
Artificial Neural Networks
2nd February 2017, Aravindh Mahendran, Student D.Phil in Engineering Science,

University of Oxford

Contents
Introduction .. 1

Perceptron .. 2

LMS / Delta Rule for Learning a Perceptron model .. 4

Demo for Simple Synthetic Dataset .. 4

Problems ... 6

Stochastic Approximation of the Gradient ... 6

Sigmoid Unit .. 6

Backpropagation algorithm .. 7

Backpropagation Algorithm for Vector Input and Vector Output .. 9

Problems ... 9

Demo on Face Pose Estimation... 9

Expressive Power .. 12

Deep Learning ... 12

LeNet ... 13

Conclusion ... 14

References .. 14

Introduction
Artificial Neural Networks (ANN) are a class of models that have been successfully used in several

machine learning problems. Recent successes include the imagenet image classification challenge

(http://www.image-net.org/challenges/LSVRC/2012/results.html) where team SuperVision

(Krizhevsky et.al. 2012) beat the non-ANN competitors by a very large margin. Deep Artificial Neural

Networks have recently made news in the context of being able to play ATARI games, beating the

European Champion on the Chinese Go, etc .

http://www.image-net.org/challenges/LSVRC/2012/results.html

Screenshot from - http://www.thestar.com/news/world/2016/01/27/deepmind-computer-program-

beats-humans-at-go.html

Screenshot from http://www.wired.co.uk/news/archive/2015-02/25/google-deepmind-atari

ANNs are good for problems where the nature of the target function is hard to guess. Also they are

really slow to train. The imagenet winner in 2012 took 6 days to train on 2 GPUs but the trained

model is really fast at test time.

Perceptron
People studied the real neuron and made a very simple mathematical model of it called the

perceptron. This was proposed by Rosenblatt in 1957 and it took a vector x ∈ 𝑅n as input and gave a

scalar output

𝑦 = {
1 𝑖𝑓 𝒘𝑡𝒙 > 0

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Compare below a depiction of a real neuron and the perceptron model.

http://www.thestar.com/news/world/2016/01/27/deepmind-computer-program-beats-humans-at-go.html
http://www.thestar.com/news/world/2016/01/27/deepmind-computer-program-beats-humans-at-go.html
http://www.wired.co.uk/news/archive/2015-02/25/google-deepmind-atari

https://askabiologist.asu.edu/sites/default/files/resources/articles/neuron_anatomy.jpg

http://tex.stackexchange.com/questions/104334/tikz-diagram-of-a-perceptron

What differences can you guess between the real neuron and the perceptron model?

A biological neuron’s output is in the form of voltage spikes communicated via neurotransmitters.

The perceptron has a binary output that is not time varying.

Then why this model?

The firing rate of a biological neuron can be plotted against aggregated input voltage. The resulting

curve is like a sigmoid function but not exactly a sigmoid function. The threshold activation function

is an approximation of this. Thus the output of a perceptron unit can be thought of as the firing rate

of a neuron rather than the neuron output itself.

The perceptron unit is parametrized by the 𝒘 ∈ 𝑹𝒏 vector. It can represent any linear decision

boundary in n dimensional space. Note that the first input is 𝑥0 = 1 which accommodates the offset

term of the hyperplane neatly in vector notation. For any given machine learning problem, say the

classification of apples against oranges, we will need to learn this 𝒘 from training data.

https://askabiologist.asu.edu/sites/default/files/resources/articles/neuron_anatomy.jpg
http://tex.stackexchange.com/questions/104334/tikz-diagram-of-a-perceptron

LMS / Delta Rule for Learning a Perceptron model
The original method used for learning a perceptron is called the “Perceptron rule”. In this lecture we

shall not discuss it as it is rarely used now a days. Instead we shall discuss the gradient descent

method applied to perceptron learning. This is called LMS rule or delta rule. This rule minimizes the

following loss function:-

𝐸𝐷 =
1

2𝑁
∑(𝑦𝑑 − 𝑦�̂�)2

𝑁

𝑑=1

Where 𝑦𝑑is the ground truth target value (say +1 for apples and -1 for oranges) and 𝑦�̂� = 𝒘𝑡𝒙 is the

prediction corresponding to the linear part of the perceptron. Why minimize this error? Because, if

we pick a w that minimizes this error we can be confident that the perceptron will output +1 for

apples and -1 for oranges and thus separate them.

This error is minimized using gradient descent. What is gradient descent? Recall that the gradient of

a function is the direction of steepest increase of that function. Thus if we move along the negative

of this direction then we shall be following a path of steepest decrease in that function value. Thus

the gradient descent method simply calculates the gradient of 𝐸𝐷and moves in its opposite

direction. Because this property of the gradient is true only locally, we follow the chosen direction

for a small step size 𝜂 and then recalculate a new direction of steepest change. This 𝜂 is a hyper-

parameter typically chosen by hand.

The pseudo code is shown below:-

1. Initialize w to small random values

2. Repeat until satisfied

a. ∇𝐰(𝐸𝐷) =
𝟏

𝑵
∑ (𝒚𝒅 − 𝒚�̂�)(−𝒙𝒅)𝑵

𝒅=𝟏

b. 𝒘 ← 𝒘 − 𝜂𝛁𝒘(𝐸𝐷)

The gradient descent procedure simply follows the direction of negative of the gradient to minimize

the loss function 𝐸𝐷.

Demo for Simple Synthetic Dataset
The purpose of this demo is to understand LMS/Delta rule and how it is implemented in matlab.

The dataset is shown below

The source code is as follows:-

clear;
close all;

%% Load and prepare the data
load('data.mat'); %loads X_positive X_negative
X = [X_positive, X_negative];
X_augmented = [X; ones(1, size(X, 2))];
Y_target = [ones(1, size(X_positive, 2)), -ones(1, size(X_negative, 2))];

%% Initialize the weights and set the hyperparameters
w = randn(3, 1) * 0.01;
eta = 0.0001;
loss = zeros(10000,1);
maxIterations = 10000;

for i=1:maxIterations % 10000 iterations of gradient descent
 Y_predicted = w' * X_augmented;
 loss(i) = sum((Y_target - Y_predicted).^2)/(2*numel(Y_predicted));
 grad = sum(bsxfun(@times, (Y_target - Y_predicted), -X_augmented),

2)/numel(Y_predicted);
 w = w - eta * grad;

 if(mod(i, 100) == 1)
 figure(1);
 clf;
 subplot(1,2,1);
 plot(loss(1:i));
 title('loss');
 xlabel('Number of Iterations');
 ylabel('Loss value');
 subplot(1,2,2);
 plot(X_positive(1,:), X_positive(2,:), 'bo');
 hold on;
 plot(X_negative(1,:), X_negative(2,:), 'ro');
 legend('Positive', 'Negative');
 axis([-4,4,-4,4]);
 x1 = -4; y1 = (-w(3) - w(1)*x1)/w(2);
 x2 = 4; y2 = (-w(3) - w(1)*x2)/w(2);
 line([x1; x2], [y1; y2]);
 title('data');
 drawnow;
 pause(1);
 end
end

This results in the following visual output.

Our loss function is convex so we are guaranteed to converge to the right answer. I have used a very

small learning rate in the above demo to be able to show how the line is moving towards the true

solution.

Problems
1. The linear perceptron cannot classify non-linearly separable data such as images of cats and

dogs.

Solution. Use multiple layers of perceptrons but with a differentiable non-linearity such

as a sigmoid unit discussed later in these notes.

2. The dataset can be very large. It can take several hours to compute a single gradient of the

loss over dataset D.

Solution. Use the stochastic approximation of the gradient using a single sample or a

group of samples. This is discussed in the section below.

Stochastic Approximation of the Gradient
Instead of computing the gradient over the entire dataset we can approximate it using a minibatch

of data or even a single randomly selected sample. This method is called the stochastic gradient

descent. The pseudo code is shown below:-

1. Initialize w to small random values

2. Repeat until satisfied

a. Sample a minibatch of K datapoints 𝐾 < 𝑁; call it �̃�

b. ∇𝐰(𝐸�̃�) =
𝟏

𝑲
∑ (𝒚𝒅 − 𝒚�̂�)(−𝒙𝒅)𝑲

𝒅=𝟏

c. 𝒘 ← 𝒘 − 𝜂𝛁𝒘(𝐸�̃�)

It can be shown that the stochastic approximation can be arbitrarily close to the true gradient for

small enough 𝜂. The stochastic gradient descent approximation can be applied to non-linear

problems as well where it has the added benefit of helping avoid some local minima due to its

stochastic nature.

Sigmoid Unit
A real world problem will often involve non-linear decision boundaries. The perceptron model

cannot provide good accuracies for such problems. However, if we stack together multiple layers of

several perceptrons then a very powerful class of models is obtained commonly referred to as

‘multi-layer feedforward neural networks’. Unfortunately, the threshold non-linearity in each layer

makes this non differentiable. Thus we cannot use gradient descent to train it; there is no gradient in

the first place. We therefore replace the threshold non-linearity with a sigmoid non-linearity. The

resulting model is shown below:-

[Image source:

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/mlbook/ch4.pdf slide 16]

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/mlbook/ch4.pdf

The sigmoid non-linearity is differentiable. Using the notation as in the figure above:-

𝑑𝜎

𝑑(𝑛𝑒𝑡)
= 𝑜 (1 − 𝑜)

Where we have rewritten the derivative in terms of the network output. But many questions

remain.

1. How do we connect these sigmoid neurons?

Ans. In general we can connect neurons arbitrarily but in this lesson we only focus on a

special case called the linear chain; shown below:-

2. How do we train such a network with many sigmoid units?

Ans. We train such a network using the backpropagation algorithm. The algorithm easily

generalizes to arbitrary directed acyclic graphs but for ease of presentation we shall

describe it for the linear chain model.

Note that cyclic connections are also used in practice. These are referred to as recurrent neural

networks and they are usually trained using backpropagation through time. The generalization to

acyclic graphs is more trivial than the generalization to a graph with cycles.

Backpropagation algorithm
We shall discuss the backpropagation algorithm by example. Consider a network that performs the

following mathematical operations

𝐼 → 𝑦1 = 𝑤1𝐼 → 𝑦2 = 𝜎(𝑦1) → 𝑦3 = 𝑤3𝑦2 → 𝑦4 = 𝜎(𝑦3) → 𝐸 =
1

2
(𝑦 − 𝑦4)2

This network receives a scalar input 𝐼 ∈ ℝ, which passes through 2 sigmoid units with weights 𝑤1

and 𝑤3 respectively. It produces a scalar output E by comparing the prediction 𝑦4with 𝑦. For

simplicity we shall decompose this into five layers – layer 1 performs the multiplication with 𝑤1to

transform 𝐼 into 𝑦1and layer 2 performs the non-linearity transforming 𝑦1 into 𝑦2. Layer 3 performs

the multiplication with 𝑤2 and layer 4 performs the sigmoid non-linearity transforming 𝑦3into 𝑦4.

Lastly, layer 5 converts 𝑦4 into the scalar loss 𝐸.

All of the variables are real valued scalars. We shall generalize this to vectors after deriving the scalar

version here.

The backpropagation algorithm is the same as gradient descent. Gradient descent for the network

above is written below:-

For 𝑛 = 1 𝑡𝑜 numIterations

a. Δ𝑤1 = 0, Δ𝑤2 = 0

b. for d = 1 to numData

i. Δ𝑤1 = Δ𝑤1 −
𝜕𝐸𝑑

𝜕𝑤1

ii. Δ𝑤2 = Δ𝑤2 −
𝜕𝐸𝑑

𝜕𝑤2

c. 𝑤1 = 𝑤1 + 𝜂𝑛Δ𝑤1
d. 𝑤2 = 𝑤2 + 𝜂𝑛Δ𝑤2

Input Layer 1 Layer 2 Layer 3

The above algorithm computes the gradient by iterating over each data point. The subscript d is used

to denote the variable value corresponding to a single data point 𝐸𝑑 , 𝐼𝑑 , 𝑦1𝑑 , 𝑦2𝑑 , 𝑦3𝑑 , 𝑦4𝑑.

The backpropagation algorithm contributes an efficient way of computing the partial derivatives
𝜕𝐸𝑑

𝜕𝑤1
 𝑎𝑛𝑑

𝜕𝐸𝑑

𝜕𝑤2
. This contribution is simply the chain rule. Backpropagation works by each layer

computing two things:-

a) Derivative of the loss with respect to its input.

b) Derivative of the loss with respect to its parameters.

This is done for all the layers starting from layer 5 down to layer 1.

Layer 5:

1.
𝜕𝐸𝑑

𝜕𝑦4𝑑
= 𝑦4𝑑 − 𝑦𝑑

2. No parameters for layer 5.

Each layer passes the derivative of the loss with respect to its input, to the layer below it. The layer

below treats this as “top derivative” or backpropagated error 𝛿𝑑.

So Layer 4:

1.
𝜕𝐸𝑑

𝜕𝑦3𝑑
=

𝜕𝐸𝑑

𝜕𝑦4𝑑
×

𝜕𝑦4𝑑

𝜕𝑦3𝑑
= 𝛿𝑑 ×

𝜕𝑦4𝑑

𝜕𝑦3𝑑
 where the chain rule has been used to simplify the problem.

Note that layer 4 now only needs to compute the derivative of its output with respect to its

input and doesn’t bother about the layers above it. Thus,
𝜕𝐸𝑑

𝜕𝑦3𝑑
= 𝛿𝑑𝑦4𝑑(1 − 𝑦4𝑑)

2. No parameters for layer 4.

Again layer 4 will pass
𝜕𝐸𝑑

𝜕𝑦3𝑑
 to layer 3 in the form of 𝛿𝑑 (The backpropagated error).

Layer 3:

1.
𝜕𝐸𝑑

𝜕𝑦2𝑑
= 𝛿𝑑 ×

𝜕𝑦3𝑑

𝜕𝑦2𝑑
= 𝛿𝑑 × 𝑤3

2.
𝜕𝐸𝑑

𝜕𝑤3
= 𝛿𝑑 × 𝑦2𝑑 where the chair rule was again used to make the problem local and

independent of the operations performed at deeper layers.

Layer 2:

1.
𝜕𝐸𝑑

𝜕𝑦1𝑑
= 𝛿𝑑 × 𝑦2𝑑(1 − 𝑦2𝑑)

2. No parameters at layer 2.

Layer 1:

1.
𝜕𝐸𝑑

𝜕𝐼𝑑
= 𝛿𝑑𝑤1

2.
𝜕𝐸𝑑

𝜕𝑤1
= 𝛿𝑑𝐼𝑑

Done!

Thus the backpropagation algorithm allows for the efficient implementation of gradient descent

over a multilayer feedforward neural network by cleverly applying the chair rule.

Backpropagation Algorithm for Vector Input and Vector Output
The scalar example illustrated above is a degenerate case. The generalization to vectors just involves

more linear algebra.

𝐼 ∈ ℝ𝑁, 𝑊1 ∈ ℝ𝑁1×𝑁, 𝑦1𝑑 ∈ ℝ𝑁1 , 𝑦2𝑑 ∈ ℝ𝑁1 , 𝑊3 ∈ ℝ𝑁3×𝑁1 , 𝑦3𝑑 ∈ ℝ𝑁3 , 𝑦4𝑑 ∈ ℝ𝑁3

All the partial derivatives are generalized to gradients and all scalar multiplications are generalized to

matrix vector operations.

This section on vector input and vector output for backpropagation has been omitted from the

writeup.

Problems
1. Vanishing gradients – If we stack up too many sigmoid units then the gradient magnitude

decays as it travels backwards. This makes gradient updates in the lower layers extremely

small and learning impractically slow and ineffective. This is addressed by pre-training the

network using unsupervised learning or by using ReLU activation units instead of sigmoid.

More on this in the section on deep learning.

2. Local Optimum – The loss function with two or more layers is highly non-linear with lots of

local optimum. There is no guarantee that backpropagation will converge to the global

optimum solution. This is helped partly by using stochastic gradient descent. Additional

tricks include initialization with small weights so that we are near the linear region of the

sigmoid where the problem is less non-linear. Alternatively, we can use a momentum term

to help skip small local optima in the optimization landscape.

Δ𝑤(𝑛) =
𝜂𝜕𝐸𝑑

𝜕𝑤
+ 𝛼Δ𝑤(𝑛 − 1)

𝛼 ∈ (0,1) is called the momentum term.

3. Overfitting – These multilayer feedforward neural networks are very expressive and thus

they can fit those idiosyncrasies of training data that do not reflect the general behavior of

data at test time. This can a problem in any setting with a reasonable amount of noise. It is

called overfitting to training data. Techniques such as early stopping with cross validation,

weight decay are used to prevent overfitting.

Weight decay reduces all the weights in each iteration by a small fraction of their current

value.

𝑤 ← 𝑤 − 𝜁𝑤 Where 𝜁is very small. Smaller weights push the network closer to the linear

region of the sigmoid making it less likely for the network to be able to fit unreasonable

idiosyncrasies in the training data.

4. Lots of Parameter Tuning – There are lots of design choices involved in solving a learning

problem using a neural network. How many neurons should we use in each layer? How to

set the learning rate? The momentum term? Often the learning rate needs to change after a

few iterations and this is also manually specified by the programmer.

5. Lack of Interpretability – The neurons other than the input and output neurons are called

hidden layer neurons. The output of hidden layer neurons is often hard to interpret making

it difficult to justify our neural network solution to scientists and people in other domains,

where interpretability is very important.

Demo on Face Pose Estimation
A simple example has been illustrated by Tom Mitchell in his book “Machine Learning”. He trains a 2

layer network of sigmoid units (similar to the example above with 𝑁1 = 3, 𝑁3 = 4 to classify the

pose of a face shown in an image. The image is 30 x 32 pixels grayscale and is made into a vector and

fed into the network. The network should output whether the face is looking left, right, up or

straight. Several design choices are made when designing the network; other than the network

architecture itself. These are:-

1. Input representation

The full resolution images are downsampled to 30 x 32 pixels by local averaging pixel values.

Pixel values normally range from 0 to 255. They are linearly scaled to lie between 0 to 1.

2. Output representation

Four output neurons are used for a one hot encoding of the four possible results – 1000 for

left, 0100 for right, 0010 for up and 0001 for straight. Further, instead of using 1 or 0 he uses

0.9 and 0.1. This is because sigmoid units cannot actually produce 0 and 1 with finite weights

while they can produce 0.9 and 0.1 with finite weights. This prevents the weight values from

exploding out of control.

3. Other learning parameters

Learning rate is set to 0.3, momentum to 0.3 and a single example stochastic approximation

of the gradient is used.

Demo Code

I’ve reimplemented some of this experiment in matlab using the matconvnet toolbox. The

network was trained without cross validation and the initialization was different but the rest of

the experiment was followed closely. Momentum was not used.

The network converges to the following weights in layer 2

And the following weights in layer 1

Which look like right, straight and up left respectively explaining the weight matrix above. At test

time this model got 124 out of 139 correct – 89% accuracy (I used

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-8/faceimages/trainset/all_test1.list for

the test set and http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-

8/faceimages/trainset/all_train.list for the train set).

Let’s have a quick look at the code to see how backpropagation is used in practice.

run C:\Users\aravindh\Software\matconvnet\matlab\vl_setupnn.m

load('facedata.mat'); % loads X for the face images, Y for their ground

truth labels
% X is 30 x 32 x 1 x 277 dimensions and

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-8/faceimages/trainset/all_test1.list
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-8/faceimages/trainset/all_train.list
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-8/faceimages/trainset/all_train.list

% Y is 1 x 1 x 4 x 277 dimensions
% X_test is 30 x 32 x 1 x 139
% Y_test is 139 x 1 dimensions containing integers between 1,2,3,4

% hyperparameters for the training
lr = 0.03;
numIterations = 1000;
numHiddenUnits = 3;

% Initialize the parameters for the network
f1 = 0.05 * randn(1, 1, 30*32, numHiddenUnits, 'single');
b1 = zeros(numHiddenUnits, 1, 'single');
f3 = 0.05 * randn(1, 1, numHiddenUnits, size(Y, 3), 'single');
b3 = zeros(size(Y,3), 1, 'single');

loss = zeros(numIterations*size(X,4), 1);
for i=1:numIterations
 for j=1:size(X, 4)
 x_cur = reshape(X(:,:,1,j), [1, 1, 30*32, 1]);
 y_cur = Y(1,1,:,j);

 % forward pass
 h1 = vl_nnconv(x_cur, f1, b1);
 h2 = vl_nnsigmoid(h1);
 h3 = vl_nnconv(h2, f3, b3);
 h4 = vl_nnsigmoid(h3);
 [loss_cur, dzdh4] = vl_nnsqeuclidean(h4, y_cur, [], single(1));
 loss((i-1)*size(X,4) + j) = loss_cur;

 % backward pass
 dzdh3 = vl_nnsigmoid(h3, dzdh4);
 [dzdh2, dzdf3, dzdb3] = vl_nnconv(h2, f3, b3, dzdh3);
 dzdh1 = vl_nnsigmoid(h1, dzdh2);
 [dzdx_cur, dzdf1, dzdb1] = vl_nnconv(x_cur, f1, b1, dzdh1);

 % Update the parameters
 f1 = f1 - lr * dzdf1; b1 = b1 - lr * dzdb1;
 f3 = f3 - lr * dzdf3; b3 = b3 - lr * dzdb3;
 end
 if(mod(i, 10) == 1)
 fprintf(1, 'Iteration %d\n', i);
 figure(1);
 plot(loss(1:(i-1)*size(X,4) + j));
 drawnow;
 pause(0.5);
 end
end

% Visualize the learnt network
figure;
subplot(1,3,1); imagesc(reshape(f1(:,:,:,1), [30, 32, 1])); axis image;

colormap gray;
subplot(1,3,2); imagesc(reshape(f1(:,:,:,2), [30, 32, 1])); axis image;

colormap gray;
subplot(1,3,3); imagesc(reshape(f1(:,:,:,3), [30, 32, 1])); axis image;

colormap gray;

squeeze(f3)

% Let's test it on the test set.
numTestData = size(X_test, 4);
X_test = reshape(X_test, [1, 1, 30*32, numTestData]);
h1 = vl_nnconv(X_test, f1, b1);
h2 = vl_nnsigmoid(h1);
h3 = vl_nnconv(h2, f3, b3);
h4 = vl_nnsigmoid(h3);
correct = 0;
for i=1:numTestData
 [~, result_cur] = max(squeeze(h4(1,1,:,i)));
 if(result_cur == Y_test(i))
 correct = correct + 1;
 end
end
accuracy = correct / numTestData;

Expressive Power
1. Two layers of sigmoid units can express any Boolean function. But the hidden layer may

need to be very fat.

2. Any bounded continuous function can be approximated arbitrarily well by a two layer

network with sigmoid units in the hidden layer and (unthresholded) linear units in the

output layer. (Cybenko 1989, Hornik et. al. 1989)

3. Any function can be approximated to arbitrary accuracy with a network of three layers,

where the output layer again has linear units. (Cybenko 1988).

Thus a multilayer feedforward neural network is very expressive which makes them prone to

overfitting. But in the worst case, we need to use a large number of hidden layer neurons –

exponential in the input dimension. This is computationally infeasible for real world problems in

computer vision and speech recognition where the data is in several thousand if not millions of

dimensions. This problem is addressed by going deeper with several hidden layers as discussed in

the next section.

Deep Learning
An artificial neural network with many hidden layers is called a deep neural network. Deep neural

networks can express very complicated functions but without many hidden layer neurons. Despite

this knowledge they were not very popular until recently. This is because training such a deep

network is very difficult. The gradients at the lower layers are very small because of the non-linear

nature of sigmoid units at each layer. This is called the problem of “vanishing gradients”. This is

addressed by replacing the sigmoid with a rectified linear unit (ReLU) or by pre-training the network

using unsupervised learning. We shall discuss only the ReLU units in this lesson.

"Rectifier and softplus functions".

Licensed under CC0 via Wikipedia -

https://en.wikipedia.org/wiki/File:R

ectifier_and_softplus_functions.svg

#/media/File:Rectifier_and_softplus

_functions.svg

https://en.wikipedia.org/wiki/File:Rectifier_and_softplus_functions.svg#/media/File:Rectifier_and_softplus_functions.svg
https://en.wikipedia.org/wiki/File:Rectifier_and_softplus_functions.svg#/media/File:Rectifier_and_softplus_functions.svg
https://en.wikipedia.org/wiki/File:Rectifier_and_softplus_functions.svg#/media/File:Rectifier_and_softplus_functions.svg
https://en.wikipedia.org/wiki/File:Rectifier_and_softplus_functions.svg#/media/File:Rectifier_and_softplus_functions.svg

The ReLU has a non-linearity at 0. It is linear for any input greater than 0. Thus the gradients do not

get squashed and remain significant very deep down the network. But there is no gradient at 0

itself. We use an element in the subgradient instead of the gradient and use sub-gradient descent

instead of gradient descent.

Another important idea is to use convolution to scale up to large images. This idea has its roots in

the neo-cognitron model by Fukushima (1980). It was later developed into the convolutional neural

network (ConvNet) by Lecun et. al. (1988). The key idea is that instead of multiplying each pixel by a

weight and thus using a million weights for 1 megapixel image, we convolve a small kernel of

weights over the image. This assumes that image statistics are translation invariant and the same

weights can be applied everywhere in the image. How does this help?

1. The number of weights is now much less than 1 million for a 1 mega pixel image.

2. The small number of weights can use different parts of the image as training data. Thus we

have several orders of magnitude more data to train the fewer number of weights.

3. We get translation invariance for free.

4. Fewer parameters take less memory and thus all the computations can be carried out in

memory in a GPU or across multiple processors.

The last of these points may not sound like a big deal but for modern deep convolutional neural

networks with upto 16 layers this can make the difference between several months of training and

several days of training. GPU code is typically 10 times faster for these models than their CPU

counterparts.

LeNet
A modern neural network is nothing like its biological counterpart. We can put any sequence of

differentiable / sub-gradientable operations and use backpropagation to train the parameters. A

modern deep neural network used to solve digit recognition is composed of convolution, ReLU and

max pooling and softmax layers. Of these you are already familiar with Convolution and ReLU. Max

Pooling layers take the local maximum across a small spatial neighborhood. This downsamples the

input and makes it invariant to local spatial deformations. Softmax is used to convert neuron scores

into a vector of probabilities. This is typically used at the top of the network to measure the log

likelihood of the ground truth class. This implements maximum liklihood learning.

A network used for digit recognition is shown below:-

Convolution -> Max Pooling -> Convolution -> Max Pooling -> Convolution -> ReLU -> Convolution ->

Softmax -> Log likelihood loss.

This can be trained using the MatConvNet toolbox developed by our group. The steps are as

follows:-

1. Create a cell array of structure objects. Each structure object tells the layer name, layer

type(‘conv’, ‘pool’, ‘relu’, ‘softmaxloss’) along with layer parameters.

2. Create an imdb object from the data.

3. Call cnn_train in the matconvnet examples folder with the net, imdb, function object to

retrieve mini batches and optional training options.

MatConvNet will return the trained network model in the same cell array format but with trained

values for the learnable parameters (weights). The cnn_train function is implemented using the

same backpropagation algorithm. As an example, I shall show how backpropagation works for the

ReLU layer. Recall that the layer needs to compute the derivate of the loss w.r.t. its parameters and

w.r.t. its inputs. This, in principle, is done by computing the derivative of the ReLU output w.r.t. its

inputs (note that there are no parameters in the ReLU layer). In practice, however, just like in the

sigmoid learning units we don’t need to explicitly compute the derivative of the ReLU output w.r.t.

the input. We can directly compute the hadamard product of the “backpropagated error” w.r.t. the

element wise derivative of the ReLU. Let’s have a quick look at the code in the file

matconvnet/matlab/vl_nnrelu.m

There are two modes of operation – forward mode vs backward mode. In the forward mode, only 1

input is available – y = vl_nnrelu(x). The code evaluates y = max(x, 0); to evaluate the ReLU forward.

In the backward mode two inputs are available dzdx = vl_nnrelu(x, dzdy); where dzdx is the

derivative of the loss z w.r.t the input x and dzdy is the “backpropagated error” (the derivative of the

loss z w.r.t. the output y). dzdx is computed using the hadamard product dzdy .* (x > 0); where (x >

0) is the element wise derivative of the ReLU.

The vl_nnrelu.m function implements additional functionality to support a leak. This is not required

at the moment.

Conclusion
Thanks for your time. Feel free to email me with any questions at

aravindh.mahendran@new.ox.ac.uk

References
Cybenko 1989 - https://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf

Cybenko 1988 – Continuous Valued Neural Networks with two Hidden Layers are Sufficient

(Technical Repor), Department of Computer Science, Tufts University, Medford, MA

Fukushima 1980 -

http://www.cs.princeton.edu/courses/archive/spr08/cos598B/Readings/Fukushima1980.pdf

Hinton 2006 - http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf

Hornick et. al. 1989 - http://www.sciencedirect.com/science/article/pii/0893608089900208

Krizhevsky et. al. 2012 - http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-

convolutional-neural-networks.pdf

Lecun 1998 - http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

Tom Mitchell, Machine Learning, 1997

mailto:aravindh.mahendran@new.ox.ac.uk
https://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf
http://www.cs.princeton.edu/courses/archive/spr08/cos598B/Readings/Fukushima1980.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

