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Tidal Generation: Rolls-Royce EMEC 500kW 
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Supervised learning setting 

Samples feature 1 feature 2 ... feature M 
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Thin and fat datasets 



Curse of dimensionality 

 Many features Μ  Curse of dimensionality 



Solution to the problem 

 

 Reduce the initial feature space M 

 into m (or m<<M) 

 

 

 Feature selection 

 Feature transformation 

 

 



Feature transformation 

 

 

 

 

 Manifold embedding (e.g. PCA) 

 

 Not easily interpretable 



Feature selection 

 

 

 

 

 

 

 Minimal feature subset with maximal predictive power 

 Interpretable 



Reminder: supervised learning 
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Functional mapping 

y = f (X)    

 Simple approaches (LDA, kNN…) 

 

 Support Vector Machines (SVM) 

 

 Ensembles 



Ensembles 

 Ensemble = combination of learners 

 

   Sequential    VS   Parallel 

Learner1 …LearnerK 
Final 

model 

Learner1 

…LearnerK 

Final 
model 



Ensembles founding question 

“Can a set of weak learners create 

a single strong learner?” 
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Bagging 
 
Boosting 
 
Adaptive boosting (Adaboost)  
(Schapire and Freund 1997) 

Bootstrapping 

A brief history of ensembles 

Classifier design 

Resampling data 



Decision trees 

 Powerful, conceptually simple learners 



Decision trees: an example 



Tree growing process I 

 Find best split & partitioning data into two sub-regions (nodes) 

 

 Exhaustive search 

 

 Determine the pairs of half-planes 𝑅1 𝑗, 𝑠 , 𝑅2 𝑗, 𝑠 : 

 

𝑅1 𝑗, 𝑠 = 𝐗 𝐟𝑗 ≤ 𝑠

𝑅2 𝑗, 𝑠 = 𝐗 𝐟𝑗 > 𝑠

 

 

 Stop when data in the node is below some threshold (min. node size) 



Tree growing process II 

 Optimal feature 𝐟𝑗 and splitting point 𝑠 according to loss function: 

  min
𝑗,𝑠

min
𝑐1

 𝑦𝑖 − 𝑐1
2

𝑥𝑖 𝜖 𝑅1 𝑗,𝑠 +min
𝑐2

 𝑦𝑖 − 𝑐2
2

𝑥𝑖 𝜖 𝑅2 𝑗,𝑠  

where 𝑐1, 𝑐2 are the mean values of the 𝑦𝑖 in the node when using 

the sum of squares as the loss function 

 

𝑐1 = 𝑚𝑒𝑎𝑛 𝑦𝑖 𝐱𝑖  𝜖 𝑅1 𝑗, 𝑠

𝑐2 = 𝑚𝑒𝑎𝑛 𝑦𝑖 𝐱𝑖  𝜖 𝑅2 𝑗, 𝑠
 

 

 Equations differ depending on the loss function to be optimized 



Random Forests (RF) 

 Parallel combination of decision trees 

 Use many decision trees (typically 500)  

 Bagging 

 Each tree, each node accesses ( 𝑀) 

features 

 Majority voting 

 



Some results 

Comparing Logistic Regression (LR) with Random Forests (RF)  



Some results 

 Comparing Support Vector Machines with Random Forests on one 

dataset  
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Final remarks on Random Forests 

 State of the art learner 

 Very robust to hyper-parameter selection (just use it 

off-the-shelf!) 

 Bonus: provides feature importance scores 

 Weakness: cannot capture well linear relationships 

(works in steps internally) 

 Powerful in multi-class classification settings 



Boosting and adaptive boosting 

 Boosting: reduce bias by 

combining sequential 

learners 

 

 

 Adaptive boosting: adjust 

the weights of the samples 



Sequential ensemble: Adaboost 

 Train sequential learners 

 Introduce weights on misclassified samples 

 Sensitive to noise and outliers in the data 

 No overfitting claims; late results  can overfit data 

 Can be used with different types of base learners 

 Convergence if all learners are better than chance 



Adaboost 

 Given 𝐱𝑖 , y𝑖 𝑖=1…𝑁, 𝐱𝑖  𝑀 and y𝑖   +1,−1  

 Initialize the weights 𝐃1, for each of the samples: 𝐃𝟏 𝑖 =
1

𝑁
 

 For 𝑡 = 1…𝑇 sequential weak learners 

 Find the learner 𝑓 𝐃𝒕 : min 𝐿 y𝑖 , 𝑦 𝑖 𝑖𝐃𝒕  

 Ensure that the weak learner is better than chance (0.5) 

 Update weights 𝐃𝒕+𝟏 𝑖 = 𝑓 𝐃𝒕 𝑖 , 𝑦 𝑖 ≠ y𝑖   

 Free parameter: influence of misclassified samples 

 



Summary of Adaboost 

 Easy to implement 

 

 Generic framework – can work with any 

type of learner 

 

 Competitive with Random Forests – no 

clear winner 

 

 Variants for robustness (see Matlab‟s 

native function “fitensemble”) 

 



Adaboost versus RF 

 Instead of bootstrapping (RF), uses sample 

reweighting 

 

 Instead of majority voting (RF), uses 

weighted voting 

 

Explicitly revisits samples misclassified by 

previous weak learners 

 



Choosing algorithms 

 What kind of data do you have? Labeled data? Data 

growing daily? 

 Often the biggest practical challenge is creating or 

obtaining enough training data 

 For many problems and algorithms, hundreds or 

thousands of examples from each class are required 

to produce a high performance classifier 

 Number of samples, features, correlations, 

interactions… use plots.  

 No free lunch theorem: no universally best learner! 



Thanasis’ rules of thumb  

 Get to know your data before any processing! 

•  (1) plot densities and scatter plots – univariate analysis and intuitive 

“feel”, perhaps these suggest simple data transformation 

•  (2) compute correlations and correlation matrix, identify interactions 

(e.g. via partial correlations and conditional mutual information) 

•  (3) Feature selection – a simple guide: if there are low correlations use 

LASSO, if there are few (low) interactions use mRMR 

•  (4) In my experience, SVMs may work better for binary-class 

classification problems, and RF may work better for multi-class 

classification problems  

 

I would strongly advise testing both SVM and RF (and possibly other 

statistical mapping algorithms) in the problems you study 



Appendix: food for thought 

 A Unifying Review of Linear Gaussian Models 

http://www.cs.nyu.edu/~roweis/papers/NC110201.pdf 

an excellent paper by Sam Roweis and Zoubin Ghahramani unifying linear models 

 Statistical modelling: the two cultures 

http://faculty.smu.edu/tfomby/eco5385/lecture/Breiman%27s%20Two

%20Cultures%20paper.pdf  

Great introduction: first principles versus statistical modelling by Leo Breiman 

 Relations Between Machine Learning Problems 

http://videolectures.net/nipsworkshops2011_williamson_machine/ 

Check out these lectures! 

 



Additional Slides 



Feature selection concepts 

Relevance Redundancy 

Complementarity 



LASSO (L1 regularization) 

 Start with classical ordinary least squares regression 

 L1 penalty: sparsity promoting, some coefficients become 0 



RELIEF 

 Concept: work with nearest neighbours 

 Nearest hit (NH) and nearest miss (NM) 

 Great for datasets with interactions but does not account for 

information redundancy 

 

 



mRMR 

 minimum Redundancy Maximum Relevance (mRMR) 

 Generally works very well 

 

 



My new algorithm RRCT 

RRCT ≝ max
𝑖 ∈ 𝑄−𝑆

𝑟IT 𝐟𝑖; 𝐲
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒

−
1

𝑆
 𝑟IT 𝐟𝑖; 𝐟𝑠
s ∈ 𝑆

𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦

+ 𝑠𝑖𝑔𝑛 𝑟p 𝐟𝑖; 𝐲|𝑆 ∙ 𝑠𝑖𝑔𝑛 𝑟p 𝐟𝑖; 𝐲|𝑆 − 𝑟 𝐟𝑖; 𝐲 ∙ 𝑟p,IT
𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑖𝑡𝑦

 

https://www.youtube.com/watch?v=LJS7Igvk6ZM    

The best result will 

come when 

everyone in the 

group doing what is 

best for himself… 

and the group. 

https://www.youtube.com/watch?v=LJS7Igvk6ZM
https://www.youtube.com/watch?v=LJS7Igvk6ZM


 
 
 
 
 
 
 
 
 

𝑟p 𝑋, 𝑌|𝑍 =
𝑟 𝑋, 𝑌 − 𝑟 𝑋, 𝑍 ∙ 𝑟 𝑌, 𝑍

𝑟2 𝑋, 𝑍 ∙ 𝑟2 𝑌, 𝑍
 

My new algorithm RRCT 

𝐃 = −0.5 ∙ log

1 − 𝑟1
2 1 − 𝜌12

2 … 1 − 𝜌1𝛭
2

1 − 𝜌12
2 1 − 𝑟2

2 ⋯ 1 − 𝜌2𝛭
2

⋮ ⋮ ⋱ ⋮
1 − 𝜌1𝛭

2 1 − 𝜌2𝛭
2 … 1 − 𝑟𝑀

2

 

Relevance & Redundancy trade-off 

Complementarity 



My new algorithm RRCT 
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Validation setting 

 Matching ‘true’ feature subset 

o Possible only for artificial datasets 

 

 Maximize the out of sample prediction performance 

o adds an additional „layer‟: the learner 

o potential problem: feature exportability  

o BUT… in practice this is really what is of most interest! 

 



Dataset info 

Dataset Design matrix Associated task Type 

MONK135 124×6 Classification (2 classes) D (6) 

Artificial 1 500×150 Classification (2 classes) C(150) 

Artificial 2 1000×100 Classification (10 classes) C(100) 

Hepatitis 155×19 Classification (2 classes) C (17), D (2) 

Parkinson’s35 195×22 Classification (2 classes) C (22) 

Sonar35 208×60 Classification (2 classes) C (60) 

Wine35 178×13 Classification (3 classes) C (13) 

Image segmentation35 2310×19 Classification (7 classes) C (16), D (3) 

Cardiotocography35 2129×21 Classification (10 classes) C (14), D (7) 

Ovarian cancer 72×592 Classification (2 classes) C (592) 

SRBCT 88×2308 Classification (4 classes) C (2308) 



False Discovery Rate (FDR) 

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

Features

F
D

R

Artificial1

 

 
LASSO

mRMR

mRMR
Spearman

GSO

RELIEF

LLBFS

RRCT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

8

9

10

11

12

Features

F
D

R

Artificial2

 

 
LASSO

mRMR

mRMR
Spearman

GSO

RELIEF

LLBFS

RRCT

Artificial datasets with known ground truth 



Indicative performance 

Classifier accuracy as proxy for FS accuracy 
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Indicative performance 

Classifier accuracy as proxy for FS accuracy 
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Indicative performance 

Classifier accuracy as proxy for FS accuracy 
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Performance in fat datasets 

Very challenging setting for many algorithms 



Supervised learning setting 

f : mapping  X: Design matrix y: outcome 
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Samples feature 1 feature 2 ... feature M 
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