
Graphically Structured Diffusion Models

Christian Weilbach William Harvey Frank Wood
Department of Computer Science
University of British Columbia

Vancouver, Canada
{weilbach,wsgh,fwood}@cs.ubc.ca

Abstract

We introduce a framework for automatically de-
fining and learning deep generative models with
problem-specific structure. We tackle problem
domains that are more traditionally solved by
algorithms such as sorting, constraint satisfac-
tion for Sudoku, and matrix factorization. Con-
cretely, we train diffusion models with an archi-
tecture tailored to the problem specification. This
problem specification should contain a graphical
model describing relationships between variables,
and often benefits from explicit representation of
subcomputations. Permutation invariances can
also be exploited. Across a diverse set of ex-
periments we improve the scaling relationship
between problem dimension and our model’s per-
formance, in terms of both training time and final
accuracy.

1 Introduction

There has been a recent wave of progress in deep generat-
ive modelling, especially with the emergence of diffusion
models (DMs) [Sohl-Dickstein et al., 2015, Ho et al., 2020].
Compelling conditional variants can take as input text [Rom-
bach et al., 2022], previous video frames [Ho et al., 2022],
or subsets of their output dimensions [Tashiro et al., 2021].
These successes come from the considerable effort that has
been spent developing models to process data streams match-
ing the human sensorium. In short, within a certain problem
domain, DMs provide a flexible mapping from inputs to out-
puts. It remains unclear how similar models can be applied
to the highly-structured problem domains more typically
considered the domain of algorithms. Take the example of

Preprint.

matrix factorization, where the input is a matrix and the de-
sired output is two matrices which multiply to give the input.
A typical approach to tackle matrix factorization is then to
acquire a real or synthetic dataset of input-output pairs to
train a mapping. Unlike traditional algorithm design, this
approach must learn all necessary problem structure from
data. For highly structured problem domains, the required
training compute will therefore be large and scale poorly
with problem dimensionality.

A natural framework to reason about structure in the probab-
ilistic setting of deep generative models is that of graphical
models [Koller and Friedman, 2009]. We propose Graphic-
ally Structured Diffusion Models, or GSDMs, which have
an architecture based on a graphical model representation
of a dataset. We find that incorporating structure from the
graphical model can lead to architectures that scale well
with problem dimension. This includes the ability to deal
with problems of varying dimension by scaling the graph-
ical model correspondingly. We design the framework to be
accessible and widely-applicable and therefore do not pre-
scribe a specific form of graphical model. We find that the
quality of the GSDM model is consistent across reasonable
choices of graphical model.

Structured computation graphs often contain “intermediate
variables,” variables (stochastic or deterministic) whose val-
ues are computed as part of a model or algorithm, but that
do not directly form the input or output. When these are
present in a graphical model, GDSM is able to leverage both
their values and the relevant graphical structure to, roughly
speaking, break down the learning of a complex problem
into the learning of multiple simpler problems. This helps
GSDM to exhibit a more graceful scaling with problem
dimension than pure DM baselines.

To summarize our contributions, we (1) describe how to
automatically derive a structured, sparse attention mechan-
ism from a graphical model representation, and release an
efficient implementation (Appendix C)1. (2) We showcase
the integration of a generative model’s intermediate vari-

1https://github.com/plai-group/gsdm.

ar
X

iv
:2

21
0.

11
63

3v
1

 [
cs

.L
G

]
 2

0
O

ct
 2

02
2

https://github.com/plai-group/gsdm

Graphically Structured Diffusion Models

graphical model attention mask diffusion process

permutation invariances for

Figure 1: An application of our framework to binary-continuous matrix factorization. In the first panel the computational
graph of the multiplication of the continuous matrix A ∈ R6×2 and the binary matrix R ∈ R2×5 is expanded as a
probabilistic graphical model in which intermediate products C are summed to give E = AR. This graph is used to create
a structured attention mask M , in which we highlight 1’s with the color of the corresponding graphical model edge and
self-edges in white. In the third panel the projection into the sparsely-structured neural network guiding the diffusion process
is illustrated. In the bottom the translation of permutation invariances of the probability distribution into the embeddings of
xt and y is shown (Section 3.6).

ables into GSDM and empirically demonstrate their benefits.
(3) We present a method for translating known permuta-
tion invariances of a model into permutation invariances
of GSDM. (4) We demonstrate that GSDM architectures
can solve hard combinatorial problems. (5) As part of the
experiments we also provide a new approximate algorithm
for binary continuous matrix factorization.

2 Background

2.1 Conditional diffusion models

Defining x0 to be data sampled from a data distribution
q(x0), a diffusion process constructs a chain x0:T with noise
added at each stage by the transition distribution

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

leading to the joint distribution

q(x0:T) = q(x0)

T∏
t=1

q(xt|xt−1). (2)

The sequence β1:T controls the amount of noise added at
each step and, along with T itself, is chosen to be large
enough that the marginal q(xT |x0) resulting from Eq. (1) is
approximately a unit Gaussian for any x0.

This diffusion process inspires a diffusion model [Sohl-
Dickstein et al., 2015, Ho et al., 2020, Song et al., 2021b],
or DM, which approximately “inverts” it using a neural
network that outputs pθ(xt−1|xt) ≈ q(xt−1|xt). We can
sample from a diffusion model by first sampling xT ∼
p(xT) = N (0, I) and then sampling xt−1 ∼ pθ(·|xt) for

each t = T, . . . , 1, eventually sampling x0. In the condi-
tional DM variant [Tashiro et al., 2021] the neural network
is additionally conditioned on information y so that the
modelled distribution is

pθ(x0:T |y) = p(xT)

T∏
i=1

pθ(xt−1|xt,y). (3)

The transitions pθ(xt−1|xt,y) are typically approximated
by a Gaussian with non-learned diagonal covariance, and so
the learning problem is simply to fit the Gaussian’s mean.
Ho et al. [2020] parameterize this mean as an affine function
of E[x0|xt,y] and, by doing so, reduce the problem to
fitting an estimator of x0 from xt and y with the loss

L(θ) =

T∑
t=1

Eq(x0,xt,y)

[
λ(t) · ‖x̂θ(xt,y, t)− x0‖22

]
.

(4)
Ho et al. [2020], Song et al. [2021a] show that there ex-
ists a weighting function λ(t) such that this loss is (the
negative of) a lower-bound on the marginal log-likelihood
log pθ(x0|y). We instead use uniform weights λ(t) = 1
which has been shown to give better results in practice [Ho
et al., 2020].

2.2 Transformer architecture

A detailed circuit diagram of our neural architecture for
x̂θ is shown in Figure 2, where learnable neural network
mappings are denoted by m’s. The following is happening
at a fixed diffusion time step t. We view the neural net-
work’s input (xt,y) as a list {x1, . . . , xn}, for which each
element xj corresponds to one node in the graphical model

Christian Weilbach, William Harvey, Frank Wood

...

Figure 2: Circuit diagram for x̂θ evaluated at time t as
described in Section 2.2. The dashed box represents one
repeatable attention layer i that acts on an embedding (its
residual connection is not shown). The light grey boxes
show parts of the circuit that operate on each dimension
independently while the dark grey box shows the masked
pairwise attention mechanism.

of interest and comes with side-information denoting which
node it corresponds to and whether or not it is observed (i.e.
whether it belongs to xt or y). Interactions between these
elements are governed by self-attention based transformer
layers [Vaswani et al., 2017]. Before the first attention
layer we embed xj as e0j = me(xj), add an embedding
ev,j describing which graphical model node it belongs to
and, for observed variables (like xn in Figure 2), also add
a single globally-shared embedding eo. Each transformer
layer i ∈ {1, ..., L} first applies a residual neural network
[He et al., 2016] mi

r on each of the embedded dimensions
ei−1j independently, rij = mi

r(e
i−1
j , t). Inside the attention

each rij is then projected into a query qij = mi
q(r

i
j), key

kij = mi
k(rij) and value vij = mi

v(r
i
j), all in Rd. Stack-

ing these n values yields the matrices Qi,Ki,V i ∈ Rn×d.
The self-attention, shown in the dark grey box in Figure 2,
is then calculated as

ei = ei−1 + W iV i = ei−1 + softmax
(
QiKiT

)
V i

(5)

where the addition of ei−1 corresponds to a residual con-
nection. We note that QiKiT yields a pairwise inter-
action matrix which lets us impose an additional atten-
tion mask M before calculating the output ei = ei−1 +
softmax

(
M �QiKiT

)
V i. This masking interface is

central to structure the flow of information between graph-
ical model nodes in Section 3.1 .

2.3 Permutation invariance

Large probabilistic models often contain permutation invari-
ance, in the sense that the joint probability density q(x0) is
invariant to permutations of certain indices [Bloem-Reddy
and Teh, 2020]. For example the matrix multiplication in
Fig. 1 is invariant with respect to permutations of any of the
plate indices.2 If the joint probability density is invariant to a
particular permutation, this can be enforced in a distribution
modelled by a DM by making the neural network archi-
tecture equivariant to the same permutation [Hoogeboom
et al., 2022]. We show how to encode such equivariances in
GSDM in Section 3.6.

3 Method

A GSDM is a DM which operates over the nodes of a graph-
ical model and whose architecture reflects side information,
chiefly in the form of a graphical model structure. This sec-
tion describes both how to provide useful side information
and the process for constructing GSDM from given side
information.

3.1 Structure from graphical models

Integrating a graphical model for the data distribution speeds
up learning and increases computational efficiency, and
these benefits scale with problem dimension. If only a
data set without a generative model is available, additional
reasoning is required to define a graphical structure. We
emphasize that there is considerable flexibility in the spe-
cification of this structure. It can be written as a directed
graphical model, undirected graphical model, factor graph
(where group constraints are represented by connecting all
nodes within the group) or a combination of these. We find
in Section 4.3 that GSDM is not sensitive to small changes
in the specification of the graphical model and that there can
be multiple modeling perspectives yielding similar GSDM
performance. In general, we use the most intuitive graphical
model that we can come up with for each problem, whether
directed or undirected. One way to derive a directed model
is to follow the definition of a causal forward model for
an inverse problem where the terminal node will be the in-
put to our approximate algorithm, as for BCMF in Fig. 1.
An undirected graphical model can be seen as implicitly
grouping nodes by constraints, e.g. for Sudoku with row,
column and block constraints (Appendix D). Note that if
the data is simulated and source code is available then we
can automatically extract the simulator’s compute graph as
a graphical model (Appendix B).

Given a graphical model, we train a DM to model the joint
distribution of its nodes, and use the edges to construct atten-
tion masks M for the DM’s transformer layers. Precisely,

2In general, plate notation implies permutation invariance as
long as no link functions depend on the plate indices themselves.

Graphically Structured Diffusion Models

Figure 3: Example graphical model of q(x0)q(xt|x0).
Nodes are latent/blue if in x0, observed/orange if in xt.

we allow variable i to attend to variable j iff there is an edge
between node i and node j, and irrespective of the direction
of the edge or whether it has a direction.

3.2 Faithful structured attention

According to the DM loss in Eq. (4), the neural network x̂θ
is tasked at each timestep t = t′ with predicting x0 from xt′ .
Figure 3 shows an example graphical model factorization
for q(x0|xt′) corresponding to this task. Since xt′ can be
generated by adding independent noise to each dimension
of x0, this graphical model is derived from the graphical
model of the data distribution q(x0) by simply adding an
edge from each variable in x0 to the corresponding variable
in xt′ .

Theorem 1 (Dependence in diffusion models). Given that
the data distribution q(x0) is represented by a connected
graphical model G = (X ,A), with nodes X and edges
A, we can represent the temporally combined graphical
model at times t = 0 and t = t′ as GDM = ({xit′}i ∪
{xi0}i, {(xi0,xit′)}i ∪ A). Then there are no pairs i, j such
that xi0 can be assumed independent of xjt′ after condition-
ing on all other dimensions of xt′ . In other words, for any
i, j pair, we have to assume xi0 6⊥⊥ xjt′ | x

−j
t′ , where x−jt′

stands for all nodes in xt′ except node j.

Proof. For any j, xjt′ is directly connected to xj0. Since we
assumed that the graphical model for q(x0) is connected,
there will further be a path from xj0 to xi0 which does not
pass through any conditioned on nodes for any i. Therefore
xjt′ cannot be d-separated from xi0 [Koller and Friedman,
2009].

The consequence of Theorem 1 is that every node in the
neural network output x̂θ(xt,y, t) should depend on every
node in its input xt. Neural network architectures without
this property might not be able to faithfully predict x0 given
xt and so might not faithfully model q(x0). This considera-
tion motivated our previously-described design choice that
variable i can attend to j if there is any edge between them,
irrespective of the direction of the edge. Otherwise, if the
graphical model is directed and acyclic there will not be a
path between every pair of nodes. This would cause GSDM
to make false independence assumptions, which we show
impacts performance in Appendix H. We also note that if

101 102 103

Input size

0

5000

10000

15000

It
er

at
io

ns
 to

 r
ea

ch
 1

00
%

 a
cc

.

GSDM w/ intermediate
GSDM w/o intermediate
Non-sparse w/ intermediate
Non-sparse w/o intermediate

Figure 4: Number of iterations to reach 100% accuracy,
validating on 16 examples every 500 iterations.

node i is not directly connected to node j in our attention
mask, information about node i may have to be passed to
node j via other nodes. Since messages are only passed
along one edge per transformer layer, the number of trans-
former layers should be chosen to be at least as great as the
maximum path length in the symmetrized graphical model.

To reduce our memory usage and computation compared
to a dense matrix multiplication of the masked matrix we
provide an efficient sparse attention implementation as de-
scribed in Appendix C. The computational cost of our ap-
proximate algorithms is O(nmL) for L attention layers,
where n is the number of dimensions and m is the number
of entries in the densest row of M .

3.3 Intermediate variables

When translating a generative model into a graphical model,
the modeler must choose how fine or coarse the graphical
representation should be by selecting which, and how many,
“intermediate” variables are included and therefore modelled
by GSDM. The optimal choice of granularity is model-
specific but we argue that fine-grained representations are
often better for GSDMs due to (1) the better learning signal
that we describe below and (2) the reduced computational
cost of sparse attention that is related to the number of
graphical model edges more so than the number of nodes,
and so is not necessarily increased by adding intermediate
variables.

GSDM can be much easier to train using a fine-grained rep-
resentation because each node in a fine-grained graphical
model will typically have few parents and be a relatively
simple function of its parents.3 Since the DM training ob-
jective involves predicting (and receiving supervision for)
the value of every node, approximately we can imagine

3To take this argument to an extreme, we could represent a
generative model with a compute graph where each node represents
a single output of a CPU’s arithmetic logic unit (ALU). Since the
ALU operates on pairs of inputs, each node will have at most two
parents and each link function will be simple enough to execute in
one CPU cycle.

Christian Weilbach, William Harvey, Frank Wood

Experiment Graphical model Conditioned on Struct. attn. Interm. vars Disc. & cont. Emb. sharing
BCMF directed E X X X (X)
Sudoku factor graph random subset (X) - - (X)
Sorting mixed u X X X (X)
Boolean directed input X X - -

Table 1: Problems tackled. A tick, X, highlights where our contributions were necessary to learn at all or scale with problem
dimension and (X) where they improved performance. The improvements from structured attention and intermediate
variables are shown in Fig. 4 and Fig. 7.

each link function as being learned in parallel during train-
ing. From this perspective, making the link functions very
simple means that DM training is similar to learning many
very simple functions in parallel rather than, e.g., one com-
plex function that would require many training steps.

As an illustrative example, consider a Boolean logic circuit
which takes an input of size 2n. The input is split into pairs
and each pair is mapped through a logic gate to give an
output of size 2n−1. After n layers and a total of 2n − 1
logic gates, there is a single output. Suppose that you know
that each gate is randomly assigned to be either an OR
gate or an AND gate, and you wish to infer which from
data. If the data contains only the inputs and the single
output, it contains only 1 bit of information. Inferring the
function computed by each of theO(2n) gates will therefore
require O(2n) data points. On the other hand, if the data
contains intermediate variables in the form of the output
of every logic gate, each data point contains O(2n) bits of
information so the task may be solvable with few data points.
Figure 4 shows that this reasoning holds up when we train
a DM on this example. Without intermediate variables, the
number of training iterations needed scales exponentially
with n. With the combination of intermediate variables
and structured attention, however, the training behaviour is
fundamentally changed to scale more gracefully with n.

3.4 Handling mixed continuous/discrete variables

Our simple approach to combining discrete and continuous
variables in a DM is to map the discrete variables to one-
hot encodings in a continuous space before running the
diffusion process. Sampled one-hot encodings can then
be mapped back to the discrete space with an arg max.
We project the entire (diffused) one-hot encoding for each
discrete variable into a single embedding before passing it
into the transformer, so that the transformer performs the
same amount of computation for a discrete variable as for a
continuous variable.

3.5 Flexible conditioning

Optimizing the DM loss in Eq. (4) requires a partitioning
of data into latent variables (outputs) x0, and observed vari-
ables (inputs) y. While traditional amortized inference re-

quires choosing this partitioning before training [Gershman
and Goodman, 2014, Ritchie et al., 2016, Le et al., 2017],
our approach allows for flexible conditioning by training
over a distribution of partitions so that certain variables can
be latent in some test examples and observed in others. The
neural network distinguishes between variables in xt and y
via a learned observation embedding vector eo that is added
to the embeddings of observed variables. This approach
also naturally allows us to deal with missing values at infer-
ence time, something that neither standard algorithms nor
traditional amortized inference artifacts can deal with.

3.6 Embeddings and varying dimensionality

GSDM’s architecture contains positional embeddings which
inform the neural network which inputs correspond to which
graphical model nodes. The simplest variation of GSDM
learns one embedding per graphical model node independ-
ently, and we call this approach independent embeddings,
or IE. An issue with IE is that it cannot generally be ad-
apted to changing input dimension. For example, a net-
work trained with IE to operate on inputs of size length 10
couldn’t be applied to inputs of length 11. As a generic
way to tackle problems defined over variable-size arrays we
suggest array embeddings, or AE. Creating these involves
analyzing the problem to group together variables that are
in the same (potentially multi-dimensional) array, treating
scalars as arrays of size 1 in each dimension. We then create
the embedding for each variable as the sum of a shared array
embedding, learned independently for every array, and a
sinusoidal positional embedding [Vaswani et al., 2017] for
its position within an array.

For models exhibiting the permutation invariances discussed
in Section 2.3 we can optionally use exchangeable embed-
dings, or EE. To do so for any index that a model is permuta-
tion invariant with respect to, we share embeddings between
all variables which are replicas of each other along that
index. For example, the matrix multiplication in Fig. 1 is
invariant to permutations of i and k so we share embeddings
across all Aik. In combination with the structured atten-
tion mechanism (which prevents communication between
nodes with different indices) this renders the neural network
equivariant with respect to these permutations. It also al-
lows the number of repetitions of each plate to be changed

Graphically Structured Diffusion Models

arbitrarily, allowing generalisation for models including our
matrix factorization experiment. We derive why the result-
ing GSDM is fully permutation equivariant in Appendix I.

4 Experiments

Binary continuous matrix factorization (BCMF) Our
first experiment tackles the challenging BCMF problem,
where we factorize a continuous matrix into one binary
and one continuous component. Our BCMF generative
model samples a binary matrix R ∈ Rk×n elementwise
from Bernoulli(0.3) and a continuous matrix A ∈ Rm×k
from an elementwise Uniform(0, 1) prior. The BCMF task
is to infer these conditioned on E := AR. To obtain
intermediate variables as discussed in Section 3.3 we break
the matrix multiplication into two steps, Cijk := AikRkj
and then Eij :=

∑
k Cijk. Our latent variables x0 are

therefore the combination of all elements of R, A, and C
and the observed variables y are the elements of E. Fig. 6
shows that our learned GSDM can find factorisations that
are consistent with the observations. Furthermore, we show
in Fig. 5 that GSDM scales well, even to larger m and n.
The model was trained on ranges uniformly sampled in the
range 1 to 10 for m, n and k, but generalizes to 20 times
larger m and n.

Sudoku A Sudoku grid is a 9× 9 array of numbers such
that each number is in {1, . . . , 9} and no two numbers in
the same row, column, or 3× 3 block are the same. Solving
a Sudoku, i.e. completing one given a partially-filled in
grid, is a difficult problem for deep learning methods, and
has previously been addressed with hand-designed modules
for reasoning [Palm et al., 2018] or semi-definite program-
ming [Wang et al., 2019]. We use GSDM without such
custom modules for combinatorial reasoning. We model a
Sudoku with a factor graph. There is one factor for each
row, column, and block representing the constraint that it
contains all numbers {1, . . . , 9}. The resulting GSDM at-
tention mask lets each variable attend to all other variables
in the same row, column, and block. Our data generator4

creates complete 9 × 9 Sudokus. In order to train GSDM
as a Sudoku solver for arbitrary Sudoku puzzles, we create
each training example by randomly partitioning the grid
into latent and observed portions by sampling no uniformly
from 0 to 80 and then uniformly sampling no variables to
observe. We show samples from GSDM in Fig. 8, which
exhibit diversity when multiple solutions exist. In our eval-
uations, the samples were valid Sudokus 76% of the time
when no cells were observed; 55% of the time when 16 of
the 81 cells were observed; 99% of the time when 40 cells
were observed; and always when 64 of the 81 cells were
observed.

4We generated complete Sudokus with a port of https://
turtletoy.net/turtle/5098380d82

Sorting We demonstrate GSDM on sorting as evidence of
it’s broad applicability to a wide variety of problems. Our
graphical model is as follows. (1) Sample an unsorted list
u ∈ Rn. with each element ui sampled from a unit normal.
(2) Sample a permutation matrix P ∈ {0, 1}n×n. Similarly
to the Sudoku case, factors on each row and column enforce
the constraints that there is a single 1 in each. (3) Multiply
P and u. We integrate intermediate variables Cij := Pijuj
and sum them as si :=

∑
j Cij to yield s. (4) We use factors

between each pair of elements in s to enforce that it is sorted.
This graphical model is different to, and simpler than, our
true data generation procedure in which we obtain s and P
with a pre-existing sorting algorithm. We emphasise that
this approach fits into the GSDM framework nonetheless
since the graphical model is a valid specification of the in-
dependences in the data distribution. We train GSDM to
sort lists with sizes ranging from 2 to 40. We measure it’s
performance as the mismatch between the real and sampled
permutation matrices P , and plot progress throughout train-
ing in Fig. 7c. During evaluation, GSDM made errors on
only two of 80 test examples. In each of these two cases it
confused a single pair of elements that were 2× 10−3 apart
in a list of length 20 and 1× 10−5 apart in a list of length
30.

Boolean We additionally use the Boolean circuit de-
scribed in Section 3.3 (Fig. 4) to demonstrate GSDM’s
ability to learn structured functions over many variables.

4.1 Effect of structured attention and intermediate
variables

All of our experiments rely on structured attention for their
good performance, and the positive effect remains even
after removing intermediate variables. We saw this for the
Boolean circuit in Section 3.3 and here show experiments
for Sudoku in Fig. 7b, sorting lists of length n = 20 in
Fig. 7c, and BCMF of various dimensionalities in Fig. 7a.
These are relatively simple ablations in that we do not vary
the dimensionality during training but, even so, imposing
structure leads to significant improvements in each case,
especially in combination with intermediate variables.

We ablate intermediate variables in the same figures. In
combination with structured attention, including intermedi-
ate variables is extremely helpful in all cases. For BCMF
the intermediate variables reduced the error in Fig. 7a by
an average factor of roughly 4.3. For the Boolean circuit,
structured attention removes the exponential blow-up in the
number of required training iterations. For sorting, interme-
diate variables sped up the time to reach 99% accuracy by a
factor of 3.

Sparsely structured attention also makes the network faster
to execute. Even despite the substantial number of inter-
mediate variables needed to take advantage of sparsity in

https://turtletoy.net/turtle/5098380d82
https://turtletoy.net/turtle/5098380d82

Christian Weilbach, William Harvey, Frank Wood

5 10 20 50 70 100 120 150 200

m

5

10

20

50

70

100

120

150

200

n

k=1

5 10 20 50 70 100 120 150 200

m

k=2

5 10 20 50 70 100 120 150 200

m

k=4

5 10 20 50 70 100 120 150 200

m

k=7

5 10 20 50 70 100 120 150 200

m

k=10

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Error vs problem dimension for GSDM on binary continuous matrix factorization. We show the root mean square
error between the observed matrix E and the product of the sampled A and R. The colorbar for each value of k is scaled so
that “yellow” corresponds to the error achieved by a baseline which samples A and R from the prior, ignoring E. Despite
never seeing a value of n, m, or k larger than 10 during training, GSDM scales well to much larger values of m and n.
When they grow large enough, GSDM runs out of GPU memory. We mark entries where this occurred in white.

Figure 6: Two factorizations sampled by GSDM with
m = 5, n = 10 and k = 7. Each row in the plot shows the
inferred A, R and the respective reconstruction Ê = RA
on the left and the E provided as input on the right. Inter-
mediate variables C are omitted here.

e.g. BCMF, we show in Appendix G that the computational
complexity of GSDM with intermediate variables and struc-
tured attention is better than that of a naive approach with
neither in all experiments with parameterizable size (i.e. all
but Sudoku).

4.2 Effect of embedding-sharing

Three of our problems contain permutation invariances ex-
ploitable by embedding-sharing. Our sorting model is in-
variant to the order of u, Sudoku to various row/column
permutations, and BCMF to the permutations of any of the
plate indices in Fig. 1. We see in Fig. 7c that incorporating
these invariances with EE gives much faster training than
using independent embeddings. Even without specifying
the invariances, AE can be used to obtain most of the benefit.
The same story can be seen in Fig. 7b for Sudoku. All of our
results for BCMF use EE, and we emphasise that the results
showing generalization with respect to problem dimensions
would not be possible without embedding sharing.

4.3 Robustness to choice of graphical model

There can be a degree of subjectivity in the choice of graph-
ical model for a given problem. For instance, in sorting
we represented the constraint that s is sorted with pairwise
constraints between neighbouring elements. Another reas-
onable graphical model may have imposed a factor over all
nodes of s, making s fully-connected in our attention mask.
We show in Fig. 9 that this choice makes negligible differ-
ence to GSDM’s performance. Furthermore, some modeling
choices make no difference at all to GSDM. For example
we sampled u and P first and then computed s := Pu,
but someone else may have sampled s first (with factors to
ensure it is sorted) and then P before computing u := P s.
These two choices lead to identical GSDM networks be-
cause the only difference is the direction of edges in the
graphical model (which is irrelevant when they are sym-
metrized to create the attention mask). Figure 9 also shows
that GSDM can be robust to a misspecified model, “Uncon-
strained s”, where constraints are not imposed on s. The
“Random” baseline, however, in which each node is allowed
to attend to 20 other nodes sampled at random, performs
much worse.

5 Related work

Sparse attention mechanisms have been introduced in sev-
eral forms, either to save memory footprint [Dai et al., 2019,
Kitaev et al., 2020, Roy et al., 2020] or computational cost
[Child et al., 2019, Beltagy et al., 2020, Zaheer et al., 2021].
A recent review is provided in Tay et al. [2022].

The framework of amortized inference [Gershman and
Goodman, 2014, Ritchie et al., 2016] and probabilistic
programming [Le et al., 2017, van de Meent et al., 2018]
provides the framework for our approach. But instead of re-
quiring a full probabilistic model we relax the requirement
to only specify the graphical model structure. Weilbach
et al. [2020] use a graphical model to structure a continuous
normalizing flow for inference problems of fixed dimen-

Graphically Structured Diffusion Models

10 20
n

0.0

0.5

1.0

1.5

R
M

SE

10 20
m

10 20
k

(a) BCMF error vs dimensionality.

0 100 200 300 400 500
Iterations (1000s)

0

20

40

60

80

100

U
nc

on
d.

 s
am

pl
es

 c
or

re
ct

 (%
)

(b) Sudoku performance throughout training.

0 50 100 400
Iterations (1000s)

0

20

40

60

80

100

So
rt

in
g

m
at

ch
es

 (%
)

GSDM w/ EE
GSDM w/ AE
GSDM w/ IE
GSDM w/o int.
Non-sparse w/o int.

(c) Sorting performance throughout training.

Figure 7: Ablations over the use of structured attention, intermediate variables, and different types of embedding sharing. In
(a) we show the test error on BCMF as each dimension is varied. While varying n, we set m = 16, k = 8. While varying m,
we set n = 16, k = 8. While varying k, we set n = m = 16. The dashed line marks the best error with constant estimates
of A and R. Combining intermediate variables with structured attention greatly reduces the error, and prevents it from
increasing with the rank k. In (b) we show the proportion of unconditionally-generated Sudokus that are valid over the
course of training. For GSDM this begins to decrease halfway through training, but the accuracy for conditionally-generated
Sudokus continues to rise. In (c) we measure how well sorted lists match the ground-truth. In all cases, attention and
intermediate variables make training much faster. AE provides a significant improvement over IE, while EE provides a
small further improvement over AE.

4 3 8 1 9 6 5 7 2

6 9 2 7 5 8 3 1 4

7 5 1 2 3 4 9 6 8

3 4 6 9 2 1 8 5 7

9 8 5 6 4 7 2 3 1

1 2 7 5 8 3 4 9 6

2 1 3 8 6 9 7 4 5

5 7 4 3 1 2 6 8 9

8 6 9 4 7 5 1 2 3

7 3 8 4 9 6 5 1 2

1 9 2 7 5 8 3 4 6

4 5 6 1 3 2 9 7 8

5 2 4 9 6 1 8 3 7

9 6 1 3 8 7 2 5 4

3 8 7 5 2 4 6 9 1

2 1 3 8 4 9 7 6 5

6 7 5 2 1 3 4 8 9

8 4 9 6 7 5 1 2 3

Figure 8: Two Sudoku solutions conditioned on the same
16 observed cells (in bold).

sion. We use the more flexible and scalable DM framework
including discrete variables. We can also work directly
with the forward probabilistic model to avoid computing the
potentially denser stochastic inverse of Webb et al. [2017].

Close in spirit to our work in terms of combinatorial optim-
ization are Selsam et al. [2019] for general SAT solving and
Tönshoff et al. [2022] for general CSP solving, which also
encode the structure between variables and constraints as
message passing neural networks. But these frameworks are
only applicable to deterministic discrete problem classes,
while we integrate everything in the more general probabil-
istic inference framework.

Our approach to explicitly training conditional diffusion
models is based on that of Tashiro et al. [2021], Harvey
et al. [2022]. Various other methods train unconditional
diffusion models before providing approximate condition-
ing at test-time [Song et al., 2021b, Ho et al., 2022]. Most
DMs are defined over either purely continuous [Ho et al.,
2020] or purely discrete spaces [Austin et al., 2021, Hoo-
geboom et al., 2021]. Our approach to mixed-continuous

0 50 100 150 200
Iterations (1000s)

0

20

40

60

80

100

So
rt

in
g

m
at

ch
es

 (%
)

Pairwise constrained s
Fully-connected s
Unconstrained s
Random attention mask

Figure 9: Ablations of GSDM with different graphical
model structures for sorting. The first three lines, which
represent constraints on s in different ways described in
Section 4.3, are on top of eachother and quickly reach 100%
accuracy. This speaks to the robustness of GSDM to differ-
ent ways of specifying a graphical model. Randomising the
attention mask works very poorly in comparison.

DMs is similar to that of Hoogeboom et al. [2022] but takes
a variational-dequantization perspective [Ho et al., 2019] so
that mapping back to the discrete space involves taking an
arg max instead of requiring sampling.

6 Discussion

GSDMs automate the reasoning required to create approxim-
ate solutions to tasks as diverse as sorting, Sudoku solving
and binary-continuous matrix factorization. The two main
steps needed for our approach are acquiring a data set and
describing the class of problems as a graphical model. If
a full generative model is available our approach addition-
ally benefits in accuracy and scalability from the access to

Christian Weilbach, William Harvey, Frank Wood

computed intermediate values. Direct translation of known
permutation invariances of the data distribution further im-
prove GSDMs. Our work is a step towards the integration of
the generality of statistical conditioning, the expressivity of
state-of-the-art diffusion models with attention mechanisms,
and the structural reasoning applied in programming lan-
guage theory and algorithm design. Promising directions for
future work include deeper integration of structural know-
ledge with the dynamics of diffusion processes, exploitation
of syntactic knowledge of problem descriptions beyond the
class of graphical models and integration into probabilistic
programming systems.

Acknowledgments

We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC), the
Canada CIFAR AI Chairs Program, and the Intel Paral-
lel Computing Centers program. Additional support was
provided by UBC’s Composites Research Network (CRN),
and Data Science Institute (DSI). This research was enabled
in part by technical support and computational resources
provided by WestGrid (www.westgrid.ca), Compute Canada
(www.computecanada.ca), and Advanced Research Com-
puting at the University of British Columbia (arc.ubc.ca).
WH acknowledges support by the University of British
Columbia’s Four Year Doctoral Fellowship (4YF) program.

References

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tar-
low, and Rianne van den Berg. Structured denoising diffu-
sion models in discrete state-spaces. Advances in Neural
Information Processing Systems, 34:17981–17993, 2021.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Long-
former: The Long-Document Transformer, December
2020.

Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic
Symmetries and Invariant Neural Networks. Journal of
Machine Learning Research, 21(90):1–61, 2020. ISSN
1533-7928.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever.
Generating Long Sequences with Sparse Transformers,
April 2019.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell,
Quoc V. Le, and Ruslan Salakhutdinov. Transformer-
XL: Attentive Language Models Beyond a Fixed-Length
Context, June 2019.

Samuel Gershman and Noah Goodman. Amortized infer-
ence in probabilistic reasoning. In Proceedings of the
Cognitive Science Society, volume 36, 2014.

William Harvey, Saeid Naderiparizi, Vaden Masrani, Chris-
tian Weilbach, and Frank Wood. Flexible Diffusion Mod-
eling of Long Videos, May 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In 2016
IEEE Conference on Computer Vision and Pattern Re-
cognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pages 770–778, 2016. doi: 10.1109/CVPR.2016.
90.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and
Pieter Abbeel. Flow++: Improving flow-based generative
models with variational dequantization and architecture
design. In International Conference on Machine Learn-
ing, pages 2722–2730. PMLR, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33,
pages 6840–6851. Curran Associates, Inc., 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J. Fleet. Video
Diffusion Models. arXiv:2204.03458 [cs], April 2022.

Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bast-
ings, Ben Poole, Rianne van den Berg, and Tim Sali-
mans. Autoregressive diffusion models. arXiv preprint
arXiv:2110.02037, 2021.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac,
and Max Welling. Equivariant diffusion for molecule
generation in 3d. In International Conference on Machine
Learning, pages 8867–8887. PMLR, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann
LeCun, editors, 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Re-
former: The Efficient Transformer. arXiv:2001.04451
[cs, stat], February 2020.

Daphne Koller and Nir Friedman. Probabilistic Graphical
Models: Principles and Techniques. Adaptive Computa-
tion and Machine Learning. MIT Press, Cambridge, MA,
2009. ISBN 978-0-262-01319-2.

Tuan Anh Le, Atılım Güneş Baydin, and Frank Wood. Infer-
ence Compilation and Universal Probabilistic Program-
ming. In Proceedings of the 20th International Confer-
ence on Artificial Intelligence and Statistics (AISTATS),
volume 54 of Proceedings of Machine Learning Re-
search, pages 1338–1348, Fort Lauderdale, FL, USA,
2017. PMLR.

Rasmus Palm, Ulrich Paquet, and Ole Winther. Recurrent
Relational Networks. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.,
2018.

Daniel Ritchie, Paul Horsfall, and Noah D. Goodman.
Deep Amortized Inference for Probabilistic Programs.
arXiv:1610.05735 [cs, stat], October 2016.

Graphically Structured Diffusion Models

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-Resolution Image
Synthesis With Latent Diffusion Models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10684–10695, 2022.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David
Grangier. Efficient Content-Based Sparse Attention with
Routing Transformers, October 2020.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy
Liang, Leonardo de Moura, and David L. Dill.
Learning a SAT Solver from Single-Bit Supervision.
arXiv:1802.03685 [cs], March 2019.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep Unsupervised Learning using
Nonequilibrium Thermodynamics. In Proceedings of
the 32nd International Conference on Machine Learning,
pages 2256–2265. PMLR, June 2015.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon.
Maximum Likelihood Training of Score-Based Diffusion
Models. In Advances in Neural Information Processing
Systems, volume 34, pages 1415–1428. Curran Associ-
ates, Inc., 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
Based Generative Modeling through Stochastic Differ-
ential Equations. arXiv:2011.13456 [cs, stat], February
2021b.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano
Ermon. CSDI: Conditional score-based diffusion models
for probabilistic time series imputation. In Advances in
Neural Information Processing Systems, 2021.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler.
Efficient Transformers: A Survey, March 2022.

Jan Tönshoff, Berke Kisin, Jakob Lindner, and Martin
Grohe. One Model, Any CSP: Graph Neural Networks as
Fast Global Search Heuristics for Constraint Satisfaction.
August 2022. doi: 10.48550/arXiv.2208.10227.

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang,
and Frank Wood. An Introduction to Probabilistic Pro-
gramming. arXiv:1809.10756 [cs, stat], September 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is All you Need. In Advances in
Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017.

Po-Wei Wang, Priya L. Donti, Bryan Wilder, and Zico
Kolter. SATNet: Bridging deep learning and logical
reasoning using a differentiable satisfiability solver.
arXiv:1905.12149 [cs, stat], May 2019.

Stefan Webb, Adam Golinski, Robert Zinkov, N. Siddharth,
Tom Rainforth, Yee Whye Teh, and Frank Wood. Faithful

Inversion of Generative Models for Effective Amortized
Inference. December 2017.

Christian Weilbach, Boyan Beronov, William Harvey, and
Frank Wood. Structured Conditional Continuous Normal-
izing Flows for Efficient Amortized Inference in Graph-
ical Models. In International Conference on Artificial In-
telligence and Statistics, pages 4441–4451. PMLR, June
2020.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua
Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham,
Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed.
Big Bird: Transformers for Longer Sequences, January
2021.

Christian Weilbach, William Harvey, Frank Wood

A Experimental details

Table 2: Experimental parameters. For sorting and BCMF we have two sets of hyperparameters: one for the main results and
one for the ablations in Figs. 7, 9 and 15. Problem dimension is listed as “varying” where we vary the dimensions between
each training batch (sampling n between 2 and 10 for the “Sorting” column and sampling n, m, and k independently from 1
to 10 for the “BCMF” column) and “multiple” where we show results with different problem dimensionalities.

Parameter Sorting Sorting abl. Sudoku BCMF BCMF abl. Boolean

Problem dimension varying n = 20 9× 9 varying multiple multiple
Training time 1 day 8 hours 7-8 hours 1 day 1 day 40-160 min.
Training iters (1000s) 140 300-450 500 680 180-680 20
Batch size 16 16 32 32 8 16
Learning rate 2× 10−4 2× 10−4 2× 10−5 2× 10−5 2× 10−5 2× 10−5

Embedding dim. 64 64 128 64 64 64
transformer layers 6 6 6 12 12 12
attention heads 8 1 8 2 2 2
GPU type A100 A5000 A5000 A100 A5000 A5000

Table 2 presents our experimental parameters. Our ablations on sorting and BCMF give all networks equal training time,
and the number of iterations therefore varies depending on the time to run the network. We tuned the learning rates through
small grid searches but this yielded only a small improvement to training. In keeping with common deep learning wisdom,
we found that increasing the embedding dimension and number of transformer layers improved performance, as does using
multiple attention heads. Conversely, the results degrade gracefully in smaller embedding dimensions, less transformer
layers or varying numbers of attention heads. We set these architectural hyperparameters with the goal of obtaining networks
that were both lightweight and trained quickly, and tuned them via some experimentation for sorting, Sudoku, and BCMF.
We use NVIDIA A100 GPUs for sorting and BCMF, and smaller NVIDIA RTX A5000s for all ablations and other problems.
We did little tuning on the batch sizes, other than ensuring that they were large enough to obtain good GPU utilization
and small enough to avoid out-of-memory errors. All data is sampled synthetically on-the-fly, so data points used in
one minibatch are never repeated in another minibatch. We use 1000 diffusion timesteps in all experiments and set the
hyperparameters β1, . . . , β1000 using a linear interpolation schedule [Ho et al., 2020] from β1 = 10−4 to β1000 = 0.005.
Finally, we use the Adam optimizer with β1 = 0.9 and β2 = 0.999 [Kingma and Ba, 2015], no weight decay and gradient
clipping at 1.0. We release code to ensure full reproducibility of our results.

B Automatic compilation of BCMF

Figure 10: Connectivity mask extrac-
ted from BCMF source code. This is
the same structure as in Figure 1 but
with permuted indices and before the
addition of the diagonal self-edges.

Building on the probabilistic programming language defined in van de Meent et al.
[2018], we demonstrate a compiler which maps from programs into a correspond-
ing graphical model structure. We will publish our implementation on acceptance.
We demonstrate it on the program on page 16, which multiplies two random
matrices A ∈ R3×2,R ∈ R2×3 similarly to our BCMF experiment. Samples
from Dirac distributions are used to introduce the intermediate nodes of C and the
terminal nodes of E. Our compiler first translates it into a graphical model and
then into the attention mask as shown in Figure 10. We envisage a future extension
which “compiles” directly from such source code to a trained GSDM network.

C Structured attention

The optimal choice for our structured attention would be sparse matrix multi-
plication on the accelerator, unfortunately this was not yet available at the time
of writing of this paper. We therefore provide a packed dense implementation
of structured attention. Our structured attention mechanism lets us reduce the
computational and memory cost of an n-dimensional DM from O(n2) to Θ(nm),
where m is the maximum number of ones in any row of our attention mask M .

Graphically Structured Diffusion Models

(a) BCMF (n = 4,m = 4, k = 2). (b) Sorting (n = 5). (c) Boolean circuit (n = 4).

(d) BCMF w/o intermediate. (e) Sorting w/o intermediate. (f) Boolean circuit w/o intermediate

Figure 11: Attention masks for BCMF, sorting, and the Boolean circuit. All are shown with (top row) and without (bottom
row) intermediate variables. Variable i can attend to variable j iff the cell in row i and column j is white. These masks all
become more sparse (as measured by proportion of entries which are non-zero) as the problem dimensionality is increased.

0

10

20

30

40

50

60

70

80

Figure 12: Correspondence between a 9× 9 Sudoku grid (left) and the resulting attention mask. We draw a factor for each
of the first row, column and block on the left. On the right the respective entries in the attention structured mask M are
highlighted with the same color.

For our BCMF experiment, the reduction in memory footprint was necessary for us to scale to the dimensions demonstrated
while using a single GPU. Recall that, after computing keys K, values V , and queries Q (all with shape n× d, where d is
the embedding dimension), and given a attention mask M with shape n× n, we compute

e = softmax
(
M �QKT

)
V . (6)

If implemented naively with dense matrix multiplications, both computing QKT and the outer multiplication by V involve
O(n2) scalar operations. We attempt to avoid this cost while still taking advantage of the dense matrix multiplications for
which GPUs are designed for. To do so, we project K and V into 3-dimensional matrices K̄ and V̄ of shape n×m× d.
We perform this projection such that K̄i is a sequence of the key vectors for every variable that variable i is connected to.
Equivalently, letting aij be the index of the jth variable that variable i is connected to, K̄i,j is equal to Kaij . We define
V̄ similarly for value vectors. If variable i connects to less than m entries, then we pad K̄i and V̄i with zeros. We then
compute an n×m array of unnormalised weights U (encompassing all interactions allowed by our attention mask) such that
Ui,j = Qi · K̄i,j . Doing so involves only O(nm) operations, rather than the O(n2) required to compute dense attention
weights. We then mask all entries in U that were padded by setting them to −∞ before applying the usual softmax(U)
row-wise to get W̄ . Finally, we can compute the output h by setting each ei =

∑
j W̄i,jV̄j (again requiring only O(nm)

operations), which is equal to the output that would be obtained through dense matrix multiplications including the mask
M .

Christian Weilbach, William Harvey, Frank Wood

5 10 20 50 70 100 120 150 200

m

5

10

20

50

70

100

120

150

200

n

k=1

5 10 20 50 70 100 120 150 200

m

k=2

5 10 20 50 70 100 120 150 200

m

k=4

5 10 20 50 70 100 120 150 200

m

k=7

5 10 20 50 70 100 120 150 200

m

k=10

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

1.0

Figure 13: Similar to Figure 5 but with a GSDM model trained to sampled A, R, and E jointly instead of conditioning on
E. We plot a heatmap of the root mean squared error (RMSE) between the matrix E and the product AR. The ranges for
each rank are scaled so that a yellow color represents the expected RMSE if A, R, and E are all sampled independently
from the prior. Entries colored in white exceed the GPU’s memory limit.

Cost of ResNets Cost of attention Overall cost Reduction

Boolean with input size n Naive O(n) O(n2) O(n2) -
GSDM O(n) O(n) O(n) O(n)

Sorting with input size n Naive O(n2) O(n4) O(n4) -
GSDM O(n2) O(n3) O(n3) O(n)

BCMF with k = m = n
Naive O(n2) O(n4) O(n4) -

GSDM O(n3) O(n4) O(n4) O(1)

Table 3: Comparison of computational complexities of a GSDM layer and a naive DM layer without structured attention
or intermediate variables. We do not include Sudoku since the problem has fixed dimension. GSDM yields reductions in
complexity that scale with n for the Boolean and sorting experiments, while giving the same complexity as a naive approach
for BCMF yet much better performance.

D Attention masks

We show attention masks used by GSDM in each of our experiments. Figure 11 compares masks with and without
intermediate variables for BCMF, sorting and the Boolean circuit. Figure 12 explains the derivation of the Sudoku attention
mask from a factor graph.

E Unconditional BCMF

In Figure 13 we plot a heatmap similar to Figure 5 but with a GSDM which generates unconditional joint samples of A, R,
and E instead of samples conditioned on E. We measure the mismatch between E and the product AR and, interestingly,
see that it is greater for the unconditional model (for problem dimensions both inside and outside the training distribution).
This suggests that it may be possible to improve unconditional generation performance by adjusting the diffusion process
hyperparameters so that E is sampled early in the diffusion process and then A and R are sampled later, conditioned on E,
but we do not attempt to do so here.

F Ablation on BMF embedding type

Figure 14 shows the effect of embedding type on BCMF performance. As in Fig. 7a, we vary each of m, n, and k in turn
and set m = 16, k = 8 while varying n; set n = 16, k = 8 while varying n; and set m = n = 16 while varying k. The
scale for the y-axis is smaller than in Fig. 7a since the embedding type makes a smaller difference to performance than
the use of sparsity and intermediate variables. This makes the noise in the results more visible, but it is noticeable that
exchangeable embeddings (solid line) mostly provide the best performance. The array embeddings (dashed) are worse
than independent embeddings (dotted) for higher dimensionality. This may be because, with sufficient training time, the
independent embeddings can learn to approximately match the exchangeable embeddings. When we look at error earlier in
training, array embeddings perform slightly better than independent embeddings.

Graphically Structured Diffusion Models

10 20
n

0.0

0.1

0.2

0.3

R
M

SE

10 20
m

10 20
k

Figure 14: Final RMSE on BCMF as a function of the problem dimension. The solid line uses exchangeable embeddings;
the dashed line uses array embeddings; the dotted line uses independent embeddings.

0 50 100 150 200 250
Iterations (1000s)

0

20

40

60

80

100

So
rt

in
g

m
at

ch
es

 (%
)

Pairwise constrained s
Fully-connected s
Unconstrained s
Random attention mask
Non-symmetrized

Figure 15: Performance throughout training of sorting with different attention masks corresponding to different graphical
models. The solid line uses EE and the dashed line uses AE.

G Computational complexities

Table 3 compares the computational cost of GSDM with that of naively applying a neural network without intermediate
variables or structured attention.

H Expanded ablation on attention mask specification

Figure 15 is an expanded version of our ablation on the sorting attention mask. In addition to the lines in Fig. 9 we show
the training performance of a non-symmetrized mask (dashed red). For sorting, edges added during symmetrization are
necessary to allow any information to flow from the intermediate variables C to the permutation matrix P . This blocks the
path between the input u and output of interest P , and so the sampled P does no better than random chance at any point in
training.

I Permutation equivariant GSDM

The stochastic process of the DM is composed of a drift term determined by x̂θ and a fixed diffusion term (noise). The
diffusion term employs a diagonal covariance structure in the DM and hence can be varied in dimension and does not induce
dependencies between dimensions. This leaves the neural network of x̂θ to reflect the permutation equivariances. First
we observe in Figure 2 that all neural networks m are applied independently to each dimension (they are contained in the
light grey boxes), leaving only the attention mechanism itself to relate different dimensions. Attention can only distinguish
dimensions through added positional embeddings [Vaswani et al., 2017]. Consequently our exchangeable embeddings
setting shares the same embedding across all realizations of an index i if the model is expected to be invariant to permutations
of i. The attention mechanism can therefore not distinguish between variables with different values of i and so the messages
passed are not affected by permutations of i. This means that the network as a whole is equivariant to permutations of i and
so the modeled distribution is invariant to permutations of i [Hoogeboom et al., 2022].

Christian Weilbach, William Harvey, Frank Wood

J Matrix inversion

Figure 16: Rows of matrix inversion examples. Similar to Fig. 6, but here we condition both on A and E = 1 (blue). Each
of the 5 pairs of rows show a solution for the same A. Reconstructions are shown as Ê = AR (green).

In this experiment we explore a purely continuous variation of our BCMF example from Section 4. We train the model
on fixed size full rank matrices of dimension 5 and condition on both E and A during training and testing. All entries of
both A ∈ R5×5 and R ∈ R5×5 are now sampled from a Normal(0, 1) prior and we set E = AR (as in BCMF). Despite
training on randomly sampled A and R, we demonstrate that GSDM implicitly learns matrix inversion. At test time we set
E to the identity matrix and solve for R ≈ A−1. Example solutions can be seen in Fig. 16. Each pair of rows contains two
approximate solutions for the same A to illustrate sample diversity. Most reconstructions for Ê are close to the identity
matrix, but GSDM is not perfect. We did not specialize our prior from BCMF; a more targeted prior could be constructed
by directly providing pairs of matrices and their inverse. This experiment shows that we are able to calculate approximate
inverses, even though we have not specialized our graphical model or training distribution to do so.

Graphically Structured Diffusion Models

(defn rand-matrix [size name]
(foreach (first size) [i (range (first size))]

(foreach (second size) [j (range (second size))]
(sample name (normal 0 1)))))

(defn dot-helper [t state a b]
(+ state

(sample "C" (dirac (* (get a t)
(get b t))))))

(defn dot [a b]
(loop (count a) 0 dot-helper a b))

(defn row-mul [t state m v]
(conj state (sample "E" (dirac (dot (get m t) v)))))

(defn transpose [m]
(foreach (count (first m)) [j (range (count (first m)))]

(foreach (count m) [i (range (count m))]
(get (get m i) j))))

(defn matmatmul [m1 m2]
(let [m2_ (transpose m2)]

(foreach (count m1) [i (range (count m1))]
(foreach (count m2_) [j (range (count m2_))]

(sample
"E"
(dirac (dot (get m1 i) (get m2_ j))))))))

(let [A (rand-matrix [3 2] "A")
R (rand-matrix [2 3] "R")
E (matmatmul A R)]

E)

Figure 17: Source code of a full generative model for the BCMF experiment. Passing this into our compiler yields the
attention mask in Fig. 10. Note that intermediate variables for C are explicitly created by sampling from a dirac distribution.

	1 Introduction
	2 Background
	2.1 Conditional diffusion models
	2.2 Transformer architecture
	2.3 Permutation invariance

	3 Method
	3.1 Structure from graphical models
	3.2 Faithful structured attention
	3.3 Intermediate variables
	3.4 Handling mixed continuous/discrete variables
	3.5 Flexible conditioning
	3.6 Embeddings and varying dimensionality

	4 Experiments
	4.1 Effect of structured attention and intermediate variables
	4.2 Effect of embedding-sharing
	4.3 Robustness to choice of graphical model

	5 Related work
	6 Discussion
	A Experimental details
	B Automatic compilation of BCMF
	C Structured attention
	D Attention masks
	E Unconditional BCMF
	F Ablation on BMF embedding type
	G Computational complexities
	H Expanded ablation on attention mask specification
	I Permutation equivariant GSDM
	J Matrix inversion

