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ABSTRACT
The continuing rise in the number of problems amenable to machine learning solutions, coupled with simultaneous
growth in both computing power and variety of machine learning techniques has led to an explosion of interest in
automated machine learning (AutoML). This paper presents Ensemble Squared (Ensemble2), a “meta” AutoML
system that ensembles at the level of AutoML systems. Ensemble2 exploits the diversity of existing, competing
AutoML systems by ensembling the top-performing models simultaneously generated by a set of them. Our
work shows that diversity in AutoML systems is sufficient to justify ensembling at the AutoML system level. In
demonstrating this, we also establish a new state of the art AutoML result on the OpenML classification challenge.

1 INTRODUCTION

Advances in computer hardware and the ever-expanding
abundance of data are enabling the construction of machine
learning models that are yielding progressively more value
in a growing set of application domains. Unfortunately, as
is well understood, there is no single best machine learning
model. This means that for every new application or prob-
lem, a laborious, largely manual process must be following
that includes data cleaning, feature engineering, and the
design, testing, and selection of a machine learning model
and pipeline. This is what data scientists do, often in collab-
oration with domain experts. The demand for data science
talent on the job market exceeds supply (Manyika et al.,
2011; Pompa & Burke, 2017; McKinsey Analytics, 2016)
and for this reason the societal “value add” from machine
learning is bottlenecked by the availability of data scientists
and the difficulty of applied machine learning.

One solution to this is to automate much of the machine
learning model and pipeline selection process using auto-
mated machine learning (AutoML). AutoML systems allow
data scientists to focus directly on value creation, i.e. solv-
ing the underlying problem, while other tasks such as data
cleaning, model selection, model fitting, and hyperparam-
eter tuning are handled automatically. The full promise of
AutoML is that, eventually, it will enable even non-data-
scientists to extract value from their own data.

A variety of AutoML systems exist today (Erickson et al.,
2020; Feurer et al., 2015; Heffetz et al., 2020). DARPA
even funded a program, in which we participated, called the
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Data-Driven Discovery of Models (or “D3M”) program1,
whose aim was to accelerate the development of systems
and expand the variety of approaches to AutoML. The Au-
toML community has matured sufficiently to have started
to coalesce around reporting results on the OpenML classi-
fication benchmark (Gijsbers et al., 2019). Our experience
in the D3M program combined with reviewing these sys-
tems and their comparable reported results led us to ask
the following question: Ensembling individual models has
been shown to be an extremely powerful idea (Hansen &
Salamon, 1990); could it be that there is sufficient diversity
in AutoML systems so that ensembling AutoML systems
(really ensembling models and pipelines derived from a
collection of systems) would lead to quantitative gains?

This is the question, or hypothesis, that this paper addresses.
Ensemble2, the system we build, ensembles machine learn-
ing pipelines searched for in parallel by a set of AutoML
systems, and achieves a new state of the art baseline on an
OpenML classification benchmark. To our knowledge no
other existing work ensembles results among different Au-
toML systems (our base learners), exploiting the variability
between them in terms of pipeline search, model selection,
and hyperparameter optimization strategies.

To be clear we are aware that numerous AutoML solu-
tions already rely on internally ensembling machine learn-
ing model pipelines discovered during their internal search
phase (Feurer et al., 2015; 2020; Erickson et al., 2020; Chen
et al., 2018; Zaidi et al., 2020), and some even go so far as to
explicitly search for best base learners to ensemble. They do
so for the same reason that we explore ensembling AutoML
systems externally: ensembling can reduce both bias and
variance of a machine learning models’ predictions.

1https://www.darpa.mil/program/
data-driven-discovery-of-models
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Figure 1. Overview of Ensemble2 workflow. Ensemble2 is made up of three underlying subsystems. First, the Dataset Preparation
subsystem takes the training dataset comma separated value (CSV) file along with a target column, performs dataset curation to identify
the problem and column types (if not provided), and converts it to a format acceptable to the AutoML systems. The Pipeline Search
subsystem spins up M different AutoML systems (our base learners) as docker containers and performs the pipeline search procedure in
parallel for a set time duration. Once the time limit has been hit and all discovered pipelines (P ) have been collected, it ranks the pipelines
based on their validation scores. The ranked pipelines, and the prepared training and test datasets are then passed to the third subsystem,
the Ensemble Prediction subsystem. Here the top K pipelines (where K is a hyperparameter and K ≤ P ), are selected and fitted to the
given training dataset. After the fitting process, predictions are produced for the test dataset for all K pipelines. The predictions are then
passed onto the ensembling module, which generates the final Ensemble2 predictions using majority voting.

Ensemble2 has an additional benefit of being more robust
than its base learners. Existing AutoML systems are sur-
prisingly brittle. Because different AutoML systems apply
different pre-processing steps, they can fail to return a so-
lution on some datasets (such as ones with a lot of missing
values) (Zöller & Huber, 2019). Ensemble2, by its con-
struction, is trivially more robust than all of its underlying
AutoML systems and only fails when all base systems fail.

Figure 1 presents an overview of Ensemble2. Our sys-
tem consists of two subsystems, one that performs pipeline
search using the base learners in parallel and ranks all re-
turned pipelines, and another that ensembles results from
a specific number of top pipelines using majority voting.
Table 2 shows Ensemble2’s performance on the OpenML
benchmark test datasets relative to the AutoML systems it
ensembles. This table shows that it achieves the highest
average rank overall and that it outperforms notable current
AutoML systems such as AutoGluon (Erickson et al., 2020)
and Auto-Sklearn-2 (Feurer et al., 2020).

2 BACKGROUND

Ensemble2 relies on ensembling the best pipelines from 6
base AutoML systems: AlphaD3M (Drori et al., 2019), Ax-

olotl2, CMU AutoML3, Auto-Sklearn (Feurer et al., 2015),
Auto-Sklearn 2.0 (Feurer et al., 2020), and AutoGluon (Er-
ickson et al., 2020). These systems were selected for their
differing search strategies and search spaces. Table 1 con-
tains a brief overview of these systems and the different
approaches they take to the automated pipeline search and
optimization problem.

2.1 Problem Formulation

While there are several definitions of the AutoML problem,
our work follows the definition in (Zöller & Huber, 2019).
Let a machine learning pipeline P : X → Y be a sequential
combination of algorithms that transforms a feature vector
x ∈ X to a target value y ∈ Y . For example, y is an one-
hot vector of class labels for a classification problem and a
real number for a one-dimensional regression problem. Let
A = {A(1), A(2), ..., A(n)} be a fixed set of data-cleaning,
feature pre-processing, and estimator algorithms where each
algorithmA(i) is configured by a set of hyperparameters λ(i)

from the domain Λ(i). Then, P ’s structure can be described
as a Directed Acyclic Graph (DAG) where each node is
an algorithm A(i) and each edge represents the data flow
between algorithms.

The objective of an AutoML system is to find the configura-

2https://gitlab.com/axolotl1/axolotl
3https://github.com/autonlab/cmu-ta2
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AutoML System Primitive
Library

Model Discovery and
Hyperparameter Tuning Internal Ensembling

AlphaD3M D3M Deep RL -
Axolotl D3M Templates + BayesOpt -
CMU AutoML D3M Templates + Grid Search -
Auto-SkLearn SKlearn BayesOpt + Meta-Learn Forward Search
Auto-SkLearn 2.0 SKlearn Portfolio Learning Forward Search
AutoGluon Gluon Fixed Defaults (Set Adaptively) Multi-Layer Stacking and Bagging

Table 1. Base AutoML Systems used in Ensemble2. This table highlights some of the differences between these AutoML systems and the
diversity of methods that Ensemble2 benefits from.

tion of algorithms and hyperparameters that minimizes the
loss on an unseen test dataset as following

P ∗ = argminP∈P L(Dtrain,Dtest, P ) (1)

where P is a valid pipeline from the space of all valid DAG-
structured pipelines P , L is the task loss, and Dtrain and
Dtest are the training and test datasets.

Ensemble2 estimates P ∗ above by ensembling the top-k
best pipelines discovered by its base AutoML systems. The
top-k is evaluated by choosing the k models with the lowest
loss on the validation dataset. Once the top-k is chosen any
ensembling strategy can be used on the set of top-k models.
The base AutoML systems partition Dtrain into training
and validation sets respectively based on their own system.

2.2 Ensemble Learning

Ensembles are commonly used to boost performance by re-
ducing model bias and variance (Rahman & Tasnim, 2014).
Popular ensemble architectures often utilize one of voting,
bagging, boosting, and stacking techniques. Voting involves
having the base learners vote on the correct class with equal
weight and taking the class with the most votes as the fi-
nal prediction. Bagging involves independently training
the base learners using a randomly drawn subset of the
training set and having the base learners vote with equal
weight. Boosting involves incrementally constructing an
ensemble by training base learners to better classify train-
ing data points that the previous base learners misclassified.
Lastly, stacking involves training a classifier that learns to
combine the predictions of many base learners and make a
final prediction.

2.3 Base AutoML Systems

As previously mentioned, six base AutoML systems were
used in Ensemble2. These systems were selected as base
AutoML systems because of their strong individual perfor-
mance as well as their different search strategies and search
spaces. The different search strategies are elaborated below,
so we only detail their different search spaces in this para-

graph. Auto-Sklearn 1.0 & Auto-Sklearn 2.0 restrict their
ML algorithms (ex. data-cleaning, feature pre-processing,
and estimator) to scikit-learn library (Pedregosa et al., 2011).
AlphaD3M, Axolotl, and CMU AutoML restrict their ML al-
gorithms in the D3M library. Lastly, AutoGluon uses a mix
of scikit-learn library, neural networks, and custom-made
tree-based ML algorithms.

AlphaD3M AlphaD3M (Drori et al., 2019) uses reinforce-
ment learning to tackle the pipeline search problem. It first
formulates automated machine learning as a combinatorial
optimization problem to find a sequence of machine learning
algorithms that performs the best on the test dataset accord-
ing to a user-defined metric. It then casts the combinatorial
optimization problem as a sequential decision-making prob-
lem where a machine learning pipeline is iteratively built
one component at a time.

AlphaD3M uses AlphaZero’s Monte Carlo Tree Search
(MCTS) and neural network setup (Silver et al., 2017).
MCTS asymmetrically explores promising trajectories by
nature and balances between exploration and exploitation.
Neural networks enhance the MCTS runtime by guiding the
search process with a learned heuristic and providing state
value estimates. These techniques enable AlphaD3M to run
a diverse set of pipelines while biasing its search around
pipelines that performed well on validation dataset.

Reinforcement learning solutions are quite sample-
inefficient. To mitigate these problems, AlphaD3M trains
its neural networks in an offline manner on a set of meta-
training datasets. At test time, AlphaD3M runs MCTS with
the trained neural network on an unseen dataset while con-
tinuing to update the neural network weights occasionally.

Axolotl Axolotl takes the middle ground between a
template-based approach and Bayesian optimization. To
find promising pipelines in a short amount of time, Axolotl
fixes its pre-processing steps and cycles through its estima-
tor search space. Hyperparameters are set to default values
as the goal isn’t to tune every pipeline but to identify k
most promising estimators that, combined with the fixed
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pre-processing steps, score the highest on the validation
dataset. Once the k best pipelines have been found, Axolotl
initiates a Gaussian Process Bayesian optimization on each
of those pipelines. Axolotl aims to achieve strong initial
performance through quick template-based evaluations and
strong asymptotic performance by applying Bayesian opti-
mization on promising pipelines over time. However, the
use of templates constrains the search space and means that
not all possible pipeline configurations are explored.

CMU AutoML CMU AutoML takes a template approach
to the pipeline synthesis problem. More specifically, it
uses multiple hand-crafted pre-processing steps and cycles
through all possible pre-processing and estimator combi-
nations to quickly assess the optimality of many pipelines
in a short amount of time. This follows from the authors’
finding that foregoing hyperparameter search and instead
using that time to evaluate as many model as possible was
able to achieve superior performance when dealing with
short search times. However, some key pipeline component
hyperparameters are grid-searched.

AutoGluon AutoGluon (Erickson et al., 2020) employs
a unique stacking technique called Multi-Layer Stack En-
sembling alongside k-fold ensemble bagging. Multi-Layer
Stack Ensembling involves stacking models in multple layes
and training in a layer-wise manner which would guaran-
tee high-quality predictions within a given time frame. To
prevent overfitting, Autogluon relies on K-fold ensemble
bagging at all layers.

Auto-Sklearn Auto-Sklearn 1.0 (Feurer et al., 2015) uses
Bayesian optimization to search through the model and
hyperparameter space of selected scikit-learn (Pedregosa
et al., 2011) modules. Meta-learning is used to warm start
the search procedure. When the model search is over,
Auto-Sklearn 1.0 constructs an ensemble from discovered
pipelines by employing forward search (Caruana et al.,
2004).

Auto-Sklearn 2.0 (Feurer et al., 2020) improves upon Auto-
Sklearn 1.0 by employing portfolio learning. It first runs
Bayesian optimization on all meta-train datasets and con-
structs a portfolio of pipelines to run on all future tasks. In
addition, it learns what model selection strategy to use on a
new dataset based on simple meta-features involving some
combination of k-fold validation, validation holdout set, suc-
cessive halving (Jamieson & Talwalkar, 2016), and more. It
also uses various other improvements such as intermittent
result storage to be able to return results quicker for larger
datasets in a short amount of time.

3 METHODOLOGY

3.1 Ensemble Construction

While there are many possible ensemble architectures for a
multi-class classification problem with |C| different classes,
Ensemble2 simply employs the majority voting scheme for
now since the primary goal of this paper was to see whether
there is any merit in combining multiple AutoML systems.
Other architectures based on bagging and stacking are also
possible. Here, we briefly describe the majority voting
scheme.

Let us define the feature vector space as X , and the |C|-
dimensional one-hot target vector space as Y . We denote
P : X → Y to be a machine learning pipeline with fully
defined algorithm and hyperparameter values. Let P =
{P1, P2, ..., PN} be a set of N machine learning pipelines
from the base AutoML systems that achieves the lowest loss
on the validation dataset when the search procedure is over.
Lastly, we denote the indicator function as I. A majority
voting ensemble model M : X → Y assigns the label ŷ to
a data point x as follows:

ŷ = argmax
y

[
N∑
i=1

I(Pi(x) = y)

]
(2)

where Pi are trained on Dtrain with the base classifier’s
loss.

The advantage of the majority voting approach is the fact
that no additional training is required aside from training the
pipelines in P. It is conceptually the simplest to implement
and often yields good results.

4 EXPERIMENTAL SETUP

Ensemble2 uses standard APIs (including the Data-Driven
Discovery of Models (D3M) API4, and the Auto-SKlearn
API5) to interface with the base AutoML systems. These
standard APIs allow us to seamlessly integrate with any
future AutoML systems that follow these standardized APIs.
API usage allows for a client-server setup, where the Au-
toML systems runs on the server side and the user sched-
ules various commands to the AutoML systems from the
client side. The AutoML systems are all containerized using
Docker, thereby bypassing the concern of installing required
packages and managing conflicting dependencies. This also
allows us easily scale the system as required and run multi-
ple AutoML systems in parallel. This enables Ensemble2 to
act as a client and schedule various pipeline search tasks to
the base AutoML system containers.

4https://gitlab.com/datadrivendiscovery/
ta3ta2-api

5https://automl.github.io/auto-sklearn/
master/index.html

https://gitlab.com/datadrivendiscovery/ta3ta2-api
https://gitlab.com/datadrivendiscovery/ta3ta2-api
https://automl.github.io/auto-sklearn/master/index.html
https://automl.github.io/auto-sklearn/master/index.html
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As depicted in 1, there are three main stages in Ensemble2’s
workflow: dataset preparation, pipeline search, and ensem-
bling.

4.1 Dataset Preparation

Given a train/test dataset pair, Ensemble2 converts the
datasets into a type that can be used by the relevant sys-
tem. This process involves assigning correct column types
(including inferring column types automatically if that infor-
mation is not provided), and assigning the relevant semantic
type to each feature and target column. The base AutoML
systems can have it’s own profiler/heuristics to then infer
the column type. In addition, it infers what kind of task to
perform as well. For example, it may label the task as a
binary classification, multiclass classification, or regression.
This stage removes any ambiguity regarding the dataset and
the task for the base AutoML systems.

4.2 Pipeline Search

Ensemble2 spins up a Docker container for each of its base
AutoML system in parallel. It sends search requests to each
base AutoML system to perform the pipeline search pro-
cedure for a given duration of time with a specific seed.
Discovered ML pipelines along with its validation scores
are continuously streamed from the container to Ensemble2,
which in turn saves the information. Once the time limit
is over and all discovered pipelines have been collected,
Ensemble2 fits the pipelines with the complete training set
and generates test dataset predictions. It saves the predic-
tions for the ensembling procedure.

Ensemble2 is quite robust; if any AutoML system happens
to fail, all of its previously discovered pipelines are saved
and it does not influence the performance of other AutoML
systems running concurrently. Ensemble2 only truly fails
when all of its base AutoML systems fail without discover-
ing any pipelines. This scenario is not likely in most cases,
since different AutoML systems take different precautions
to avoid this scenario. Just like how ensembles work better
than their individual learners when the learners make inde-
pendent errors, Ensemble2 is more robust than any of the
base AutoML systems if the AutoML systems have indepen-
dent modes of failure. This is another reason why we chose
AutoML systems that use different approaches to perform
pipeline search, as these systems are likely to have different
failure modes.

4.3 Ensemble Prediction

While many ensembling schemes are possible at this point,
Ensemble2 simply chooses K pipelines with the highest
validation dataset performance and generates the final test
dataset predictions using majority voting. In the future, we

plan to experiment with many different ensembling schemes
such as stacking, bootstrapped majority voting, forward
search majority voting, and meta-feature-aware stacking. K
is set to 3 for the experiments.

5 EMPIRICAL EVALUATION

5.1 Datasets

All experiments were performed on the 41 OpenML clas-
sification benchmark datasets (Gijsbers et al., 2019). The
benchmark was curated such that its member datasets vary
in the number of data points and features by orders of mag-
nitudes. The member datasets vary in the number of categor-
ical features, numerical features, and missing values. The
benchmark also does not contain classification problems
that are too easy to solve (e.g. most artificially generated
datasets) and is gradually updated overtime to prevent Au-
toML tools from overfitting to the member datasets. The
evaluation metric is accuracy for all datasets in the bench-
mark.

5.2 Experimental Setup

For all experiments, each AutoML system was run in par-
allel to other AutoML systems. Each AutoML system was
given access to 4 CPUs and 8GB of RAM. Experiments
were performed on four machines with a Intel Core i7-
5820K, 3.3 GHz processor, 48 GB DDR4 RAM. All Au-
toML systems were run for one hour. Unless otherwise
mentioned, Ensemble2 ensembles the top 3 pipelines with
the best validation scores from its base AutoML systems.

Ensemble2 was compared against six state-of-the-art
(SOTA) AutoML systems: AutoGluon, Auto-Sklearn, Auto-
Sklearn 2.0, AlphaD3M, Axolotl, and CMU AutoML. Au-
toGluon’s score is measured by the performance of its best
pipeline, which is its default configuration. Auto-Sklearn
and Auto-Sklearn 2.0’s scores are measured by the perfor-
mance of the size 3 ensembles generated by forward search
(Caruana et al., 2004) from its search procedure. AlphaD3M,
Axolotl, and CMU AutoML’s scores are measured by taking
the top 3 pipelines discovered during search and ensembling
them using majority voting. Lastly, Ensemble2’s score is
measured by taking the top 3 pipelines discovered by all six
SOTA systems and ensembling them using majority voting.
All systems were run for 1 hour, and had 20 minutes to
generate test-set predictions. Failed AutoML runs were run
one more time with identical configurations.

5.3 Result

Table 2 summarizes the results of this experiment. The
average rank of each AutoML system relative to one another
is written in the bottom row of the table, with ties allowed.
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OpenML
Dataset ID

AlphaD3M Axolotl CMU AutoML AutoGluon Auto-Sklearn Auto-Sklearn-2 Ensemble2

2 0.600 ± 0.000 0.981 ± 0.000 0.822 ± 0.000 0.990 ± 0.001 0.985 ± 0.003 0.976 ± 0.007 0.982 ± 0.003
3 0.515 ± 0.002 0.990 ± 0.001 0.996 ± 0.000 0.993 ± 0.002 0.654 ± 0.463 0.995 ± 0.002 0.994 ± 0.002
5 0.357 ± 0.011 0.744 ± 0.005 0.475 ± 0.000 0.683 ± 0.005 0.724 ± 0.016 0.479 ± 0.339 0.705 ± 0.011

12 0.092 ± 0.003 0.937 ± 0.005 0.207 ± 0.000 0.973 ± 0.001 0.651 ± 0.460 0.974 ± 0.001 0.974 ± 0.001
31 0.670 ± 0.025 0.726 ± 0.002 0.745 ± 0.000 0.783 ± 0.001 0.756 ± 0.017 0.783 ± 0.002 0.775 ± 0.002
54 0.293 ± 0.011 0.743 ± 0.013 0.768 ± 0.001 0.841 ± 0.010 0.797 ± 0.016 0.754 ± 0.018 0.834 ± 0.012

1067 0.767 ± 0.036 0.813 ± 0.032 0.845 ± 0.000 0.857 ± 0.002 0.857 ± 0.004 0.848 ± 0.006 0.860 ± 0.001
1111 0.655 ± 0.463 0.964 ± 0.024 0.983 ± 0.000 0.983 ± 0.000 0.983 ± 0.000 0.983 ± 0.000 0.983 ± 0.000
1169 0.339 ± 0.240 - 0.650 ± 0.000 0.661 ± 0.005 0.438 ± 0.309 0.666 ± 0.001 0.662 ± 0.005
1461 0.843 ± 0.005 0.893 ± 0.007 0.903 ± 0.000 0.909 ± 0.000 0.904 ± 0.001 0.906 ± 0.001 0.908 ± 0.000
1464 0.723 ± 0.009 0.747 ± 0.000 0.743 ± 0.000 0.750 ± 0.007 0.753 ± 0.018 0.760 ± 0.024 0.768 ± 0.022
1468 - 0.927 ± 0.009 0.937 ± 0.002 0.914 ± 0.006 0.924 ± 0.004 0.941 ± 0.007 0.938 ± 0.004
1486 0.395 ± 0.279 0.966 ± 0.003 0.970 ± 0.001 0.973 ± 0.001 0.966 ± 0.002 0.648 ± 0.458 0.973 ± 0.001
1489 0.584 ± 0.001 0.890 ± 0.000 0.901 ± 0.000 0.902 ± 0.002 0.886 ± 0.005 0.890 ± 0.001 0.902 ± 0.002
1590 0.434 ± 0.307 0.856 ± 0.002 0.860 ± 0.000 0.876 ± 0.000 0.873 ± 0.001 0.864 ± 0.012 0.876 ± 0.000
1596 0.255 ± 0.180 - 0.650 ± 0.035 0.880 ± 0.006 0.317 ± 0.448 0.955 ± 0.000 0.925 ± 0.021
4135 0.607 ± 0.429 0.946 ± 0.001 0.947 ± 0.000 0.949 ± 0.000 0.629 ± 0.445 0.947 ± 0.001 0.949 ± 0.000

23512 0.337 ± 0.238 0.447 ± 0.317 0.719 ± 0.000 0.484 ± 0.342 0.483 ± 0.342 0.727 ± 0.002 0.725 ± 0.003
23517 0.503 ± 0.000 0.518 ± 0.001 0.519 ± 0.000 0.511 ± 0.005 0.519 ± 0.001 0.520 ± 0.001 0.517 ± 0.002
40668 0.439 ± 0.310 0.704 ± 0.071 0.836 ± 0.003 0.837 ± 0.005 0.840 ± 0.002 0.850 ± 0.002 0.846 ± 0.002
40685 0.431 ± 0.305 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.789 ± 0.000 0.997 ± 0.000 1.000 ± 0.000
40975 0.614 ± 0.057 0.973 ± 0.000 0.969 ± 0.003 0.979 ± 0.001 0.643 ± 0.455 0.977 ± 0.006 0.979 ± 0.001
40981 0.523 ± 0.007 0.862 ± 0.000 0.841 ± 0.000 0.864 ± 0.007 0.586 ± 0.414 0.874 ± 0.013 0.867 ± 0.010
40984 0.149 ± 0.003 0.924 ± 0.001 0.939 ± 0.000 0.940 ± 0.001 0.918 ± 0.001 0.929 ± 0.002 0.939 ± 0.001
40996 0.066 ± 0.047 - 0.501 ± 0.142 0.896 ± 0.001 - - 0.896 ± 0.001
41027 0.343 ± 0.242 0.867 ± 0.005 0.874 ± 0.000 0.962 ± 0.002 0.883 ± 0.005 0.866 ± 0.002 0.962 ± 0.002
41138 0.643 ± 0.455 0.662 ± 0.455 0.993 ± 0.000 0.994 ± 0.000 0.992 ± 0.000 0.993 ± 0.000 0.993 ± 0.000
41142 - - 0.708 ± 0.009 0.735 ± 0.003 0.726 ± 0.004 0.725 ± 0.002 0.735 ± 0.003
41143 0.477 ± 0.001 0.800 ± 0.000 0.800 ± 0.002 0.805 ± 0.003 0.801 ± 0.002 0.267 ± 0.378 0.806 ± 0.003
41146 0.351 ± 0.248 0.934 ± 0.000 0.955 ± 0.000 0.948 ± 0.001 0.939 ± 0.005 0.934 ± 0.003 0.949 ± 0.001
41147 0.333 ± 0.236 - 0.645 ± 0.007 - 0.682 ± 0.001 0.684 ± 0.001 0.683 ± 0.001
41150 0.605 ± 0.000 0.542 ± 0.385 0.940 ± 0.000 0.946 ± 0.001 0.939 ± 0.000 0.945 ± 0.002 0.947 ± 0.001
41159 - - - 0.821 ± 0.003 - - 0.819 ± 0.001
41161 - - - 0.997 ± 0.001 - - 0.997 ± 0.001
41163 - - 0.488 ± 0.122 0.989 ± 0.000 0.975 ± 0.002 0.932 ± 0.003 0.985 ± 0.003
41164 0.186 ± 0.001 0.287 ± 0.035 0.188 ± 0.000 0.721 ± 0.003 0.679 ± 0.006 0.656 ± 0.012 0.721 ± 0.003
41165 - - - 0.493 ± 0.005 - - 0.486 ± 0.010
41166 0.109 ± 0.077 0.373 ± 0.150 0.611 ± 0.060 0.713 ± 0.003 0.682 ± 0.005 0.654 ± 0.001 0.707 ± 0.006
41167 0.003 ± 0.000 - 0.583 ± 0.027 0.909 ± 0.001 0.684 ± 0.001 0.503 ± 0.356 0.909 ± 0.001
41168 0.248 ± 0.175 0.576 ± 0.149 0.679 ± 0.027 0.719 ± 0.002 0.704 ± 0.002 0.713 ± 0.001 0.718 ± 0.003
41169 0.026 ± 0.000 0.310 ± 0.012 0.350 ± 0.014 0.394 ± 0.000 0.296 ± 0.001 0.332 ± 0.003 0.395 ± 0.001

Average Accuracy
(across datasets)

0.354 0.583 0.696 0.819 0.679 0.718 0.845

Average Rank
(out of 7)

5.683 4.415 3.488 2.024 3.439 2.756 1.659

Table 2. Comparison between Ensemble2 and SOTA AutoML systems. All systems were run for one hour each. Ensemble2 uses an
ensemble of size three. The highest accuracy achieved by a method on a dataset is shown in boldface and dash (−) shows a method failed
to produce outputs for a dataset.
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Overall, Ensemble2 achieved the highest average rank of
1.659, which is noticeably higher than the second highest
average rank of 2.024 achieved by AutoGluon.

To ensure that the difference in performance distribu-
tion over the datasets in the benchmark between pairs
of AutoML systems was statistically significant, we ran
Wilcoxon signed-rank test with α = 0.05. Since Ensemble2

achieved first place, we computed the test statistic between
Ensemble2 with every other AutoML system. The resulting
p-values for rejecting the null hypothesis that the pair pro-
duced the same results all indicated statistical significance.
Specifically, all p-values were below 10−8 except for the
AutoGluon paired test which had a still-significant p-value
of 0.018. These findings show that there is room for im-
provement by ensembling pipelines discovered by different
AutoML systems.

Another strength of Ensemble2 is the fact that Ensemble2

produces a pipeline when any of its base learners pro-
duces a pipeline. In the OpenML benchmark, this enabled
Ensemble2 to succeed at every single task in the benchmark
- something no other AutoML systems could do.

We noticed that AutoGluon achieves first place on more
datasets than Ensemble2 on Table 2 (24/41 vs 19/41
datasets). This was surprising to us since Ensemble2 had
both higher average accuracy and rank compared to Auto-
Gluon. When we computed the number of times an AutoML
system achieves first place only between AutoGluon and
Ensemble2, we discovered that Ensemble2 had first place
on 30 of the 41 datasets and Autogluon had first place on
24 out of the 41 datasets. This entails that Ensemble2 does
have more wins over AutoGluon across benchmark datasets,
but the datasets on which Ensemble2 performs better on can
have other AutoML systems that perform better than both
Ensemble2 and AutoGluon. In addition, as the AutoGluon
paper reported, out-of-memory error was a common failure
mode across base AutoML systems aside from AutoGluon.

5.4 AutoML System Performance Correlation

We investigate whether Ensemble2’s base AutoML systems
perform similarly across benchmark tasks by looking at the
correlation between the base system accuracy. This correla-
tion measures whether the base systems generally perform
better on different kinds of datasets. The less correlated the
base systems are, the more suited they are for different kinds
of datasets. Ensemble2 obviously benefits from having a
suite of lowly correlated base systems. Figure 2 shows that
some diversity exists in the performance of the best pipelines
generated by Ensemble2’s base systems. For example, the
correlation between AutoGluon and Auto-Sklearn is ∼0.33
and the correlation between AlphaD3M and Auto-Sklearn
is ∼0.52. Hence, we argue that Ensemble2 is overall more
well-rounded than its base systems.

Figure 2. Correlation in test set performance between base Au-
toML systems and Ensemble2.

6 CONCLUSION

In this paper we have established that ensembling AutoML
systems can lead to quantitive gains in accuracy. This, and
our explicit examination of the correlation between the ac-
curacy of various AutoML systems across a variety of prob-
lems, suggests that there is, currently, exploitable diversity
between AutoML systems. The computational complexity
of combinatorial search in high dimensions, one of the ab-
stract computational problems underlying machine learning
pipeline search, suggests that any practical AutoML sys-
tem will always have to rely on some kind of heuristic or
greedy algorithm. For this reason, it is likely that diversity
amongst AutoML systems will remain and that the kind of
ensembling we explore here will remain valuable into the
future.

There are some caveats to the results that we have presented
that warrant both disclosure and consideration. We devel-
oped our ensembling hypothesis and particular choice of en-
sembling technique strictly before examining performance
on the test data, here the OpenML AutoML benchmark set
of test datasets. On this point you have to trust us that we
did not extensively evaluate a large variety of ensembling
approaches and only then choose a good one to report. If we
would have done this, we would have leaked information
about the test set into our choice of ensembling approach
and then we would have had to report results on a different
held out test set.

Additionally we deviate from the AutoML literature some-
what in reporting only wall-clock time-equivalent results.
It could be argued that a more fair comparison would be
to give each baseline AutoML system an equal amount of
compute time to the total compute time (not wallclock time)
used by the ensemble, particularly as some baseline Au-
toML systems, themselves, are able to parallelize internally.
While this is true, it only impacts comparisons between base-
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line accuracies for each of the baseline AutoML systems
and the final ensemble. The fact that ensembling AutoML
systems produces a quantitative accuracy gain is orthogonal
to however long the ensembled baseline AutoML systems
are run. That being said, significant computational resource
limitations aside, it would be a valuable, if expensive, exper-
iment to test how much of the AutoML system ensembling
result we reported, if any, goes away as the base learner
AutoML systems are themselves allowed to run longer.
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