
Decision Trees and
Random Forests

Tom Rainforth
3YP Saving Oneself

23/01/17

Overview
• Motivation

• Supervised Learning

• Prediction using a Decision Tree

• Learning a Decision Tree

• Tree Ensembles and Random Forests

• Practicalities

• Extensions

Motivation

Motivation
• Extremely fast

• Training in O(NLλ(log(N))2)

• Prediction in O(Llog(N))

• Trivial to use - most packages require only the data
itself

• Ambivalent to data type - continuous, categorical etc

• Exceptional “out-of-the-box” performance

Average
Rank

Average
Error (%)

CCF Better
Significance Level

10 out of top 20
classifiers from
recent survey of 180
classifiers on 82
datasets are based
on ensembles of
decision trees.

CANONICAL CORRELATION FORESTS

Table 2: Number of victories column vs row at 1% significance level of Wilcoxon signed rank test

CCF RF Rotation Forest CCF-Bag

CCF - 2 7 3
RF 28 - 28 28
Rotation Forest 14 2 - 12
CCF-Bag 18 2 10 -

Table 3: Comparison of top 20 performing classifiers on 82 UCI datasets. R is the mean rank
over all 180 classifiers according to error rate; E is the mean error rate (%); is the mean Cohen’s
 (Carletta, 1996); ECCF and CCF are the respective values for CCFs on the datasets where the
competing classifier successfully ran (note CCFs successfully ran on all datasets); Nv and Nl are
the number of datasets where the CCFs was higher and lower than the classifier respectively; and p
is the p-value for whether the CCFs mean is higher using a Wilcoxon signed ranks test. Classifier
types: SVM = support vector machine, NNET = neural net, RF = random forest, Bag = bagging and
BST = boosting. For details on classifiers see (Fernández-Delgado et al., 2014).

Classifier R E ECCF CCF Nv Nl p
CCF 28.87 14.08 - 70.67 - - - -

svmPoly (SVM) 31.53 15.73 14.27 65.10 69.61 54 25 2.3e-4
svmRadialCost (SVM) 31.84 15.33 14.27 66.55 69.61 43 36 0.11

svm C (SVM) 32 15.67 14.18 67.65 70.49 46 32 0.18
elm kernel (NNET) 32.19 15.20 14.54 69.01 69.75 42 36 0.16

parRF (RF) 33.03 15.54 14.08 67.73 70.67 52 27 0.014
svmRadial (SVM) 33.77 15.68 14.27 65.88 69.61 50 28 1.6e-3

rf caret (RF) 34.48 15.56 14.18 67.67 70.49 54 23 6.3e-4
rforest R (RF) 40.70 15.82 14.18 66.67 70.49 57 20 2e-5

TreeBagger (RF) 40.91 15.75 14.08 67.51 70.67 55 23 3.5e-5
Bag LibSVM (Bag) 42.28 16.65 14.25 58.13 70.27 70 12 3.2e-12

C50 t (BST) 42.61 16.85 14.08 66.11 70.67 57 22 4.0e-4
nnet t (NNET) 42.87 18.74 14.08 64.72 70.67 54 26 1.5e-3

avNNet t (NNET) 43.26 18.77 14.08 64.88 70.67 50 29 1.0e-3
RotationForest 44.62 16.64 14.08 65.34 70.67 64 15 7.1e-9

pcaNNet t (NNET) 45.86 19.28 14.08 63.83 70.67 54 25 1.5e-4
mlp t (NNET) 46.06 17.38 14.08 66.75 70.67 54 26 1.6e-3

LibSVM (SVM) 46.50 16.65 14.08 63.80 70.67 57 21 2.9e-6
MB LibSVM (BST) 46.90 16.82 14.25 64.47 70.27 61 17 1.8e-6

RRF t (RF) 49.56 16.71 14.18 66.30 70.49 59 20 1.1e-5

CCF-Bag highlights the improvement from the projection bootstrap, while the good performance
on a large variety of datasets demonstrates the robustness and wide ranging applicability of CCFs.

4.2 Comparison to Other Classifiers

In order to provide comparison to a wider array of classifiers, we also tested CCFs using the experi-
ments of Fernández-Delgado et al (Fernández-Delgado et al., 2014) from their recent survey of 179
classifiers applied to 121 datasets. We used the same partitions which were a mix of 4-fold cross

11

CANONICAL CORRELATION FORESTS

Table 2: Number of victories column vs row at 1% significance level of Wilcoxon signed rank test

CCF RF Rotation Forest CCF-Bag

CCF - 2 7 3
RF 28 - 28 28
Rotation Forest 14 2 - 12
CCF-Bag 18 2 10 -

Table 3: Comparison of top 20 performing classifiers on 82 UCI datasets. R is the mean rank
over all 180 classifiers according to error rate; E is the mean error rate (%); is the mean Cohen’s
 (Carletta, 1996); ECCF and CCF are the respective values for CCFs on the datasets where the
competing classifier successfully ran (note CCFs successfully ran on all datasets); Nv and Nl are
the number of datasets where the CCFs was higher and lower than the classifier respectively; and p
is the p-value for whether the CCFs mean is higher using a Wilcoxon signed ranks test. Classifier
types: SVM = support vector machine, NNET = neural net, RF = random forest, Bag = bagging and
BST = boosting. For details on classifiers see (Fernández-Delgado et al., 2014).

Classifier R E ECCF CCF Nv Nl p
CCF 28.87 14.08 - 70.67 - - - -

svmPoly (SVM) 31.53 15.73 14.27 65.10 69.61 54 25 2.3e-4
svmRadialCost (SVM) 31.84 15.33 14.27 66.55 69.61 43 36 0.11

svm C (SVM) 32 15.67 14.18 67.65 70.49 46 32 0.18
elm kernel (NNET) 32.19 15.20 14.54 69.01 69.75 42 36 0.16

parRF (RF) 33.03 15.54 14.08 67.73 70.67 52 27 0.014
svmRadial (SVM) 33.77 15.68 14.27 65.88 69.61 50 28 1.6e-3

rf caret (RF) 34.48 15.56 14.18 67.67 70.49 54 23 6.3e-4
rforest R (RF) 40.70 15.82 14.18 66.67 70.49 57 20 2e-5

TreeBagger (RF) 40.91 15.75 14.08 67.51 70.67 55 23 3.5e-5
Bag LibSVM (Bag) 42.28 16.65 14.25 58.13 70.27 70 12 3.2e-12

C50 t (BST) 42.61 16.85 14.08 66.11 70.67 57 22 4.0e-4
nnet t (NNET) 42.87 18.74 14.08 64.72 70.67 54 26 1.5e-3

avNNet t (NNET) 43.26 18.77 14.08 64.88 70.67 50 29 1.0e-3
RotationForest 44.62 16.64 14.08 65.34 70.67 64 15 7.1e-9

pcaNNet t (NNET) 45.86 19.28 14.08 63.83 70.67 54 25 1.5e-4
mlp t (NNET) 46.06 17.38 14.08 66.75 70.67 54 26 1.6e-3

LibSVM (SVM) 46.50 16.65 14.08 63.80 70.67 57 21 2.9e-6
MB LibSVM (BST) 46.90 16.82 14.25 64.47 70.27 61 17 1.8e-6

RRF t (RF) 49.56 16.71 14.18 66.30 70.49 59 20 1.1e-5

CCF-Bag highlights the improvement from the projection bootstrap, while the good performance
on a large variety of datasets demonstrates the robustness and wide ranging applicability of CCFs.

4.2 Comparison to Other Classifiers

In order to provide comparison to a wider array of classifiers, we also tested CCFs using the experi-
ments of Fernández-Delgado et al (Fernández-Delgado et al., 2014) from their recent survey of 179
classifiers applied to 121 datasets. We used the same partitions which were a mix of 4-fold cross

11

CANONICAL CORRELATION FORESTS

Table 2: Number of victories column vs row at 1% significance level of Wilcoxon signed rank test

CCF RF Rotation Forest CCF-Bag

CCF - 2 7 3
RF 28 - 28 28
Rotation Forest 14 2 - 12
CCF-Bag 18 2 10 -

Table 3: Comparison of top 20 performing classifiers on 82 UCI datasets. R is the mean rank
over all 180 classifiers according to error rate; E is the mean error rate (%); is the mean Cohen’s
 (Carletta, 1996); ECCF and CCF are the respective values for CCFs on the datasets where the
competing classifier successfully ran (note CCFs successfully ran on all datasets); Nv and Nl are
the number of datasets where the CCFs was higher and lower than the classifier respectively; and p
is the p-value for whether the CCFs mean is higher using a Wilcoxon signed ranks test. Classifier
types: SVM = support vector machine, NNET = neural net, RF = random forest, Bag = bagging and
BST = boosting. For details on classifiers see (Fernández-Delgado et al., 2014).

Classifier R E ECCF CCF Nv Nl p
CCF 28.87 14.08 - 70.67 - - - -

svmPoly (SVM) 31.53 15.73 14.27 65.10 69.61 54 25 2.3e-4
svmRadialCost (SVM) 31.84 15.33 14.27 66.55 69.61 43 36 0.11

svm C (SVM) 32 15.67 14.18 67.65 70.49 46 32 0.18
elm kernel (NNET) 32.19 15.20 14.54 69.01 69.75 42 36 0.16

parRF (RF) 33.03 15.54 14.08 67.73 70.67 52 27 0.014
svmRadial (SVM) 33.77 15.68 14.27 65.88 69.61 50 28 1.6e-3

rf caret (RF) 34.48 15.56 14.18 67.67 70.49 54 23 6.3e-4
rforest R (RF) 40.70 15.82 14.18 66.67 70.49 57 20 2e-5

TreeBagger (RF) 40.91 15.75 14.08 67.51 70.67 55 23 3.5e-5
Bag LibSVM (Bag) 42.28 16.65 14.25 58.13 70.27 70 12 3.2e-12

C50 t (BST) 42.61 16.85 14.08 66.11 70.67 57 22 4.0e-4
nnet t (NNET) 42.87 18.74 14.08 64.72 70.67 54 26 1.5e-3

avNNet t (NNET) 43.26 18.77 14.08 64.88 70.67 50 29 1.0e-3
RotationForest 44.62 16.64 14.08 65.34 70.67 64 15 7.1e-9

pcaNNet t (NNET) 45.86 19.28 14.08 63.83 70.67 54 25 1.5e-4
mlp t (NNET) 46.06 17.38 14.08 66.75 70.67 54 26 1.6e-3

LibSVM (SVM) 46.50 16.65 14.08 63.80 70.67 57 21 2.9e-6
MB LibSVM (BST) 46.90 16.82 14.25 64.47 70.27 61 17 1.8e-6

RRF t (RF) 49.56 16.71 14.18 66.30 70.49 59 20 1.1e-5

CCF-Bag highlights the improvement from the projection bootstrap, while the good performance
on a large variety of datasets demonstrates the robustness and wide ranging applicability of CCFs.

4.2 Comparison to Other Classifiers

In order to provide comparison to a wider array of classifiers, we also tested CCFs using the experi-
ments of Fernández-Delgado et al (Fernández-Delgado et al., 2014) from their recent survey of 179
classifiers applied to 121 datasets. We used the same partitions which were a mix of 4-fold cross

11

Cohen’s κ

(%)

N times
CCF better

N times
CCF worse

[Rainforth & Wood 2015]
[Fernandez-Delgado et al 2014]

Used for literally
everything

Trivial to Use
Size of forest (bigger the better)

Supervised Learning

Supervised LearningSupervised learning setting

Samples feature 1 feature 2 ... feature M
S1 3.1 1.3 0.9

S2 3.7 1.0 1.3

S3 2.9 2.6 0.6

…

SN 1.7 2.0 0.7

Outcome
type 1

type 2

type 1

…

type 5 N
 (s

am
pl

es
)

M (features or characteristics)

y

yy = f (X)

X

[Tsanas 2015]

Linear Regression

x

y

f(x)=mx+c

[Wikipedia]

Prediction using
Decision Trees

• Predictive models that impose sequential divisions of
an input space

• This assigns points to “leafs”
• Prediction based on local leaf model
• Only need to consider binary trees (i.e. nodes split

into two children) as can rearrange to multiple splits

Decision Trees

Decision Trees - Prediction

[Wikipedia]

Decision Trees - Prediction

x2 < 1.42

x1 < �1.46x1 < �0.71

x1 < 2.81x2 < �3.03

x1

x2

Root node

Decision node

Leaf node

x2 < 1.42

x1 < �1.46x1 < �0.71

x1 < 2.81x2 < �3.03

Decision Trees - Prediction

x1

x2

x2 < 1.42

x1 < �1.46x1 < �0.71

x1 < 2.81x2 < �3.03

Decision Trees - Prediction

x1

x2

x2 < 1.42

x1 < �1.46x1 < �0.71

x1 < 2.81x2 < �3.03

Decision Trees - Prediction

x1

x2

x2 < 1.42

x1 < �1.46x1 < �0.71

x1 < 2.81x2 < �3.03

Decision Trees - Prediction

x1

x2

Learning a Decision
Tree

What makes a good split?
22 Classification forests

Fig. 3.1: Classification: training data and tree training. (a) In-
put data points. The ground-truth label of training points is denoted
with di↵erent colours. Grey circles indicate unlabelled, previously un-
seen test data. (b) A binary classification tree. During training a set of
labelled training points {v} is used to optimize the parameters of the
tree. In a classification tree the entropy of the class distributions asso-
ciated with di↵erent nodes decreases (the confidence increases) when
going from the root towards the leaves.

Given a labelled training set learn a general mapping which as-

sociates previously unseen test data with their correct classes.

The need for a general rule that can be applied to “not-yet-
available” test data is typical of inductive tasks.1 In classification the
desired output is of discrete, categorical, unordered type. Consequently,
so is the nature of the training labels. In fig. 3.1a data points are de-
noted with circles, with di↵erent colours indicating di↵erent training
labels. Testing points (not available during training) are indicated in
grey.

More formally, during testing we are given an input test data v
and we wish to infer a class label c such that c 2 C, with C = {c

k

}.
More generally we wish to compute the whole distribution p(c|v). As

1
As opposed to transductive tasks. The distinction will become clearer later.

[Criminsini et al 2011]

Shannon Entropy
• Measure of uncertainty

• Expected amount of information conveyed in a message or
observation 
 
 

• When b=2, measured in bits

• Higher entropy means that less is known about the outcome,
thus corresponds to more evenly distributed probability

• Lower Entropy = More certainty in outcome

H[Y] = �
KX

k=1

p(y = k) logb p(y = k) Y ⇠ p(y)

Information Gain
• The expected information gain is the reduction in entropy from one state to

another

• Thus the information gain from a split is the entropy before the split minus
the entropy after the split

• Need to weight the two post split entropies by the size of the respective
nodes 
 

• Calculate the entropies using the empirical distributions, i.e. p(y=k) is the
proportion of class k at the node.

• Note that so empty classes have no effect. This also
means that the minimum entropy is 0 and occurs when only a single class

IG = H[Y]� Nleft

N
H[Yleft]�

Nright

N
H[Yright]

0 · log(0) = 0

Splitting
10 The random decision forest model

Fig. 2.3: Information gain for discrete, non-parametric distri-
butions. (a) Dataset S before a split. (b) After a horizontal split. (c)
After a vertical split.

fig. 2.4.
Figure 2.3a shows a number of data points on a 2D space. Di↵er-

ent colours indicate di↵erent classes/groups of points. In fig. 2.3a the
distribution over classes is uniform because we have exactly the same
number of points in each class. If we split the data horizontally (as
shown in fig. 2.3b) this produces two sets of data. Each set is asso-
ciated with a lower entropy (higher information, peakier histograms).
The gain of information achieved by splitting the data is computed as

I = H(S)�
X

i2{1,2}

|Si|
|S| H(Si)

with the Shannon entropy defined mathematically as: H(S) =
�
P

c2C p(c) log(p(c)). In our example a horizontal split does not sep-
arate the data well, and yields an information gain of I = 0.4. When
using a vertical split (such as the one in fig. 2.3c) we achieve better
class separation, corresponding to lower entropy of the two resulting
sets and a higher information gain (I = 0.69). This simple example
shows how we can use information gain to select the split which pro-
duces the highest information (or confidence) in the final distributions.
This concept is at the basis of the forest training algorithm.

[Criminsini et al 2011]

0

0.1

0.2

0.3

0.4

0.5

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Splitting a Node - Exhaustive Search

• For each feature
• Sort data by that feature
• Calculate information

gain resulting in putting
the split between
consecutive data points

• Choose the split (i.e
feature + position)
that gives the
highest gain

• Place the split
halfway between the
two data points

Training - Putting it Together
1. Start with a root node with all the data points

2. Exhaustively search possible splits and choose the
best to create two new child nodes

3. Split the data into the new nodes. For each of these
go back to 2 and grow in a self similar fashion

4. Continue until all points in a node have the same
label or some other criterion is met (e.g. min number
of points in a node).

Overfitting
• Best scoring solution

perfectly separates the data

• This can clearly assign more
structure than really exists

• Always possible to construct
a function that fits the
training data perfectly but
does terribly on the test data

• Need to regularise to reduce
the variance it estimates

[Wikipedia]
Solution Complexity

Optimum

Pruning
• Collapsing down some

nodes to a single leaf
node

• Start at the leaves and
step upwards deciding
whether to collapse based
on some metric

• Smaller tree that is less
prone to overfitting

• Computational expensive
and unreliable

x2 < 1.42

x1 < �1.46x1 < �0.71

x1 < 2.81x2 < �3.03

x2 < 1.42

x1 < �1.46x1 < �0.71

x1 < 2.81x2 < �3.03

x2 < 1.42

x1 < �1.46x1 < �0.71

x1 < 2.81x2 < �3.03

Tree Ensembles

A Better Approach:
Ensembles

• Train lots of trees and average the predictions

• Reduces the variance on prediction / less overfitting- not all
trees will make the same “mistakes”

• Fundamentally more powerful model - can have more complex
decision boundaries

• Massive performance improvements

• Estimation of uncertainty - not all trees will make the same
prediction, particularly near the boundaries

• No need to prune - can actually be faster!

Random Rotation Ensembles

Figure 1: Comparison of the decision boundary for the standard random forest algorithm
(RF, left column) and the modified version with randomly rotated feature space for each
tree (RR-RF, right column) on the binary classification task of chapter 2 of Hastie et al.
(2009). The top row illustrates a typical decision boundary for a single tree, while the
bottom row depicts a fully grown ensemble comprised of 10000 trees in each case. Ntree
is the total number of trees in the forest, mtry the number of randomly selected features
considered at each decision node.

(a) RF (ntree=1, mtry=1) (b) RR-RF (ntree=1, mtry=1)

(c) RF (ntree=10000, mtry=1) (d) RR-RF (ntree=10000, mtry=1)

5

Random Rotation Ensembles

Figure 1: Comparison of the decision boundary for the standard random forest algorithm
(RF, left column) and the modified version with randomly rotated feature space for each
tree (RR-RF, right column) on the binary classification task of chapter 2 of Hastie et al.
(2009). The top row illustrates a typical decision boundary for a single tree, while the
bottom row depicts a fully grown ensemble comprised of 10000 trees in each case. Ntree
is the total number of trees in the forest, mtry the number of randomly selected features
considered at each decision node.

(a) RF (ntree=1, mtry=1) (b) RR-RF (ntree=1, mtry=1)

(c) RF (ntree=10000, mtry=1) (d) RR-RF (ntree=10000, mtry=1)

5

Single Tree

[Blaser & Fryzlewicz 2015]

Randomising Trees
• Training process previously described is

completely deterministic and thus always produces
the same tree

• Need to impart some randomness to the training
process

• Trade-off between diversity of the ensemble and
predictive power of individual trees

Bootstrap Sampling
• Sample with replacement a dataset of the same

size

• Each sample is drawn independently from the full
dataset 
 
for n=1:N 
 i ~ UniformDiscrete(1:N)  
 x’n = xi 
end

Bagging
• Train each tree using a

slightly different dataset

• Generate datasets by
taking bootstrap
sampling - i.e. sample
with replacement a
dataset of the same size

• Predict by aggregating
the predictions of the
different trees

[Beatrix Mathews 2016]

Random Subspacing
• At each node randomly select some subspace of

features to search over  
 

• This forces different trees to split along different
dimensions at each node

• As this changes the partitioning at the first few nodes,
this encourages further diversity at the latter nodes

• Typically λ << D

RAINFORTH AND WOOD

Algorithm 1: GROWTREE

Inputs: Features X 2 RN⇥D, classes Y 2 IN⇥K , number of features to sample � 2 {1, . . . , D}
Outputs: Subtree: a tuple {subspace ids, projection vector, split point, left branch, right branch} if root is a

discriminant node, otherwise a class label u 2 11⇥K representing a leaf.
1: Subsample features ids � by sampling from {1, . . . , D} � times without replacement.
2: Set X X

(:,�)

3: Construct a bootstrap sample of data {X 0
,Y 0} by sampling N data points with replacement from {X ,Y}

4: [�,⌦] = CCA(X 0
,Y 0) . Calculate CCA coefficients using bootstrap sample

5: U = X� . Project original features into canonical component space
6: E

base

= ENTROPY(Y) . Could alternatively use, for example, Gini criterion.
7: for ⌫ = 1 : ⌫

max

do . ⌫

max

= min (rank (X 0) , rank (Y 0)) is number of canonical coefficient pairs
8: u SORT(U

(:,⌫))
9: for i = 2 : N do . Exhaustive search on unique splits

10: Si,⌫ (ui + ui�1

)/2 . Split halfway between consecutive points.
11: j` {j 2 {1, . . . , N} : Uj,⌫ Si,⌫}
12: jr {1, . . . , N} \j`
13: Gi,⌫ = E

base

� kj`k0

N ENTROPY(Y
(j`,:))�

kjrk0

N ENTROPY(Y
(jr,:)) . Information gain

14: end for . In practise gain is calculated by iterating from previous value to avoid N

2 complexity.
15: end for
16: {i⇤, ⌫⇤} = argmaxi,⌫ Gi,⌫

17: if Gi⇤,⌫⇤ 0 then
18: return Y 0

(1,:)
19: end if
20: j` = {j 2 {1, . . . , N} : Uj,⌫⇤ Si⇤,⌫⇤}
21: jr = {1, . . . , N}\j`
22: return

�
�, �

(:,⌫⇤
)

, Si⇤,⌫⇤
, GROWTREE(X

(j`,:),Y(j`,:),�), GROWTREE(X
(jr,:),Y(jr,:),�)

Specifically given the array of sampled subset of features X and a 1-of-K encoding of the class
labels Y 2 RN⇥1 ! Y 2 IN⇥K we calculate

[�,⌦] = CCA (X ,Y) (5)

where � and ⌦ are the canonical coefficients corresponding to X and Y respectively. We then search
over the possible unique splits using the feature canonical components X�. Choosing a split in the
space of X� defines a projection vector �j (corresponding to one of the columns of �) and split
point sj pair. Together these form a hyperplane split. Note that the CCA is only required during the
training phase with the splitting rule (4) used directly for out of sample prediction.

Although the CCF training algorithm still uses feature subspacing (sampling � features) in the
same way as RF, it does not use bagging2. Instead we introduce the projection bootstrap which
calculates � using a local bootstrap sample of the data points {X 0

,Y 0}, but then searches over
possible splits in the projected space X� using the original dataset {X ,Y} such that no information
is discarded in the choice of {�j , sj} given �.

As with RFs, out of sample prediction for the CCF is done using an equally weighted voting
scheme of the tree predictions. The predictive probability assigned to a certain class is thus the
proportion of trees that predicted the class.

2. An exception to this is that bagging is used instead of the projection bootstrap when the number of features to be
sampled, �, is equal to the total number of present features. This is done to avoid overfitting.

8

Random Forests
• Use bagging and feature subspacing to de-

correlate trees

• Aggregate the predictions by voting

• One of the most successful algorithms of the 21st
century with ~26000 citations

• Most people still use this “vanilla” version (better
variants to come later)

CANONICAL CORRELATION FORESTS

Algorithm 1: TRAIN RANDOM FOREST

Inputs: Features X 2 RN⇥D, classes Y 2 IN⇥K , number of features to sample � 2 {1, . . . , D}, number
of trees to construct L

Outputs: Forest of L trees T1:L
1: for ` 2 1 : L do
2: Construct bootstrap sample of data {X 0

`,Y 0
`} by sampling N times with replacement from {X,Y}

3: T` GROWTREE(X 0
`,Y 0

`,�)
4: end for

Algorithm 2: GROWTREE

Inputs: Features X 2 RN⇥D, classes Y 2 IN⇥K , number of features to sample � 2 {1, . . . , D}
Outputs: Subtree: a tuple {split dimension, split point, left branch, right branch} if root is a discriminant

node, otherwise a class label u 2 1

1⇥K representing a leaf.
1: Subsample features ids � by sampling from {1, . . . , D} � times without replacement.
2: Set X X(:,�)

3: Ebase = ENTROPY(Y)

4: for ⌫ = 1 : � do
5: u SORT(X(:,⌫))

6: for i = 2 : N do . Exhaustive search on unique splits
7: Si,⌫ (ui + ui�1)/2 . Split halfway between consecutive points.
8: j` {j 2 {1, . . . , N} : Xj,⌫ Si,⌫} . Index of data points that would take left branch
9: jr {1, . . . , N} \j`

10: Gi,⌫ = Ebase � kj`k0

N ENTROPY(Y(j`,:))�
kjrk0

N ENTROPY(Y(jr,:)) . Information gain
11: end for . In practise gain is calculated by iterating from previous value to avoid N2 complexity.
12: end for
13: {i⇤, ⌫⇤} = argmaxi,⌫ Gi,⌫

14: if Gi⇤,⌫⇤ 0 then
15: return MODE(Y) . Node becomes a leaf with class set to the most common class
16: end if
17: j` = {j 2 {1, . . . , N} : Uj,⌫⇤ Si⇤,⌫⇤} . Index of data points taking left branch
18: jr = {1, . . . , N}\j`
19: return

�
⌫⇤, i⇤, GROWTREE(X(j`,:),Y(j`,:),�), GROWTREE(X(jr,:),Y(jr,:),�)

3

See next slide

Random Forest Algorithm in Full (1)

CANONICAL CORRELATION FORESTS

Algorithm 1: TRAIN RANDOM FOREST

Inputs: Features X 2 RN⇥D, classes Y 2 IN⇥K , number of features to sample � 2 {1, . . . , D}, number
of trees to construct L

Outputs: Forest of L trees T1:L
1: for ` 2 1 : L do
2: Construct bootstrap sample of data {X 0

`,Y 0
`} by sampling N times with replacement from {X,Y}

3: T` GROWTREE(X 0
`,Y 0

`,�)
4: end for

Algorithm 2: GROWTREE

Inputs: Features X 2 RN⇥D, classes Y 2 IN⇥K , number of features to sample � 2 {1, . . . , D}
Outputs: Subtree: a tuple {split dimension, split point, left branch, right branch} if root is a discriminant

node, otherwise a class label u 2 1

1⇥K representing a leaf.
1: Subsample features ids � by sampling from {1, . . . , D} � times without replacement.
2: Set X X(:,�)

3: Ebase = ENTROPY(Y)

4: for ⌫ = 1 : � do
5: u SORT(X(:,⌫))

6: for i = 2 : N do . Exhaustive search on unique splits
7: Si,⌫ (ui + ui�1)/2 . Split halfway between consecutive points.
8: j` {j 2 {1, . . . , N} : Xj,⌫ Si,⌫} . Index of data points that would take left branch
9: jr {1, . . . , N} \j`

10: Gi,⌫ = Ebase � kj`k0

N ENTROPY(Y(j`,:))�
kjrk0

N ENTROPY(Y(jr,:)) . Information gain
11: end for . In practise gain is calculated by iterating from previous value to avoid N2 complexity.
12: end for
13: {i⇤, ⌫⇤} = argmaxi,⌫ Gi,⌫

14: if Gi⇤,⌫⇤ 0 then
15: return MODE(Y) . Node becomes a leaf with class set to the most common class
16: end if
17: j` = {j 2 {1, . . . , N} : Uj,⌫⇤ Si⇤,⌫⇤} . Index of data points taking left branch
18: jr = {1, . . . , N}\j`
19: return

�
⌫⇤, i⇤, GROWTREE(X(j`,:),Y(j`,:),�), GROWTREE(X(jr,:),Y(jr,:),�)

3

Random Forest Algorithm in Full (2)

Practicalities

Uncertainty

• Each tree has its own prediction, often these
predictions will disagree

• Can estimate probabilities rather by taking the
proportion of trees that estimated that class

Number of Trees
• More the merrier - limited by computational budget

• 500 is relatively standard

• More trees gives a smoother surface

26 Classification forests

Fig. 3.3: A first classification forest and the e↵ect of forest size
T . (a) Training points belonging to two classes. (b) Di↵erent training
trees produce di↵erent partitions and thus di↵erent leaf predictors. The
colour of tree nodes and edges indicates the class probability of training
points going through them. (c) In testing, increasing the forest size
T produces smoother class posteriors. All experiments were run with
D = 2 and axis-aligned weak learners. See text for details.

data which is “di↵erent” than the training data. The larger the di↵er-
ence, the larger the uncertainty. Thanks to all trees being di↵erent from
one another, increasing the forest size from T = 1 to T = 200 produces
much smoother posteriors (fig. 3.3c

3

). Now we observe higher confi-
dence near the training points and lower confidence away from training
regions of space; an indication of good generalization behaviour.

For few trees (e.g. T = 8) the forest posterior shows clear box-
like artifacts. This is due to the use of an axis-aligned weak learner
model. Such artifacts yield low quality confidence estimates (especially

[Criminsini et al 2011]

Subspace Size
• Usually makes surprisingly little difference and

often chosen for speed more than accuracy

• Avoid extreme values

• Common choices are λ=D0.5 and λ=log2D

Gini Split Criterion
• Sometimes people use the Gini split criterion instead of

entropy 
 
 
 
 
 

• Usually only makes minimal difference and neither is
particularly considered to be better on average than the
other

[Amr Barakat 2015]

Tree Ensembles vs Other Algorithms

Positives

• Very easy to use - 1 line of code

• Fast at train and test time

• State-of-the-art out-of-box
performance for many problems

• Easily deal with different data types

• Very simple compared to most
machine learning algorithms

• Decent robustness against
overfitting

• Great as a baseline before trying
some thing more involved

Negatives

• Little flexibility or ability to incorporate prior
knowledge

• Typically worse performance then deep
neural nets for huge datasets

• Vanilla RF poor on data with highly
correlated features (CCFs and Rotations
forests still good though)

• Can be quite dependent on the quality of
the features used - typically helpful to
preprocess data using some sort of feature
extractor

• Provides uncertainty estimates but these
often have poor accuracy

• Not good at extrapolation (though at the
end of the day nothing really is)

Uneven Classes
• Need to be careful with any parameter tuning as

predictive accuracy likely to be an unreliable metric
- just going for the most common class will do well

• If you have more data than you can actually use, try
to generate a more even sample as training data

• Alternative you can also create an artificial dataset
with duplicate instances of the small classes to
balance them out

Extensions

Regression
• Same principle but leaves have a local regression model

(e.g. linear regression, Gaussian process) rather than a class
• Unlike classification, usually necessary to have a minimum

number of points in each leaf node for this local model
• Less common than classification but still powerful

50 Regression forests

Fig. 4.2: Example predictor models. Di↵erent possible predictor
models. (a) Constant. (b) Polynomial and linear. (c) Probabilistic-
linear. The conditional distribution p(y|x) is returned in the latter.

input is represented as a multi-dimensional feature response vector
v = (x

1

, · · · , x
d

) 2 Rd.

Why regression forests? A regression forest is a collection of ran-
domly trained regression trees (fig. 4.3). Just like in classification it
can be shown that a forest generalizes better than a single over-trained
tree.

A regression tree (fig. 4.1b) splits a complex nonlinear regression
problem into a set of smaller problems which can be more easily handled
by simpler models (e.g. linear ones; see also fig.4.2). Next we specify
the precise nature of each model component.

The prediction model. The first job of a decision tree is to decide
which branch to direct the incoming data to. But when the data reaches
a terminal node then that leaf needs to make a prediction.

The actual form of the prediction depends on the prediction model.
In classification we have used the pre-stored empirical class posterior as
model. In regression forests we have a few alternatives, as illustrated in
fig. 4.2. For instance we could use a polynomial function of a subspace
of the input v. In the low dimensional example in the figure a generic
polynomial model corresponds to y(x) =

P
n

i=0

w
i

xi. This simple model
also captures the linear and constant models (see fig. 4.2a,b).

In this paper we are interested in output confidence as well as its

[Criminsini et al 2011]

Regression (2)
4.2. Specializing the decision forest model for regression 51

Fig. 4.3: Regression forest: the ensemble model. The regression
forest posterior is simply the average of all individual tree posteriors
p(y|v) = 1

T

P
T

t=1

p
t

(y|v).

actual value. Thus for prediction we can use a probability density func-
tion over the continuous variable y. So, given the tth tree in a forest
and an input point v, the associated leaf output takes the form p

t

(y|v).
In the low-dimensional example in fig. 4.2c we assume an underlying
linear model of type y = w

0

+w
1

x and each leaf yields the conditional
p(y|x).

The ensemble model. Just like in classification, the forest output
is the average of all tree outputs (fig. 4.3):

p(y|v) = 1

T

TX

t

p
t

(y|v)

A practical justification for this model was presented in section 2.2.5.

Randomness model. Like in classification here we use a random-
ized node optimization model. Therefore, the amount of randomness
is controlled during training by the parameter ⇢ = |T

j

|. The random
subsets of split parameters T

j

can be generated on the fly when training

[Criminsini et al 2011]

• Use different split criterion, e.g. total variance
instead of entropy

Custom Features
• Instead of operating on the input data X directly, construct additional features X<-

[X,g(X)]

• This allows more complex splits in the original space

• For example, g(X) = (x1-a)2+(x2-b)2 allows splitting on the distance from a point
(a,b)

• More generally, use the output from some nonlinear feature generator such as a
neural net

Random Rotations
• Randomly rotate the

dataset separately for
each tree

• Reduces correlation
between trees which
can improve
performance

• No longer restricted to
piecewise linear
decision surfaces =>
smoother

• Can damage
performance when
little correlation
between features

Random Rotation Ensembles

Figure 1: Comparison of the decision boundary for the standard random forest algorithm
(RF, left column) and the modified version with randomly rotated feature space for each
tree (RR-RF, right column) on the binary classification task of chapter 2 of Hastie et al.
(2009). The top row illustrates a typical decision boundary for a single tree, while the
bottom row depicts a fully grown ensemble comprised of 10000 trees in each case. Ntree
is the total number of trees in the forest, mtry the number of randomly selected features
considered at each decision node.

(a) RF (ntree=1, mtry=1) (b) RR-RF (ntree=1, mtry=1)

(c) RF (ntree=10000, mtry=1) (d) RR-RF (ntree=10000, mtry=1)

5

[Blaser & Fryzlewicz 2015]

Random Projections

• Similar to random rotations, but applied at each
node separately, rather than globally for each tree

• Again can give performance improvements or
worsen performance depending on dataset

• On average does slightly better than random
forests

Rotation Forests
• Instead of projecting randomly, use principle component

analysis (PCA) on small groups of randomly sampled
features

• Significantly reduces sensitivity to correlation between
features, without damaging performance when there is
little correlation

• Typically does not use random subspacing => significantly
slower

• Can give large performance improvements, particularly
when strong correlation

[Rodrigeuz et al 2006]

Extremely Randomized
Trees

• Choose splits randomly rather than in a principled
manner

• Amazingly can actually improve performance
compared with random forests in some situations

• Comparable performance on average

[Geurts et al 2006]

Canonical Correlation Forests
• Project to

maximally de-
correlated space
at each node
using canonical
correlation
analysis (CCA)

• Speed of random
forests but with
big improvements
in accuracy,
particularly with
correlated data

RAINFORTH AND WOOD

x1
-2 0 2 4 6

x 2
-3

-2

-1

0

1

2

3

4

5

?1 x
-2 -1 0 1 2

?
2 x

-4

-3

-2

-1

0

1

2

?1 x
-2 -1 0 1 2

?
2 x

-4

-3

-2

-1

0

1

2

Information
Gain

0 0.5 1
In

fo
rm

at
io

n
G

ai
n

0

0.5

1

x1
-2 0 2 4 6

x 2

-3

-2

-1

0

1

2

3

4

5

x1
-2 0 2 4 6

x 2

-3

-2

-1

0

1

2

3

4

5

x1
-2 0 2 4 6

x 2

-3

-2

-1

0

1

2

3

4

5

Figure 2: High level demonstration of CCT training process. The first step is to take a random subset
of the features X to consider at the particular node (top left, as a two dimensional problem has been
considered for demonstration purposes, this subset of features actually corresponds to all of the
features in this example). Next a canonical correlation analysis is carried out between feature and
class labels: [�,⌦] = CCA (X 0

,Y 0) where Y 0 is a 1-of-K representation of the class labels, � and
⌦ are the canonical coefficients for the features and classes respectively, and the 0 is used to indicate
that the CCA is carried out using a bootstrap sample of the original data. The original features
are then projected to their corresponding canonical components X� (top right). A split criterion
(e.g. information gain) is calculated for each of the possible unqiue splits (splits are always taken
halfway between the two closest points) in this projected space (bottom right). The split with the
highest gain is selected for splitting, implying a hyperplane split in the original space (bottom left).
The process is then repeated on each partitions this split creates, recurring until the partition has
no advantageous split. The partition then becomes a leaf and is assigned a class label. The tree
is complete (see Figure 3) when all branches have reached termination. Out of sample prediction
corresponds to assigning the class of the partition the new point falls into.

6

[Rainforth and Wood 2015]

Canonical Correlation Forests (2)
• Not being axis aligned means each tree can fit the data better

• Also reduces correlation between trees predictions which
improves accuracy further

CANONICAL CORRELATION FORESTS

x1
-2 0 2 4 6

x 2

-3

-2

-1

0

1

2

3

4

5

?1 x
-2 -1 0 1 2

?
2 x

-4

-3

-2

-1

0

1

2

?1 x
-2 -1 0 1 2

?
2 x

-4

-3

-2

-1

0

1

2

Information
Gain

0 0.5 1

In
fo

rm
at

io
n

G
ai

n

0

0.5

1

x1
-2 0 2 4 6

x 2

-3

-2

-1

0

1

2

3

4

5

x1
-2 0 2 4 6

x 2

-3

-2

-1

0

1

2

3

4

5

x1
-2 0 2 4 6

x 2

-3

-2

-1

0

1

2

3

4

5

Figure 3: Tree resulting from the axis aligned decision tree algorithm CART Breiman et al. (1984)
(left) and CCT (right) on dataset from demonstration in Figure 2. It is clear that the partitioning the
CART tree defines is inferior due to axis-aligned splitting restriction and will give worse predictive
performance.

is then defined such that

B (�j,1, t) = B (j, t) \
�
z 2 RD : zT�j sj

B (�j,2, t) = B (j, t) \
�
z 2 RD : zT�j > sj

.

(4)

Thus defines a hierarchical partitioning procedure that deterministically assigns data points to
leaf nodes, which then deterministically assign a particular class.

3.2 Canonical Correlation Forest Training Algorithm

As with most decision tree methods, CCTs are trained in a greedy, top down procedure as shown
at high level in Figure 2 and more formally in Algorithm 1. We use to denote assignment and
MATLAB notation with subscript parentheses for indexing such that a colon indicates all the values
along a dimension, a vector index indicates assignment to the corresponding subarray. Note that
Algorithm 1 is self similar for sub-trees, starting with the full dataset and recursively calling itself
until no split is beneficial. Each call to Algorithm 1 corresponds to a node in final tree, forming
a decision node if it recurses further and a leaf node otherwise. Random subspacing is used such
that only a random subset of � features is considered at any particular node (for which categorical
features are still viewed as corresponding to a single feature).

In classical decision tree algorithms, splits are chosen by exhaustively calculating a split crite-
rion, such as Gini gain (Breiman et al., 1984) or information gain (Quinlan, 2014), for all possible
unique axis-aligned partitioning. The key difference for CCTs is that a CCA is first carried out be-
tween the subsampled features and classes, with the exhaustive search then performed in the space
of the canonical components of the features rather than the original values.

7

Canonical Correlation Forests (3)
CANONICAL CORRELATION FORESTS

(a) Single CART (b) RF with 200 Trees

(c) Single CCT (d) CCF with 200 Trees

Figure 1: Decision surfaces for artificial spirals dataset. (a) Shows the hierarchical partitions and
surface for a single axis aligned tree while (b) shows the effect of averaging over a number of,
individually randomized, axis aligned trees. (c) Shows a single canonical correlation tree (CCT) and
(d) demonstrates that averaging over CCTs to give a canonical correlation forest leads to “smoother”
decision surfaces which better represent the data than the axis aligned equivalent.

3

Uneven Voting

• Some trees may better than others

• Can get small performance improvements by not
weighting trees evenly

• For example weighting simpler trees higher or
using cross-validation schemes to calculate
weights

[Robnik-Sikonja 2004]

Useful Packages
• Weka (stand alone) - http://www.cs.waikato.ac.nz/ml/weka/

- Gui with java back end. Operates on csv files and allows
lots of algorithms to be used at the same package

• Scikit learn (python) - http://scikit-learn.org/stable/ - open
source package with lots of machine learning algorithms
built in.

• TreeBagger (Matlab) - https://uk.mathworks.com/help/
stats/treebagger.html - in built random forest package

• randomforest-matlab - https://code.google.com/archive/p/
randomforest-matlab/ - Faster open source matlab version

http://www.cs.waikato.ac.nz/ml/weka/
http://scikit-learn.org/stable/
https://uk.mathworks.com/help/stats/treebagger.html
https://code.google.com/archive/p/randomforest-matlab/

Useful Packages (2)
• Canonical correlation forests (matlab, python) - https://

bitbucket.org/twgr/ccf (matlab), https://github.com/
asross/oo_trees (python, not our implementation so no
guarantees) - our algorithm, state-of-the-art predictive
accuracy (classification only)

• C++ - https://github.com/bjoern-andres/random-forest

• R - https://www.tutorialspoint.com/r/
r_random_forest.htm

https://bitbucket.org/twgr/ccf
https://github.com/asross/oo_trees
https://github.com/bjoern-andres/random-forest
https://www.tutorialspoint.com/r/r_random_forest.htm

Further Reading
• Decision Forests for Classification, Regression, Density Estimation,

Manifold Learning and Semi-Supervised Learning. Criminisi et al 2014.
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/
decisionForests_MSR_TR_2011_114.pdf

• Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 5-32.

• Nando de Freitas’ lectures - https://youtu.be/-dCtJjlEEgM and https://
youtu.be/3kYujfDgmNk

• A good high level introduction - https://www.analyticsvidhya.com/blog/
2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/

• Self plug - Canonical correlation forests. Rainforth and Wood 2015. arXiv
preprint arXiv:1507.05444 (2015). https://arxiv.org/pdf/1507.05444.pdf

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/decisionForests_MSR_TR_2011_114.pdf
https://youtu.be/-dCtJjlEEgM
https://youtu.be/3kYujfDgmNk
https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/
https://arxiv.org/pdf/1507.05444.pdf

Thanks for listening,
any questions?

Feel free to email me at twgr@robots.ox.ac.uk

mailto:twgr@robots.ox.ac.uk

