Decision Trees and
Random Forests

Tom Rainforth
3YP Saving Oneself

23/01/17

Overview

e Motivation

e Supervised Learning

e Prediction using a Decision Tree

e Learning a Decision Tree

e Tree Ensembles and Random Forests
e Practicalities

e Extensions

Votivation

Votivation

o Extremely fast
* Training in O(NLA(log(N))?)
* Prediction in O(LIog(N))

* Jrivial to use - most packages require only the data
itselt

« Ambivalent to data type - continuous, categorical etc

* Exceptional “out-of-the-box” performance

Average Average Cohen’s k CCF Better

Rank Error (%) (%) Significance Level
Classifier R E K Ny p

svmPoly (SVM) 31.53 [15.73 1 65.10 | 54 | 25 | 2.3e-4
svmRadialCost (SVM) | 31.84 | 15.33 1 66.55| 43 | 36 | O0.11

svm_C (SVM) 32 1567 67.65| 46 | 32| 0.18

10 out of tOp 20 elm_kernel (NNET) | 32.19 | 1520 | 69.01 | 42 | 36 | 0.16
L
classitiers from SRadial VD 3377 1565 6588 | 50 25 | 1603
datasets are based
nnet.t (NNET) | 42.87 | 18.74 | 64.72 | 54 | 26 | 1.5¢-3

on ensemb|es Of avNNet_t (NNET) | 43.26 | 18.77 64.88 | 50 | 29 | 1.0e-3
C
decision trees. pcaNNet_t (NNET) | 45.86 | 19.28 | 63.83 | 54 | 25 | 1.5¢-4
mlp_t (NNET) | 46.06 | 17.38 | 66.75 | 54 | 26 | 1.6¢-3

LibSVM (SVM) | 46.50 | 16.65 63.80 | 57 | 21 | 2.9¢-6

MB_LibSVM (BST) |46.90 | 16.82 | 64.47
RRF_t (RF 49.56 | 16.71 | 66.30

[Rainforth & Wood 2015] N times N times
[Fernandez-Delgado et al 2014] CCF better CCF worse

Used for literally
everything

Detecting android malicious apps and categorizing benign apps with ensemble of
classifiers

W Wang, Y Li, X Wang, J Liu, X Zhang - Future Generation Computer ..., 2017 - Elsevier

3 days ago - Abstract Android platform has dominated the markets of smart mobile devices

in recent years. The number of Android applications (apps) has seen a massive surge.

Unsurprisingly, Android platform has also become the primary target of attackers. The

Cite Save

PoF] Preparation of high-dimensional biomedical data with a focus on prediction
and error estimation

R Hornung - 2016 - edoc.ub.uni-muenchen.de

3 days ago - Summary This thesis is based on three projects in which specific aspects of the
preparation of high-dimensional biomedical data play a central role. The first project is

concerned with the question of whether it is necessary to include data preparation steps in

Cite Save More

Generating 3D city models without elevation data

F Biljecki, H Ledoux, J Stoter - Computers, Environment and Urban Systems, 2017 - Elsevier
3 days ago - Abstract Elevation datasets (eg point clouds) are an essential but often
unavailable ingredient for the construction of 3D city models. We investigate in this paper to
what extent can 3D city models be generated solely from 2D data without elevation

Cite Save

PoF] Gx E contribution to leaf senescence during grain filling in wheat

F COLLIN - Forest - researchgate.net

3 days ago - Page 1. LATEX TikZposter GxE contribution to leaf senescence during grain filling

in wheat Frangois COLLIN PhD student at Abies, Paris - University of Nottingham (Supervisors:

J. FOULKES, P. and MO BANCAL) Lab: University of Nottingham, INRA and AgroParisTech (UMR
Cite Save More

poF] Classifying Multiple Sclerosis courses by combining clinical data with

Magnetic Resonance metabolic features and lesion loads

A lon-Margineanu, G Kocevar, C Stamile, DM Sima... - esat.kuleuven.ac.be

3 days ago - Abstract. Purpose. The purpose of this study is classifying multiple sclerosis
(MS) patients in the four clinical forms as defined by the McDonald criteria using machine
learning algorithms trained on clinical data combined with lesion loads and magnetic

Cite Save More

ML) Patient-Specific Predictive Modeling Using Random Forests: An
Observational Study for the Critically I
J Lee - JMIR Medical Informatics, 2017 - medinform.jmir.org

3 days ago - Background With a large-scale electronic health record repository, it is feasible
to build a customized patient outcome prediction model specificallv for a aiven patient. This

Trivial to Use

Size of forest (bigger the better)

/

RF = TreeBagger(200,XTrain,YTrain); % Training
preds = predict(RF,XTest); % Predict

Supervised Learning

N (samples)

\

Supervised Learning

X y

Samples | feature 1 feature M m
S type 1
S, type 2
Ss type 1
SN type 5

M (features or characteristics) /

y = 1(X)

[Tsanas 2015]

|_Inear Regression

f(X)=mx+cC

Al A A A
-

[Wikipedia]

Prediction using
Decision lrees

Decision lrees

* Predictive models that impose sequential divisions of
an input space

* This assigns points to “leafs”
* Prediction based on local leaf model

* Only need to consider binary trees (i.e. nodes split
into two children) as can rearrange to multiple splits

Decision Trees - Prediction

E’S IS sex male?

/N

no

is age > 9.57?

(survwed)

\ 0.73
é Is sibsp > 2 57?

36%

0.17 61%
4 Survwed I

0.05 2% 0.89 2%

[Wikipedia]

Decision Trees - Prediction

Root node

[Decmkanode\\

\ /TN

T < —0.71 r1 < —1.46

VAN SN

ro < —3.03 T < 2.81

N\ N\

\

L eaf node X1

Decision Trees - Prediction

T < —0.71 r1 < —1.46

VAN RN

x2 < —3.03 - 1 < 2.81

/ \ / \ . .xx . X xx >Bi><<>< ><><

Decision Trees - Prediction

ro < 1.42

T2 < —3.03

r1 < —1.46

SN

T < 2.81

N\

Decision Trees - Prediction

ro < 1.42

'

T < —0.71

N

r1 < —1.46

SN

T < 2.81

N\

Decision Trees - Prediction

ro < 1.42

T < —0.71

VAN

T2 < —3.03

S =

r1 < —1.46

SN

r1 < 2.81

N\

| earning a Decision
Tree

What makes a good split”

[Criminsini et al 2011]

Shannon Entropy

Measure of uncertainty

Expected amount of information conveyed in a message or
observation

HY]=-) ply=k)log,ply=Fk) Y ~p(y)
k=1

When b=2, measured In bits

Higher entropy means that less is known about the outcome,
thus corresponds to more evenly distributed probability

Lower Entropy = More certainty in outcome

Information Gain

The expected information gain is the reduction in entropy from one state to
another

Thus the information gain from a split is the entropy before the split minus
the entropy after the split

Need to weight the two post split entropies by the size of the respective
nodes

Ne Nri
1G = H[Y jvft H[Viet]]\fh“ H [Vrigh]

Calculate the entropies using the empirical distributions, i.e. p(y=k) is the
proportion of class k at the node.

Note that () - log(()) — () so empty classes have no effect. This also
means that the minimum entropy is O and occurs when only a single class

2 Before split

data before split

Splitting

class distribution

Info Gain = 0.40

top

left

bottom

0.8
0.6
0.4

0.2

right

0.8
0.6

0.4
0.2
0

[Criminsini et al 2011]

Splitting a Node - Exhaustive Search

0.5

 For each feature

0.4f 2050
S

* Sort data by that feature
* Calculate information
gain resulting in putting
the split between
consecutive data points
* Choose the spilit (i.e
feature + position)
that gives the

highest gain

* Place the split
halfway between the
two data points

Training - Putting it logether

1. Start with a root node with all the data points

2. Exhaustively search possible splits and choose the
best to create two new child nodes

3. Split the data into the new nodes. For each of these
go back to 2 and grow in a self similar fashion

4. Continue until all points in a node have the same
label or some other criterion is met (e.g. min number
of points in a node).

Overfitting

[]
)

Best scoring solution
perfectly separates the data

This can clearly assign more
structure than really exists

Always possible to construct
a function that fits the
training data perfectly but
does terribly on the test data

Need to regularise to reduce
the variance it estimates

Solution Complexity

[Wikipedia]

Pruning

Collapsing down some
nodes to a single leaf
node

Start at the leaves and
step upwards deciding
whether to collapse based
on some metric

Smaller tree that is less
prone to overtitting

Computational expensive
and unreliable

To < 1.42

N

G AN
[

AN

Iree Ensembples

A Better Approach:
Ensembples

Train lots of trees and average the predictions

Reduces the variance on prediction / less overfitting- not all
trees will make the same "mistakes”

Fundamentally more powerful model - can have more complex
decision boundaries

Massive performance improvements

Estimation of uncertainty - not all trees will make the same
prediction, particularly near the boundaries

No need to prune - can actually be faster!

: o
L 3 C/J
b ﬁ C =) &
TEER i ”;?‘r—*f:f"—_ff/ }"F’ g -
- il Lo e
i Leifi il SIS s
= o
(a) Slﬂgle “I’ee (¢c) RF (ntree=10000, mtry=1)

[Blaser & Fryzlewicz 2015]

Randomising Irees

* Jraining process previously described Is

completely deterministic and thus always produces
the same tree

* Need to iImpart some randomness to the training
Process

e [rade-off between diversity of the ensemble and
oredictive power of individual trees

Bootstrap Ssampling

e Sample with replacement a dataset of the same
Size

« Each sample is drawn independently from the full
dataset

for n=1:N
| ~ UniformDiscrete(1:N)
X'n = X

end

Bagging

e [rain each tree using a Dataset
slightly different dataset

 (Generate datasets by ¥
taking bootstrap
sampling - I.e. sample

with replacement a
dataset Of the Same Slze Learner Learne Learner oo Learne
1 2 3 m

e Predict by aggregating

the predictions of the
different trees Vote

[Beatrix Mathews 2016]

Bootstrap| |[Bootstrap] [Bootstrap o000 [Bootstrapj

Random Subspacing

At each node randomly select some subspace of
features to search over

1: Subsample features ids § by sampling from {1, ..., D})\ times without replacement.
2: Set X + X(:j(g)

This forces ditferent trees to split along different
dimensions at each node

As this changes the partitioning at the first few nodes,
this encourages further diversity at the latter nodes

Typically A << D

Random Forests

Use bagging and feature subspacing to de-
correlate trees

Aggregate the predictions by voting

One of the most successful algorithms of the 21st
century with ~26000 citations

Most people still use this “vanilla” version (better
variants to come later)

Random Forest Algorithm in Full (1)

Algorithm 1: TRAIN RANDOM FOREST

Inputs: Features X € RYVXP classes Y € IV*E number of features to sample A € {1,..., D}, number
of trees to construct L
Outputs: Forest of L trees 7.y,
I: for/e1: Ldo
2: Construct bootstrap sample of data { X, J,} by sampling N times with replacement from {X, J'}
3: Ty < GROWTREE(X,, V), \)

4: end for

See next slide

Random Forest Algorithm in Full (2)

Algorithm 2: GROWTREE

Inputs: Features X € RV*P classes Y € IV & number of features to sample A € {1,...,D}
Outputs: Subtree: a tuple {split dimension, split point, left branch, right branch} if root is a discriminant

node, otherwise a class label © € 11 %% representing a leaf.

1: Subsample features ids § by sampling from {1,..., D} X times without replacement.

2: Set X X(:’(;)

3: Epase = ENTROPY())

4: forv=1:Xdo

50 u <4 SORT(AX[. ,))

6: for: =2: Ndo > Exhaustive search on unique splits
7: Siv — (u; +ui—1)/2 > Split halfway between consecutive points.
8: Jge+—{je{l,..., N} : X;, < Si,} > Index of data points that would take left branch
9:]T%{LJN}\]E
10: Giv = Fhase — %ENTROPY()/(%:)) — %ENTROPY()/(%:)) > Information gain
11: end for > In practise gain is calculated by iterating from previous value to avoid N2 complexity.
12: end for

13: {i*,v"} = argmax; , G;,,
14: if G« ,» < 0 then
15: return MODE()) > Node becomes a leaf with class set to the most common class
16: end if

17: joe={j€{l,..., N} : Uj p» < Si=p+} > Index of data points taking left branch
18: jr — {177N}\]€
19: return {v*, i*, GROWTREE(Xj, .}, V(j,.),), GROWTREE(X(;, .y, V(..),A)}

Practicalities

Uncertainty

 Each tree has its own prediction, often these
predictions will disagree

* Can estimate probabilities rather by taking the
poroportion of trees that estimated that class

Number of Trees

 More the merrier - limited by computational budget

e 500 Is relatively standard

* More trees gives a smoother surface

[Criminsini et al 2011]

Subspace Size

* Usually makes surprisingly little difference and
often chosen for speed more than accuracy

e Avolid extreme values

« Common choices are A=D0%% and A=log2D

Gini Split Criterion

e Sometimes people use the Gini split criterion instead of
entropy

GINI(H)=1-) [p(jl1)]
J

p(jit) is the relative frequency of j at node t

e Maximum (1-1/n): records equally distributed in n classes
e Minimum 0: all records in one class

* Usually only makes minimal difference and neither is
particularly considered to be better on average than the
other

[Amr Barakat 2015]

Tree Ensembles vs Other Algorithms

Positives
* Very easy to use - 1 line of code
 Fast at train and test time

* State-of-the-art out-of-box
performance for many problems

* Easily deal with different data types

e Very simple compared to most
machine learning algorithms

* Decent robustness against
overfitting

* Great as a baseline before trying
some thing more involved

Negatives

* Little flexibility or ability to incorporate prior
knowledge

* Typically worse performance then deep
neural nets for huge datasets

* Vanilla RF poor on data with highly
correlated features (CCFs and Rotations
forests still good though)

* Can be quite dependent on the quality of
the features used - typically helpful to
preprocess data using some sort of feature
extractor

* Provides uncertainty estimates but these
often have poor accuracy

* Not good at extrapolation (though at the
end of the day nothing really is)

Uneven Classes

* Need to be caretul with any parameter tuning as
poredictive accuracy likely to be an unreliable metric
- just going for the most common class will do well

* |f you have more data than you can actually use, try
to generate a more even sample as training data

* Alternative you can also create an artificial dataset
with duplicate instances of the small classes to
balance them out

Extensions

Regression

e Same principle but leaves have a local regression model
(e.g. linear regression, Gaussian process) rather than a class

* Unlike classification, usually necessary to have a minimum
number of points in each leaf node for this local model

* [Less common than classification but still powertul
o‘\y l\y !\’y

Leaf 1 Leaf 2 Leaf 1 Leaf 2 Leaf 1 Leaf 2

Fig. 4.2: Example predictor models. Different possible predictor
models. (a) Constant. (b) Polynomial and linear. (¢) Probabilistic-

linear. The conditional distribution p(y|x) is returned in the latter.
[Criminsini et al 2011]

A 4

Regression (2)

» Use different split criterion, e.g. total variance
instead of entropy

v
}

Tree t=1

pi(ylv)
pi(ylv)

L p L
1 . y

Yy

Fig. 4.3: Regression forest: the ensemble model. The regression
forest posterior is simply the average of all individual tree posteriors

p(y|v) = 7 31— pe(yv).

[Criminsini et al 2011]

Custom Features

Instead of operating on the input data X directly, construct additional features X<-
[X,9(X)]
This allows more complex splits in the original space

2

For example, g(X) = (x4-a) +(><2—b)2 allows splitting on the distance from a point
(a,b)

More generally, use the output from some nonlinear feature generator such as a
neural net

Random Rotations

Randomly rotate the
dataset separately for
each tree

Reduces correlation
between trees which
can improve
performance

No longer restricted to
piecewise linear
decision surfaces =>
smoother

Can damage
performance when
little correlation
between features

e oG
|
\

Wi Sog fnsammn
e

(a) RF (ntree=1, mtry=1)

J
o

)
o 1

V\/:\/:K:L .
i

& //
i
e v,

(c) RF (ntree=10000, mtry=1)

(d) RR-RF (ntree=10000, mtry=1)

[Blaser & Fryzlewicz 2015]

Random Projections

* Similar to random rotations, but applied at each
node separately, rather than globally for each tree

* Again can give performance improvements or
worsen performance depending on dataset

* On average does slightly better than random
forests

Rotation Forests

Instead of projecting randomly, use principle component
analysis (PCA) on small groups of randomly sampled
features

Significantly reduces sensitivity to correlation between
features, without damaging performance when there is
little correlation

Typically does not use random subspacing => significantly
slower

Can give large performance improvements, particularly
when strong correlation

[Rodrigeuz et al 2006]

Extremely Randomizeo
Trees

 Choose splits randomly rather than in a principled
manner

* Amazingly can actually improve performance
compared with random forests in some situations

« Comparable performance on average

[Geurts et al 20006]

Canonical Correlation Forests

* Projectto ;‘ | ,{
maximally de- ! e o o
correlated space Do s T .
at each node |
using canonical .

correlation o R
analysis (CCA)

5 | PN
* Speed of random ;‘ : - A o
forests but with | | N
big improvements < \
in accuracy, Li o
particularly with 2
correlated data I T e

[Rainforth and Wood 2015]

Canonical Correlation Forests (2)

* Not being axis aligned means each tree can fit the data better

* Also reduces correlation between trees predictions which
improves accuracy further

Forests (3)

h 200 Trees

1ON

Canonical Correlat

1t

(b) RFw

le CART

ing

(a) S

¥ * g%%w%ww [
R &%&Wﬁﬂ ﬂ%x e 3

x

o

ith 200 Trees

(d) CCF w

le CCT

ing

(c)S

Uneven Voting

e Some trees may better than others

 Can get small performance improvements by not
weighting trees evenly

* For example weighting simpler trees higher or
using cross-validation schemes to calculate
welights

[Robnik-Sikonja 2004]

Useful Packages

Weka (stand alone) - http://www.cs.waikato.ac.nz/ml/weka/
- Gui with java back end. Operates on csv files and allows
lots of algorithms to be used at the same package

Scikit learn (python) - http://scikit-learn.org/stable/ - open
source package with lots of machine learning algorithms
built in.

TreeBagger (Matlab) - https://uk.mathworks.com/help/
stats/treebagger.html - in built random forest package

randomforest-matlab - https://code.google.com/archive/p/
randomforest-matlab/ - Faster open source matlab version

http://www.cs.waikato.ac.nz/ml/weka/
http://scikit-learn.org/stable/
https://uk.mathworks.com/help/stats/treebagger.html
https://code.google.com/archive/p/randomforest-matlab/

Useful Packages (2)

» Canonical correlation forests (matlab, python) - https://
bitbucket.org/twgr/ccf (matlab), https://github.com/
asross/oo_trees (python, not our implementation so no
guarantees) - our algorithm, state-of-the-art predictive
accuracy (classification only)

 C++ - https://github.com/bjoern-andres/random-forest

* R - https://www.tutorialspoint.com/r/
r_random_forest.ntm

https://bitbucket.org/twgr/ccf
https://github.com/asross/oo_trees
https://github.com/bjoern-andres/random-forest
https://www.tutorialspoint.com/r/r_random_forest.htm

Further Reading

Decision Forests for Classification, Regression, Density Estimation,
Manifold Learning and Semi-Supervised Learning. Criminisi et al 2014.
nttps://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/
decisionForests MSR TR 2011 114.pdf

Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 5-32.

Nando de Freitas’ lectures - https://youtu.be/-dCtJjIEEgM and https://
yvoutu.be/3kYujfDgmNk

A good high level introduction - https://www.analyticsvidhya.com/blog/
2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/

Self plug - Canonical correlation forests. Rainforth and Wood 2015. arXiv
preprint arXiv:1507.05444 (2015). https://arxiv.org/pdt/1507.05444 . pdf

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/decisionForests_MSR_TR_2011_114.pdf
https://youtu.be/-dCtJjlEEgM
https://youtu.be/3kYujfDgmNk
https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/
https://arxiv.org/pdf/1507.05444.pdf

Thanks for listening,
any questions?

Feel free to email me at twgr@robots.ox.ac.uk

mailto:twgr@robots.ox.ac.uk

