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1 Introduction

These four lectures build on both the basic probability and statistics materials covered in A1 and the estima-
tion concepts introduced in the estimation portion of B14. In particular these lectures re-introduce frequentist
inference, in A1 called hypothesis testing, ground it in a slightly more theoretical framework, and explain it
in terms of model-based reasoning. We continue by re-introducing maximum likelihood parameter estima-
tion and regression, noting that parameter estimation can be used to perform inference. Following this we
introduce regularization then Bayesian inference, the latter of which is contrasted to frequentist inference. We
finish by introducing classification as a specialization of regression and discuss latent variable inference in this
context.

The contents of these lectures are covered in many textbooks, notably the estimation and frequentist infer-
ence parts in

1. Bickel and Doksum (2015)

2. Johnson (2000)

and Bayesian inference in
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1. Bishop (2006)

2. Gelman et al. (2014).

We will make make use of vector calculus in some of our derivations. The essential resource for making
sense of these operations is the “Matrix Cookbook” of Petersen et al. (2008).

2 Models

A model is a simulacrum, often taking mathematical form, that stands in for some real-world system of interest.
Models are used both for understanding systems and making predictions about how those systems might
evolve – these two use case can be made mathematically equivalent. Statistical models are mathematical
models that explicitly embrace, utilize, and compute with uncertainty. Inference has many technical definitions
– these lectures will introduce two – but at a high level it can be thought of as using a model to say something
about the real world.

Mathematically, by statistical model on a sample space X , we mean a set of distributions (actually mea-
sures) on X . If we write PM(x) for the space of all possible distributions (measures) over X then a model is
a subset M ⊂ PM(X). The elements of M are indexed by a parameter θ with values in a parameter space T ,
that is

M = {Pθ|θ ∈ T}

where each Pθ is a member of the set PM(x). A model is parametric if T is finite dimensional. Usually T ⊂ Rd
for some d ∈ N. If dim(T ) =∞ then M is a non-parametric model.

A canonical problem of statistics is to take observations {x1, . . . , xN}, xn ∈ X , which we model as random
variables {X1, . . . , XN}. which we assume are drawn from Pθ, i.e.

{X1, . . . , XN} ∼
iid
Pθ θ ∈ T

and use them to tell us something about the value of θ.
Inference is typically phrased in terms of mathematical operations involving a model. There are frequentist

and Bayesian schools of inference and both involve estimation and interpretation of model parameters. We will
start with estimators and frequentist notions of inference.

3 Estimators

Assume there is a sample {x1, x2 . . . , xn} of n iid (independent and identically distributed) observations com-
ing from a true but unknown distribution P0(·). Let us assume the P0 ∈M , i.e. ∃θ0 ∈ T such that Pθ0 = P0. Let
us also assume that T is finite dimensional.

We would like an estimator f which produces an estimate θ̂ that is close to θ0 (the estimand), i.e. θ̂ =
f(x1, . . . , xn) ≈ θ0. An estimator is a statistic, both are defined simply as functions of the sample or data.
Some estimators can be quite complex, some quite simple.

In order to motivate estimators and their upcoming utility in frequentist inference, consider the following
general idea. Let’s say that we want to learn something about the world. As a first step we need to posit a
model of the world and of how what we are able to measure relates to how the world is. Because the world is
stochastic and measurements uncertain within tolerances this model will typically be a model that embraces
randomness, i.e. a statistical model. Let’s say this model has one parameter (potentially a high-dimensional
structured parameter) and that given a value for this parameter a population is generated. Let’s also assume
that this population is large (manufactured parts, running engines in cars, heights of people, etc.) and that
for practical reasons we cannot measure or observe all the individuals in the population, rather, we can only
take measurements from a sub-population or sample. Now let’s say that we have a function that maps from
the measurements of a subpopulation (our data) to an estimate of some model parameter in which we’re
interested. If we took all possible random subpopulations and ran this estimator there would be a distribution
of estimates that came out. Frequentist inference basically arises from using the model to establish a theoretical
sampling distribution of the estimator and then checks whether or not the estimate arrived at by running the
same estimator on the one actual, real, collected dataset is surprising or not. If it’s surprising then that lends
evidence to your model being an inaccurate explanation of how the world is. If it’s not surprising then it’s
taken to mean that you cannot refute the given hypothesis (which came in the form of the model). Note that
this does not mean that there isn’t a very large number of hypotheses that also cannot be refuted, simply, that
the single given hypothesis might not be a good hypothesis.
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To be more mathematically concrete, consider drawing from some large, possibly infinite population a
finite sub-population (called a sample) of size N . Call this sample X1. Then consider evaluating an estimator
on this population to produce an estimate θ̂1. Repeat this procedure M times to produce M estimates. Clearly
as each sample is different so too will be the M different estimates, as illustrated in the following table

Datasets/samples Estimates
X1 = {x11 = . . . , x12 = . . . , x1N = . . . } θ̂1
X2 = {x21 = . . . , x22 = . . . , x2N = . . . } θ̂2
. .
. .
XM = {xM1 = . . . , xM2 = . . . , xMN = . . . } θ̂M

where xmn ∼
iid
P0, P0(X) =

∏
P0(x). Further, one could calculate both the sample mean and variance of these

M estimates as shown in the Figure 1.

Figure 1: Graphical representation of Var(θ̂)

Such a procedure is not practical in any real science or engineering application because there is always a cost
associated with making M measurements, so, instead, in practice, one replaces the original large population
with a hypothesis about its distribution, i.e. assumes a statistical model of this population and then runs such
a procedure. In such a case there is no reason to stop with M estimates. Instead the sampling distribution of
an estimator under a model then can either analytically derived or nearly exhaustively computed even when
M →∞.

3.1 Properties of estimators

Estimators have mathematical properties. A familiarity with mean squared error, variance, bias, and the re-
lationship between the three is essential for understanding decisions we will make later when constructing
estimators.

Let the data X = {x1, . . . , xn} and the estimator θ̂ = f(X) with θ̂ ∈ R; i.e. the estimate is assumed to
one-dimensional. Continue assuming that the true data distribution is P0 and there is a parameter θ0 such that
Pθ0 can equal P0.

1. Mean Squared Error:
MSE(θ̂) = E

[
(θ̂ − θ0)2]

note that this expectation is with respect to samples (populations of some size) drawn from P0. This is
the mean or expected squared error; small if the estimator is good.

2. Variance:
Var(θ̂) = E

[
(θ̂ − E(θ̂))2]

this is, for a given sample size (and P0), what is the characteristic “spread” of the estimate?
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3. Bias:
B(θ̂) = E(θ̂)− θ0

is the distance between the average of estimates over all samples of a given size and θ0. Statisticians like
unbiased estimators, i.e. B(θ̂) = 0.

Theorem 3.1.
MSE(θ̂) = Var(θ̂) + (B(θ̂))2

Proof.

MSE(θ̂) = E[(θ̂ − θ0)2]
= E[(θ̂ − E[θ̂] + E[θ̂]− θ0)2]
= E[(θ̂ − E[θ̂])2]
+ E[(θ̂ − E[θ̂])(E[θ̂]− θ0)] (1)

+ E[(E[θ̂]− θ0))(θ̂ − E[θ̂])] (2)

+ E[E[θ̂]− θ0)2]

Noting that E[θ̂], θ0 are constant ∴ (1) = (2) = (E[θ̂]− E[θ̂])(E[θ̂]− θ0) = 0

∴MSE(θ̂) = E[(θ̂ − E[θ̂])2] + (E[θ̂]− θ0)2

= Var(θ̂) + (B(θ̂))2

We will return to this later.

3.2 Example estimators

Let’s look at three simple estimators of a population mean. Assume the true distribution (our modeling as-
sumption) is N (µ0, σ

2
0). Let N be the sample size and X = {x1, x2 . . . , xn}, xn ∼

iid
N (µ0, σ

2
0).

Let’s consider some estimators:

A) µ̂A = fA(X) = fA(x1, x2 . . . , xn) = µg

B) µ̂B = fB(X) = arg max
µ

L(X;µ)

C) µ̂C = fc(X) = λµg + (1− λ)µ̂B .

Note that µ̂B is the maximum likelihood estimator for µ, µg is some “guess” µg ≈ µ0, and λ is a parameter
related to how much we “believe” our guess.

Estimator A

V ar(µ̂A) = 0
Bias(µ̂A) = µ̂A

MSE(µ̂A) = µ̂2
A

Estimator B

This is the maximum likelihood estimator where we have a parametric model

X ∼
iid
N (µ0, σ

2
0), θ = {µ0, σ

2
0}
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and

L(X; θ) =
N∏
n=1

p(xn|θ)

=
N∏
n=1

1√
2πσ0

e
(xn−µ0)2

2σ2
0

By way of reminder the figure below illustrates the maximum likelihood principle whereby parameter
values that give data high likelihood under a model are preferred.

Figure 2: Which θ is preferred?

Review: Maximum Log-Likelihood Estimation

If we want to maximise L(X; θ) w.r.t. θ we look for the highest value of L(X; θ) as a function of θ where

∂L(X; θ)
∂θ

= 0 and
∂2L(X; θ)

∂θ2 ≤ 0

Important ∂L(X;θ)
∂θ is almost always nasty so it is usual to work with ∂ logL(X;θ)

∂θ which has the same max
because log is monotonically increasing. Often the resulting maximisation is easy.

NB: for simplicity we let L(θ) = L(X; θ).

Theorem 3.2.
arg max

θ
log(L(θ)) = arg max

θ
(L(θ))

Proof. Check extrema:

0 = ∂ logL(X; θ)
∂θ

= 1
L(θ)

∂L(θ)
∂θ

= ∂L(θ)
∂θ

∴
∂ logL(X; θ)

∂θ
= 0 ⇐⇒ ∂L(θ)

∂θ
= 0

Check curvature

sign

(
∂2

∂θ2 log(L(θ)
)

= sign

(
∂

∂θ

1
L(θ)

∂L(θ)
∂θ

)

= sign

(
− 1
L(θ)2

∂L(θ)
∂θ

+ 1
L(θ)

∂2L(θ)
∂θ2

)

= sign

(
0 + 1
L(θ)

∂2L(θ)
∂θ2

)
∴ True as L(θ) is a likelihood thus always positive and log is monotonic.
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Back to estimator B (maximum likelihood)

arg max
µ0

logL(X;µ0) occurs at
∂

∂µ0
logL(X;µ0) = 0

i.e.
∂

∂µ0
logL(X;µ0) =

∑
n

∂

∂µ0
log 1√

2πσ0
e
− (xn−µ0)2

2σ2
0

=
∑
n

∂

∂µ0

(
const− (xn − µ0)2

2σ2
0

)
=
∑
n

2(xn − µ0)
2σ2

0

=
(
∑N
n=1 xn −Nµ0)

σ2
0

= 0

=⇒ µ̂B =
∑N
n=1 xn
N

Bias of µ̂B

E[µ̂B ] = E

[∑N
n=1 xn
N

]
= 1
N

N∑
n=1

E[xn]

= 1
N
×N × µ0 = µ0

i.e. µ̂B is an unbiased estimator and
∴ B(µ̂B) = 0.

Variance of µ̂B

Var(µ̂B) = Var
(∑N

n=1 xn
N

)

= 1
N2 Var

( N∑
n=1

xn

)
= 1
N2

N∑
n=1

Var(xn) iid

= σ2
0
N

MSE of µ̂B

MSE(µ̂B) = Var(µ̂B)−B(µ̂B) = σ2
0
N
− 0 = σ2

0
N
.

Note that in the limit
lim
N→∞

MSE(µ̂B) = lim
N→∞

Var(µ̂B) = 0.
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4 Inference via Hypothesis Testing

Estimation is the core of stats and goes hand in had with frequentist inference. The frequentist inference pro-
cedure is hypothesis testing, the procedure for drawing inferences by not finding surprise in estimates already
outlined in Section 3.

Assuming that we know σ2
0 let’s hypothesize H0 : xn ∼

iid
N (φ, σ2

0). Usually symbolized by H0, this “null

hypothesis” is effectively a model-based statement about the world. Note that this, here, is a simple parametric
model of a population. To test this hypothesis we conduct the following thought experiment. Assume that we
use estimator B and that we draw an infinite number of sample populations of size N from the model above.
We already know that, in this case

E[µ̂B ] = φ and Var(µ̂B) = σ2
0
N

What can be demonstrated in this case exactly is that

µ̂B ∼ N
(
φ,
σ2

0
N

)
.

The central limit theorem can be used to show that estimators that involve an average, for sufficiently large
N and under mild regularity assumptions, having sampling distributions that are also are well described by a
normal distribution asymptotically too.

Here though, given a particular dataset XD we compute µ̂B(XD) = ψ. We have a picture like this

Where ψ is the result of applying estimator B to one dataset. To think about confidence intervals and draw-
ing conclusions about a null hypothesis (H0) it will help, in this and many cases to “normalise” our estimator
to a z-score, i.e. a N (0, 1) variable.

If µ̂B ∼ N (φ, σ
2
0
N ) then

(µ̂B − φ)
σ\
√
N
∼ N (0, 1) Proof trivial

We thus map from the ψ domain to the z domain i.e.

z(ψ) = (ψ − φ)
σ\
√
N

Frequentist inference rejects a null hypothesis when the value of an estimator computed on a real sample is
surprising (i.e. low probability) under the null hypothesis. If, for instance, z(ψ) falls within the 95% confidence
interval then we fail to reject H0. What is the 95% confidence interval?
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It is, under the standard normal

the value z for which p(−z ≤ Z ≤ z) = 1 − α = 0.95 for Z ∼ N (0, 1). This occurs at Φ(z) = P (Z ≤ z) =
1− α

2 = 0.975, where Φ(z) is the CDF of N (0, 1).

Φ(z) ,
∫ z

−∞
N (x; 0, 1)dx

i.e. Φ−1(Φ(z) = 0.975
)

= 1.96 so

0.95 = 1− α = P (−z ≤ Z ≤ z) = P (−1.96 ≤ ψ − φ
σ\
√
N
≤ 1.96)

and, thusly
0.95 = P

(
ψ − 1.96( σ√

N
) ≤ φ ≤ ψ + 1.96( σ√

N
))
)

What does this mean? It means that, under our assumptions, both φ is likely to be in this band and, perhaps
more importantly, that φ and ψ can be flipped, saying in effect that if the true parameter is φ, ψ outside of(

φ− 1.96( σ√
N

) , φ+ 1.96( σ√
N

)
)

would be surprising and could be taken as evidence (at 5% confidence) to reject H0.

Note that a p-value is the value of α one would have to choose to reject the null hypothesis given the
observed sample, i.e. p-value is given by (in this case)

Φ−1(1− α

2 ) = ψ − φ
σ\
√
N

or
1− α

2 = Φ
( ψ − φ
σ\
√
N

)
p-value = α = 2

(
1− Φ

( ψ − φ
σ\
√
N

))

Back to our Estimators

Rewinding all the way back we have

A B C
Var 0 σ2

0
N

Bias µ̂A 0
MSE µ̂2

A
σ2

0
N

Which suggests that a) no one estimator is always best and b) that we might be able to explore the spectrum
of estimators and engineer estimators that work well for our problem. For instance, what if we think we know
the true “answer,” i.e. µg ≈ µ0, like estimator C.
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Estimator C

µ̂C = λµg + (1− λ)µ̂B

Bias of µ̂C

B(µ̂C) = B(λµg + (1− λ)µ̂B)
= E[λµg + (1− λ)µ̂B)]− µ0

= λµg + (1− λ)µ0 − µ0 = λ(µg − µ0)

Variance of µ̂C

Var(µ̂C) = Var(λµg + (1− λ)µ̂B)

= (1− λ)2 Var(µ̂B) = (1− λ)2σ
2

N

All Together

A B C
Var 0 σ2

0
N (1− λ)2 σ2

0
N

Bias µ̂A 0 λ(µg − µ0)
MSE µ̂2

A
σ2

0
N (1− λ)2 σ2

0
N + λ2(µg − µ0)2

But, wait, this suggests that bias could lead to lower variance (when σ2
0
N > (1− λ)2 σ2

0
N ) and MSE when

σ2
0
N

> (1− λ)2σ
2
0
N

+ λ2(µg − µ0)2

σ2
0
N

(1− (1− λ)2) > λ2(µg − µ0)2

σ2
0
N

>
λ2

2λ− λ2 (µg − µ0)2

σ2
0
N

>
λ

2− λ (µg − µ0)2

which could easily happen.

The take-home here is that maximum likelihood estimators are but one family of estimator, frequentist in-
ference is one way to use statistical models, and, further, that bias is not a bad word. In fact introducing bias, as
we will see, can lower the variance of your estimator and potentially simultaneously the MSE of your estima-
tor as well. Frequentist inference involves computing and using confidence intervals for the sample variance
of estimators where it is clear that having a lower variance of your estimator will increase the power of your
estimator in terms of being able to discriminate between valid and invalid hypotheses. Bias introduced in the
form of regularisation and priors may make for better estimation and inference provided that the introduced
bias is helpful in terms of reducing variance.

5 Parameter Estimation

While true statistical inference involves either hypothesis testing under the frequentist framework or charac-
terization of a posterior distribution under the Bayesian framework, a more engineering notion of inference
is simply that of parameter estimation. In order to illustrate parameter estimation in meaningful and useful
setting we must further ensure an absolutely stable platform of understanding of the multivariate Gaussian
distribution, continuing and building upon B14 Estimation towards, again, linear regression then regulariza-
tion and Bayesian reasoning.
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5.1 The Multivariate Gaussian

Let µ,x ∈ RD,Σ ∈ PSDDxD then let

N (x|µ,Σ) , 1
(2π)D/2|Σ|1/2

e{− 1
2 (x−µ)TΣ−1(x−µ)}

be the “multivariate normal density function” of random variable x in D dimensions given mean vector
µ = E[x] and covariance matrix Σ = Cov(x). NB: we sometimes also work with the precision matrix Λ = Σ−1.

An important thing to know about MVN distributed vectors is that x has the same distribution as Az + µ
where

z = [z1, . . . , zD], zd ∼
iid
N (0, 1)

andA satisfiesAAT = Σ. (Cholesky)

Certainly we can note that

E[Az + µ] = AE[z] + µ = A× 0 + µ = µ

and
Cov[Az + µ] = Cov[Az] = ACov[z]AT = AAT = Σ

But higher-order moments could appear.

We can “derive” the MVN pdf starting from the product of the 1-D normal Gaussian pdfs for the individual
components of the vector z

PZ(z) =
D∏
i=1

(2π)1/2e{− 1
2 z

2
i }

= (2π)D/2e{−
1
2

∑D

i=1
z2
i }

= (2π)D/2e{− 1
2z

T z}

Let
x = Az + µ =⇒ z = A−1(x− µ)

whereAAT = Σ. The multivariate change of variable rule says

PX(x) = PZ(z)

∣∣∣∣∣∣∣∣∣∣∣

∂z1
∂x1

∂z1
∂x2

. . . ∂z1
∂xD

∂z2
∂x1

. . . . . .
...

...
. . . . . .

...
∂zD
∂x1

. . . . . . ∂zD
∂xD

∣∣∣∣∣∣∣∣∣∣∣
= PZ(z)|Jz→x|

where

Jz→x ,
∂z

∂x
= ∂(z1, . . . , zn)
∂(x1, . . . , xm) ,


∂z1
∂x1

. . . ∂z1
∂xm

...
. . .

...
∂zm
∂x1

. . . ∂zn
∂xm


is a Jacobian and drops out from the multivariate chain rule.

Noting
∂

∂x
A−1(x− µ) = ∂z

∂x

∴ A−1 = ∂z

∂x

and
|A−1| = |A|−1
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we have

PX(x) = PZ(z)|A−1|
= PZ(A−1(x− µ))|A|−1

= (2π)−D/2|A|−1e{− 1
2 [A−1(x−µ)]T [A−1(x−µ)]}

= (2π)−D/2|AAT |− 1
2 e{− 1

2 (x−µ)T (A−1)TA−1(x−µ)}

= (2π)−D/2|Σ|− 1
2 e{− 1

2 (x−µ)T (AAT )−1(x−µ)}

= (2π)−D/2|Σ|− 1
2 e{− 1

2 (x−µ)T (Σ)−1(x−µ)}

Where we have used
|A|−1 = |A|− 1

2 |A|− 1
2 = |A|− 1

2 |AT |− 1
2 = (|A||AT |)− 1

2

and
(A−1)TA−1 = (AT )−1A−1 = (AAT )−1

with individual steps from “the matrix cookbook” (Petersen et al., 2008), notably

(AB)T = BTAT

|A| = |AT |
(A−1)T = (AT )−1

(AB)−1 = B−1A−1

|AB| = |A||B|

So we can represent a multivariate Gaussian as an affine transformation of a vector of individual N (0, 1)
distributed random variables. But, given a collection of N vectors {x1, . . . ,xN} which we assume to be ∼

iid

N (µ,Σ) how do we get µ & Σ?

5.2 Maximum Likelihood Estimation for the Multivariate Gaussian

Let
X = {x1, . . . ,xN}

Then

L(X; {µ,Σ}) =
N∏
n=1

(2π)−D/2|Σ|− 1
2 e{ 1

2 (xn−µ)TΣ−1(xn−µ)}

Like before we will estimate µ̂ML and Σ̂ML by taking derivatives of log likelihoods and setting them equal to
zero. We will need the following (also from the Matrix Cookbook) valid only for symmetricW

∂ log |X|
∂X

= (X−1)T = (XT )−1 (3)

∂aTXb

∂X
= baT (4)

∂aTX−1b

∂X
= −X−TabTX−T (5)

∂

∂s
(x− s)TW (x− s) = −2W (x− s) (6)

First ML estimate µ̂ for µ:

∂

∂µ
logL(X; {µ,Σ}) =

N∑
n=1

∂

∂µ

(
− 1

2(xn − µ)TΣ−1(xn − µ)
)

= 0

using identity (4) =
N∑
n−1

Σ−1(xn − µ) = 0

=
N∑
n−1

Σ−1xn −Nµ = 0

=⇒ µ̂ = 1
N

N∑
n=1

xn

11



Note:

E[µ̂] = 1
N

N∑
n−1

E[xn] = N

N
µ =⇒ Bias(µ̂) = 0

Now
Σ̂ML = arg max

Σ
logL(X;µ,Σ)

∴
∂

∂Σ logL(X;µ,Σ) = N

2
∂

∂Σ log |Σ| − 1
2

N∑
n=1

∂

∂Σ
(
(xn − µ)TΣ−1(xn − µ)

)
using identity (3) = N

2 (Σ−1)T + 1
2

N∑
n=1

(
Σ−T (xn − µ)(xn − µ)TΣ−T

)
Σ is symmetric ∴ ΣT = Σ

∴ (Σ−1)T = (ΣT )−1 = Σ−1

∴ Setting this expression equal to zero and solving yields

NΣ−1 =
N∑
n=1

(
Σ−1(xn − µ)(xn − µ)TΣ−1)

Then pre- and post-multiplying both sides by Σ finally gives

Σ̂ML = 1
N

N∑
n=1

(xn − µ̂)(xn − µ̂)T

So now, given data, we can analytically compute the ML parameters of a multivariate Gaussian.

A note: the ML estimator, particularly for exponential families, has nice properties, particularly in the limit.
It can be shown, for instance, that the sampling distribution of most ML estimators tend asymptotically to a
normal distribution. Extra reading: Fisher Information Matrix.

5.3 Example: Sensor Fusion as Parameter Estimation

Using these techniques we can consider using maximum likelihood techniques to estimate the location of an
object. This example corresponds to an accompanying exercise in the B14 laboratory.

Assume two independent proximity sensors which are unbiased but produce “noisy” measurements of an
object’s location in 2-D space.

Figure 3: x1,x2 ∈ R2 are the sensor measurements, xtrue ∈ R2 is the object’s true location

From the sensor manufacturers we know the MVN observation noise variance for each sensor

xi − xtrue ∼ N (0,Σi) ⇐⇒ xtrue ∼ N (xi,Σi) ⇐⇒ xi ∼ N (xtrue,Σi)

Let’s say we believe both sensors equally and that they are independent. Then

P (x1,x2|xtrue) = P (x1|xtrue)P (x2|xtrue)
= N (x1;xtrue,Σ1)N (x2;xtrue,Σ2)
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The ML principle says that

x̂true = arg max
xtrue

{logN (x1;xtrue,Σ1) + logN (x2;xtrue,Σ2)}

Setting up as usual:

∂

∂xtrue

(
(x1 − xtrue)TΣ−1

1 (x1 − xtrue) + (x2 − xtrue)TΣ−1
2 (x2 − xtrue)

)
= 0

using identity (4) = −2Σ−1
1 (x1 − xtrue)− 2Σ−1

2 (x2 − xtrue) = 0
∴ Σ−1

1 x1 + Σ−1
2 x2 = (Σ−1

1 + Σ−1
2 )xtrue

∴ x̂true = (Σ−1
1 + Σ−1

2 )−1(Σ−1
1 x1 + Σ−1

2 x2)

In multiple dimensions this is a little difficult to parse, but let’s assume that the derivation holds in 1-D,then

x̂true = 1
1
σ2

1
+ 1

σ2
2

( 1
σ2

1
x1 + 1

σ2
2
x2

)
which is just a weighted average with higher weight on the smallest variance.

Figure 4: x̂ placed between the two sensors measurements but closer to the sensor with the lower covariance,
which we “trust” more

6 Linear Regression

If at this point in your education you still think that linear regression is about drawing a line through points,
think again! In this section we re-introduce linear regression as, effectively, parameter estimation in a multi-
variate Gaussian distribution. Unlike the sensor fusion parameter estimation example above, in linear regres-
sion we can think about posing a hypothesis in the form of a model and as a result we may think, again, about
inference. In regression, inference can be used to say something about the relationship between inputs and
outputs but also, by virtue of knowing something about that relationship, so too can it say something about
predictions to be made at new inputs.

Arguably frequentist inference is mostly, in practice, about performing analysis of variance (ANOVA) hy-
pothesis tests in multiple-linear-regression models. While still common in practice, our aim with linear regres-
sion is to begin to introduce notions of regularization which lead naturally to Bayesian approaches to inference,
the latter being a more coherent formalism for expressing uncertainty about estimates.

We’ll start with linear regression as you know it

n ∈ {1, . . . , N}
yn ∈ R w ∈ R Y = {y1, . . . , yN}
xn ∈ R b ∈ R X = {x1, . . . , xN}

yn|xn ∼ N (wxn + b, σ2)

=⇒ L(X;w, b) =
N∏
n=1
N (yn;wxn + b, σ2)

arg max
w

log
N∏
n=1

1√
2πσ

e{−
1
2

(yn−(wxn+b))
σ2 }

13



then take derivatives w.r.t. w, b, set = 0 etc. (gross).

Alternatively one can formulate this as matrix linear regression with

Y =

 y1
...
yN

X =

x1 1
...

...
xN 1

 w =
[
w
b

]

with likelihood
L(Y ;w) = Y −Xw ∼ N (0, I) ≡ Y ∼ N (Xw, I)

Review: Least Squares

We can estimate w by directly minimizing the MSE such that

ŵLeastSquares = arg min
w

E[yn − ŷ2
n]

= arg min
w

E[(yn − (xnw + b)2]

= arg min
w

1
N

N∑
n=1

(
yn − (xnw + b)

)2
= arg min

w

N∑
n=1

(
yn − (

[
xn 1

] [w
b

]
)
)2

= arg min
w

N∑
n=1

(
yn − (xnw)

)2
= arg min

w
(Y −Xw)T (Y −Xw)

= arg min
w

(Y −Xw)T I(Y −Xw)

We will solve this in the next section

Back to Linear Regression

We have

arg max
w

logL(Y ;w) = w

such that
∂

∂w
logN (Y −Xw; I) = 0

Plugging in to the MVN pdf and taking logs we can see

0 = ∂

∂w
(Y −Xw)T I(Y −Xw)

(Noting the similarity to least squares)

= ∂

∂w

{
− 2(Xw)TY + (Xw)T (Xw)

}
= ∂

∂w

{
− 2wTXTY +wTXTXw

}
From matrix cookbook

= −2XTY + (XTX + (XTX)T )w
= −XTY +XTXw

=⇒ ŵML = ŵLeastSquares = (XTX)−1XTY

OK, so we have that the linear regression estimator is the same as the least squares estimator. Not that
linear refers to linear (not affine) in the parameters.

We might ask, when can this estimator be computed? Let’s look atX .

14



X ∈ RN×P i.e. N rows and P columns.

X =

x1 1
...

...
xN 1


XTX ∈ RP×P and (XTX)−1 requires XTX non-singular, i.e. rank(XTX) ≥ P . You might ask “when

could the design matrix (X) be rank deficient?” Let’s consider the following linear regression.

(a) Noisy data points from some generative sys-
tem

(b) Regression options: fits from polynomials of
different orders

There are several possible interpretations of said data. Let’s say I prefer y = ax3 + bx2 + cx + d for some
unknown w =

[
a b c d

]T . Note that nothing from the above need change except the definitions

X =

x
3
1 x2

1 x1 1
...

...
...

...
x3
N x2

N xN 1

 w =


a
b
c
d


It is entirely feasible that one might prefer or even need a polynomial of order P > N andXTX becomes rank
deficient.

6.1 Regularization

As model complexity increases the ability for a model to fit the data becomes higher. Polynomial regression
serves as an excellent pedagogical tool for explaining what happens when a model begins to overfit.

As the polynomial order increases the ability of the model to exactly reproduce the target values increases;
however out-of-sample performance typically degrades. To combat this we typically regularise or bias models

15



towards reasonable solutions. In this case we might like the polynomial weights to be small. One way to do
this is to directly penalise large weights, i.e. modify our ML objective

ED(w) = 1
2

N∑
n=1

{
yn −wTΦn(xn)

}2

= 1
2(y −Φw)T (y −Φw)

where E is an "energy", i.e. log probability, and Φ(X) ∈ RN×P is the “feature” or “design” matrix given by

Φ =

Φ1(x1) . . . ΦP (x1)
...

. . .
...

Φ1(xN ) . . . ΦP (xN )


to include a term like

Ew(w) = λ

2w
Tw

where λ is a smoothing tuning parameter.
Note that this notion of a design or feature matrix is an extremely powerful notion as it allows for arbitrary

covariants and features (functions of the inputs) to be introduced as predictors.
Maximum probability corresponds to minimum energy, so we might wish to find

w∗ = arg min
w

(
ED(w) + Ew(w)

)
= arg min

w

(1
2(y −Φw)T (y −Φw) + λ

2w
Tw
)

which arises at ∂
∂w

(
ED(w) + Ew(w)

)
= 0

∴ 0 = ∂

∂w

(1
2(y −Φw)T (y −Φw) + λ

2w
Tw
)

= ΦT (y −Φw) + λw

= −ΦTy + (ΦTΦ + λI)w
=⇒ w = (ΦTΦ + λI)−1ΦTy

What does this mean and do?

1. Inverting ΦTΦ becomes unstable or impossible if Φ is rank deficient. Adding positive elements to the
diagonal ensures that (ΦTΦ + λI) is full rank and therefore invertible.

2. λ
2w

Tw looks a lot like a MVN, i.e. 1
2 (w − 0)TλI(w − 0) which in energy terms is minimised when w is

close to 0 (i.e. Ew is the energy term for a zero-mean Gaussian prior).

3. This is a form of bias that is helpful!

This form of regularized estimator, when the regularization is interpretable as a prior, is known as a maxi-
mum aposteriori (MAP) estimator for reasons that will soon become clear.

7 Bayesian Linear Regression

To interpret this kind of regularization further we appeal to Bayesian reasoning, e.g. Bayesian linear regression.

Let’s consider Bayes rule in the context of linear regression

P (w|y,Φ, β, λ) = P (y|Φ,w, β)P (w|λ)
P (y|Φ, β, λ)

this is a little confusing, so let’s drop the constants

P (w|y) = P (y,w)P (w)
P (y)

∝ P (y|w)P (w)
= N (y; Φw, βI)N (w; 0, λI)
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This is quite interesting. It says that a Bayesian approach to linear regression introduces bias and, simultane-
ously, that solving for the MAP w is clearly equivalent to solving a regularized least squares problem.

What is more, we can analytically derive the full posterior distribution, if we know (and understand) the
following about the MVN

P (x) = N (x;µ,Λ−1) (7)

P (y|x) = N (y;Ax+ b,L−1) (8)

=⇒ P (y) = N (y;Aµ+ b,L−1 +AΛ−1AT ) (9)

=⇒ P (x|y) = N (x; Σ{ATL(y − b) + Λµ},Σ) (10)

where Σ = (Λ + ATLA)−1. These facts about multivariate Gaussian distributions can be derived by com-
pleting the matrix square or simply looked up in, for instance, Bishop (2006) 2.3.3 from where these were
copied.

7.1 Posterior Inference

Equations 7-10 constitute Bayes rule for Gaussians and using them we can immediately derive

P (w| . . . ) = N (w; Σ{ΦT 1
β
I(y)},Σ)

= N (w; 1
β

ΣΦTy,Σ)

and
Σ = ( 1

λ
I + 1

β
ΦTΦ)−1

which is the posterior distribution of the weight vector. We already know its mode and mean: having the
full distribution allows ease of model combination and propagation of uncertainty throughout inference and
computation.

Let us pause for a moment here and reflect on what this means. Instead of constructing a hypothesis test
in the form of H0 : “the regression coefficient corresponding to this particular column of the design matrix
is 0” and using a heuristic procedure to falsify such hypotheses one at a time in order to build up a robust,
low-dimensional linear model, instead we simply define inference to be the characterization of the complete
posterior distribution of the model parameters of interest. Such a posterior distribution assigns a weight, so to
speak, to every possible setting of the parameters, here a vector of weights, that we can use to ask inferential
questions like, what’s the posterior probability that w1 > 0.8, i.e.

p(w1 > 0.8| · · · ) =
∫

I(w1 > 0.8)p(w| . . .)dw

which is, in the case of multivariate Gaussians is a trivial integral to evaluate if you know the marginalization
and conditioning properties of Gaussian distributions here. (from Sam Roweis’ excellent cheat sheets1)

Let z = [xTyT ]T be normally distributed according to

[
x
y

]
∼ N

([
a
b

] [
A C

CT B

])
. (11)

where all the vector and matrix partition sizes make sense then the marginal distributions of x and y are

x ∼ N (a,A) (12)
y ∼ N (b,B) (13)

which, along with the cumulative distribution function of the standard normal is sufficient to answer our
posterior inference question.

Also the conditional distributions (not needed specifically here but still supremely useful) are

x|y ∼ N (a+CB−1(y − b),A−CB−1CT ) (14)

y|x ∼ N (b+CTA−1(x− a),B −CTA−1C) (15)
1http://www.cs.nyu.edu/~roweis/notes.html
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7.2 Prediction as Inference

Often we are interested in making predictions about an output y for new data x. This can be written as

P (y|x,w,Φ, λ, β) =
∫
P (y|w, x, β)P (w|y,Φ, λ, β)dw

where the first term in the integral P (y|w, x, β) is the model of the noise N (y;xTw, β) and the second term
P (w|y,Φ, λ, β) is the posterior of w, N (w; 1

βΣΦ−1y,Σ). Makes use of Eqn. 9 above we can see that this
integral has an analytic form as well, namely

P (y|x,w,Φ, λ, β) = N (y;xTΣΦ−1y,
1
β

+ xT ( 1
λ
I + 1

β
ΦTΦ)−1x)

Pictorially this looks like

Figure 6: The integration over w averages over “possible lines” yielding a distribution over predictions.

As we can see here even the predictive distribution is Gaussian in the Bayesian linear regression setting.
What does this mean though? By propagating uncertainty about the value of the weights throughout the
computation we get error bars on our predictions. Analyses using those are constrained by the model family
but otherwise are safer, in general, than using point estimates.

We may also note at this point a few important points that apply not only to this example to any inference
task treated in this way. First, MAP estimators can be interpreted as being a lot like estimator C in that the
regularization imposed by a prior can be used to inject knowledge about your guess as to what the parameter
value should be, injecting a form of bias that can be useful. Second, and perhaps more important pedagogically,
is that it should be acknowledged that the analytic kind of Bayesian posterior inference results derived for the
linear regression model do not exist for the predominant portion of definable models. This does not mean that
posterior inference is impossible, it simply means that the characterization of the posterior distribution might
need to be computational and approximate. C19 expands significantly on these kinds of techniques.

Perhaps the most important take-home from this requires one to step back from this specific regression
example to note that inference, i.e. asking a question about the nature of the world or making a prediction
about something yet to be seen, can be framed in terms of manipulation of conditional probabilities in a way
that is in keeping with Bayes rule plus integration of a test query against the resulting posterior.

Lastly, a particularly powerful generalization of these Gaussian results can be derived in the case of an
infinite dimensional parameter space, i.e. an infinite-dimensional Gaussian distribution known as the Gaus-
sian process. Additional non-examinable reading on these fascinating and surprisingly useful mathematical
constructs can be found in (Rasmussen, 2006).

8 Classification

Classification and regression are close cousins. In probabilistic regression we model the conditional distribu-
tion of output given input (features).
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Figure 7: Output y as a function of input features x

In 2-class classification we do the same except the output is discrete rather than continuous, e.g. yi = 1 =⇒
xi ∈ C1.2 The goal is to learn a conditional distribution of the class label given the input.
Imagine, in 1-D input for now, that we have data like

Figure 8

It’s clear that a linear regression fit to such data will do something with a decision rule like xi ∈ C1 if yi < 0.5
but such a rule a) doesn’t allow a sharp decision boundary and b) doesn’t have a coherent probabilistic inter-
pretation: i.e. what does output = 7 mean?

What we might like is 1) a “noise” distribution that penalizes misclassification appropriately and 2) a con-
trollable function that stretches input space. The Bernoulli distribution is just the ticket for 1). For any given yi
we can write

P (yi| . . . ) = pyii (1− pi)1−yi

which if we know P (yi = 1) = pi then “getting it right” has likelihood pi and wrong 1− pi. If pi = 0.9 and we
observe yi = 1 then we’re better than if we observe yi = 0. The only question is, what’s pi? We only know that
pi must be between 0 and 1; the choice is arbitrary past that.

For now, assume xi ∈ R. Let’s consider

pi = 1
1 + e−xiβ

the logistic sigmoid function. More generally

σ(x) = 1
1 + e−x

For large values of x, lim
x→∞

σ(x) = 1, and for small lim
x→−∞

σ(x) = 0. The function looks like

2Here C1 means ’Class 1’.

19



Figure 9: σ(x) = 1
1+e−x

This is a non-linear function that stretches x-space. One may shift this function by adding an offset

Figure 10: σ(x− a0) = 1
1+e−(x−a0)

or make the slope more or less steep by adding a weight in front of x

Figure 11: σ(a1x) = 1
1+e−(a1x)

The logistic sigmoid function has some nice properties which can be verified algebraically, for instance

1− σ(x) = σ(x)

and
dσ(x)
dx

= σ(1− σ(x))

8.1 Logistic Regression

With these choices, likelihood and non-linear transform, we get logistic regression classification which imposes
the following classification likelihood

p(Y = {y1, . . . , yN}|X = {x1, . . .xN};β) =
N∏
n=1

(
σ(xTnβ)

)yn (1− σ(xTnβ)
)1−yn (16)

where xn ∈ RD+1,β ∈ RD+1, yn ∈ {0, 1}, and xn =
[

1
xn

]
.

Given a dataset X,Y logistic regression learns a projection vector β that finds a linear decision boundary
that gracefully tolerates misclassifications as shown in the following figure.
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Figure 12: Linear decision surface formed in x space by logistic sigmoid function.

The standard question is, of course, how to train logistic regression. Maximum likelihood methods can be
employed here as per usual. It can be verified easily that

∂

∂β
logL(Y ,X;β) = ∂

∂β
log
(∏

n

(
σ(xTnβ)

)yn (1− σ(xTnβ)
)1−yn) (17)

=
∑
n

yn
(
σ(xTnβ)xTn

)
−
∑
n

(1− yn)
(
1− σ(xTnβ)

)
xTn (18)

which effectively pulls and pushes on β depending on the sign induced by the value of yn.
Unfortunately you may also verify that if you set this equal to 0 and attempt to solve for β you will not

arrive at an analytic solution.
While there are fancier techniques for quickly optimizing functions (see B1 and C25), including likelihoods,

it is worth driving home the utility of gradient descent/ascent as a general optimization technique, here used
for estimation of maximum likelihood parameters of a parametric classification model.

Revision: Gradient Ascent

Gradient ascent is the simplest and in some ways the most important tool in the statistics / machine learning
arsenal.

In 1D let’s say we have a function

x

y

y = f(x)

Figure 13: Some function y = f(x).

y = f(x), a starting point x0, and we would like to find the value xmax that maximizes f(x). If we are able to
compute the derivative of f with respect to x, df

dx then we can ascend f by starting at x0 and stepping in the

direction opposite that of df(x)
dx

∣∣∣
x0

.

This suggestions an iterative procedure for maximum likelihood estimation, a special case of function max-
imization, that is powerfully general if not always optimally efficient:

Algorithm 1 Gradient Ascent of f w.r.t. x given df
dx

1: η ← learning rate
2: x = x0 starting point
3: while still ascending do
4: x = x− η df(x)

dx

∣∣∣
x

return x

Some important things to note.
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Figure 14: Slope of some function y = f(x) evaluated at x0.

• If f is multimodal this procedure may ascend to a single non-optimal mode.

• η, the learning rate, is very important – too large and this procedure can diverge (think of resonating
back and forth across a quadratic hump by stepping too far every time) or too small and this procedure
might take forever to converge.

• These exact arguments and in fact the procedure works in high-dimensions with gradients; more serious
considerations apply though – see conjugate gradients (C25), adagrad, ADAM, etc.

As a practical consideration you should always check your gradient calculations and computation algo-
rithms by comparing your computed gradient to finite differences computed for each dimension via df(x)

dx

∣∣∣
x
≈

f(x+∆x)−f(x)
∆x for some small choice of ∆x ≈ 10e−5.

Back to Classification

What we have uncovered here is relatively profound, namely, that classification can be framed as probabilistic
regression with a different likelihood. Taking this view allows us to leverage all the techniques for parameter
estimation and inference for regression and apply them directly to classification. For instance regularizing
logistic regression can be seen as placing a prior on the classifier parameters β which might allow, for instance,
a larger number of features to be included in the classifier, potentially improving its performance. Maximum
likelihood parameter estimation can be used to train classifiers, so too can MAP inference. Fully Bayesian
treatments of classification require techniques beyond the scope of these lectures, however this too is possible.

It should be noted that the energy perspective of linear regression can be taken for classification as well,
in fact this is the primary perspective that has been taken by the field of machine learning for the last few
decades leading up until now. This perspective allows different objectives/losses to be considered (rather than
likelihood) (for example one could simply count the number of data-points correctly classified and attempt to
optimize that quantity directly). Different losses and different forms of regularization can be framed in the
energy minimization framework and these give rise to support vector machines and neural nets (also topics of
more advanced courses, though, in theory not terribly more difficult than anything covered here).

Having showed that regression and probabilistic approaches to classification are closely related, it is worth
noting that the regression approach is not the only approach to classification. In fact there are widely divergent
views on how to perform classification; they are, roughly

• Model p(x|y) and p(y) where y is the class of datum x then assign class via Bayes rule

p(y|x) = p(x|y)p(y)
p(x)

which requires learning the data distribution p(x) which is typically harder than the next approach (gen-
erative modeling, for instance Gaussian mixture models; covered in C19)

• Model p(y|x) directly (logistic and linear regression are examples)

• Learn f(x) : X → Y directly (function approximation without probabilistic interpretation)

9 Conclusion

To conclude these four lecture let’s consider inference, estimation, and classification.
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We have considered ML estimation in which a point estimate of a parameter within a particular model
family is found by maximizing a likelihood function. We have seen that in big N little p settings, meaning lots
of data and a few parameters, we can estimate model parameters, particularly in the model setting.

Further we can perform inference in two different ways; we can examine the sampling distribution of esti-
mators or we can compute posterior distributions of parameters. The former is called frequentist inference, the
latter Bayesian.

Perhaps as important as what has been taught in this course is what has been not. Mathematical statistics
for engineering and, for instance, inference as frequentist hypothesis testing for linear models is worth an
entire course as it may well be one of the most important and frequently used things you end up doing in your
career.

For expediency we have quickly moved to Bayesian methods of inference which have the convenience of
being easier to formalize coherently but the disadvantage of being less well recognized and used in the real
world, still, even today, though this is thankfully changing.

We have not dwelled for a long time on how to formulate a model, how to choose features, or how to
choose which inference questions to pose as posterior integrals. These are largely application specific and,
given sufficient exposure to a domain, easy-enough to come up with.

Finally, we have not covered Bayesian inference in any detail at all; notably not even given a treatment of
Bayesian inference in logistic regression. The conceptual framework should be clear now though, even if how
to compute or represent such a posterior is not.
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https://en.wikipedia.org/wiki/Gamma_function
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