to callfunc()
is now passed by reference.

#include <iostream>
using namespace std;

class A {
 public:

 virtual void func() {
 cout << “A\n”;
 }

};

class B : public A {
 public:

 void func() {cout<<"B\n"; }
};

class C: public A {
 public:

 void func() {cout << "C\n"; }
};

void callfunc(A& param)
{

 param.func();
}

int main(int argc, char*
argv[])
{

 A x;
 B y;
 C z;

 x.func();
 y.func();
 z.func();

 callfunc(x);
 callfunc(y);
 callfunc(z);

 return 0;

}

The call y.func() still invokes the func method
belonging to class B because y is an instance of class
B. Likewise z.func() will call class C’s func().

#include <iostream>
using namespace std;

class A {
 public:

 virtual void func() {
 cout << “A\n”;
 }

};

class B : public A {
 public:

 void func() {cout<<"B\n"; }
};

class C: public A {
 public:

 void func() {cout << "C\n"; }
};

void callfunc(A& param)
{

 param.func();
}

int main(int argc, char*
argv[])
{

 A x;
 B y;
 C z;

 x.func();
 y.func();
 z.func();

 callfunc(x);
 callfunc(y);
 callfunc(z);

 return 0;

}

callfunc(x) passes an object of type “reference
to A” into callfunc. Since x is of type A,
param.func() calls the func()of class A.

#include <iostream>
using namespace std;

class A {
 public:

 virtual void func() {
 cout << “A\n”;
 }

};

class B : public A {
 public:

 void func() {cout<<"B\n"; }
};

class C: public A {
 public:

 void func() {cout << "C\n"; }
};

void callfunc(A& param)
{

 param.func();
}

int main(int argc, char*
argv[])
{

 A x;
 B y;
 C z;

 x.func();
 y.func();
 z.func();

 callfunc(x);
 callfunc(y);
 callfunc(z);

 return 0;

}

B y;
callfunc(y)

callfunc activation
record

void callfunc(A& param)
{
 param.func();

}

callfunc takes a reference to an object of class A.
A reference is just a memory address.
The call above is legit because objects of type B are also of type A.
Dereferencing the parameter &y leads to y.
y can identify itself as being of class B, and so can behave like a B.
As A.func() was declared to be virtual, the system will therefore

invoke a function call to the func() method belonging to class B.

local variable m

local variable 1

return location
param (&y)

…

y

class A

class B class C

class A {
 public:

 virtual void func() {
 cout << “A\n”;
 }

};

The virtual function has allowed run-time
polymorphism.

The run-time system is able to identify that the parameter y is in
fact of type B. This is known as run-time type identification
(RTTI).
A virtual function called from an object that is either a

1.  reference to a derived class or a
2.  pointer to a derived class

performs run-time type identification on the object that invoked
the call, and will call the appropriate version.

If the object is of type A, then call A’s func().
If the object is of type B, then call B’s func().
If the object is of type C, then call C’s func().

class A

class B class C

If class A defines func() as
 virtual void func() = 0;

then A has no implementation of func().

In such a case, class A is called an abstract base class.

It is not possible to create an instance of class A, only
instances of derived classes, B and C. Class A defines an
interface to which all derived classes must conform.

We use this idea in designing program components: we
specify an interface, then have a guarantee of the
compatibility of all derived objects.

This code will generate a compile time error
because we have tried to instantiate A.

#include <iostream>
using namespace std;

class A {
 public:

 virtual void func() = 0;
};

class B : public A {
 public:

 void func() {cout<<"B\n"; }
};

class C: public A {
 public:

 void func() { cout << "C
\n"; }
};

void callfunc(A param)
{

 param.func();
}

int main(int argc, char*
argv[])
{

 A x;
 B y;
 C z;

 x.func();
 y.func();
 z.func();

 callfunc(x);
 callfunc(y);
 callfunc(z);

 return 0;

}

Because A has a pure virtual function, denoted
with the “= 0”, it is abstract. There is no
function A.func(). This forces any object that
derives from A to implement func().

#include <iostream>
using namespace std;

class A {
 public:

 virtual void func() = 0;
};

class B : public A {
 public:

 void func() {cout<<"B\n"; }
};

class C: public A {
 public:

 void func() { cout << "C
\n"; }};

void callfunc(A param)
{

 param.func();
}

int main(int argc, char* argv[])
{

 B y;
 C z;

 y.func();
 z.func();

 callfunc(y);
 callfunc(z);

 return 0;

}

♣ Consider a vector graphics drawing package.
The base class “Drawable” defines a graphics object that
knows how to draw itself on the screen. Below it in the class
hierarchy may be classes that define lines, curves, points etc.

The program will keep a list of objects that have been created
and upon redraw, will display them one by one. This is
implemented using a loop.

This forces all
derived classes
to implement
Draw().

class Drawable {
 …
 virtual void Draw() = 0;

};
class Line : public Drawable { … };

for (int i=0; i<N; i++) {
obj[i]->Draw();
}

In C++. an array can only store objects of
the same type; here we use it to store
pointers to (i.e. the memory address of)
each object. The -> operator does the
same thing as the dot operator, but
dereferences the pointer (looks up the
object via the memory address) first.

♣ Example: consider a spreadsheet.
Recall that an abstract base class cannot be instantiated
itself; it is used to define the interface.

We define a spreadsheet as comprising an array of
references to cells; each object of type Cell must be
able to return its own value via an Evaluate()
method.

class Cell {
 virtual double Evaluate() = 0;

};

class Spreadsheet {

 private:
 Cell& c[100][100];

};

♣ Example: consider a spreadsheet.
By specifying the interface to the abstract base class Cell, we
can implement Spreadsheet independently of the various
types of Cell e.g. Boolean-valued expressions, dates, integers.

This allows us to decide after it’s all implemented that we’d like
a new type of Cell (i.e. a new class that inherits from Cell)
e.g. the product of two other Cells. So long as it has a proper
Evaluate() method, Spreadsheet can use it seamlessly.

class Cell {
 virtual double Evaluate() = 0;

};

class Spreadsheet {

 private:
 Cell& c[100][100];

};

♣ Example: recall Euler’s method to solve the

ODE . Let’s implement a generic Euler

 method, which prints x(t) for t = 0, 1, 2,
class Euler {
 public:

Euler(Func &f);
void Simulate(double x, double step, double time);

 private:
Func fn;

};

 Euler::Euler(Func &f) : fn(f) {};

void Euler::Simulate(double x, double step, double time)

{
 for (int t=0; t<time; t+=step) {

 x = x + step*fn.dx_by_dt(x,t);

 cout << x << endl;
 }

 return; }

We now instantiate an Euler object (here called e)
in which the object y becomes the private member
fn of e.

In order for this to work, y (which is class
XdotPlusX) must be an instance of Func. That is,
XdotPlusX must inherit from Func.

XdotPlusX y;
Euler e(y);

e.Simulate();

class Euler {
 public:

Euler(Func &f);
void Simulate(double x, double step, double time);

 private:
Func fn;

};

Let’s implement an abstract base class Func.

Func specifies that any object that is to be used in
Euler must implement a dx_by_dt function.

Our first dx_by_dt function comes from the
equation x + x = 0, hence dx_by_dt returns –x.

class Func {
 public:

 virtual double dx_by_dt(double x, double t) = 0;

};

class XdotPlusX : public Func {

 public:
 double dx_by_dt(double x, double t) {

 return –x;

 }

};

For the non-linear equation x + x2 = 0 we can define a
new class that implements dx_by_dt = -x*x.

class Func {
 public:

 virtual double dx_by_dt(double x, double t) = 0;

};

class XdotPlusX2 : public Func {

 public:
 double dx_by_dt(double x, double t) {

 return –x*x;

 }

};

Topic 10: Templates

Recall our array-bounds-checking class: unfortunately,
it was limited to storing floats.

class SafeFloatArray {
 public:
 float & operator[](int i) {
 if (i<0 || i>=10) {
 std::cerr << “Access out of bounds\n”;
 std::exit(1);
 } else {
 return a[i];
 }
 }
 private:
 float a[10];

};

How might we create a class that can store any type
we choose?

Templates provide a way to parameterize a class
definition with one or more types. This is an example
of compile-time polymorphism.

To implement a template in C++, you prefix the class
definition with template <class XX> where XX
is a parameter to the class definition (below we have
used varType).

template <class varType>
class SafeFloatArray {
 public:
 varType & operator[](int i) {
 if (i<0 || i>=10) {
 cerr << “Access out of bounds\n”;
 return varType(0);
 } else {
 return a[i];
 }
 }
 private:
 varType a[10];

};

SafeFloatArray<int> x;
SafeFloatArray<Complex> z;

At compile time the compiler encounters
SafeFloatArray<int> x and creates a class
definition (if it doesn’t already exist) in which
varType is replaced with int everywhere in the
definition.

template <class varType>
class SafeFloatArray {
 public:
 varType & operator[](int i) {
 if (i<0 || i>=10) {
 cerr << “Access out of bounds\n”;
 return varType(0);
 } else {
 return a[i];
 }
 }
 private:
 varType a[10];

};

SafeFloatArray<int> x;
SafeFloatArray<Complex> z;

Of course, you could do this by simply copy-and-
pasting the code and doing a manual replacement of
varType. As usual, however, copy-and-pasting code
is a very bad idea!

template <class varType>
class SafeFloatArray {
 public:
 varType & operator[](int i) {
 if (i<0 || i>=10) {
 cerr << “Access out of bounds\n”;
 return varType(0);
 } else {
 return a[i];
 }
 }
 private:
 varType a[10];

};

SafeFloatArray<int> x;
SafeFloatArray<Complex> z;

Here we create a template class that is a
container for a templated number of elements
of a templated type.

template <class Type, int Size>
class SafeFloatArray {
 public:
 Type& operator[](int i) {
 if (i<0 || i>=Size) {
 std::cerr << “Access out of bounds\n”;
 std::exit(1);
 } else {
 return a[i];
 }
 }
 private:
 Type a[Size];

};

SafeFloatArray<int,10> x;
SafeFloatArray<Complex,40> z;

Templates aid the use of similar design
solutions to different problems.

The standardisation of design solutions encourages
code re-use, increasing code reliability and shortening
development time.

An array is special case of a container type, a way of
storing a collection of possibly ordered elements e.g.
list (ordered but not indexed), stack (a first-in-last-out
structure), vector (extendible array), double-ended list,
etc.

Templates in C++ offer a way of providing libraries to
implement these standard containers.

The Standard Template Library is a suite of
code that implements (among many other
things) classes of container types.

These classes come with standard ways of

accessing,
inserting,
adding and
deleting elements.

They also provide a set of standard algorithms that

operate on these classes such as
 searching and
 iterating over all elements.

The Standard Template Library (STL)
permits code re-use, as desired.

Different applications will have to represent different
data, and will therefore require bespoke classes.

However, it is common for the organisation of multiple
instances of bespoke classes to be done in standard
ways (such as containing multiple bespoke objects in an
array).

Templates allow generic, templated, code, that can be
specialised to our bespoke classes at compile-time.

Consider the STL vector.
std::vector<Type> is an extendible array.
It can increase its size as the program needs it to.
It can be accessed like an ordinary array (eg v[2]).
It can report its current size

v.size().
You can add an item to the end without needing to know how
big it is

v.push_back(x).
 #include<vector>

int main() {

 std::vector<int> v;
 for (int i=0; i<20; i++) v.push_back(i);

 for (int i=0; i<v.size(); i++)
 std::cout << v[i] << std::endl;

}

If we were coding an extendible array class ourselves we would
use dynamic memory allocation (i..e on the heap) and we would
want to have:
1.  An overloaded operator[] to access the ith element;
2.  a size() method to report current length;
3.  a resize() function to allocate more space;
4.  a method to add an element to the end that will

automatically allocate a new chunk of memory if we go
beyond the end of the memory that has already been
allocated.

We don’t need to implement this because someone else has
done it for us!

This is only possible through the use of templates,
because the person who coded the vector class
couldn’t possibly anticipate all the classes that anyone
might want to store.

Let’s create a new STL vector of a size specified
at run-time.

std::vector<Complex> z;

int size;
std::cin >> size;
z.resize(size);

z[5] = Complex(2.0,3.0);

User-inputted
size

Now let’s create a two dimensional array at
run-time.

int width, height;
std::vector< std::vector<int> > x;

x.resize(height);
for (int i=0; i<height; i++)
 x[i].resize(width);

x[2][3] = 10;
…

The vector class implements a number of methods for accessing
and operating on the elements.

 vector::front Returns reference to first element of vector.

vector::back Returns reference to last element of vector.

vector::size Returns number of elements in the vector.

vector::empty Returns true if vector has no elements.

vector::capacity Returns current capacity (allocated memory) of vector.

vector::insert Inserts elements into a vector (single & range), shifts later
elements up. O(n) time.

vector::push_back Appends (inserts) an element to the end of a vector, allocating
memory for it if necessary. O(1) time.

vector::erase Deletes elements from a vector (single & range), shifts later
elements down. O(n) time.

vector::pop_back Erases the last element of the vector, O(1) time. Does not
usually reduce the memory overhead of the vector. O(1) time.

vector::clear Erases all of the elements. (This does not reduce capacity).

vector::resize Changes the vector size. O(n) time.

We often want to iterate over a collection of data, as
for (int i=0; i<v.size(); i++).

Not all container types support indexing: a linked list
has order, but only relative order.

An iterator is a class that supports the standard
programming pattern of iterating over a container type.

An iterator encapsulates the internal structure of how
the iteration occurs: it can be used without knowing the
underlying representation of the container type itself.

std::vector<int> v;
std::vector<int>::iterator it;
for (it=v.begin(); it!=v.end(); it++)

Iterators grant flexibility: you can change
the underlying container type without
changing the iteration.

Iterators are implemented differently for each class, but
the user need not know the implementation.

An iterator is a pointer to an
element of a container: this code
will print the elements of v.

std::vector<int> v;
std::vector<int>::iterator it;
for (it=v.begin(); it!=v.end(); it++)
{
 cout << *it << endl;
}

Topic 11: Maze Example

Let’s design a program to compute a maze.
We’ll input a size and have the
maze printed out at the end.

The algorithm will run as follows.

1)  Mark all cells as unvisited.
2)  Mark all walls as standing.
3)  Choose the upper left cell to be

the current cell.
4)  While the current cell has

unvisited neighbours, choose a
neighbour at random.

5)  Break wall between chosen
neighbour and current cell.

6)  Make the chosen neighbour the
current cell.

7)  Return to 4).

Now let’s design the classes and class interfaces.

We need the following classes:

1.  Maze class, containing

i.  a Compute method (to recursively generate the full maze),
ii.  a Print method (to print to screen),
iii.  a two dimensional array of Cells, defining the maze.

2.  Cell class, containing
i.  Accessor methods,
ii.  Break wall methods, to remove a wall of a cell,
iii.  Wall flags (which walls does this cell have?),
iv.  Visited flag (have we previously considered this cell?).

Let’s define the Cell class interface (cell.h).

class Cell {
 public:
 Cell();

 bool Visited();
 void MarkVisited();
 bool BottomWall();
 bool RightWall();
 void BreakBottom();
 void BreakRight();

 private:
 bool bottomwall;
 bool rightwall;
 bool visited;

};

Let’s define the Maze class interface (maze.h).

class Maze {
 public:

Maze(int width, int height);

 void Compute(int x, int y);
 void Print();

 private:

 int Rand(int n);
 int H, W;
 std::vector< std::vector<Cell> > cells;

};

Here’s an example of a twenty by twenty maze.

Topic 12: Conclusion

OOP is not the best approach to all problems.

Joe Armstrong said “the problem with object-oriented languages
is they’ve got all this implicit environment that they carry around
with them. You wanted a banana but what you got was a gorilla
holding the banana and the entire jungle.”

Steve Yegge said “OOP puts the nouns first and foremost. ...
Why should one kind of concept take precedence over another?
It's not as if OOP has suddenly made verbs less important in the
way we actually think. ... As my friend Jacob Gabrielson once put
it, advocating Object-Oriented Programming is like advocating
Pants-Oriented Clothing.”

A study by Potok, Vouk and Rindos (1999) showed no difference
in productivity between OOP and procedural approaches.

OOP is the best approach to only some
problems.

Jonathon Rees wrote “(OOP) accounts poorly for symmetric
interaction, such as chemical reactions and gravity.”

Paul Graham wrote “at big companies, software tends to be
written by large (and frequently changing) teams of mediocre
programmers. OOP imposes a discipline on these programmers
that prevents any one of them from doing too much damage.
The price is that the resulting code is bloated with protocols and
full of duplication. This is not too high a price for big companies,
because their software is probably going to be bloated and full of
duplication anyway.”

He also wrote “Object-oriented abstractions map neatly onto
the domains of certain specific kinds of programs, like
simulations and CAD systems.”

Let’s recap.
Objects, instances of classes, unite data, and functions for acting
upon them (methods). Classes are initialised by a constructor
member function.

Encapsulation is expressed by classes splitting public data and
functions from private data and functions, minimising side-effects.

The interface (expressed in a header file) clearly defines how a
program can interact with an object of a given class. The const
keyword can be used to define variables that cannot be changed,
creating a mathematical-function-like interface.

Functions can be overloaded: the function name together with
the types of its arguments define which version is being referred
to. Likewise, operators (functions with weird names and calling
syntax) can be overloaded.

Let’s recap.

Inheritance expresses an “is a” relationship, granting the ability to
create class hierarchies. Composition expresses an “has a”
relationship.

Run-time polymorphism is the ability of objects in a class
hierarchy to respond in tailored ways to the same events, and is
achieved through the use of virtual functions in an abstract base
class.

Templates provide a way to create a generic, parameterised,
class definition. This is an example of compile-time
polymorphism.

The End

