
B16 Object Oriented Programming 
 Frank Wood 
 

fwood@robots.ox.ac.uk 

http://www.robots.ox.ac.uk/~fwood/teaching/ 

Hilary 2015 



This course will introduce object-oriented 
programming (OOP). 

It will introduce C++, including 
classes, 
methods, function and operator overloading, 
constructors, 
and program organisation. 
 

We’ll discuss data hiding (encapsulation), covering 
public and private data,  
and accessor methods. 
 

We’ll also cover inheritance, along with 
polymorphism. 
 

The course will conclude by covering templates, in particular 
The Standard Template Library and Design Patterns. 

 
 

 
 
 
 

 



The course will aim to give a good understanding of 
basic design methods in object-oriented programming, 
reinforcing principles with examples in C++.  

Specifically, by the end of the course students should: 
o  understand concepts of and advantages of object-oriented design 

including: 
o  Data hiding (encapsulation) 
o  Inheritance and polymorphism 
o  Templates. 

o  understand how specific object oriented constructs are implemented 
using C++. 

o  Be able to understand C++ programs. 
o  Be able to write small C++ programs. 



There are many useful textbooks. 

 
•  http://www.stroustrup.com/

4thContents.html 
•  Lipmann and Lajoie, C++ Primer, Addison-

Wesley, 2005. 
•  Goodrich et al., Data structures and 

algorithms in C++, Wiley, 2004 
•  Stroustrup, The C++ Programming 

Language, Addison-Wesley, 2000 
•  Meyers, Effective C++, Addison-Wesley, 

1998 
•  Gamma et al., Design Patterns: elements of 

reusable object-oriented software, Addison-
Wesley, 1995 

 



 
 
 

Topic 1: Programming 
Paradigms 



Top down design means breaking the problem 
down into components (modules) recursively.  

Each module should comprise data and functions that are all 
related: OOP makes this explicit.   
 
The designer needs to specify how components interact – what 
their dependencies are, and what the interfaces between them 
are.   
 
Minimising dependencies, and making interfaces as simple as 
possible are both desirable to facilitate modularity. 
 



By minimising the ways in which modules can 
interact, we limit the overall complexity, and 
hence limit unexpected behaviour, increasing 
robustness.    
 
Because a particular module interacts with other modules in a 
carefully defined manner, it becomes easier to test/validate, and 
can become a reusable component.   
 
 
A key part of this course will emphasize how C++ provides 
tools to help the designer/programmer explicitly separate 
interface and implementation, and so create more modular 
code. 
 



Consider the general engineering principles of 
abstraction and modularity. 

 
 
The idea behind abstraction is to distil the software down to its 
fundamental parts, and describe these parts precisely, but without 
cluttering the description with unnecessary details such as exactly 
how it is implemented.   
 
The abstraction specifies what operations a module is for, without 
specifying how the operations are performed.   



Consider the general engineering principles of 
abstraction and modularity. 

 
The aim of modularity is to define a set of modules each 
encapsulates a particular functionality, and which interacts with 
other modules in well defined ways.   
 
The more complicated the set of possible interactions between 
modules, the harder it will be to understand.  
 
Humans are only capable of understanding and managing a certain 
degree of complexity; it is quite easy (but bad practice) to write 
software that exceeds this capability! 



1.  Architectural design: identifying the building blocks. 

2.  Abstract specification: describe the data/functions and 
their constraints. 

3.  Interfaces: define how the modules fit together. 

4.  Component design: recursively design each block. 
 

Top-down design achieves abstraction and 
modularity via four steps.  



Let’s map out programming paradigms, mindful 
of the fact that these are fuzzily defined. 
Paradigm Description Examples 
Imperative A defined sequence of commands for a 

computer to perform, directly changing 
the state (all stored information) e.g. 
featuring goto statements.  

BASIC 

Functional Programs are like mathematical 
functions: they cannot change the state. 

Lisp, 
Anglican 

Structured Improves upon imperative approach by 
adding loops, subroutines, block 
structures. Procedures are still 
separated from data.  

Matlab, C 

Object-
Oriented 

Data, and procedures for acting upon 
them (methods), are united in objects.  

C++, Java 



 
 
 

Topic 2: Foundational 
Concepts in Object-oriented 

Programming 



In structural programming, structures contain 
only data, and we separately create functions to 
act on them. Objects contain both data and 
functions (methods) to operate upon them. 

Structural 
programming  

Object-oriented 
programming 



Fruit 

An object is an instance of a class,  
declared for use.  



An object interface defines how an object can be 
interacted with, providing an explicit separation of how 
an object is used from the implementation details.  



Classes are a mechanism for building compound 
data structures i.e. user-defined types. 

Like C’s struct, C++ provides a compound data structure to 
encapsulate related data into a single “thing”: a class. 
 
C++ goes further by also allowing a class to contain functions on 
the data (methods). 
 
C++ also allows a means to control access to the components 
(the data and methods) of the class (private and public 
keywords).  This is important in creating a well-defined interface 
for an object (i.e. defining the ways in which other objects and 
code can use and interact with the object). 
 
Matlab also supports classes. 



C++ predefines a set of atomic types 
(primitives) e.g. bool, char, int, float, double. 
These cannot be broken down further. 
 
 C++ libraries also define non-atomic types, such 
as strings (comprised of chars).  
 
C++ provides mechanisms so that user-defined 
types (classes) can behave like the predefined 
non-atomic types. 
 
C++ uses static typing, as you’ve seen in B16: 
Structured Programming. 
 
 
 



It defines how an object of this type will look (and behave). 
 
The data elements that make up the class are known as fields. 
 

class Complex { 
 public:  
  double re, im; 

}; 
 
Don’t confuse with creating an instance (i.e. declaring) 
 
int i; 
Complex z; 

A class is a user-defined data type which 
encapsulates related data into a single entity.   

Class definition 

Create an object (an instance) of this type 

Fields 



Let’s represent the current state as, 
say, a triple of numbers and a bool: 
 (position, velocity, mass, landed). 
 
 
 
 
class State { 
  public: 
   double pos, vel, mass; 
   bool landed; 

}; 
 
State s; 
 
 

♣ Example: Vertical take-off and landing (VTOL) 
aircraft state. 

Controller 

Simulator 

Display 

state 

state thrust 



We could represent the state as four separate variables.   
However this would not capture the conceptual relationship 
between the variables, and would result in code that has a more 
complicated interface.   
The controller would need to take 4 input variables instead of one! 
Likewise the simulator output would be four quantities.   
This would be harder to understand and less close to our data flow 
diagram.   
 

♣ Example: Vertical take-off and landing (VTOL) 
aircraft state. 

 
 
 
 
 
 
 
 
class State { 
  public: 
   double pos, vel, mass; 
   bool landed; 
}; 
 
State s; 
 
 

Controller 

Simulator 

Display 

state 

state thrust 



Class members are accessed using the member 
selection operator (which is a dot). 

State s; 
 
s.pos = 1.0; 
s.vel = -20.0; 
s.mass = 1000.0; 
s.landed = false; 
 
s.pos = s.pos + 
s.vel*deltat; 

 
Thrust = 
ComputeThrust(s);   

Structures in Matlab are 
very similar: but don’t 
require initialisation. You 
can jump straight to: 

s.pos = 1.0; 
s.vel = -20.0; 
… 
 

s is an instance of 
type (class) State. 



Class members are accessed using the member 
selection operator (which is a dot). 

State s; 
 
s.pos = 1.0; 
s.vel = -20.0; 
s.mass = 1000.0; 
s.landed = false; 
 
s.pos = s.pos + 
s.vel*deltat; 

 
Thrust = 
ComputeThrust(s);   

We’ll see later that this kind 
of access to data members is 
discouraged in C++.  Instead 
the better practice is have 
data declared private and 
accessed only through the 
class’ methods.  



An aside: in C++, we print to screen as per 

cout  is a special object that represents the 
screen/terminal.  
<<   is the output operator. Anything sent to 
cout by the << operator will be printed on the 
screen. 
endl  (‘end line’) moves the cursor to the 
next line. 

cout << "Hello world!" << endl;  



Recall that in C++ a class encapsulates related 
data and functions that operate on the data. 

 
 
 
 
 
 

A class member function is called a method. 



Methods (like data fields) are called using the 
dot operator. 

class Complex { 
 public: 
  double re, im; 

 
  double Mag() { return sqrt(re*re + im*im); } 
  double Phase() { return atan2(im, re); } 
   

}; 
 
Complex z; 
cout << “Magnitude=“ << z.Mag() << endl; 

  

Notice that the fields re and im are used without the z. 
within the methods.  When a method is invoked, it is invoked by 
a specific object (in this case z), so we already know which 
object’s fields are being referred to; the z. is implicit.  



re and im do not need z., which is implicitly 
passed to the function via a special pointer 
(this). 

class Complex { 
 public: 
  double re, im; 

 
  double Mag() { return sqrt(re*re + im*im); } 
  double Phase() { return atan2(im, re); } 
   

}; 
 
Complex z; 
cout << “Magnitude=“ << z.Mag() << endl; 

  

When an object’s method is called, a pointer to the calling object 
is always passed in as a parameter.  In the rare event that you 
need access to the whole object, you can do so via the this 
pointer. 



Let’s recap pointers and references. 

int * p = & n; Define pointer p as the address 
where integer n is stored. 

int & r = n; Define reference r as “another 
name” for integer n. It provides a 
dereferenced pointer to the address 
of n (that can’t be redirected). 

& n The address (in memory) of  
variable n. 

* p  Dereference pointer p (giving the 
contents of the pointed-to memory).  



A reference gives “another name” for a variable. 
It provides a dereferenced pointer to the address 
of the variable (that can’t be redirected). 
int nasty_long_name = 3;  
int & r = nasty_long_name ;  
// r is a reference to nasty_long_name  
 
nasty_long_name = 2;  
// nasty_long_name is now 2 
r = 7;  
// nasty_long_name is now 7 
  
cout << nasty_long_name ; // prints 7 
nasty_long_name++; 
cout << r; // prints 8 



 
 
 

Topic 3: Encapsulation 



Information hiding / data hiding / encapsulation is 
the ability to make object data available only on 
a “need to know” basis. 
 
Encapsulation has made OOP the programming 
paradigm of choice for large projects.  
 
By specifying the object interfaces clearly in the 
design phase of a project, teams of 
programmers can then implement the 
components with some assurance that the 
components will all work together. 
 



Recall side-effects, which break the intended 
function-like semantics of our programs. 

Input parameters Output values 

Function,  
as desired 

Hidden input Hidden output 

Global variable 

Function,  
with side-effects 

Input parameters Output values 



Encapsulation means that software components 
hide the internal details of their implementation. 

In procedural programming, we treat a function as a 
black box with a well-defined interface, and use these 
functions as building blocks to create programs.  
We then need to take care to avoid side-effects. 

 
In object-oriented programming, a class defines a black 
box data structure, which has:  

1.  a public interface; 
2.  private data. 

Other software components in the program can only 
access the class through a well-defined interface, 
minimising side-effects.  
 
 



The private data fields (re and im) of an 
instance of the Complex class cannot be 
accessed by other software components.   
class Complex { 

 public: 
   double Re() { return re; } 
   double Im() { return im; } 
   double Mag() { return sqrt(re*re + im*im);} 
   double Phase() { return atan2(im, re); 
  } 
 private: 
   double re, im; 

}; 
 

Private members can be accessed only through the public 
interface: the (read-only) accessor methods Re() and Im().  
 
Complex z; 
cout << “Real part=“ << z.Re() << endl; 
cout << “Magnitude=“ << z.Mag() << endl; 
 



This may seem like we are adding an 
unnecessary layer of complexity, but we do so 
in order that the interface of the object is as 
unambiguously defined as possible.  
 
 class Complex {  public: 

   double Re() { return re; } 
   double Im() { return im; } 
   double Mag() { return sqrt(re*re + im*im);} 
   double Phase() { return atan2(im, re); 
  } 
 private: 
   double re, im; 

}; 
 
Complex z; 
cout << “Real part=“ << z.Re() << endl; 
cout << “Magnitude=“ << z.Mag() << endl; 
 
Code that used “z.re” or “z.im” would produce an error. 



Here, we have changed the internal 
representation, but the interface has remained 
unaltered: other components are unaffected. 
class Complex { 

 public: 
   double Re() { return r*cos(theta); } 
   double Im() { return r*sin(theta); } 
   double Mag() { return r;} 
   double Phase() { return theta; } 
  } 
 private: 
   double r, theta; 

 
}; 
 
 
Complex z; 
cout << “Magnitude=“ << z.Mag() << endl; 
cout << “Real part=“ << z.Re() << endl; 

  
Unchanged!! 

Internal implentation  
now in polar coords 



This is the essence of encapsulation:  the 
interface captures all that is required for other 
program components to use the class. 
class Complex { 

 public: 
   double Re() { return r*cos(theta); } 
   double Im() { return r*sin(theta); } 
   double Mag() { return r;} 
   double Phase() { return theta; } 
  } 
 private: 
   double r, theta; 

 
}; 
 
 
Complex z; 
cout << “Magnitude=“ << z.Mag() << endl; 
cout << “Real part=“ << z.Re() << endl; 

  
Unchanged!! 

Internal implentation  
now in polar coords 



 
 
 

Topic 4: Constructors 



Recall our definition of the Complex class. 
 
class Complex { 

 public: 
   double Re() { return re; } 
   double Im() { return im; } 
   double Mag() { return sqrt(re*re + im*im);} 
   double Phase() { return atan2(im, re); 
  } 
 private: 
   double re, im; 

}; 
 
Complex z; 
cout << “Magnitude=“ << z.Mag() << endl; 
cout << “Real part=“ << z.Re() << endl; 
 
 
Code that used “z.re” or “z.im” would produce an error. 



As re is private, we can no longer say 
 z.re = 1.0; 

so how can we get values into an object? 
 
Whenever a variable is created (declared),  
 int i; 

1.  at compile time, the code is checked to ensure data 
is used correctly; 

2.  at run time, memory space is allocated for the 
variable, creating an object.  

 
However the above will not initialise the variable. 
Instead, we need to do e.g. 
 int i = 10; 

In general, this is the job of the constructor function. 
 



For the predefined types, the constructor is 
automatically defined and so we never mention 
it e.g. 
 int i = 10; 

 
In general, we can initialise using a constructor, 
a member function of the class: 
 int i(10); 

 
A constructor gives the programmer control 
over what happens when a user-defined type is 
created. 



The constructor is a special function with the 
same name as the class and no return type. It 
must be defined in the class definition like any 
other method.  
 

 
 
 

Complex(double x, double y) { 
 re = x; im = y; 
} 
 

The constructor must be called once each 
time an instance (or object) of the class is 
created. 
 
 
 
 



class Complex { 
 public: 
  Complex(double x, double y) : re(x), im(y) 
  {} 

 private: 
  double re, im; 
}; 

An initialisation list is an implicit way of making a 
constructor using other constructors. 

Although a little less readable, this approach is generally 
preferred as it allows 
1.  the initialisation of const variables, 
2.  the initialisation of reference member variables, 
3.  composition and 
4.  inheritance (more on all these later). 

NB: no semicolon 

using constructors of double class 



Let’s add a constructor to the interface for 
Complex.  
class Complex { 

 public: 
   Complex(double x, double y) { re = x; im = y; } 
   double Re() { return re; } 
   double Im() { return im; } 
   double Mag() { return sqrt(re*re + im*im);} 
   double Phase() { return atan2(im, re); 
  } 
 private: 
   double re, im; 

}; 
 
Complex z(10.0, 8.0); 
cout << “Magnitude=“ << z.Mag() << endl; 
cout << “Real part=“ << z.Re() << endl; 
 

When the constructor is called, it receives parameters 10.0 and 8.0.  The 
code in the constructor sets the value of re to be the first formal parameter 
(x) and the value of im to be the second formal parameter (y). Hence we 
have declared (instantiated) an object of type Complex, with value 10 + j 8. 



Changing to polar coordinates requires changing 
the workings of methods, including the 
constructor. The interface is unchanged. 
class Complex { 

 public: 
   Complex(double x, double y) {  
    r = sqrt(x*x + y*y); 
    theta = atan2(y,x); 
   } 
   double Re() { return r*cos(theta); } 
   double Im() { return r*sin(theta); } 
   double Mag() { return r;} 
   double Phase() { return theta; } 
  } 
 private: 
   double r, theta; 

 
}; 
 
Complex z(10.0,8.0); 
cout << “Magnitude=“ << z.Mag() << endl; 
cout << “Real part=“ << z.Re() << endl; 

  

The interface 
is unchanged! 
Hence all 
other code 
using 
Complex 
need not be 
altered. 

The internal 
implentation is 
now in polar 
coords. 



class Complex { 
 public: 
  Complex(double x = 0.0, double y = 0.0); 
      { re = x; im = y; } 
 private: 
  double re, im; 
}; 

We can define our constructor to supply default values 
for data. 
 



class Complex { 
 public: 
  Complex(double x = 0.0, double y = 0.0); 
      { re = x; im = y; } 
 private: 
  double re, im; 
}; 

Hence our constructor can act as a default constructor 
in the absence of some or all input parameters. 
 

Complex cDefault; // will call Complex(0, 0) 
Complex cSix(6); // will call Complex(6, 0) 
Complex cFivePlusThreej(5,3); // will call 
Complex(5,3) 



The copy constructor is a particular constructor that 
takes as its single argument an instance of the class; 
typically, it copies its data into the new instance. 
 

Complex(Complex& z) { 
 re = z.Re(); im = z.Im(); 
} 
 
Complex(Complex& z) : re(z.Re()), im(z.Im()) {} 
 
 
 
 
 
 



The compiler creates a copy constructor by 
default, but it’s not always what we want.  
 
We need to take extra care when dealing with 
objects that contain dynamically allocated 
components. 
 
For example, if an object has a pointer as a field, 
the memory address will be copied by default, 
rather than the contents.  
 
Hence any change to the contents will affect 
both the original and the copy.  
 
 



In C++, parameters are usually passed by value. This 
means a copy (requiring a call to the copy constructor) 
of the parameter value is put on the stack. 
 
 
 
 
Alternatively, you can pass by reference, meaning that a 
reference is placed on the stack.  

void foo(int x) {...} // passing by value 

void foo(int & x) {...}  
            // passing by reference 



Note the copy constructor is passed its parameter z by 
reference.  
 
Were z to be passed instead by value, a copy of z would have to 
be placed on the stack. To make that copy, the copy constructor 
would be called. Which means you’d have to pass another z by 
value, which would mean another copy would have to be made 
etc.  

 
 
 
 

Complex(Complex& z) { 
 re = z.Re(); im = z.Im(); 
} 
 
Complex(Complex& z) : re(z.Re()), im(z.Im()) 
{} 
 
 
 
 
 
 

This must be a 
reference to z 
(or else infinite 
recursion results!). 



class Complex { 
 public: 
   Complex(double x, 
      double y)… 
   Complex(Complex& z)…
  
   double Re() … 
   double Im() … 
   double Mag() … 
   double Phase() … 
 private: 
   double r, theta; 

}; 
 

class Complex { 
 public: 
   Complex(double x,  
      double y)… 
   Complex(Complex& z)… 
    
   double Re() … 
   double Im() … 
   double Mag() … 
   double Phase() … 
 private: 
   double re, im; 

}; 
 

Cartesian Polar 

Complex z(10.0,8.0); 
cout << “Magnitude=“ << z.Mag() << endl; 
cout << “Real part=“ << z.Re() << endl; 
 
 

Note that we have now defined two (constructor) functions with the 
same name.  This is called overloading, and it’s possible because the 
compiler looks at both the name of the function and the types of the 
arguments when deciding which function to call. More later! 

Both 



 
 
 

Topic 5: Implementation  
and Interface 



In C++ programs, the header file (.h) plays a much 
more important role than in C. Every program element 
that uses the Complex class needs to know its 
interface, specified in the header.  

Complex.h: 
 
class Complex { 
 public: 
   Complex(double x, double y);  
   double Re(); 

    double Im();  
   double Mag(); 

    double Phase();  
 
 private: 
   double re, im; 

}; 
 



The implementation of each method in a class 
appears in the .cpp file.  

In order to understand how to use a class, the programmer 
usually doesn’t need to look at the .cpp file (the 
implementation); instead, they can simply look at the uncluttered 
header file defining the interface. 
 
Whenever a programmer wants to use the Complex class, they 
can simply import the header into the code via the  

 #include “Complex.h”   
compiler directive, and the compiler knows everything it needs 
to know about legal uses of the class.   
 
It is the job of the linker to join the implementation details of 
the class (that lives in Complex.cpp) with the rest of the code. 
  
 
 
 



The implementation of each method in the Complex 
class appears in the .cpp file.  

Complex.cpp 
 
#include “Complex.h” 
 
Complex::Complex(double x, double y) { 
 re = x; im = y; 

}  
double Complex::Re() { return re; } 
double Complex::Im() { return im; } 
double Complex::Mag() {  
 return sqrt(re*re+im*im);  

} 
double Complex::Phase() { return atan2(im,re); } 
 
 

The class scoping operator “::” is 
used to inform the compiler that 
each function is a method belonging 
to class Complex.  



C/C++ parameters are passed by value (i.e. a copy of 
the parameter value is put on the stack). 
 
 
Arrays are an exception: they are passed by reference, 
meaning that a reference is placed on the stack.  
 
 
 
Arrays can be very big, and hence putting a copy of the 
whole array onto the stack can take much processing 
and be wasteful of stack space.   
 
Instead, it is cheap both in memory and processing to 
put a reference onto the stack, hence the exception. 
Another exception is found in large classes, for similar 
reasons.  
 

void foo(int x) {...} // passing by value 

void foo(int & x) {...}  
            // passing by reference 



The problem with passing by reference is that there is 
nothing to prevent the code in a function changing 
values of x, causing a side-effect.  
 
 
 
 
 
 
 
 
When FooPassByRef(y) is called, its internal x 
becomes a reference to y. Hence whatever is done to 
x is also done to y! 
 

void FooPassByVal(int x) { // passing by value 
  x++; 

} 
 
void FooPassByRef(int &x) { // passing by reference. 

x++; 
} 
 
 
 
 



Below we see an example of a side-effect caused by 
passing by reference. Maybe that’s what we want, but 
usually it’s not! 
 
void FooPassByVal(int x) { // passing by value 
  x++; 

} 
 
void FooPassByRef(int &x) { // passing by reference. 

x++; 
} 
 
int main() { 

int x = 3; 
FooPassByVal(x); 
cout << x << endl; // prints 3 
FooPassByRef(x); 
cout << x << endl; // prints 4 
return 0; 

} 
 
 
 
 



As a solution, an object (variable) can be 
declared as const, meaning the compiler will 
complain if its value is ever changed.  
 This is the standard way of passing large objects into a function. 
 

const int i(44); 
i = i+1;  /// compile time error!   

 
It is good practice to declare constants explicitly. It is also good 
practice to declare formal parameters const if the function does 
not change them. 
 

  int foo(BigClass& x); 
  versus 
  int foo(const BigClass& x); 



In C++, const plays an important part in 
defining the class interface. 
 
Class member functions can (and sometimes must) be 
declared as const. This means they do not change 
the value of the calling object, which is enforced by the 
compiler. 

 
Notice that as far as code in a class member function is 
concerned, data fields are a bit like global variables: 
they can be changed in ways that are not reflected by 
the function prototype. The use of const can help to 
control this. 



We might declare a Complex variable z to be 
const. This would be a sensible thing to do if its 
value never changes, and will mean that the 
compiler will ensure its value can’t be changed.  

class Complex { 
 public: 
   Complex(double x, double y) { re = x; im = y; } 
   double Re() { return re; } 
   double Im() { return im; } 
   double Mag() { return sqrt(re*re + im*im);} 
   double Phase() { return atan2(im, re); 
  } 
 private: 
   double re, im; 

}; 
 
 
const Complex z(10.0, 8.0); 
 
 



However, this can often lead to difficult-to-find 
compile-time errors e.g. the code below.  
 
class Complex { 

 public: 
   Complex(double x, double y) { re = x; im = y; } 
   double Re() { return re; } 
  } 
 private: 
   double re, im; 

}; 
 
const Complex z(10.0, 8.0); 
cout << “Real part=“ << z.Re() << endl; 
 

The reason is that the compiler doesn’t analyse the semantics of 
each function, so it can’t be sure that the accessor function 
z.Re() doesn’t change the internal values (re=10.0 and 
im=8.0) of the object z.   
The way to avoid this is to declare the accessor methods as 
const functions.  

Error! 



To fix this ‘problem’, we add const after the 
function name for functions that don’t change 
the value; these are const methods, telling the 
programmer and the compiler that these 
functions do not modify any of the object’s data. 
 class Complex { 

 public: 
   Complex(double x, double y) { re = x; im = y; } 
   double Re() const { return re; } 
   double Im() const { return im; } 
   double Mag() const { return sqrt(re*re + im*im);} 
   double Phase() const { return atan2(im, re); 
  } 
 private: 
   double re, im; 

}; 
 
 
const Complex z(10.0, 8.0); 
cout << “Real part=“ << z.Re() << endl; 

Code should 
now compile 



Faced with an error like above, you may be 
tempted to make all data public (and not use 
const).  Don’t! The grief caused by doing 
things ‘properly’ will be minor compared to the 
potential problems created by code that abuses 
the interface. 
 
 
class Complex { 

 public: 
   double re, im; 
   Complex(double x, double y) { re = x; im = y; } 
   double Re() { return re; } 
   double Im() { return im; } 
   double Mag() { return sqrt(re*re + im*im);} 
   double Phase() { return atan2(im, re); 
  } 

}; 



Topic 6: Functions 
and Operators 



C++ allows several functions to share the same 
name, but accept different argument types: this 
is function overloading.  

 

void foo(int x); 

void foo(int &x, int &y); 

void foo(double x, const Complex c); 
 

The function name and types of arguments 
together yield a signature that tells the compiler 
if a given function call in the code is valid, and 
which version is being referred to. 



As an example, we can define (the already 
defined) exp for the Complex class. 
NB: exp(x + i y) = exp(x) exp(i y) 
 
 

 
 

 
 

 
 

#include <cmath> 
 
Complex exp(const Complex z) 
{ 
 double r = exp(z.Re()); 
 Complex zout(r*cos(z.Im()),  
       r*sin(z.Im())); 
 return zout; 

} 



When should we use a member function and 
when should we use a non-member function? 

That is, when should we define the non-member 
exp(z) and when the member z.exp()? 

Consider carefully how it will be used. Does it modify 
the instance? If so, a non-member function is 
preferable. Which presents the most natural interface? 
 
For this example, I would go for exp(z): instance 
modification seems more natural.  
 
Note that non-member functions are a slight 
abandonment of the OOP paradigm.  
 



As you know, C++ (and Matlab etc.) provide 
operators (functions, except with disallowed 
names and/or different calling syntax). 
 
Arithmetic 
 
Relational 
 
 
Boolean 
 
Assignment 
 
I/O streaming 

+  -  *  /  % 

==  !=  
<   >   <=   >= 

&&  ||   ! 

= 

<<    >> 



C++ aims for user-defined types to mimic, as far 
as possible, the predefined types.  

Suppose we want to add two Complex variables together. We 
could create a function: 
 
Complex Add(const Complex z1, const Complex z2) { 
 Complex zout(z1.Re()+z2.Re(),  
      z1.Im()+z2.Im()); 
 return zout; 

} 

 
However, it would be much cleaner to use the + operator to 
write: 
 
Complex z3; 
z3 = z1+z2; 

 



We can achieve this by operator overloading.  

In C++, the infix notation, e.g. a+b, is defined as a 
shorthand for a function expressed using prefix 
notation e.g. operator+(a,b). 
 
Since an operator is just a function, we can overload it: 
 

Complex operator+(const Complex z1, 
        const Complex z2) { 
 Complex zout(z1.Re()+z2.Re(), 
       z1.Im()+z2.Im()); 
 return zout; 

} 

Hence we can write 
Complex z3; 
z3 = z1 + z2; 

 



The assignment operator = is used to copy the 
values from one object to another already 
defined object. 
 
Note that if the object is not already defined, 
the copy constructor is called instead.  

Complex z1, z2, z3; 
z3 = z1 + z2; // assignment operator 
 
// the copy constructor is called for 
both of the following 
Complex z4(z3); 
Complex z5 = z1 + z2;  
         

 
 
 
 



The assignment operator = is used to copy the 
values from one object to another already 
defined object. 

Complex z1, z2, z3; 
z3 = z1 + z2; 

    
 
 
 
 

This is the definition of the assignment operator =  for 
the Complex class.   

    
 
 
 
 

 
Complex& Complex::operator=(const Complex& z1) 
{ 

 re = z1.Re(); 
 im = z1.Im(); 
 return *this; 

} 

    
 
 
 
 

The definition of the operator = 
is one of the few common uses 
for the this pointer. Here it is 
dereferenced and returned. 



z2 = z1 is shorthand for z2.operator=(z1). 

operator= must be a member function. 
 
The left hand side (here z2) is implicitly passed in to 
this function. 
 
The return value of z2.operator=(z1) is a 
reference to z2. That way we can concatenate 
assignments as in  z3=z2=z1 which assigns the value 
of z1 to z2 and to z3, as 

 
 
 
 
 
 

  (z3 = (z2 = z1)) which is 
z3.operator=(z2.operator=(z1)); 
 
 

 
 
 
 
 



C++ does no array bounds checking (leading to 
possible segmentation faults). Let’s create our own safe 
array class by overloading the array index operator 
[]. 
 class SafeFloatArray { 
 public: 
  … 
  float & operator[](int i) { 
   if ( i<0 || i>=10 ) { 
    cerr << “Oops!” << endl; 
    exit(1); 
   } 
   return a[i]; 
  } 

 
 private: 
  float a[10]; 

};  

We can use this array as: 
 
 
 
 
 
This compiles but at 
runtime the last call 
generates the error 
message “Oops!” and 
the program exits.  

SafeFloatArray s; 
 
s[0] = 10.0; 
s[5] = s[0]+22.4; 
s[15] = 12.0; 

Returns a reference to a float. 
Defines a 10-long array of floats 
 



Topic 7: A Complete 
Complex Example 



Let’s bring it all together by creating program to 
calculate the frequency response of the transfer 
function H(jw) = 1/(1+jw). 

We’ll need three files, two modules: 
1.  Complex.h and Complex.cpp 
2.  Filter.cpp 
 

The first two files define the Complex interface (.h) and the 
method implementations (.cpp), respectively. 
 

 % g++ -c Complex.cpp 
 % g++ -c Filter.cpp 
 % g++ -o Filter Complex.o Filter.o -lm 

 

Compile source to 
object files (.o) 

Link object files together with maths library (-lm) to 
create executable 



// Complex.h 
// Define Complex class and function prototypes 
// 
 
class Complex { 
 public: 
  Complex(const double x=0.0, const double y=0.0); 
  double Re() const; 
  double Im() const; 
  double Mag() const; 
  double Phase() const; 
  Complex &operator=(const Complex z); 
 
 private: 
  double _re, _im; 
}; 
 
// Complex maths 
Complex operator+(const Complex z1, const Complex z2); 
Complex operator-(const Complex z1, const Complex z2); 
Complex operator*(const Complex z1, const double r); 
Complex operator*(const double r, const Complex z1); 
Complex operator*(const Complex z1, const Complex z2); 
Complex operator/(const Complex z1, const Complex z2); 

This is Complex.h and defines the interface.  Any 
program that wants to use the Complex class should 
include this file: #include “Complex.h”. 
 

Note that 
default values 
are supplied 
only in the 
header. 

The 
underscore is 
just used to 
denote a 
private field (it’s 
just an 
arbitrary part 
of a name). 



#include <cmath> 
#include <iostream> 
#include "Complex.h" 
 
// First implement the member functions 
// Constructors 
Complex::Complex(const double x, const double y) : _re(x), _im(y) {} 
Complex::Complex(const Complex& z) : _re(z.Re()), _im(z.Im()) {} 
 
double Complex::Re() const { return _re; } 
double Complex::Im() const { return _im; } 
double Complex::Mag() const { return sqrt(_re*_re + _im*_im); } 
double Complex::Phase() const { return atan2(_im, _re); } 
 
// Assignment 
Complex& Complex::operator=(const Complex z) 
{ 
  _re = z.Re(); 
  _im = z.Im(); 
  return *this; 
} 
 

This is Complex.cpp, containing the 
implementation of the various methods in the 
class interface Complex.h. 
 We include maths (so we 

can use e.g. sqrt) and 
input/output (so we can use 
e.g.  cout) libraries. 

A library is just a 
pre-packaged 
bundle of useful 
code. 



// Complex .cpp continued 
 
// Now implement the non-member arithmetic functions 
// Complex addition 
Complex operator+(const Complex z1, const Complex z2) 
{ 
  Complex zout(z1.Re()+z2.Re(), z1.Im()+z2.Im()); 
  return zout; 
} 
// Complex subtraction 
Complex operator-(const Complex z1, const Complex z2) 
{ 
  Complex zout(z1.Re()-z2.Re(), 
               z1.Im()-z2.Im()); 
  return zout; 
} 
 
// scalar multiplication of Complex 
Complex operator*(const Complex z1, const double r) 
{ 
  Complex zout(r*z1.Re(), r*z1.Im()); 
  return zout; 
} 
 
Complex operator*(const double r, const Complex z1) 
{ 
  Complex zout(r*z1.Re(), r*z1.Im()); 
  return zout; 
} 

Overloading to 
be able to put 
the scalar in 
either input. 



// Complex multiplication 
Complex operator*(const Complex z1, const Complex z2) 
{ 
  Complex zout(z1.Re()*z2.Re() - z1.Im()*z2.Im(), 
               z1.Re()*z2.Im() + z1.Im()*z2.Re()); 
  return zout; 
} 
 
// Complex division 
Complex operator/(const Complex z1, const Complex z2) 
{ 
  double denom(z2.Mag()*z2.Mag()); 
  Complex zout((z1.Re()*z2.Re() + z1.Im()*z2.Im())/denom, 
               (z1.Re()*z2.Im() - z1.Im()*z2.Re())/denom); 
  return zout; 
} 
 
 
// end of file Complex.cpp 
 



#include <iostream> 
#include "Complex.h" 
 
using namespace std; 
 
Complex H(double w) 
{ 
  const Complex numerator(1.0); 
  const Complex denominator(1.0, 0.1*w); 
  Complex z(numerator/denominator); 
  return z; 
} 
 
 
int main(int argc, char *argv[]) 
{ 
  double w=0.0; 
  const double stepsize=0.01; 
  Complex z; 
 
  for (double w=0.0; w<100.0; w+=stepsize) { 
    z = H(w); 
    cout << w << " " << z.Mag() << " " << z.Phase() << endl; 
  } 
} 

main.cpp contains code that uses the 
Complex class. 
 



Topic 8: Inheritance 
and Composition 



Inheritance is the ability to create class 
hierarchies, such that the inheriting (or child, 
sub-, derived) class is an instance of the ancestor 
(or base, super-, parent) class. 
 



A class in C++ inherits from another class using 
the : operator in the class definition. 

Hierarchical relationships often arise between classes. Object-
oriented design supports this through inheritance. 
 
An derived class is one that has the functionality of its parent 
class but with some extra data or methods. 
 
In C++ 

class A : public B { 
… 
}; 
 

The code above reads “class A inherits from class B”, or “class A 
is derived from class B”. Inheritance encodes an “is a” 
relationship. 



class Window 

Data:    width, height 
        posx, posy 

Methods: raise(), hide() 
        select(), iconify() 

class TextWindow 

Data:    cursor_x, cursor_y 

Methods: redraw(), clear()  
        backspace(), delete() 

class GraphicsWindow 

Data:   background_colour 
           Methods: redraw(), clear() 
        fill() 

class InteractiveGraphicsWindow 

Data: 
           Methods: MouseClick(), MouseDrag() 

♣ Example: Windows. 

Base class 

Has data fields posx, 
posy,  width, height, 
background_colour 



In C++, you can use the protected access 
specifier to limit access to member functions of 
derived classes, and those of the same class. 
Previously, we used public for universal access and private 
to limit access to member functions from the same class. 
protected is a relaxed version of private in which derived 
classes are also granted access. 
class Window{ 
protected: 
 double width, height; 
 }; 

class TextWindow : public Window { 
public: 
 double GetTextWidth() const {return 0.9 * width;} 
 ... 
 }; 



Inheritance allows code re-use without the 
dangers of copy-and-pasting. 

Copy-and-pasting results in having to maintain multiple 
copies of the same code: improvements or bug-fixes 
have to be applied to each copy separately. It’s also 
easy to forget that some copies even exist! 
 
Inheritance allows you to re-use code without these 
dangers: any changes to the parent class are 
automatically propagated to all derived classes.  
 
Each derived class need only be defined by its 
difference from the parent class, rather than having to 
redefine everything: this leads to shorter, neater, code. 



Inheritance is an “is a” relationship. 
 
Every instance of a derived class is also an instance of the 
parent class e.g. 
 
 
 
Every instance of a Car is also an instance of a 
Vehicle. 
 
A Car object has all the properties of a Vehicle. 

class Vehicle; 
class Car : public Vehicle { … }; 



Composition is an “has a” relationship. 
 
Wheels, Light and Seat are all (small, simple) classes 
in their own right. 

class Vehicle { 
private: 
 Wheels w; 
 Light frontLight; 
 Light backLight; 
 Seat s; 

}; 



Composition allows for abstraction and  
modularity. 

Each class can be kept simple and dedicated to a 
single task, making it easier to write and debug.  
 
Using composition, some classes that may not 
be very useful on their own may nonetheless be 
re-usable within many other classes e.g. 
Wheels. This encourages code re-use. 



Topic 9: Polymorphism 



Polymorphism is the ability of objects in the 
same class hierarchy to respond in tailored ways 
to the same events. It allows us to hide 
alternative implementations behind a common 
interface. 
 
 

Polymorphism is Greek for “many forms”. 



class Window 

Data:    width, height 
        posx, posy 

Methods: raise(), hide() 
        select(), iconify() 

class TextWindow 

Data:    cursor_x, cursor_y 

Methods: redraw(), clear()  
        backspace(), delete() 

class GraphicsWindow 

Data:   background_colour 
           Methods: redraw(), clear() 
        fill() 

Both TextWindow and GraphicsWindow have a 
method redraw(), but redrawing a TextWindow is 
different from redrawing a GraphicsWindow.  
Polymorphism permits the two different window types 
to share the interface redraw() , but allows them to 
implement it in different ways. 
 



Let A be a base class; B and C derive from A. 
 
 
 

  
 
Every instance of a B object 

is also an A object. 
 
Every instance of a C 

object is also an A 
object. 

class A 

class B class C 



The call y.func() will invoke the func method 
belonging to class B, because y is an instance of class 
B.  Likewise z.func()will call class C’s func(). 
 #include <iostream> 

using namespace std; 
 
class A { 
  public: 

 void func() { 
  cout << “A\n”; 
 } 

}; 
 
class B : public A { 
  public: 

 void func() {cout<<"B\n"; } 
}; 
 
class C: public A { 
  public: 

 void func() {cout << "C\n"; } 
}; 
 
 

void callfunc(A param) 
{ 

 param.func(); 
} 
 
int main(int argc, char* 
argv[]) 
{ 

 A x; 
 B y; 
 C z; 

 
 x.func(); 
 y.func(); 
 z.func(); 

 
 callfunc(x); 
 callfunc(y); 
 callfunc(z); 

 
 return 0; 

} 
 



callfunc(x) passes an object of type A into 
callfunc.  The effect is to call the func() 
method of class A. 
 
 

#include <iostream> 
using namespace std; 
 
class A { 
  public: 

 void func() { 
  cout << “A\n”; 
 } 

}; 
 
class B : public A { 
  public: 

 void func() {cout<<"B\n"; } 
}; 
 
class C: public A { 
  public: 

 void func() {cout << "C\n"; } 
}; 
 
 

void callfunc(A param) 
{ 

 param.func(); 
} 
 
int main(int argc, char* 
argv[]) 
{ 

 A x; 
 B y; 
 C z; 

 
 x.func(); 
 y.func(); 
 z.func(); 

 
 callfunc(x); 
 callfunc(y); 
 callfunc(z); 

 
 return 0; 

} 
 



callfunc(y) passes an object of type B into the function.  
Because every B is also an A this is acceptable, but only the bit 
of y that is an A is put onto the stack. The “B bits” are left 
behind, so as far as callfunc is concerned, it’s received an 
object of type A, and param.func() will call A’s func(). 
 
 

#include <iostream> 
using namespace std; 
 
class A { 
  public: 

 void func() { 
  cout << “A\n”; 
 } 

}; 
 
class B : public A { 
  public: 

 void func() {cout<<"B\n"; } 
}; 
 
class C: public A { 
  public: 

 void func() {cout << "C\n"; } 
}; 
 
 

void callfunc(A param) 
{ 

 param.func(); 
} 
 
int main(int argc, char* 
argv[]) 
{ 

 A x; 
 B y; 
 C z; 

 
 x.func(); 
 y.func(); 
 z.func(); 

 
 callfunc(x); 
 callfunc(y); 
 callfunc(z); 

 
 return 0; 

} 
 



Memory 

CODE 

DATA 

machine code 

global variables 

STACK 

local variable m 

local variable 1 
return location 

return value n 

return value 1 

parameter x 

parameter 1 

…
 

…
 

…
 Activation  

record 

Recall that when a function is called, parameters, 
return location and other stuff are put onto the stack 
in the activation record. 
 



Let’s re-examine the previous example. 

 
 

  

class A 

class B class C 
B y; 
callfunc(y) 

local variable m 

local variable 1 

return location 
parameter (y|A) 

…
 

callfunc  activation  
record 

void callfunc(A param) 
{ 
 param.func(); 

} 

callfunc takes a value parameter of 
class A. 

The call above is legitimate but only the 
bit of y that is an A will be copied 
onto the stack. 

Once “inside” the function, the 
parameter can only behave as an A. 

Note that here there is no return value 
because callfunc returns void. 

 



So far, no polymorphism! callfunc treats 
derived classes B and C just as if they were the 
parent class A. 
 
In C++, run-time polymorphism is invoked by 
the programmer via virtual functions. 
 

class Window { 
 … 
 virtual void redraw(); 

}; 
 



func() in the base class A has been designated as a 
virtual function, and the parameter to callfunc() 
is now passed by reference.   

#include <iostream> 
using namespace std; 
 
class A { 
  public: 

 virtual void func() { 
  cout << “A\n”; 
 } 

}; 
 
class B : public A { 
  public: 

 void func() {cout<<"B\n"; } 
}; 
 
class C: public A { 
  public: 

 void func() {cout << "C\n"; } 
}; 
 
 

void callfunc(A& param) 
{ 

 param.func(); 
} 
 
int main(int argc, char* 
argv[]) 
{ 

 A x; 
 B y; 
 C z; 

 
 x.func(); 
 y.func(); 
 z.func(); 

 
 callfunc(x); 
 callfunc(y); 
 callfunc(z); 

 
 return 0; 

} 
 



The call y.func() still invokes the func method 
belonging to class B because y is an instance of class 
B.  Likewise z.func() will call class C’s func(). 

#include <iostream> 
using namespace std; 
 
class A { 
  public: 

 virtual void func() { 
  cout << “A\n”; 
 } 

}; 
 
class B : public A { 
  public: 

 void func() {cout<<"B\n"; } 
}; 
 
class C: public A { 
  public: 

 void func() {cout << "C\n"; } 
}; 
 
 

void callfunc(A& param) 
{ 

 param.func(); 
} 
 
int main(int argc, char* 
argv[]) 
{ 

 A x; 
 B y; 
 C z; 

 
 x.func(); 
 y.func(); 
 z.func(); 

 
 callfunc(x); 
 callfunc(y); 
 callfunc(z); 

 
 return 0; 

} 
 



callfunc(x) passes an object of type “reference 
to A” into callfunc.  Since x is of type A, 
param.func() calls the func()of class A. 

#include <iostream> 
using namespace std; 
 
class A { 
  public: 

 virtual void func() { 
  cout << “A\n”; 
 } 

}; 
 
class B : public A { 
  public: 

 void func() {cout<<"B\n"; } 
}; 
 
class C: public A { 
  public: 

 void func() {cout << "C\n"; } 
}; 
 
 

void callfunc(A& param) 
{ 

 param.func(); 
} 
 
int main(int argc, char* 
argv[]) 
{ 

 A x; 
 B y; 
 C z; 

 
 x.func(); 
 y.func(); 
 z.func(); 

 
 callfunc(x); 
 callfunc(y); 
 callfunc(z); 

 
 return 0; 

} 
 



 
 

  

B y; 
callfunc(y) 

callfunc activation  
record 

void callfunc(A& param) 
{ 
 param.func(); 

} 

callfunc takes a reference to an object of class A. 
A reference is just a memory address. 
The call above is legit because objects of type B are also of type A. 
Dereferencing the parameter &y leads to y. 
y can identify itself as being of class B, and so can behave like a B. 
As A.func() was declared to be virtual, the system will therefore 

invoke a function call to the func() method belonging to class B. 

local variable m 

local variable 1 

return location 
param (&y) 

…
 

y 

class A 

class B class C 

class A { 
  public: 

 virtual void func() { 
  cout << “A\n”; 
 } 

}; 
 



The virtual function has allowed run-time 
polymorphism. 

The run-time system is able to identify that the parameter y is in 
fact of type B.  This is known as run-time type identification 
(RTTI). 
A virtual function called from an object that is either a 

1.  reference to a derived class or a 
2.  pointer to a derived class 

performs run-time type identification on the object that invoked 
the call, and will call the appropriate version. 
 
If the object is of type A, then call A’s func(). 
If the object is of type B, then call B’s func(). 
If the object is of type C, then call C’s func(). 
 
 
 
 

  

class A 

class B class C 



If class A defines func() as 
  virtual void func() = 0; 

then A has no implementation of func(). 
 

In such a case, class A is called an abstract base class.  
 
It is not possible to create an instance of class A, only 
instances of derived classes, B and C. Class A defines an 
interface to which all derived classes must conform. 
 
We use this idea in designing program components: we 
specify an interface, then have a guarantee of the 
compatibility of all derived objects. 
 
  



This code will generate a compile time error 
because we have tried to instantiate A.  

#include <iostream> 
using namespace std; 
 
class A { 
  public: 

 virtual void func() = 0; 
}; 
 
class B : public A { 
  public: 

 void func() {cout<<"B\n"; } 
}; 
 
class C: public A { 
  public: 

 void func() { cout << "C
\n"; } 
}; 
 
 

void callfunc(A param) 
{ 

 param.func(); 
} 
 
int main(int argc, char* 
argv[]) 
{ 

 A x; 
 B y; 
 C z; 

 
 x.func(); 
 y.func(); 
 z.func(); 

 
 callfunc(x); 
 callfunc(y); 
 callfunc(z); 

 
 return 0; 

} 
 



Because A has a pure virtual function, denoted 
with the “= 0”, it is abstract.  There is no 
function A.func(). This forces any object that 
derives from A to implement func().  

#include <iostream> 
using namespace std; 
 
class A { 
  public: 

 virtual void func() = 0; 
}; 
 
class B : public A { 
  public: 

 void func() {cout<<"B\n"; } 
}; 
 
class C: public A { 
  public: 

 void func() { cout << "C
\n"; }}; 
 
 

void callfunc(A param) 
{ 

 param.func(); 
} 
 
int main(int argc, char* argv[]) 
{ 

  
 B y; 
 C z; 

 
  
 y.func(); 
 z.func(); 

 
  
 callfunc(y); 
 callfunc(z); 

 
 return 0; 

} 



♣ Consider a vector graphics drawing package. 
The base class “Drawable” defines a graphics object that 
knows how to draw itself on the screen. Below it in the class 
hierarchy may be classes that define lines, curves, points etc. 
 
 
 
 
 
The program will keep a list of objects that have been created 
and upon redraw, will display them one by one. This is 
implemented using a loop. 

This forces all 
derived classes 
to implement 
Draw(). 

class Drawable { 
 … 
 virtual void Draw() = 0; 

}; 
class Line : public Drawable { … }; 
 

for (int i=0; i<N; i++) { 
obj[i]->Draw(); 
} 
 

In C++. an array can only store objects of 
the same type;  here we use it to store 
pointers to (i.e. the memory address of) 
each object.  The -> operator does the 
same thing as the dot operator, but 
dereferences the pointer (looks up the 
object via the memory address) first.  



♣ Example: consider a spreadsheet. 
Recall that an abstract base class cannot be instantiated 
itself; it is used to define the interface.  
 
We define a spreadsheet as comprising an array of 
references to cells; each object of type Cell must be 
able to return its own value via an Evaluate() 
method. 
 

 
 
 
 

 

class Cell { 
 virtual double Evaluate() = 0; 

}; 
 
class Spreadsheet { 

 private: 
  Cell& c[100][100]; 

}; 



♣ Example: consider a spreadsheet. 
By specifying the interface to the abstract base class Cell, we 
can implement Spreadsheet independently of the various 
types of Cell e.g. Boolean-valued expressions, dates, integers.  
 
This allows us to decide after it’s all implemented that we’d like 
a new type of Cell (i.e. a new class that inherits from Cell) 
e.g. the product of two other Cells. So long as it has a proper 
Evaluate() method, Spreadsheet can use it seamlessly. 

class Cell { 
 virtual double Evaluate() = 0; 

}; 
 
class Spreadsheet { 

 private: 
  Cell& c[100][100]; 

}; 



♣ Example: recall Euler’s method to solve the  
 

ODE               . Let’s implement a generic Euler 
 

 method, which prints x(t) for t = 0, 1, 2, ... . 
class Euler { 
  public: 

Euler(Func &f); 
void Simulate(double x, double step, double time); 

  private: 
Func fn; 

}; 

 Euler::Euler(Func &f) : fn(f) {}; 
 

void Euler::Simulate(double x, double step, double time) 

{ 
 for (int t=0; t<time; t+=step) { 

    x = x + step*fn.dx_by_dt(x,t); 

    cout << x << endl; 
   } 

 return; } 



We now instantiate an Euler object (here called e) 
in which the object y becomes the private member 
fn of e. 
 
In order for this to work, y (which is class 
XdotPlusX) must be an instance of Func.  That is, 
XdotPlusX must inherit from Func. 

XdotPlusX y; 
Euler e(y); 

e.Simulate(); 
 

class Euler { 
  public: 

Euler(Func &f); 
void Simulate(double x, double step, double time); 

  private: 
Func fn; 

}; 

 



Let’s implement an abstract base class Func.   
 
Func specifies that any object that is to be used in 
Euler must implement a dx_by_dt function. 
 
Our first dx_by_dt function comes from the 
equation x + x = 0, hence dx_by_dt returns –x. 
 
class Func { 
  public: 

 virtual double dx_by_dt(double x, double t) = 0; 

}; 
 

class XdotPlusX : public Func { 

  public: 
 double dx_by_dt(double x, double t) { 

   return –x; 

   } 

}; 
 



For the non-linear equation x + x2 = 0 we can define a 
new class that implements dx_by_dt = -x*x. 
 
class Func { 
  public: 

 virtual double dx_by_dt(double x, double t) = 0; 

}; 
 

class XdotPlusX2 : public Func { 

  public: 
 double dx_by_dt(double x, double t) { 

   return –x*x; 

    } 

}; 
 



Topic 10: Templates 



Recall our array-bounds-checking class: unfortunately, 
it was limited to storing floats.  

class SafeFloatArray { 
 public: 
  float & operator[](int i) {  
   if (i<0 || i>=10) { 
    std::cerr << “Access out of bounds\n”; 
    std::exit(1); 
   } else { 
    return a[i]; 
   } 
  } 
 private: 
  float a[10]; 

}; 

How might we create a class that can store any type 
we choose?  
 
Templates provide a way to parameterize a class 
definition with one or more types.  This is an example 
of compile-time polymorphism. 
  
 



To implement a template in C++, you prefix the class 
definition with template <class XX> where XX 
is a parameter to the class definition (below we have 
used varType). 

 
template <class varType> 
class SafeFloatArray { 
 public: 
   varType & operator[](int i) {  
   if (i<0 || i>=10) { 
    cerr << “Access out of bounds\n”; 
    return varType(0); 
   } else { 
    return a[i]; 
   } 
  } 
 private: 
  varType a[10]; 

}; 
 
SafeFloatArray<int> x; 
SafeFloatArray<Complex> z; 



At compile time the compiler encounters 
SafeFloatArray<int> x and creates a class 
definition (if it doesn’t already exist) in which 
varType is replaced with int everywhere in the 
definition.   

 
template <class varType> 
class SafeFloatArray { 
 public: 
   varType & operator[](int i) {  
   if (i<0 || i>=10) { 
    cerr << “Access out of bounds\n”; 
    return varType(0); 
   } else { 
    return a[i]; 
   } 
  } 
 private: 
   varType a[10]; 

}; 
 
SafeFloatArray<int> x; 
SafeFloatArray<Complex> z; 



Of course, you could do this by simply copy-and-
pasting the code and doing a manual replacement of 
varType.  As usual, however, copy-and-pasting code 
is a very bad idea! 

 
template <class varType> 
class SafeFloatArray { 
 public: 
   varType & operator[](int i) {  
   if (i<0 || i>=10) { 
    cerr << “Access out of bounds\n”; 
    return varType(0); 
   } else { 
    return a[i]; 
   } 
  } 
 private: 
  varType a[10]; 

}; 
 
SafeFloatArray<int> x; 
SafeFloatArray<Complex> z; 



Here we create a template class that is a 
container for a templated number of elements 
of a templated type. 
  

template <class Type, int Size> 
class SafeFloatArray { 
 public: 
  Type& operator[](int i) {  
   if (i<0 || i>=Size) { 
    std::cerr << “Access out of bounds\n”; 
    std::exit(1); 
   } else { 
    return a[i]; 
   } 
  } 
 private: 
  Type a[Size]; 

}; 
 
SafeFloatArray<int,10> x; 
SafeFloatArray<Complex,40> z; 
  



Templates aid the use of similar design 
solutions to different problems. 

The standardisation of design solutions encourages 
code re-use, increasing code reliability and shortening 
development time. 

 
An array is special case of a container type, a way of 
storing a collection of possibly ordered elements e.g. 
list (ordered but not indexed), stack (a first-in-last-out 
structure), vector (extendible array), double-ended list, 
etc. 

 
Templates in C++ offer a way of providing libraries to 
implement these standard containers. 



The Standard Template Library is a suite of 
code that implements (among many other 
things) classes of container types.  
 
These classes come with standard ways of  

accessing,  
inserting,  
adding and  
deleting elements. 

 
They also provide a set of standard algorithms that 

operate on these classes such as 
 searching and 
 iterating over all elements.  

 



The Standard Template Library (STL) 
permits code re-use, as desired.  

Different applications will have to represent different 
data, and will therefore require bespoke classes. 
 
However, it is common for the organisation of multiple 
instances of bespoke classes to be done in standard 
ways (such as containing multiple bespoke objects in an 
array).   
 
Templates allow generic, templated, code, that can be 
specialised to our bespoke classes at compile-time. 



Consider the STL vector. 
std::vector<Type> is an extendible array. 
It can increase its size as the program needs it to. 
It can be accessed like an ordinary array (eg v[2]). 
It can report its current size 

v.size(). 
You can add an item to the end without needing to know how 
big it is 

v.push_back(x). 
 #include<vector> 

 

int main() { 

    std::vector<int> v; 
    for (int i=0; i<20; i++) v.push_back(i); 

 

    for (int i=0; i<v.size(); i++) 
      std::cout << v[i] << std::endl; 

} 



If we were coding an extendible array class ourselves we would 
use dynamic memory allocation (i..e on the heap) and we would 
want to have: 
1.  An overloaded operator[] to access the ith element; 
2.  a size() method to report current length; 
3.  a resize() function to allocate more space; 
4.  a method to add an element to the end that will 

automatically allocate a new chunk of memory if we go 
beyond the end of the memory that has already been 
allocated. 

We don’t need to implement this because someone else has 
done it for us!  
 
This is only possible through the use of templates, 
because the person who coded the vector class 
couldn’t possibly anticipate all the classes that anyone 
might want to store.  

 



Let’s create a new STL vector of a size specified 
at run-time. 

std::vector<Complex> z; 
 
int size; 
std::cin >> size; 
z.resize(size); 
 
z[5] = Complex(2.0,3.0); 

User-inputted 
size 



Now let’s create a two dimensional array at 
run-time. 

 
int width, height; 
std::vector< std::vector<int> > x; 
 
x.resize(height); 
for (int i=0; i<height; i++) 
 x[i].resize(width); 

 
x[2][3] = 10; 
… 



The vector class implements a number of methods for accessing 
and operating on the elements. 

    vector::front  Returns reference to first element of vector. 

vector::back  Returns reference to last element of vector. 

vector::size  Returns number of elements in the vector. 

vector::empty  Returns true if vector has no elements. 

vector::capacity  Returns current capacity (allocated memory) of vector.  

vector::insert Inserts elements into a vector (single & range), shifts later 
elements up. O(n) time. 

vector::push_back  Appends (inserts) an element to the end of a vector, allocating 
memory for it if necessary. O(1) time. 

vector::erase  Deletes elements from a vector (single & range), shifts later 
elements down. O(n) time. 

vector::pop_back  Erases the last element of the vector, O(1) time. Does not 
usually reduce the memory overhead of the vector. O(1) time. 

vector::clear  Erases all of the elements. (This does not reduce capacity). 

vector::resize  Changes the vector size. O(n) time. 



We often want to iterate over a collection of data, as 
for (int i=0; i<v.size(); i++). 

Not all container types support indexing: a linked list 
has order, but only relative order. 

 
An iterator is a class that supports the standard 
programming pattern of iterating over a container type. 
 
 
 
 
 
An iterator encapsulates the internal structure of how 
the iteration occurs: it can be used without knowing the  
underlying representation of the container type itself. 
 

std::vector<int> v; 
std::vector<int>::iterator it; 
for (it=v.begin(); it!=v.end(); it++) 



Iterators grant flexibility: you can change 
the underlying container type without 
changing the iteration. 
 
 
 
 
 
 
 
 
 
Iterators are implemented differently for each class, but 
the user need not know the implementation.  
 

An iterator is a pointer to an 
element of a container: this code 
will print the elements of v. 
 

 

std::vector<int> v; 
std::vector<int>::iterator it; 
for (it=v.begin(); it!=v.end(); it++) 
{ 
  cout << *it << endl; 
} 



Topic 11: Maze Example 



Let’s design a program to compute a maze. 
We’ll input a size and have the 
maze printed out at the end.  
 
The algorithm will run as follows. 

1)  Mark all cells as unvisited. 
2)  Mark all walls as standing. 
3)  Choose the upper left cell to be 

the current cell. 
4)  While the current cell has 

unvisited neighbours, choose a 
neighbour at random. 

5)  Break wall between chosen 
neighbour and current cell. 

6)  Make the chosen neighbour the 
current cell. 

7)  Return to 4).  



Now let’s design the classes and class interfaces. 

We need the following classes: 
 
1.  Maze class, containing 

i.  a Compute method (to recursively generate the full maze), 
ii.  a Print method (to print to screen), 
iii.  a two dimensional array of Cells, defining the maze.  

2.  Cell class, containing 
i.  Accessor methods, 
ii.  Break wall methods, to remove a wall of a cell, 
iii.  Wall flags (which walls does this cell have?), 
iv.  Visited flag (have we previously considered this cell?). 
 



Let’s define the Cell class interface (cell.h). 

class Cell { 
  public: 
   Cell(); 

 
   bool Visited();  
   void MarkVisited(); 
   bool BottomWall(); 
   bool RightWall(); 
   void BreakBottom(); 
   void BreakRight(); 

 
 private: 
   bool bottomwall; 
   bool rightwall; 
   bool visited; 

}; 
 



Let’s define the Maze class interface (maze.h). 

class Maze { 
 public: 

 
Maze(int width, int height); 

  void Compute(int x, int y); 
  void Print(); 

   
 private: 

 
  int Rand(int n); 
  int H, W; 
  std::vector< std::vector<Cell> > cells; 

}; 
 



Here’s an example of a twenty by twenty maze. 



Topic 12: Conclusion 



OOP is not the best approach to all problems. 

Joe Armstrong said “the problem with object-oriented languages 
is they’ve got all this implicit environment that they carry around 
with them. You wanted a banana but what you got was a gorilla 
holding the banana and the entire jungle.” 
 
Steve Yegge said “OOP puts the nouns first and foremost. ... 
Why should one kind of concept take precedence over another? 
It's not as if OOP has suddenly made verbs less important in the 
way we actually think. ... As my friend Jacob Gabrielson once put 
it, advocating Object-Oriented Programming is like advocating 
Pants-Oriented Clothing.” 
 
A study by Potok, Vouk and Rindos (1999) showed no difference 
in productivity between OOP and procedural approaches. 



OOP is the best approach to only some 
problems. 

Jonathon Rees wrote “(OOP) accounts poorly for symmetric 
interaction, such as chemical reactions and gravity.” 
 
Paul Graham wrote “at big companies, software tends to be 
written by large (and frequently changing) teams of mediocre 
programmers. OOP imposes a discipline on these programmers 
that prevents any one of them from doing too much damage. 
The price is that the resulting code is bloated with protocols and 
full of duplication. This is not too high a price for big companies, 
because their software is probably going to be bloated and full of 
duplication anyway.” 
 
He also wrote “Object-oriented abstractions map neatly onto 
the domains of certain specific kinds of programs, like 
simulations and CAD systems.” 



Let’s recap. 
Objects, instances of classes, unite data, and functions for acting 
upon them (methods). Classes are initialised by a constructor 
member function.  
 
Encapsulation is expressed by classes splitting public data and 
functions from private data and functions, minimising side-effects. 
 
The interface (expressed in a header file) clearly defines how a 
program can interact with an object of a given class. The const 
keyword can be used to define variables that cannot be changed, 
creating a mathematical-function-like interface. 
 
Functions can be overloaded: the function name together with 
the types of its arguments define which version is being referred 
to. Likewise, operators (functions with weird names and calling 
syntax) can be overloaded.  



Let’s recap. 

Inheritance expresses an “is a” relationship, granting the ability to 
create class hierarchies. Composition expresses an “has a” 
relationship. 
 
Run-time polymorphism is the ability of objects in a class 
hierarchy to respond in tailored ways to the same events, and is 
achieved through the use of virtual functions in an abstract base 
class.  
 
Templates provide a way to create a generic, parameterised, 
class definition. This is an example of compile-time 
polymorphism. 
 
 



The End 


