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Tidal Generation: Rolls-Royce EMEC 500kW 
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Supervised learning setting 

Samples feature 1 feature 2 ... feature M 
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Thin and fat datasets 



Curse of dimensionality 

 Many features Μ  Curse of dimensionality 



Solution to the problem 

 

 Reduce the initial feature space M 

 into m (or m<<M) 

 

 

 Feature selection 

 Feature transformation 

 

 



Feature transformation 

 

 

 

 

 Manifold embedding (e.g. PCA) 

 

 Not easily interpretable 



Feature selection 

 

 

 

 

 

 

 Minimal feature subset with maximal predictive power 

 Interpretable 



Reminder: supervised learning 
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Functional mapping 

y = f (X)    

 Simple approaches (LDA, kNN…) 

 

 Support Vector Machines (SVM) 

 

 Ensembles 



Ensembles 

 Ensemble = combination of learners 

 

   Sequential    VS   Parallel 

Learner1 …LearnerK 
Final 

model 

Learner1 

…LearnerK 

Final 
model 



Ensembles founding question 

“Can a set of weak learners create 

a single strong learner?” 



14 

Bagging 
 
Boosting 
 
Adaptive boosting (Adaboost)  
(Schapire and Freund 1997) 

Bootstrapping 

A brief history of ensembles 

Classifier design 

Resampling data 



Decision trees 

 Powerful, conceptually simple learners 



Decision trees: an example 



Tree growing process I 

 Find best split & partitioning data into two sub-regions (nodes) 

 

 Exhaustive search 

 

 Determine the pairs of half-planes 𝑅1 𝑗, 𝑠 , 𝑅2 𝑗, 𝑠 : 

 

𝑅1 𝑗, 𝑠 = 𝐗 𝐟𝑗 ≤ 𝑠

𝑅2 𝑗, 𝑠 = 𝐗 𝐟𝑗 > 𝑠

 

 

 Stop when data in the node is below some threshold (min. node size) 



Tree growing process II 

 Optimal feature 𝐟𝑗 and splitting point 𝑠 according to loss function: 

  min
𝑗,𝑠

min
𝑐1

 𝑦𝑖 − 𝑐1
2

𝑥𝑖 𝜖 𝑅1 𝑗,𝑠 +min
𝑐2

 𝑦𝑖 − 𝑐2
2

𝑥𝑖 𝜖 𝑅2 𝑗,𝑠  

where 𝑐1, 𝑐2 are the mean values of the 𝑦𝑖 in the node when using 

the sum of squares as the loss function 

 

𝑐1 = 𝑚𝑒𝑎𝑛 𝑦𝑖 𝐱𝑖  𝜖 𝑅1 𝑗, 𝑠

𝑐2 = 𝑚𝑒𝑎𝑛 𝑦𝑖 𝐱𝑖  𝜖 𝑅2 𝑗, 𝑠
 

 

 Equations differ depending on the loss function to be optimized 



Random Forests (RF) 

 Parallel combination of decision trees 

 Use many decision trees (typically 500)  

 Bagging 

 Each tree, each node accesses ( 𝑀) 

features 

 Majority voting 

 



Some results 

Comparing Logistic Regression (LR) with Random Forests (RF)  



Some results 

 Comparing Support Vector Machines with Random Forests on one 

dataset  
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Final remarks on Random Forests 

 State of the art learner 

 Very robust to hyper-parameter selection (just use it 

off-the-shelf!) 

 Bonus: provides feature importance scores 

 Weakness: cannot capture well linear relationships 

(works in steps internally) 

 Powerful in multi-class classification settings 



Boosting and adaptive boosting 

 Boosting: reduce bias by 

combining sequential 

learners 

 

 

 Adaptive boosting: adjust 

the weights of the samples 



Sequential ensemble: Adaboost 

 Train sequential learners 

 Introduce weights on misclassified samples 

 Sensitive to noise and outliers in the data 

 No overfitting claims; late results  can overfit data 

 Can be used with different types of base learners 

 Convergence if all learners are better than chance 



Adaboost 

 Given 𝐱𝑖 , y𝑖 𝑖=1…𝑁, 𝐱𝑖  𝑀 and y𝑖   +1,−1  

 Initialize the weights 𝐃1, for each of the samples: 𝐃𝟏 𝑖 =
1

𝑁
 

 For 𝑡 = 1…𝑇 sequential weak learners 

 Find the learner 𝑓 𝐃𝒕 : min 𝐿 y𝑖 , 𝑦 𝑖 𝑖𝐃𝒕  

 Ensure that the weak learner is better than chance (0.5) 

 Update weights 𝐃𝒕+𝟏 𝑖 = 𝑓 𝐃𝒕 𝑖 , 𝑦 𝑖 ≠ y𝑖   

 Free parameter: influence of misclassified samples 

 



Summary of Adaboost 

 Easy to implement 

 

 Generic framework – can work with any 

type of learner 

 

 Competitive with Random Forests – no 

clear winner 

 

 Variants for robustness (see Matlab‟s 

native function “fitensemble”) 

 



Adaboost versus RF 

 Instead of bootstrapping (RF), uses sample 

reweighting 

 

 Instead of majority voting (RF), uses 

weighted voting 

 

Explicitly revisits samples misclassified by 

previous weak learners 

 



Choosing algorithms 

 What kind of data do you have? Labeled data? Data 

growing daily? 

 Often the biggest practical challenge is creating or 

obtaining enough training data 

 For many problems and algorithms, hundreds or 

thousands of examples from each class are required 

to produce a high performance classifier 

 Number of samples, features, correlations, 

interactions… use plots.  

 No free lunch theorem: no universally best learner! 



Thanasis’ rules of thumb  

 Get to know your data before any processing! 

•  (1) plot densities and scatter plots – univariate analysis and intuitive 

“feel”, perhaps these suggest simple data transformation 

•  (2) compute correlations and correlation matrix, identify interactions 

(e.g. via partial correlations and conditional mutual information) 

•  (3) Feature selection – a simple guide: if there are low correlations use 

LASSO, if there are few (low) interactions use mRMR 

•  (4) In my experience, SVMs may work better for binary-class 

classification problems, and RF may work better for multi-class 

classification problems  

 

I would strongly advise testing both SVM and RF (and possibly other 

statistical mapping algorithms) in the problems you study 



Appendix: food for thought 

 A Unifying Review of Linear Gaussian Models 

http://www.cs.nyu.edu/~roweis/papers/NC110201.pdf 

an excellent paper by Sam Roweis and Zoubin Ghahramani unifying linear models 

 Statistical modelling: the two cultures 

http://faculty.smu.edu/tfomby/eco5385/lecture/Breiman%27s%20Two

%20Cultures%20paper.pdf  

Great introduction: first principles versus statistical modelling by Leo Breiman 

 Relations Between Machine Learning Problems 

http://videolectures.net/nipsworkshops2011_williamson_machine/ 

Check out these lectures! 

 



Additional Slides 



Feature selection concepts 

Relevance Redundancy 

Complementarity 



LASSO (L1 regularization) 

 Start with classical ordinary least squares regression 

 L1 penalty: sparsity promoting, some coefficients become 0 



RELIEF 

 Concept: work with nearest neighbours 

 Nearest hit (NH) and nearest miss (NM) 

 Great for datasets with interactions but does not account for 

information redundancy 

 

 



mRMR 

 minimum Redundancy Maximum Relevance (mRMR) 

 Generally works very well 

 

 



My new algorithm RRCT 

RRCT ≝ max
𝑖 ∈ 𝑄−𝑆

𝑟IT 𝐟𝑖; 𝐲
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒

−
1

𝑆
 𝑟IT 𝐟𝑖; 𝐟𝑠
s ∈ 𝑆

𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦

+ 𝑠𝑖𝑔𝑛 𝑟p 𝐟𝑖; 𝐲|𝑆 ∙ 𝑠𝑖𝑔𝑛 𝑟p 𝐟𝑖; 𝐲|𝑆 − 𝑟 𝐟𝑖; 𝐲 ∙ 𝑟p,IT
𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑖𝑡𝑦

 

https://www.youtube.com/watch?v=LJS7Igvk6ZM    

The best result will 

come when 

everyone in the 

group doing what is 

best for himself… 

and the group. 

https://www.youtube.com/watch?v=LJS7Igvk6ZM
https://www.youtube.com/watch?v=LJS7Igvk6ZM


 
 
 
 
 
 
 
 
 

𝑟p 𝑋, 𝑌|𝑍 =
𝑟 𝑋, 𝑌 − 𝑟 𝑋, 𝑍 ∙ 𝑟 𝑌, 𝑍

𝑟2 𝑋, 𝑍 ∙ 𝑟2 𝑌, 𝑍
 

My new algorithm RRCT 

𝐃 = −0.5 ∙ log

1 − 𝑟1
2 1 − 𝜌12

2 … 1 − 𝜌1𝛭
2

1 − 𝜌12
2 1 − 𝑟2

2 ⋯ 1 − 𝜌2𝛭
2

⋮ ⋮ ⋱ ⋮
1 − 𝜌1𝛭

2 1 − 𝜌2𝛭
2 … 1 − 𝑟𝑀

2

 

Relevance & Redundancy trade-off 

Complementarity 



My new algorithm RRCT 
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 Normalizing pdfs of variables 

 Information theoretic transformation 𝑟𝐼𝑇 = −0.5 ∙ log 1 − 𝑟2  



Validation setting 

 Matching ‘true’ feature subset 

o Possible only for artificial datasets 

 

 Maximize the out of sample prediction performance 

o adds an additional „layer‟: the learner 

o potential problem: feature exportability  

o BUT… in practice this is really what is of most interest! 

 



Dataset info 

Dataset Design matrix Associated task Type 

MONK135 124×6 Classification (2 classes) D (6) 

Artificial 1 500×150 Classification (2 classes) C(150) 

Artificial 2 1000×100 Classification (10 classes) C(100) 

Hepatitis 155×19 Classification (2 classes) C (17), D (2) 

Parkinson’s35 195×22 Classification (2 classes) C (22) 

Sonar35 208×60 Classification (2 classes) C (60) 

Wine35 178×13 Classification (3 classes) C (13) 

Image segmentation35 2310×19 Classification (7 classes) C (16), D (3) 

Cardiotocography35 2129×21 Classification (10 classes) C (14), D (7) 

Ovarian cancer 72×592 Classification (2 classes) C (592) 

SRBCT 88×2308 Classification (4 classes) C (2308) 



False Discovery Rate (FDR) 
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Artificial datasets with known ground truth 



Indicative performance 

Classifier accuracy as proxy for FS accuracy 
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Indicative performance 

Classifier accuracy as proxy for FS accuracy 
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Indicative performance 

Classifier accuracy as proxy for FS accuracy 
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Performance in fat datasets 

Very challenging setting for many algorithms 



Supervised learning setting 

f : mapping  X: Design matrix y: outcome 

Sa

mp

les 

f 1 f2 ... feature 

M 

S1 3.1 1.3 0.9 

S2 3.7 1.0 1.3 

S3 2.9 2.6 0.6 

… 

SN 1.7 2.0 0.7 

Samples feature 1 feature 2 ... feature M 

S1 3.1 1.3 0.9 

S2 3.7 1.0 1.3 

S3 2.9 2.6 0.6 

… 

SN 1.7 2.0 0.7 


