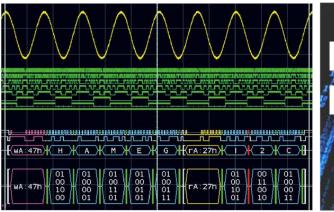
A practical overview of data analysis methodology

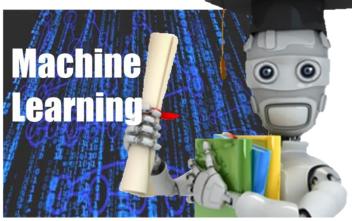
Dr Athanasios Tsanas ('Thanasis')

Oxford Centre for Industrial and Applied Mathematics Institute of Biomedical Engineering, Dept. of Engineering Science Sleep and Circadian Neuroscience Institute, Dept. of Medicine

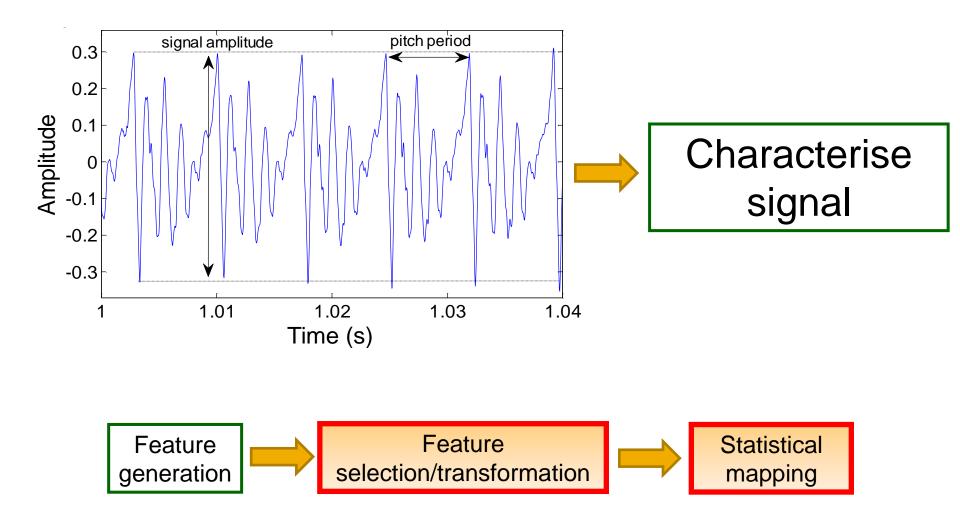
My research

www.time series

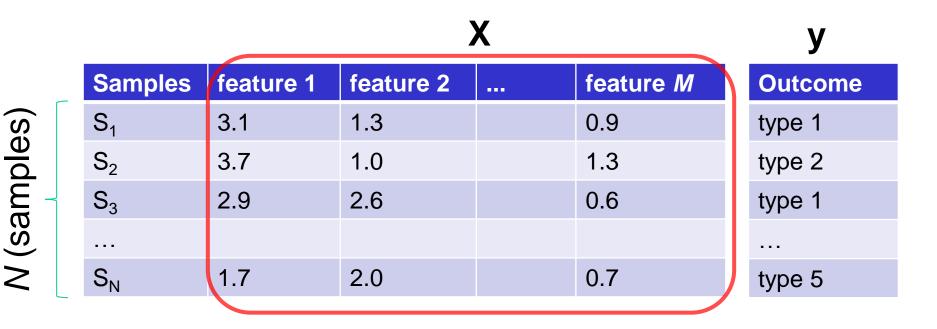




The BIG picture



Supervised learning setting



M (features or characteristics)

$$\mathbf{y} = f(\mathbf{X})$$

f: mapping

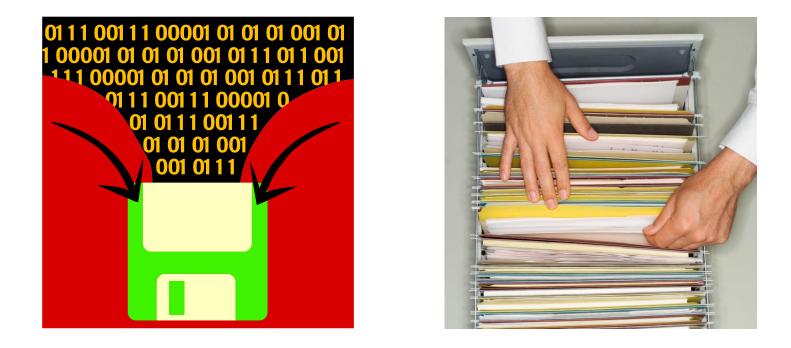
X: Design matrix y: outcome

Thin and fat datasets

Sa mp les	f1	f2	 feature <i>M</i>
S ₁	3.1	1.3	0.9
S_2	3.7	1.0	1.3
S ₃	2.9	2.6	0.6
S_N	1.7	2.0	0.7

Samples	feature 1	feature 2	 feature M
S ₁	3.1	1.3	0.9
S ₂	3.7	1.0	1.3
S ₃	2.9	2.6	0.6
S _N	1.7	2.0	0.7

Curse of dimensionality



Many features M © Curse of dimensionality

Solution to the problem

Reduce the initial feature space M

into *m* (or *m*<<*M*)

Feature selection

Feature transformation

Feature transformation

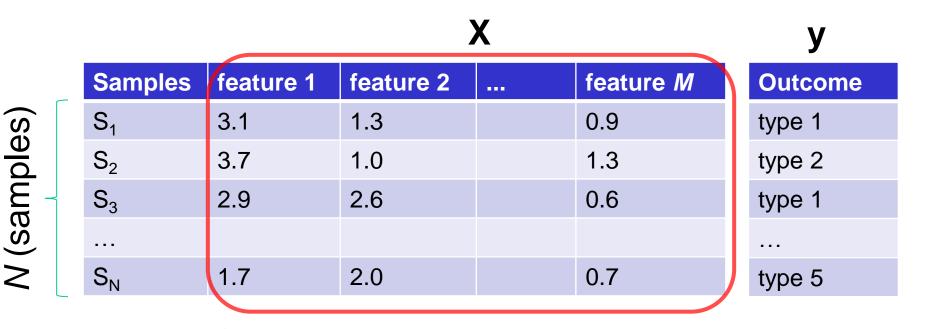
Manifold embedding (e.g. PCA)

Not easily interpretable

Feature selection

- Minimal feature subset with maximal predictive power
- Interpretable

Reminder: supervised learning



M (features or characteristics)

$$\mathbf{y} = f(\mathbf{X})$$

f: mapping

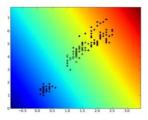
X: Design matrix y: outcome

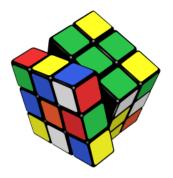
Functional mapping

 $\mathbf{y} = f(\mathbf{X})$

Simple approaches (LDA, kNN...)

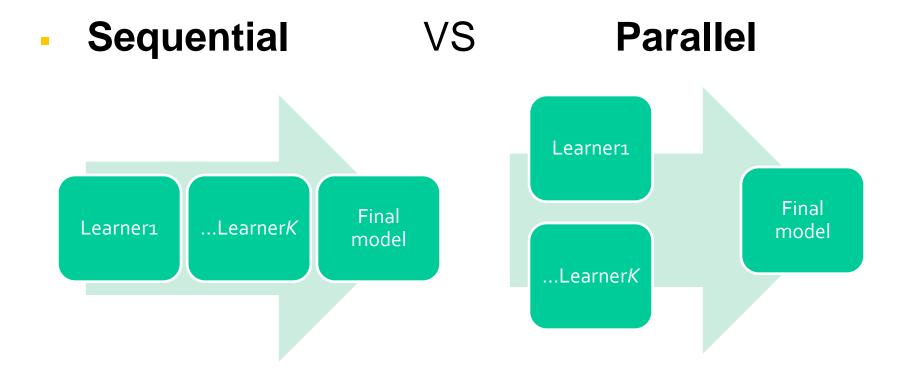
Support Vector Machines (SVM)





Ensembles

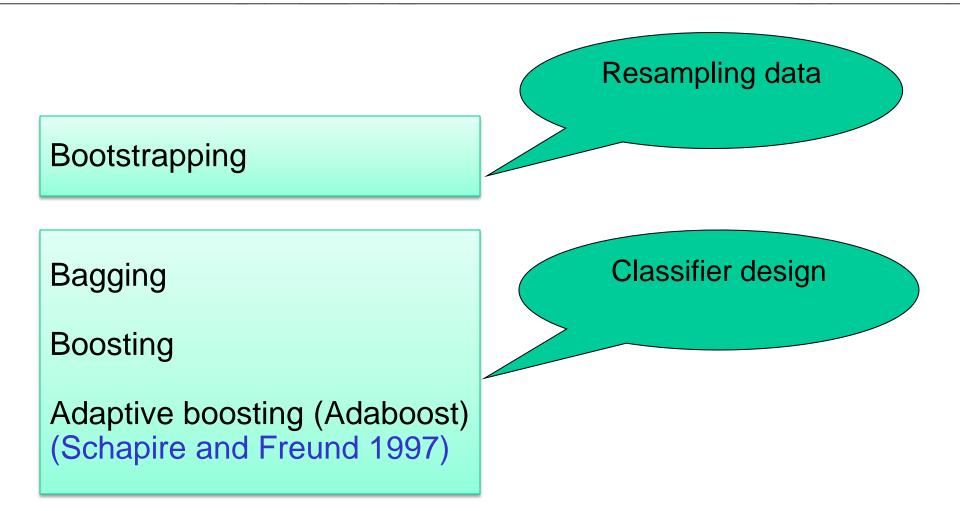
Ensemble = combination of learners



Ensembles founding question

"Can a set of weak learners create a single strong learner?"

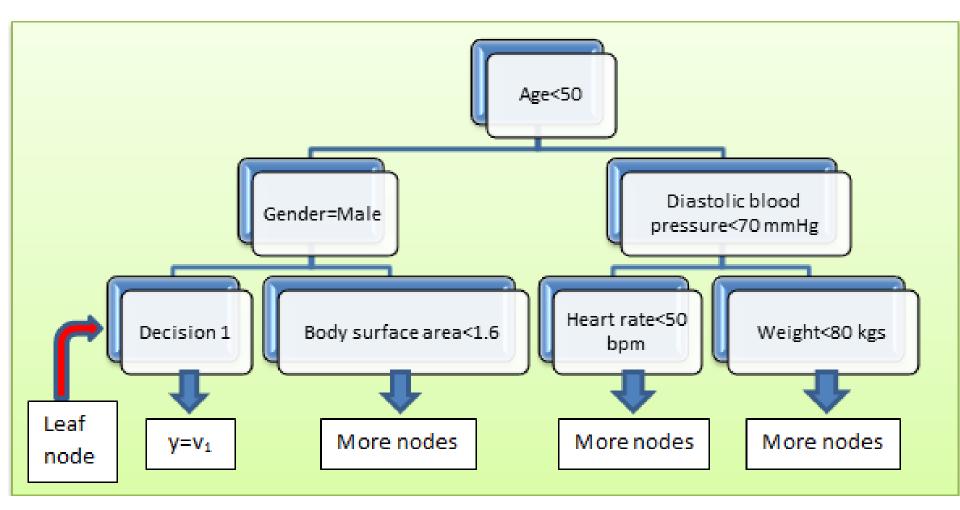
A brief history of ensembles



Decision trees

Powerful, conceptually simple learners

Decision trees: an example



Tree growing process I

Find best split & partitioning data into two sub-regions (nodes)

Exhaustive search

• Determine the pairs of half-planes $\{R_1(j,s), R_2(j,s)\}$:

$$\begin{cases} R_1(j,s) = \{ \mathbf{X} | \mathbf{f}_j \le s \} \\ R_2(j,s) = \{ \mathbf{X} | \mathbf{f}_j > s \} \end{cases}$$

Stop when data in the node is below some threshold (min. node size)

Tree growing process II

• Optimal feature f_i and splitting point *s* according to loss function:

$$\min_{j,s} \left[\min_{c_1} \sum_{x_i \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_2(j,s)} (y_i - c_2)^2 \right]$$

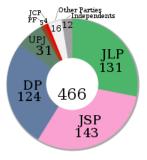
where c_1 , c_2 are the mean values of the y_i in the node when using the sum of squares as the loss function

$$\begin{cases} c_1 = mean(y_i | \mathbf{x}_i \in R_1(j, s)) \\ c_2 = mean(y_i | \mathbf{x}_i \in R_2(j, s)) \end{cases}$$

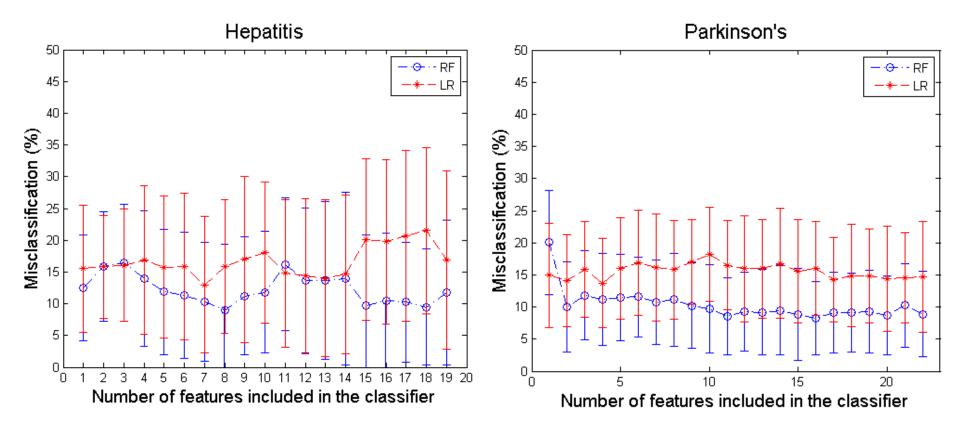
Equations differ depending on the loss function to be optimized

Random Forests (RF)

- Parallel combination of decision trees
- Use many decision trees (typically 500)
- Bagging
- Each tree, each node accesses (\sqrt{M}) features
- Majority voting

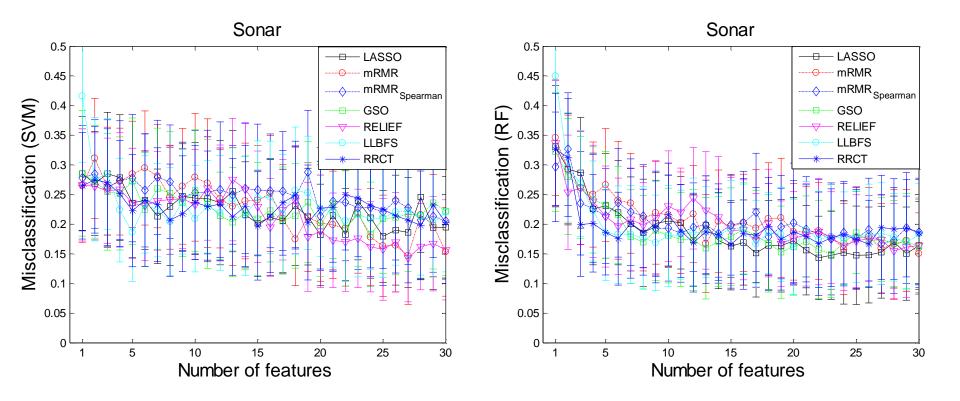


Some results



Comparing Logistic Regression (LR) with Random Forests (RF)

Some results



 Comparing Support Vector Machines with Random Forests on one dataset

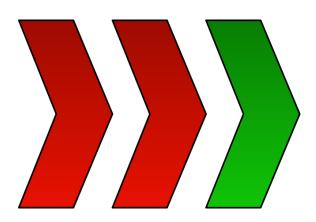
Final remarks on Random Forests

- State of the art learner
- Very robust to hyper-parameter selection (just use it off-the-shelf!)
- Bonus: provides feature importance scores
- Weakness: cannot capture well linear relationships (works in steps internally)
- Powerful in multi-class classification settings

Boosting and adaptive boosting

 Boosting: reduce bias by combining sequential learners

Adaptive boosting: adjust the weights of the samples





Sequential ensemble: Adaboost

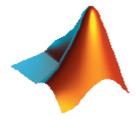
- Train sequential learners
- Introduce weights on misclassified samples
- Sensitive to noise and outliers in the data
- No overfitting claims; late results → can overfit data
- Can be used with different types of base learners
- Convergence if all learners are better than chance

Adaboost

- Given $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1...N}, \mathbf{x}_i \in \Re^M \text{ and } \mathbf{y}_i \in \{+1, -1\}$
- Initialize the weights \mathbf{D}_1 , for each of the samples: $\mathbf{D}_1(i) = \frac{1}{N}$
- For $t = 1 \dots T$ sequential weak learners
- Find the learner $f(\mathbf{D}_t): \min(\{L(\mathbf{y}_i, \hat{\mathbf{y}}_i)\}_{i \in \mathbf{D}_t})$
- Ensure that the weak learner is better than chance (0.5)
- Update weights $\mathbf{D}_{t+1}(i) = f(\mathbf{D}_t(i), \hat{y}_i \neq y_i)$
- Free parameter: influence of misclassified samples

Summary of Adaboost

- Easy to implement
- Generic framework can work with any type of learner
- Competitive with Random Forests no clear winner
- Variants for robustness (see Matlab's native function "fitensemble")



Instead of bootstrapping (RF), uses sample reweighting

Instead of majority voting (RF), uses weighted voting

Explicitly revisits samples misclassified by previous weak learners

Choosing algorithms

- What kind of data do you have? Labeled data? Data growing daily?
- Often the biggest practical challenge is creating or obtaining enough training data
- For many problems and algorithms, hundreds or thousands of examples from each class are required to produce a high performance classifier
- Number of samples, features, correlations, interactions... use plots.
- **No free lunch theorem**: no universally best learner!

Thanasis' rules of thumb

- Get to **know your data before any processing!**
- (1) plot densities and scatter plots univariate analysis and intuitive "feel", perhaps these suggest simple data transformation
- (2) compute correlations and correlation matrix, identify interactions (e.g. via partial correlations and conditional mutual information)
- (3) Feature selection a simple guide: if there are low correlations use LASSO, if there are few (low) interactions use mRMR
- (4) In my experience, SVMs may work better for binary-class classification problems, and RF may work better for multi-class classification problems

I would strongly advise testing both SVM and RF (and possibly other statistical mapping algorithms) in the problems you study

Appendix: food for thought

• A Unifying Review of Linear Gaussian Models

http://www.cs.nyu.edu/~roweis/papers/NC110201.pdf

an excellent paper by Sam Roweis and Zoubin Ghahramani unifying linear models

Statistical modelling: the two cultures

http://faculty.smu.edu/tfomby/eco5385/lecture/Breiman%27s%20Two %20Cultures%20paper.pdf

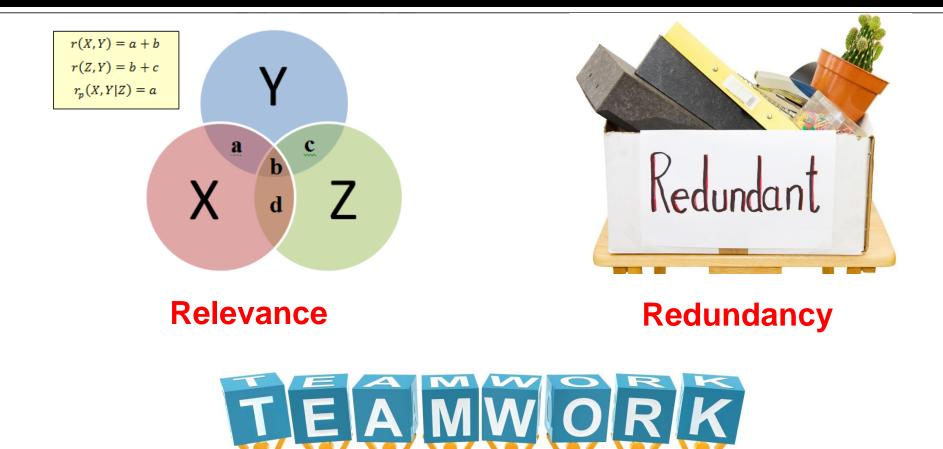
Great introduction: first principles versus statistical modelling by Leo Breiman

Relations Between Machine Learning Problems

http://videolectures.net/nipsworkshops2011_williamson_machine/ Check out these lectures!

Additional Slides

Feature selection concepts



Complementarity

LASSO (L1 regularization)

- Start with classical ordinary least squares regression
- L1 penalty: sparsity promoting, some coefficients become 0

$$\hat{\mathbf{b}}_{LASSO} = \arg\min_{b} \sum_{i=1}^{N} \left(y_i - \sum_{j=1}^{M} x_{ij} b_j \right)^2 + \lambda \sum_{j=1}^{M} |b_j|$$

where λ is the regularization parameter (increasing λ causes more coefficients to become 0)

- Possible to introduce additional penalties, e.g. L2-norm
- L2 penalty: shrinkage in the regression coefficients

RELIEF

- Concept: work with nearest neighbours
- Nearest hit (NH) and nearest miss (NM)
- Great for datasets with interactions but does not account for information redundancy

$$W(\mathbf{f}_{j}) \stackrel{\text{def}}{=} \frac{1}{q} \sum_{i=1}^{q} \begin{cases} & \underbrace{-\frac{1}{|\mathsf{NH}(\mathbf{x}_{i})|} \cdot \sum_{\mathbf{x}_{n} \in \mathsf{NH}(\mathbf{x}_{i})} ||x_{i,j} - x_{n,j}|| + }_{Nearest hit term distance} \\ & \underbrace{\sum_{y_{l} \neq y_{i}} \frac{1}{|\mathsf{NM}(\mathbf{x}_{i})|} \cdot \frac{\mathsf{P}(y = y_{l})}{1 - \mathsf{P}(y = y_{i})}}_{1 - \mathsf{P}(y = y_{i})} & \cdot \sum_{\mathbf{x}_{n} \in \mathsf{NM}(\mathbf{x}_{i})} ||x_{i,j} - x_{n,j}|| \end{cases}$$

- minimum Redundancy Maximum Relevance (mRMR)
- Generally works very well

$$mRMR = \max_{i \in Q-S} \left[\underbrace{I(\mathbf{f}_i; \mathbf{y})}_{relevance} - \frac{1}{\|S\|} \underbrace{\sum_{s \in S} I(\mathbf{f}_i; \mathbf{f}_s)}_{redundancy} \right]$$

Where ||S|| refers to the *cardinality* of the selected subset (number of selected features until that step)

My new algorithm RRCT

The best result will come when everyone in the group doing what is best for himself... and the group.

https://www.youtube.com/watch?v=LJS7Igvk6ZM

$$\operatorname{RRCT} \stackrel{\text{\tiny def}}{=} \max_{i \in Q-S} \left[\underbrace{r_{\mathrm{IT}}(\mathbf{f}_{i}; \mathbf{y})}_{relevance} - \frac{1}{|S|} \underbrace{\sum_{\substack{s \in S \\ redundancy}}}_{redundancy} + \underbrace{\left[sign(r_{p}(\mathbf{f}_{i}; \mathbf{y}|S)) \cdot sign(r_{p}(\mathbf{f}_{i}; \mathbf{y}|S) - r(\mathbf{f}_{i}; \mathbf{y})) \right] \cdot r_{p,\mathrm{IT}}}_{complementarity} \right]$$

My new algorithm RRCT

Relevance & Redundancy trade-off

$$\mathbf{D} = -0.5 \cdot \log \begin{bmatrix} 1 - r_1^2 & 1 - \rho_{12}^2 & \dots & 1 - \rho_{1M}^2 \\ 1 - \rho_{12}^2 & 1 - r_2^2 & \dots & 1 - \rho_{2M}^2 \\ \vdots & \vdots & \ddots & \vdots \\ 1 - \rho_{1M}^2 & 1 - \rho_{2M}^2 & \dots & 1 - r_M^2 \end{bmatrix}$$

Complementarity

$$r_{\mathrm{p}}(X,Y|Z) = \frac{r(X,Y) - r(X,Z) \cdot r(Y,Z)}{\sqrt{r^2(X,Z)} \cdot \sqrt{r^2(Y,Z)}}$$

My new algorithm RRCT

- Normalizing pdfs of variables
- $r_{IT} = -0.5 \cdot \log(1 r^2)$ Information theoretic transformation 2 1.8 1.6 Asymptotically tending Information content to infinity 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0.2 -0.8 -0.2 0.8 -0.6 -0.4 0 0.4 0.6 -1 1

Correlation coefficient

Validation setting

- Matching 'true' feature subset
 - Possible only for <u>artificial datasets</u>

Maximize the out of sample prediction performance

- o adds an additional 'layer': the learner
- o potential problem: **feature exportability**
- BUT... in practice this is really what is of most interest!

Dataset info

2/	n A	A a a	7	
Dataset	Design matrix	Associated task	Туре	
MONK1 ³⁵	124×6	Classification (2 classes)	D (6)	
Artificial 1	500×150	Classification (2 classes)	C(150)	
Artificial 2	1000×100	Classification (10 classes)	C(100)	
Hepatitis	155×19	Classification (2 classes)	C (17), D (2)	
Parkinson's ³⁵	195×22	Classification (2 classes)	C (22)	
Sonar ³⁵	208×60	Classification (2 classes)	C (60)	
Wine ³⁵	178×13	Classification (3 classes)	C (13)	
Image segmentation ³⁵	2310×19	Classification (7 classes)	C (16), D (3)	
Cardiotocography ³⁵	2129×21	Classification (10 classes)	C (14), D (7)	
Ovarian cancer	72×592	Classification (2 classes)	C (592)	
SRBCT	88×2308	Classification (4 classes)	C (2308)	

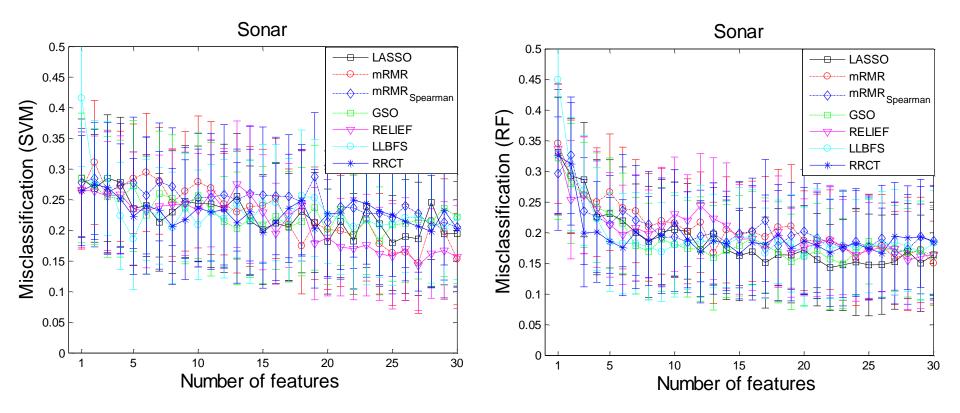
False Discovery Rate (FDR)

Artificial datasets with known ground truth



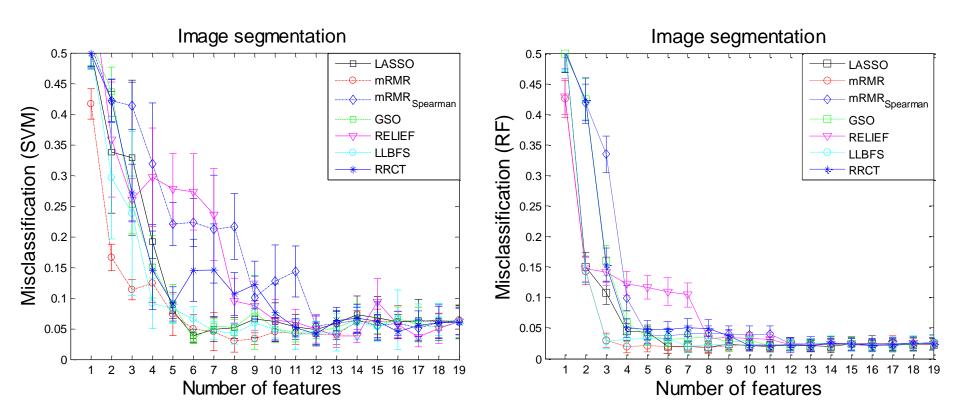
Indicative performance

Classifier accuracy as proxy for FS accuracy



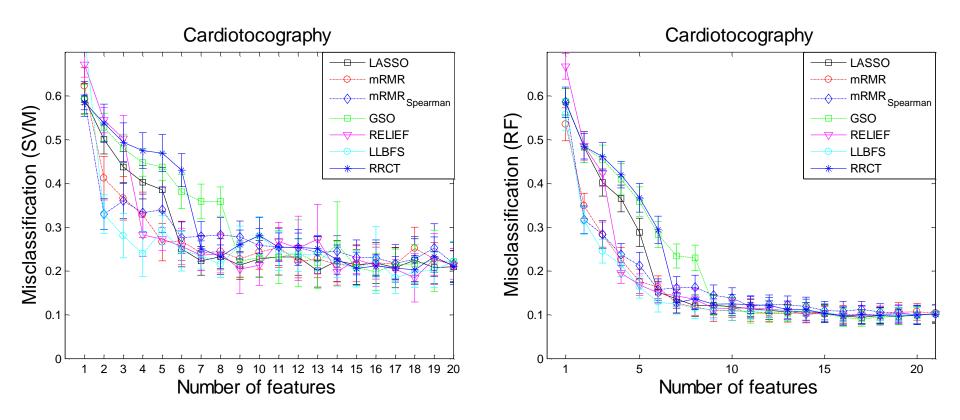
Indicative performance

Classifier accuracy as proxy for FS accuracy



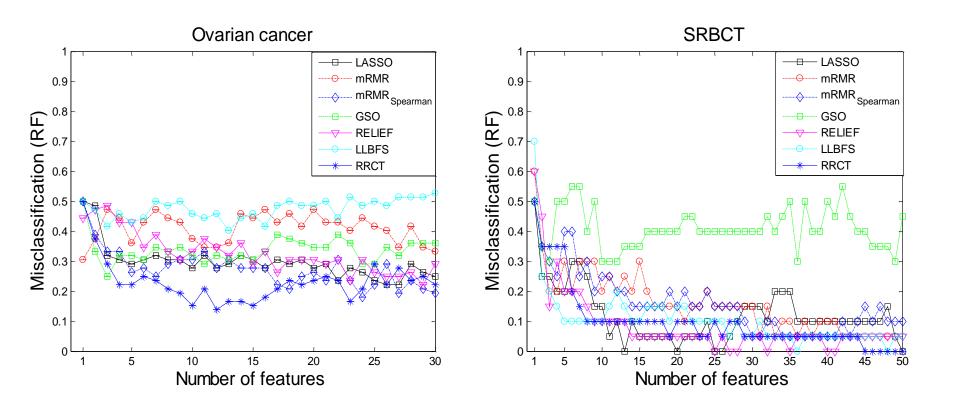
Indicative performance

Classifier accuracy as proxy for FS accuracy



Performance in fat datasets

Very challenging setting for many algorithms



Supervised learning setting

f: mapping

Sa mp les	f 1	f2	 fea M	ture			
S ₁	3.1	1.3	0.9				
S ₂	3.7	1.0	1.3				
S_3	2.9	2.6	0.6	Samples	feature 1	feature 2	 feature M
				S ₁	3.1	1.3	0.9
S _N	1.7	2.0	0.7	S ₂	3.7	1.0	1.3
				S ₃	2.9	2.6	0.6
				S _N	1.7	2.0	0.7

X: Design matrix y: outcome