A practical overview of data analysis

methodology




My research
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The BIG picture
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Supervised learning setting

N (samples)

X
Samples |feature 1 |feature2 |... |featureM |
S, 3.1 1.3 0.9
S, 3.7 1.0 1.3
S, 2.9 2.6 0.6
Sy 1.7 2.0 0.7

M (features or characteristics)

y =1(X)

y

type 1

type 2
type 1

type 5

f : mapping X: Design matrix y: outcome



Thin and fat datasets




Curse of dimensionality
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Many features M = Curse of dimensionality



Solution to the problem

Reduce the initial feature space M

INnto m (or m<<M)

Feature selection

Feature transformation



Feature transformation

Manifold embedding (e.g. PCA)

Not easily interpretable



Feature selection

Minimal feature subset with maximal predictive power

Interpretable



Reminder: supervised learning

X y
Samples |feature 1 |feature2 |... |featureM |
v S, 3.1 1.3 0.9 type 1
5
re) S, 3.7 1.0 1.3 type 2
% S, 2.9 2.6 0.6 type 1
7
N’
Z Sy \1.7 2.0 0.7 ) type S

M (features or characteristics)
y =1(X)

f : mapping X: Design matrix y: outcome



Functional mapping

y =1 (X)

Simple approaches (LDA, kNN...)

Support Vector Machines (SVM)

Ensembles ’



Ensemble = combination of learners

Sequential VS Parallel

Learneri
Final
Learneri ...LearnerK
model

Final
model
...LearnerK




Ensembles founding question

“Can a set of weak learners create
a single strong learner?”



A brief history of ensembles

Bootstrapping

Bagging
Boosting

Adaptive boosting (Adaboost)
(Schapire and Freund 1997)

Resampling data

Classifier design

14



Decision trees

Powerful, conceptually simple learners



Decision trees: an example

‘ | Age<i( \
|

Gender Male \

Leaf
node

Decision 1

H Body surface area<l.6 \

| |
Diastolic blood
pressure</0 mmHg
; |

Heart rate<50
bpm

L

Y=V

NMore nodes

‘l Weight<80 kgs \

NMore nodes

More nodes




Tree growing process |

Find best split & partitioning data into two sub-regions (nodes)
Exhaustive search

Determine the pairs of half-planes {R,(j,s),R,(j,s)}:
{Rl(j, s) = {X|f; < s}

Rz(j, S) == {X|f] > S}

Stop when data in the node is below some threshold (min. node size)



Tree growing process I

Optimal feature f; and splitting point s according to loss function:

. . 2 . 2
min [rrgin Lxeryo) i = c)® A minY gy = ¢2) ]

where c,, ¢, are the mean values of the y; in the node when using
the sum of squares as the loss function

c; = mean(y;|x; € R1(j,s))

c, = mean(y;|x; € R,(j,s))

Equations differ depending on the loss function to be optimized



Random Forests (RF)

Parallel combination of decision trees

Use many decision trees (typically 500)

=T\

Bagging

Each tree, each node accesses (VM)
features

Majority voting




results
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Comparing Logistic Regression (LR) with Random Forests (RF)



Some results
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Final remarks on Random Forests

State of the art learner

Very robust to hyper-parameter selection (just use it
off-the-shelf!)

Bonus: provides feature importance scores

Weakness: cannot capture well linear relationships
(works in steps internally)

Powerful in multi-class classification settings



Boosting and adaptive boosting

Boosting: reduce bias by
combining sequential
learners

==

Adapt Deliver

Adaptive boosting: adjust

the weights of the samples QWV

Inspect



Sequential ensemble: Adaboost

Train sequential learners

Introduce weights on misclassified samples
Sensitive to noise and outliers in the data

No overfitting claims; late results =» can overfit data
Can be used with different types of base learners

Convergence If all learners are better than chance



Adaboost

Given {x;,v;}i=1 v, X; € R andy; e {+1, -1}

Initialize the weights D,, for each of the samples: D4(i) = %
Fort = 1..T sequential weak learners

Find the learner f(Dy): min({L(y;, §;)}iep,)

Ensure that the weak learner is better than chance (0.5)
Update weights D4 (i) = f(D(i),¥; # y; )

Free parameter: influence of misclassified samples



Summary of Adaboost

Easy to implement

Generic framework — can work with any
type of learner

Competitive with Random Forests — no
clear winner

Variants for robustness (see Matlab’s
native function “fitensemble™)




Adaboost versus RF

Instead of bootstrapping (RF), uses sample
reweighting

Instead of majority voting (RF), uses
weighted voting

Explicitly revisits samples misclassified by
previous weak learners



Choosing algorithms

What kind of data do you have? Labeled data? Data
growing daily?

Often the biggest practical challenge is creating or
obtaining enough training data

For many problems and algorithms, hundreds or
thousands of examples from each class are required
to produce a high performance classifier

Number of samples, features, correlations,
Interactions... use plots.

No free lunch theorem: no universally best learner!



Thanasis’ rules of thumb

Get to know your data before any processing!

(1) plot densities and scatter plots — univariate analysis and intuitive
“feel”, perhaps these suggest simple data transformation

(2) compute correlations and correlation matrix, identify interactions
(e.g. via partial correlations and conditional mutual information)

(3) Feature selection — a simple guide: if there are low correlations use
LASSO, if there are few (low) interactions use mMRMR

(4) In my experience, SVMs may work better for binary-class
classification problems, and RF may work better for multi-class
classification problems

| would strongly advise testing both SVM and RF (and possibly other
statistical mapping algorithms) in the problems you study



Appendix: food for thought

A Unifying Review of Linear Gaussian Models

http://www.cs.nyu.edu/~roweis/papers/NC110201.pdf
an excellent paper by Sam Roweis and Zoubin Ghahramani unifying linear models

Statistical modelling: the two cultures

http://faculty.smu.edu/tfomby/eco5385/lecture/Breiman%27s%20Two
%20Cultures%20paper.pdf

Great introduction: first principles versus statistical modelling by Leo Breiman
Relations Between Machine Learning Problems

http://videolectures.net/nipsworkshops2011 williamson_machine/

Check out these lectures!



Additional Slides




Feature selection concepts

Relevance Redundancy

[T EAIMWIOIR K]
0.0.0.0.0.0.4.4

Complementarity



LASSO (L1 regularization)

Start with classical ordinary least squares regression

L1 penalty: sparsity promoting, some coefficients become 0

N
by asso = argmbinz: Vi — lef /B AZ“? |
i=1 =

where A is the regularization parameter (increasing A
causes more coefficients to become 0)

Possible to introduce additional penalties, e.g. L2-norm

L2 penalty: shrinkage in the regression coefficients



RELIEF

Concept: work with nearest neighbours
Nearest hit (NH) and nearest miss (NM)

Great for datasets with interactions but does not account for
Information redundancy

r e oty — 0, | + ‘
INH(x;)| ] J
1 q - Xn € NH(XL') -
WI(F.) < — Z< Nearest hit term distance
B _ _ — ). Lj — n,j
Yi#Yi INMG)] 1 =P0 yl), Xn € NM(x;) ,



minimum Redundancy Maximum Relevance (MRMR)

Generally works very well

mRMR = max 1) - SHZI(fl,fs)
relevance

redundancy
Where ||S|| refers to the cardinality of the selected subset

(number of selected features until that step)



My new algorithm RRCT

The best result will
come when
everyone in the
group doing what is
best for himself...
and the group.

1
RRCT = BUELS rir(fi;y) — 5] Z rir(f5; £5) + [sign(r, (£ y1S)) - sign(n, (£5; y1S) — r(£; )] - 1ot
relevance SES complenientarity
redunvdancy



https://www.youtube.com/watch?v=LJS7Igvk6ZM
https://www.youtube.com/watch?v=LJS7Igvk6ZM

My new algorithm RRCT

Relevance & Redundancy trade-off

(1-1f 1-pfp . 1-=pfy
D=-0.5"log 1 _.sz 1 ~ rs 1 _.p%M
-1_p%M 1_p%M e 1_T1\%I_

Complementarity

r(X,Y)—-rX,2)-r(Y,Z)

rp(X,le) = \/T'Z(X;Z) . \/TZ(Y'Z)




My new algorithm RRCT

Normalizing pdfs of variables

Information theoretic transformation

Information content
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Validation setting

Matching ‘true’ feature subset

Possible only for artificial datasets

Maximize the out of sample prediction performance

adds an additional ‘layer’: the learner
potential problem: feature exportability

BUT... in practice this is really what is of most interest!



Dataset info

124%6

500%x150

1000%100

155%19

195%22

208x%60

178%13

2310x%19

2129x%21

72%x592

88x2308

Classification (2 classes)
Classification (2 classes)
Classification (10 classes)
Classification (2 classes)
Classification (2 classes)
Classification (2 classes)
Classification (3 classes)
Classification (7 classes)
Classification (10 classes)
Classification (2 classes)

Classification (4 classes)

D (6)
C(150)
C(100)
C(17), D (2)
C(22)

C (60)

C (13)
C(16), D (3)
C (14), D (7)
C (592)

C (2308)



False Discovery Rate (FDR)

Artificial datasets with known ground truth
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Indicative performance

Classifier accuracy as proxy for FS accuracy
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Indicative performance

Classifier accuracy as proxy for FS accuracy
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Indicative performance

Misclassification (SVM)

Classifier accuracy as proxy for FS accuracy

©
o

©
ol

o
>

o
w

©
N

o
[

Cardiotocography
T T T T T T T T T LASSO
=@ MRMR
i B mRMRSpearman
GSO
L —— RELIEF
LLBFS

I I I I I I I I

é % 8 9 1011121314151‘6
Number of features

4 5

17 18 19 20

Misclassification (RF)

©
o

o
ol

o
IS

o
w

©
N

o
[EEY

Cardiotocography
! | —8— LASSO
L s mRMRSpearman
1 GSO
i\ —— RELIEF
\ LLBFS
\ \N% .
I |
g o
&\ I
:7f
i
e ,
= -
3 ‘ o )
1 5 o 15 20

Number of features



Performance in fat datasets

Very challenging setting for many algorithms
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Supervised learning setting

Sa |f1 |f2 feature
mp \Y
les

31 1.3 0.9

Sl
S, 37 10 1.3
R R Samples [featrel lfeature2 L. featureM
S, 3.1 1.3 0.9
Sy 17 20 0.7 S, 3.7 1.0 1.3
S, 2.9 2.6 0.6
Sy 1.7 2.0 0.7

f . mapping X: Design matrix y: outcome



