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Introduction 
Artificial Neural Networks (ANN) are a class of models that have been successfully used in several 

machine learning problems. Recent successes include the imagenet image classification challenge 

(http://www.image-net.org/challenges/LSVRC/2012/results.html) where team SuperVision 

(Krizhevsky et.al. 2012) beat the non-ANN competitors by a very large margin. Deep Artificial Neural 

Networks have recently made news in the context of being able to play ATARI games, beating the 

European Champion on the Chinese Go, etc . 

http://www.image-net.org/challenges/LSVRC/2012/results.html


 

Screenshot from - http://www.thestar.com/news/world/2016/01/27/deepmind-computer-program-

beats-humans-at-go.html  

 

Screenshot from http://www.wired.co.uk/news/archive/2015-02/25/google-deepmind-atari  

ANNs are good for problems where the nature of the target function is hard to guess. Also they are 

really slow to train. The imagenet winner in 2012 took 6 days to train on 2 GPUs but the trained 

model is really fast at test time. 

Perceptron 
People studied the real neuron and made a very simple mathematical model of it called the 

perceptron. This was proposed by Rosenblatt in 1957 and it took a vector x ∈ 𝑅n as input and gave a 

scalar output  

𝑦 =  {
1 𝑖𝑓 𝒘𝑡𝒙 > 0

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Compare below a depiction of a real neuron and the perceptron model.  

http://www.thestar.com/news/world/2016/01/27/deepmind-computer-program-beats-humans-at-go.html
http://www.thestar.com/news/world/2016/01/27/deepmind-computer-program-beats-humans-at-go.html
http://www.wired.co.uk/news/archive/2015-02/25/google-deepmind-atari


 
https://askabiologist.asu.edu/sites/default/files/resources/articles/neuron_anatomy.jpg 

 

http://tex.stackexchange.com/questions/104334/tikz-diagram-of-a-perceptron 

What differences can you guess between the real neuron and the perceptron model? 

A biological neuron’s output is in the form of voltage spikes communicated via neurotransmitters. 

The perceptron has a binary output that is not time varying. 

Then why this model? 

The firing rate of a biological neuron can be plotted against aggregated input voltage. The resulting 

curve is like a sigmoid function but not exactly a sigmoid function. The threshold activation function 

is an approximation of this. Thus the output of a perceptron unit can be thought of as the firing rate 

of a neuron rather than the neuron output itself.  

The perceptron unit is parametrized by the 𝒘 ∈ 𝑹𝒏  vector. It can represent any linear decision 

boundary in n dimensional space. Note that the first input is 𝑥0 = 1 which accommodates the offset 

term of the hyperplane neatly in vector notation. For any given machine learning problem, say the 

classification of apples against oranges, we will need to learn this 𝒘 from training data. 

https://askabiologist.asu.edu/sites/default/files/resources/articles/neuron_anatomy.jpg
http://tex.stackexchange.com/questions/104334/tikz-diagram-of-a-perceptron


LMS / Delta Rule for Learning a Perceptron model 
The original method used for learning a perceptron is called the “Perceptron rule”. In this lecture we 

shall not discuss it as it is rarely used now a days. Instead we shall discuss the gradient descent 

method applied to perceptron learning. This is called LMS rule or delta rule. This rule minimizes the 

following loss function:- 

𝐸𝐷 =
1

2𝑁
∑(𝑦𝑑 − 𝑦�̂�)2 

𝑁

𝑑=1

 

Where 𝑦𝑑is the ground truth target value (say +1 for apples and -1 for oranges) and 𝑦�̂� =  𝒘𝑡𝒙 is the 

prediction corresponding to the linear part of the perceptron. Why minimize this error? Because, if 

we pick a w that minimizes this error we can be confident that the perceptron will output +1 for 

apples and -1 for oranges and thus separate them. 

This error is minimized using gradient descent. What is gradient descent? Recall that the gradient of 

a function is the direction of steepest increase of that function. Thus if we move along the negative 

of this direction then we shall be following a path of steepest decrease in that function value. Thus 

the gradient descent method simply calculates the gradient of 𝐸𝐷and moves in its opposite 

direction. Because this property of the gradient is true only locally, we follow the chosen direction 

for a small step size 𝜂 and then recalculate a new direction of steepest change. This 𝜂 is a hyper-

parameter typically chosen by hand. 

The pseudo code is shown below:- 

1. Initialize w to small random values  

2. Repeat until satisfied 

a. ∇𝐰(𝐸𝐷) =
𝟏

𝑵
∑ (𝒚𝒅 −  𝒚�̂�)(−𝒙𝒅)𝑵

𝒅=𝟏  

b. 𝒘 ← 𝒘 − 𝜂𝛁𝒘(𝐸𝐷) 

The gradient descent procedure simply follows the direction of negative of the gradient to minimize 

the loss function 𝐸𝐷.  

Demo for Simple Synthetic Dataset 
The purpose of this demo is to understand LMS/Delta rule and how it is implemented in matlab. 

The dataset is shown below 

 



The source code is as follows:- 

clear; 
close all; 

  
%% Load and prepare the data 
load('data.mat'); %loads X_positive X_negative 
X = [X_positive, X_negative]; 
X_augmented = [X; ones(1, size(X, 2))]; 
Y_target = [ones(1, size(X_positive, 2)), -ones(1, size(X_negative, 2))]; 

  
%% Initialize the weights and set the hyperparameters 
w = randn(3, 1) * 0.01; 
eta = 0.0001; 
loss = zeros(10000,1); 
maxIterations = 10000; 

  
for i=1:maxIterations % 10000 iterations of gradient descent 
    Y_predicted = w' * X_augmented; 
    loss(i) = sum((Y_target - Y_predicted).^2)/(2*numel(Y_predicted)); 
    grad = sum(bsxfun(@times, (Y_target - Y_predicted), -X_augmented), 

2)/numel(Y_predicted); 
    w = w - eta * grad; 

     
    if(mod(i, 100) == 1) 
        figure(1); 
        clf; 
        subplot(1,2,1); 
        plot(loss(1:i)); 
        title('loss'); 
        xlabel('Number of Iterations'); 
        ylabel('Loss value'); 
        subplot(1,2,2); 
        plot(X_positive(1,:), X_positive(2,:), 'bo'); 
        hold on; 
        plot(X_negative(1,:), X_negative(2,:), 'ro'); 
        legend('Positive', 'Negative'); 
        axis([-4,4,-4,4]); 
        x1 = -4;         y1 = (-w(3) - w(1)*x1)/w(2); 
        x2 = 4;          y2 = (-w(3) - w(1)*x2)/w(2); 
        line([x1; x2], [y1; y2]); 
        title('data');         
        drawnow; 
        pause(1); 
    end 
end 

This results in the following visual output. 

 

 

 

 

 

 



Our loss function is convex so we are guaranteed to converge to the right answer. I have used a very 

small learning rate in the above demo to be able to show how the line is moving towards the true 

solution. 

Problems 
1. The linear perceptron cannot classify non-linearly separable data such as images of cats and 

dogs. 

Solution. Use multiple layers of perceptrons but with a differentiable non-linearity such 

as a sigmoid unit discussed later in these notes. 

2. The dataset can be very large. It can take several hours to compute a single gradient of the 

loss over dataset D. 

Solution. Use the stochastic approximation of the gradient using a single sample or a 

group of samples. This is discussed in the section below. 

Stochastic Approximation of the Gradient 
Instead of computing the gradient over the entire dataset we can approximate it using a minibatch 

of data or even a single randomly selected sample. This method is called the stochastic gradient 

descent. The pseudo code is shown below:- 

1. Initialize w to small random values  

2. Repeat until satisfied 

a. Sample a minibatch of K datapoints 𝐾 < 𝑁; call it �̃� 

b. ∇𝐰(𝐸�̃�) =
𝟏

𝑲
∑ (𝒚𝒅 − 𝒚�̂�)(−𝒙𝒅)𝑲

𝒅=𝟏  

c. 𝒘 ← 𝒘 − 𝜂𝛁𝒘(𝐸�̃�) 

It can be shown that the stochastic approximation can be arbitrarily close to the true gradient for 

small enough 𝜂. The stochastic gradient descent approximation can be applied to non-linear 

problems as well where it has the added benefit of helping avoid some local minima due to its 

stochastic nature. 

Sigmoid Unit 
A real world problem will often involve non-linear decision boundaries. The perceptron model 

cannot provide good accuracies for such problems. However, if we stack together multiple layers of 

several perceptrons then a very powerful class of models is obtained commonly referred to as 

‘multi-layer feedforward neural networks’. Unfortunately, the threshold non-linearity in each layer 

makes this non differentiable. Thus we cannot use gradient descent to train it; there is no gradient in 

the first place. We therefore replace the threshold non-linearity with a sigmoid non-linearity. The 

resulting model is shown below:- 

[Image source: 

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/mlbook/ch4.pdf slide 16] 

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/mlbook/ch4.pdf


The sigmoid non-linearity is differentiable. Using the notation as in the figure above:- 

𝑑𝜎

𝑑(𝑛𝑒𝑡)
= 𝑜 (1 − 𝑜) 

Where we have rewritten the derivative in terms of the network output. But many questions 

remain. 

1. How do we connect these sigmoid neurons? 

Ans. In general we can connect neurons arbitrarily but in this lesson we only focus on a 

special case called the linear chain; shown below:- 

 

 

2. How do we train such a network with many sigmoid units? 

Ans. We train such a network using the backpropagation algorithm. The algorithm easily 

generalizes to arbitrary directed acyclic graphs but for ease of presentation we shall 

describe it for the linear chain model. 

Note that cyclic connections are also used in practice. These are referred to as recurrent neural 

networks and they are usually trained using backpropagation through time. The generalization to 

acyclic graphs is more trivial than the generalization to a graph with cycles. 

Backpropagation algorithm 
We shall discuss the backpropagation algorithm by example. Consider a network that performs the 

following mathematical operations 

𝐼 → 𝑦1 = 𝑤1𝐼 → 𝑦2 =  𝜎(𝑦1) → 𝑦3 = 𝑤3𝑦2 → 𝑦4 = 𝜎(𝑦3) → 𝐸 =
1

2
(𝑦 − 𝑦4)2 

This network receives a scalar input 𝐼 ∈ ℝ, which passes through 2 sigmoid units with weights 𝑤1 

and 𝑤3 respectively. It produces a scalar output E by comparing the prediction 𝑦4with 𝑦. For 

simplicity we shall decompose this into five layers – layer 1 performs the multiplication with 𝑤1to 

transform 𝐼 into 𝑦1and layer 2 performs the non-linearity transforming 𝑦1 into 𝑦2. Layer 3 performs 

the multiplication with 𝑤2 and layer 4 performs the sigmoid non-linearity transforming 𝑦3into 𝑦4. 

Lastly, layer 5 converts 𝑦4 into the scalar loss 𝐸. 

All of the variables are real valued scalars. We shall generalize this to vectors after deriving the scalar 

version here. 

The backpropagation algorithm is the same as gradient descent. Gradient descent for the network 

above is written below:- 

For 𝑛 = 1 𝑡𝑜 numIterations 

a. Δ𝑤1 = 0, Δ𝑤2 = 0 

b. for d = 1 to numData 

i. Δ𝑤1 = Δ𝑤1 −
𝜕𝐸𝑑

𝜕𝑤1
 

ii. Δ𝑤2 = Δ𝑤2 −
𝜕𝐸𝑑

𝜕𝑤2
 

c. 𝑤1 = 𝑤1 + 𝜂𝑛Δ𝑤1 
d. 𝑤2 = 𝑤2 +  𝜂𝑛Δ𝑤2 

Input Layer 1 Layer 2 Layer 3 



The above algorithm computes the gradient by iterating over each data point. The subscript d is used 

to denote the variable value corresponding to a single data point 𝐸𝑑 , 𝐼𝑑 , 𝑦1𝑑 , 𝑦2𝑑 , 𝑦3𝑑 , 𝑦4𝑑. 

The backpropagation algorithm contributes an efficient way of computing the partial derivatives 
𝜕𝐸𝑑

𝜕𝑤1
 𝑎𝑛𝑑 

𝜕𝐸𝑑

𝜕𝑤2
. This contribution is simply the chain rule. Backpropagation works by each layer 

computing two things:- 

a) Derivative of the loss with respect to its input. 

b) Derivative of the loss with respect to its parameters. 

This is done for all the layers starting from layer 5 down to layer 1. 

Layer 5:  

1. 
𝜕𝐸𝑑

𝜕𝑦4𝑑
= 𝑦4𝑑 − 𝑦𝑑   

2. No parameters for layer 5. 

Each layer passes the derivative of the loss with respect to its input, to the layer below it. The layer 

below treats this as “top derivative” or backpropagated error 𝛿𝑑. 

So Layer 4: 

1. 
𝜕𝐸𝑑

𝜕𝑦3𝑑
=

𝜕𝐸𝑑

𝜕𝑦4𝑑
×

𝜕𝑦4𝑑

𝜕𝑦3𝑑
= 𝛿𝑑 ×

𝜕𝑦4𝑑

𝜕𝑦3𝑑
 where the chain rule has been used to simplify the problem. 

Note that layer 4 now only needs to compute the derivative of its output with respect to its 

input and doesn’t bother about the layers above it. Thus, 
𝜕𝐸𝑑

𝜕𝑦3𝑑
= 𝛿𝑑𝑦4𝑑(1 − 𝑦4𝑑) 

2. No parameters for layer 4. 

Again layer 4 will pass 
𝜕𝐸𝑑

𝜕𝑦3𝑑
 to layer 3 in the form of 𝛿𝑑 (The backpropagated error). 

Layer 3:  

1. 
𝜕𝐸𝑑

𝜕𝑦2𝑑
=  𝛿𝑑 ×

𝜕𝑦3𝑑

𝜕𝑦2𝑑
= 𝛿𝑑 × 𝑤3 

2. 
𝜕𝐸𝑑

𝜕𝑤3
=  𝛿𝑑 × 𝑦2𝑑 where the chair rule was again used to make the problem local and 

independent of the operations performed at deeper layers. 

Layer 2:  

1. 
𝜕𝐸𝑑

𝜕𝑦1𝑑
=  𝛿𝑑 × 𝑦2𝑑(1 − 𝑦2𝑑) 

2. No parameters at layer 2. 

Layer 1: 

1. 
𝜕𝐸𝑑

𝜕𝐼𝑑
=  𝛿𝑑𝑤1 

2. 
𝜕𝐸𝑑

𝜕𝑤1
=  𝛿𝑑𝐼𝑑 

Done! 

Thus the backpropagation algorithm allows for the efficient implementation of gradient descent 

over a multilayer feedforward neural network by cleverly applying the chair rule. 



Backpropagation Algorithm for Vector Input and Vector Output 
The scalar example illustrated above is a degenerate case. The generalization to vectors just involves 

more linear algebra.  

𝐼 ∈ ℝ𝑁, 𝑊1 ∈ ℝ𝑁1×𝑁, 𝑦1𝑑 ∈ ℝ𝑁1 , 𝑦2𝑑 ∈ ℝ𝑁1 , 𝑊3 ∈ ℝ𝑁3×𝑁1 , 𝑦3𝑑 ∈ ℝ𝑁3 , 𝑦4𝑑 ∈ ℝ𝑁3 

All the partial derivatives are generalized to gradients and all scalar multiplications are generalized to 

matrix vector operations.  

This section on vector input and vector output for backpropagation has been omitted from the 

writeup. 

Problems 
1. Vanishing gradients – If we stack up too many sigmoid units then the gradient magnitude 

decays as it travels backwards. This makes gradient updates in the lower layers extremely 

small and learning impractically slow and ineffective. This is addressed by pre-training the 

network using unsupervised learning or by using ReLU activation units instead of sigmoid. 

More on this in the section on deep learning. 

2. Local Optimum – The loss function with two or more layers is highly non-linear with lots of 

local optimum. There is no guarantee that backpropagation will converge to the global 

optimum solution. This is helped partly by using stochastic gradient descent. Additional 

tricks include initialization with small weights so that we are near the linear region of the 

sigmoid where the problem is less non-linear. Alternatively, we can use a momentum term 

to help skip small local optima in the optimization landscape. 

Δ𝑤(𝑛) =
𝜂𝜕𝐸𝑑

𝜕𝑤
+ 𝛼Δ𝑤(𝑛 − 1) 

𝛼 ∈ (0,1) is called the momentum term. 

3. Overfitting – These multilayer feedforward neural networks are very expressive and thus 

they can fit those idiosyncrasies of training data that do not reflect the general behavior of 

data at test time. This can a problem in any setting with a reasonable amount of noise. It is 

called overfitting to training data. Techniques such as early stopping with cross validation, 

weight decay are used to prevent overfitting. 

Weight decay reduces all the weights in each iteration by a small fraction of their current 

value. 

𝑤 ← 𝑤 − 𝜁𝑤 Where 𝜁is very small. Smaller weights push the network closer to the linear 

region of the sigmoid making it less likely for the network to be able to fit unreasonable 

idiosyncrasies in the training data. 

4. Lots of Parameter Tuning – There are lots of design choices involved in solving a learning 

problem using a neural network. How many neurons should we use in each layer? How to 

set the learning rate? The momentum term? Often the learning rate needs to change after a 

few iterations and this is also manually specified by the programmer. 

5. Lack of Interpretability – The neurons other than the input and output neurons are called 

hidden layer neurons. The output of hidden layer neurons is often hard to interpret making 

it difficult to justify our neural network solution to scientists and people in other domains, 

where interpretability is very important. 

Demo on Face Pose Estimation 
A simple example has been illustrated by Tom Mitchell in his book “Machine Learning”. He trains a 2 

layer network of sigmoid units (similar to the example above with 𝑁1 = 3, 𝑁3 = 4 to classify the 

pose of a face shown in an image. The image is 30 x 32 pixels grayscale and is made into a vector and 



fed into the network. The network should output whether the face is looking left, right, up or 

straight. Several design choices are made when designing the network; other than the network 

architecture itself. These are:- 

1. Input representation 

The full resolution images are downsampled to 30 x 32 pixels by local averaging pixel values. 

Pixel values normally range from 0 to 255. They are linearly scaled to lie between 0 to 1. 

2. Output representation 

Four output neurons are used for a one hot encoding of the four possible results – 1000 for 

left, 0100 for right, 0010 for up and 0001 for straight. Further, instead of using 1 or 0 he uses 

0.9 and 0.1. This is because sigmoid units cannot actually produce 0 and 1 with finite weights 

while they can produce 0.9 and 0.1 with finite weights. This prevents the weight values from 

exploding out of control. 

3. Other learning parameters 

Learning rate is set to 0.3, momentum to 0.3 and a single example stochastic approximation 

of the gradient is used. 

Demo Code 

I’ve reimplemented some of this experiment in matlab using the matconvnet toolbox. The 

network was trained without cross validation and the initialization was different but the rest of 

the experiment was followed closely. Momentum was not used. 

The network converges to the following weights in layer 2  

 

And the following weights in layer 1 

 

Which look like right, straight and up left respectively explaining the weight matrix above. At test 

time this model got 124 out of 139 correct – 89% accuracy (I used 

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-8/faceimages/trainset/all_test1.list for 

the test set and http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-

8/faceimages/trainset/all_train.list for the train set). 

Let’s have a quick look at the code to see how backpropagation is used in practice.  

run C:\Users\aravindh\Software\matconvnet\matlab\vl_setupnn.m 

  
load('facedata.mat'); % loads X for the face images, Y for their ground 

truth labels 
% X is 30 x 32 x 1 x 277 dimensions and 

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-8/faceimages/trainset/all_test1.list
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-8/faceimages/trainset/all_train.list
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-8/faceimages/trainset/all_train.list


% Y is 1 x 1 x 4 x 277 dimensions 
% X_test is 30 x 32 x 1 x 139 
% Y_test is 139 x 1 dimensions containing integers between 1,2,3,4 

  
% hyperparameters for the training 
lr = 0.03; 
numIterations = 1000; 
numHiddenUnits = 3; 

  
% Initialize the parameters for the network 
f1 = 0.05 * randn(1, 1, 30*32, numHiddenUnits, 'single'); 
b1 = zeros(numHiddenUnits, 1, 'single'); 
f3 = 0.05 * randn(1, 1, numHiddenUnits, size(Y, 3), 'single'); 
b3 = zeros(size(Y,3), 1, 'single'); 

  
loss = zeros(numIterations*size(X,4), 1); 
for i=1:numIterations 
    for j=1:size(X, 4) 
        x_cur = reshape(X(:,:,1,j), [1, 1, 30*32, 1]); 
        y_cur = Y(1,1,:,j); 

         
        % forward pass 
        h1 = vl_nnconv(x_cur, f1, b1); 
        h2 = vl_nnsigmoid(h1); 
        h3 = vl_nnconv(h2, f3, b3); 
        h4 = vl_nnsigmoid(h3); 
        [loss_cur, dzdh4] = vl_nnsqeuclidean(h4, y_cur, [], single(1)); 
        loss((i-1)*size(X,4) + j) = loss_cur; 

         
        % backward pass 
        dzdh3 = vl_nnsigmoid(h3, dzdh4); 
        [dzdh2, dzdf3, dzdb3] = vl_nnconv(h2, f3, b3, dzdh3); 
        dzdh1 = vl_nnsigmoid(h1, dzdh2); 
        [dzdx_cur, dzdf1, dzdb1] = vl_nnconv(x_cur, f1, b1, dzdh1); 

         
        % Update the parameters 
        f1 = f1 - lr * dzdf1; b1  = b1 - lr * dzdb1; 
        f3 = f3 - lr * dzdf3; b3 = b3 - lr * dzdb3; 
    end 
    if(mod(i, 10) == 1) 
        fprintf(1, 'Iteration %d\n', i); 
        figure(1); 
        plot(loss(1:(i-1)*size(X,4) + j)); 
        drawnow; 
        pause(0.5); 
    end 
end 

  
% Visualize the learnt network 
figure; 
subplot(1,3,1); imagesc(reshape(f1(:,:,:,1), [30, 32, 1])); axis image; 

colormap gray; 
subplot(1,3,2); imagesc(reshape(f1(:,:,:,2), [30, 32, 1])); axis image; 

colormap gray; 
subplot(1,3,3); imagesc(reshape(f1(:,:,:,3), [30, 32, 1])); axis image; 

colormap gray; 

  
squeeze(f3) 

  



% Let's test it on the test set. 
numTestData = size(X_test, 4); 
X_test = reshape(X_test, [1, 1, 30*32, numTestData]); 
h1 = vl_nnconv(X_test, f1, b1); 
h2 = vl_nnsigmoid(h1); 
h3 = vl_nnconv(h2, f3, b3); 
h4 = vl_nnsigmoid(h3); 
correct = 0; 
for i=1:numTestData 
    [~, result_cur] = max(squeeze(h4(1,1,:,i))); 
    if(result_cur == Y_test(i)) 
        correct = correct + 1; 
    end 
end 
accuracy = correct / numTestData; 

 

Expressive Power 
1. Two layers of sigmoid units can express any Boolean function. But the hidden layer may 

need to be very fat. 

2. Any bounded continuous function can be approximated arbitrarily well by a two layer 

network with sigmoid units in the hidden layer and (unthresholded) linear units in the 

output layer. (Cybenko 1989, Hornik et. al. 1989) 

3. Any function can be approximated to arbitrary accuracy with a network of three layers, 

where the output layer again has linear units. (Cybenko 1988). 

Thus a multilayer feedforward neural network is very expressive which makes them prone to 

overfitting. But in the worst case, we need to use a large number of hidden layer neurons – 

exponential in the input dimension. This is computationally infeasible for real world problems in 

computer vision and speech recognition where the data is in several thousand if not millions of 

dimensions. This problem is addressed by going deeper with several hidden layers as discussed in 

the next section. 

Deep Learning 
An artificial neural network with many hidden layers is called a deep neural network. Deep neural 

networks can express very complicated functions but without many hidden layer neurons. Despite 

this knowledge they were not very popular until recently. This is because training such a deep 

network is very difficult. The gradients at the lower layers are very small because of the non-linear 

nature of sigmoid units at each layer. This is called the problem of “vanishing gradients”. This is 

addressed by replacing the sigmoid with a rectified linear unit (ReLU) or by pre-training the network 

using unsupervised learning. We shall discuss only the ReLU units in this lesson. 

  

 

 

 

 

 

"Rectifier and softplus functions". 

Licensed under CC0 via Wikipedia - 

https://en.wikipedia.org/wiki/File:R

ectifier_and_softplus_functions.svg

#/media/File:Rectifier_and_softplus

_functions.svg 

https://en.wikipedia.org/wiki/File:Rectifier_and_softplus_functions.svg#/media/File:Rectifier_and_softplus_functions.svg
https://en.wikipedia.org/wiki/File:Rectifier_and_softplus_functions.svg#/media/File:Rectifier_and_softplus_functions.svg
https://en.wikipedia.org/wiki/File:Rectifier_and_softplus_functions.svg#/media/File:Rectifier_and_softplus_functions.svg
https://en.wikipedia.org/wiki/File:Rectifier_and_softplus_functions.svg#/media/File:Rectifier_and_softplus_functions.svg


The ReLU has a non-linearity at 0. It is linear for any input greater than 0. Thus the gradients do not 

get squashed and remain significant very deep down the network. But there  is no gradient at 0 

itself. We use an element in the subgradient instead of the gradient and use sub-gradient descent 

instead of gradient descent. 

Another important idea is to use convolution to scale up to large images. This idea has its roots in 

the neo-cognitron model by Fukushima (1980). It was later developed into the convolutional neural 

network (ConvNet) by Lecun et. al. (1988). The key idea is that instead of multiplying each pixel by a 

weight and thus using a million weights for 1 megapixel image, we convolve a small kernel of 

weights over the image. This assumes that image statistics are translation invariant and the same 

weights can be applied everywhere in the image. How does this help? 

1. The number of weights is now much less than 1 million for a 1 mega pixel image. 

2. The small number of weights can use different parts of the image as training data. Thus we 

have several orders of magnitude more data to train the fewer number of weights. 

3. We get translation invariance for free. 

4. Fewer parameters take less memory and thus all the computations can be carried out in 

memory in a GPU or across multiple processors. 

The last of these points may not sound like a big deal but for modern deep convolutional neural 

networks with upto 16 layers this can make the difference between several months of training and 

several days of training. GPU code is typically 10 times faster for these models than their CPU 

counterparts. 

LeNet  
A modern neural network is nothing like its biological counterpart. We can put any sequence of 

differentiable / sub-gradientable operations and use backpropagation to train the parameters. A 

modern deep neural network used to solve digit recognition is composed of convolution, ReLU and 

max pooling and softmax layers. Of these you are already familiar with Convolution and ReLU. Max 

Pooling layers take the local maximum across a small spatial neighborhood. This downsamples the 

input and makes it invariant to local spatial deformations. Softmax is used to convert neuron scores 

into a vector of probabilities. This is typically used at the top of the network to measure the log 

likelihood of the ground truth class. This implements maximum liklihood learning.  

A network used for digit recognition is shown below:- 

Convolution -> Max Pooling -> Convolution -> Max Pooling -> Convolution -> ReLU -> Convolution -> 

Softmax -> Log likelihood loss. 

This can be trained using the MatConvNet toolbox developed by our group. The steps are as 

follows:- 

1. Create a cell array of structure objects. Each structure object tells the layer name, layer 

type(‘conv’, ‘pool’, ‘relu’, ‘softmaxloss’) along with layer parameters.  

2. Create an imdb object from the data. 

3. Call cnn_train in the matconvnet examples folder with the net, imdb, function object to 

retrieve mini batches and optional training options. 

MatConvNet will return the trained network model in the same cell array format but with trained 

values for the learnable parameters (weights). The cnn_train function is implemented using the 

same backpropagation algorithm. As an example, I shall show how backpropagation works for the 

ReLU layer. Recall that the layer needs to compute the derivate of the loss w.r.t. its parameters and 



w.r.t. its inputs. This, in principle, is done by computing the derivative of the ReLU output w.r.t. its 

inputs (note that there are no parameters in the ReLU layer). In practice, however, just like in the 

sigmoid learning units we don’t need to explicitly compute the derivative of the ReLU output w.r.t. 

the input. We can directly compute the hadamard product of the “backpropagated error” w.r.t. the 

element wise derivative of the ReLU. Let’s have a quick look at the code in the file 

matconvnet/matlab/vl_nnrelu.m 

There are two modes of operation – forward mode vs backward mode. In the forward mode, only 1 

input is available – y = vl_nnrelu(x). The code evaluates y = max(x, 0); to evaluate the ReLU forward. 

In the backward mode two inputs are available dzdx = vl_nnrelu(x, dzdy); where dzdx is the 

derivative of the loss z w.r.t the input x and dzdy is the “backpropagated error” (the derivative of the 

loss z w.r.t. the output y). dzdx is computed using the hadamard product dzdy .* (x > 0); where (x > 

0) is the element wise derivative of the ReLU. 

The vl_nnrelu.m function implements additional functionality to support a leak. This is not required 

at the moment. 

Conclusion 
Thanks for your time. Feel free to email me with any questions at 

aravindh.mahendran@new.ox.ac.uk  
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