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Abstract

In this work we show how to represent policies
as programs: that is, as stochastic simulators
with tunable parameters. To learn the param-
eters of such policies we develop connections
between black box variational inference and
existing policy search approaches. We then
explain how such learning can be implemented
in a probabilistic programming system. Us-
ing our own novel implementation of such a
system we demonstrate both conciseness of
policy representation and automatic policy
parameter learning for a set of canonical rein-
forcement learning problems.

1 Introduction

In planning under uncertainty the objective is to find
a policy that selects actions, given currently available
information, in a way that maximizes expected re-
ward. In many cases an optimal policy can neither
be represented compactly nor learned exactly. On-
line approaches to planning, such as Monte Carlo Tree
Search [Kocsis and Szepesvari, 2006], are nonparamet-
ric policies that select actions based on simulations
of future outcomes and rewards, also known as roll-
outs. While policies like this are often able to achieve
near optimal performance, they are computationally
intensive and do not have compact parameterizations.
Policy search methods (see Deisenroth et al. [2011] for a
review) learn parameterized policies offline, which then
can be used without performing rollouts at test time,
trading off improved test-time computation against
having to choose a policy parameterization that may
be insufficient to represent the optimal policy.

In this work we show how probabilistic programs can
represent parametric policies in a both more general
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and compact manner. We also develop automatic infer-
ence techniques for probabilistic programming systems
to do model-agnostic policy search. Our proposed ap-
proach, which we call black box policy learning (BBPL),
is a variant of Bayesian policy search [Wingate et al.,
2011, 2013] in which policy learning is cast as stochastic
gradient ascent on the marginal likelihood.

In contrast to languages that target a single domain-
specific algorithm [Andre and Russell, 2002, Srivastava
et al., 2014, Nitti et al., 2015], our formulation empha-
sizes the use of general-purpose techniques for Bayesian
inference, in which learning is used for inference amor-
tization. To this end, we adapt black-box variational
inference (BBVI), a technique for approximation of the
Bayesian posterior [Ranganath et al., 2014, Wingate
and Weber, 2013] to perform (marginal) likelihood
maximization in arbitrary programs. The resulting
technique is general enough to allow implementation
in a variety of probabilistic programming systems. We
show that this same technique can be used to per-
form policy search under an appropriate planning as
inference interpretation, in which a Bayesian model is
weighted by the exponent of the reward. The resulting
technique, BBPL is closely related to classic policy gra-
dient methods such as REINFORCE [Williams, 1992].

We present case studies in the Canadian traveler prob-
lem, the RockSample domain, and introduce a setting
inspired by Guess Who [Coster and Coster, 1979] as a
benchmark for optimal diagnosis problems.

2 Policies as Programs

Probabilistic programming systems [Milch et al., 2007,
Goodman et al., 2008, Minka et al., 2014, Pfeffer, 2009,
Mansinghka et al., 2014, Wood et al., 2014, Gordon
et al., 2014] represent generative models as programs
in a language that provides specialized syntax to in-
stantiate random variables, as well as syntax to impose
conditions on these random variables. The goal of in-
ference in a probabilistic program is to characterize
the distribution on its random variables subject to the
imposed conditions, which is done using one or more
generic methods provided by an inference backend.
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(defquery ctp
"Probabilistic program representing an agent
solving the Canadian Traveler Problem"
[graph src tgt base-prob make-policy]
(let [sub-graph
(sample-weather graph base-prob src tgt)
[path dist counts]

(dfs-agent sub-graph src tgt (make-policy))]

(factor (- dist))

(predict :path path)
(predict :distance dist)
(predict :counts counts)))

(defm dfs-agent
"Run depth-first-search from start to target,
prioritizing edges according to policy"
[graph start target policy]
e )

(defm make-random-policy
"Policy: Select edge at random"
[]
(fn policy [u vs]
(sample
(categorical
(zipmap vs (repeat (count vs) 1.))))))

(defm make-edge-policy
"Policy: learn priorities for each edge"
(]
(let [Q (mem (fn [u v]
(sample [u v]
(tag :policy
(gamma 1. 1.)))))]
(fn policy [u vs]
(argmax
(zipmap vs (map (fn [v] (Q u v)) vs))))))

Open Probability = 1.0
L]

Open Probability = 0.9
[ ]

Open Probability = 0.8
[ ]

Open Probability = 0.7

Figure 1: A Canadian traveler problem (CTP) implementation in Anglican. In the CTP, an agent must travel
along a graph, which represents a network of roads, to get from the start node (green) to the target node (red).
Due to bad weather some roads are blocked, but the agent does not know which in advance. Upon arrival at each
node the agent observes the set of open edges. The function dfs-agent walks the graph by performing depth-first
search, calling a function policy to choose the next destination based on the current and unvisited locations. The
function make-random-policy returns a policy function that selects destinations uniformly at random, whereas
make-edge-policy constructs a policy that selects according to sampled edge preferences (Q u v). By learning
a distribution on each value (Q u v) through gradient ascent on the marginal likelihood, we obtain a heuristic
offline policy that follows the shortest path when all edges are open, and explores more alternate routes as more

edges are closed.

In sequential decision problems we must define a
stochastic simulator of an agent, which chooses ac-
tions based on current contextual information, and a
stochastic simulator of the world, which may have some
internal variables that are opaque to the agent, but
provides new contextual information after each action.
For sufficiently simple problems, both the agent and
the world simulator can be adequately described as
graphical models. Here we are interested in using prob-
abilistic programs as simulators of both the world and
the agent. The trade-off made in this approach is that
we can incorporate more detailed assumptions about
the structure of the problem into our simulator of the
agent, which decreases the size of the search space, at
the expense of having to treat these simulators as black
boxes from the perspective of the learning algorithm.

In Figure 1 we show an example of a program, written

in the language Anglican [Wood et al., 2014], which
simulates an agent in the Canadian traveler problem
(CTP) domain. This agent traverses a graph using
depth first search (DFS) as a base strategy, choosing
edges either at random, or according to sampled prefer-
ences. Probabilistic programs can describe a family of
algorithmic policies, which may make use of program-
ming constructs such as recursion, and higher-order
functions and arbitrary deterministic operations. This
allows us to define structured policies that enforce ba-
sic constraints, such as the rule that you should never
travel the same edge twice.

Given a base policy program, we can define different
parametrizations that encode additional structure, such
as the typical travel distance starting from each edge.
We can then formulate a Bayesian approach to pol-
icy learning, in which we place a prior on the policy
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parameters and optimize its hyperparameters to max-
imize the reward. To do so we employ a planning as
inference interpretation [Toussaint et al., 2006, Rawlik
et al., 2012, Neumann, 2011, Hoffman et al., 2009a,b,
Levine and Koltun, 2013] that casts policy search as
stochastic gradient ascent on the marginal likelihood.

A challenge in devising methods for approximate in-
ference in probabilistic programs is that such methods
must deal gracefully with programs that may not in-
stantiate the same set of random variables in each
execution. For example, the random policy in Figure 1
will generate a different set of categorical variables in
each execution, depending on the path followed through
the graph. Similarly, the edge based policy samples
values (Q u v) lazily, depending on the visited nodes.

In this paper we develop an approach to policy learn-
ing based on black box variational inference (BBVT)
[Ranganath et al., 2014, Wingate and Weber, 2013], a
technique for variational approximation of the posterior
in Bayesian models. We begin by reviewing planning as
inference formulations of policy search. We then show
how BBVI can be adapted to perform hyperparameter
optimization. In a planning as inference interpretation
this method, which we call black box policy learning
(BBPL), is equivalent to classic policy gradient meth-
ods. We then describe how BBPL may be implemented
in the context of probabilistic programs with varying
numbers of random variables, and provide a language-
agnostic definition of the interface between the program
and the inference back end.

3 Policy Search as Bayesian Inference

In sequential decision problems, an agent draws
an action wu; from a policy distribution m(u|xy),
which may be deterministic, conditioned on a con-
text x;. The agent then observes a new context
2441 drawn from a distribution p(zs4q |us, 2¢). In
the finite horizon case, where an agent performs a
fixed number of actions T, resulting in a sequence
7 = (20, up, X1, U1, T2, ..., ur—_1,27), which is known
as a trajectory, or roll-out. Each trajectory gets a
reward R(7). Policy search methods maximize the ex-
pected reward Jy = E,,,[R(7)] for a family of stochastic
policies my with parameters 6

Jo = / R(r)po(r) dr, (1)
T—1

po(7) = p(wo) [ mlue| e, O)p(wisa [ur, @) (2)
t=0

We are interested in performing upper-level policy
search, a variant of the problem defined in terms of
the hyperparameters A of a distribution pj (7, 6) that

places a prior py () on the policy parameters

A:/me@@mw, (3)
pA(T,0) := pA(0)p(7 ] 6). (4)

Upper-level policy search can be interpreted as maxi-
mization of the normalizing constant Zy of an unnor-
malized density

o) (T’ 9) = Dx (T’ 9) eXp(ﬁR(T)), (5>
A:/%@mmw (6)
= Ep, [exp(BR(7))]. (7)

The constant 8 > 0 has the interpretation of an ‘inverse
temperature’ that controls how strongly the density
penalizes sub-optimal actions. The normalization con-
stant Z) is the expected value of the exponentiated
reward exp(SR(7)), which is known as the desirabil-
ity in the context of optimal control [Kappen, 2005,
Todorov, 2009]. It is not a priori obvious that max-
imization of the expected reward J yields the same
policy hyperparameters as maximization of the desire-
ability Z,, but it turns out that the two are in fact
equivalent, as we will explain in section 5.

In planning as inference formulations, v, (7, 0)/Z) is of-
ten interpreted as a posterior py (7, @ |r) conditioned on
a pseudo observable r = 1 that is Bernoulli distributed
with probability p(r = 1|7) x exp(BR(7)), resulting
in a joint distribution that is proportional to v, (7, 6),

p(r=1,7,0) o< px(7,0) exp(BR(7)) = A(7,6).  (8)

Maximization of Zy is then equivalent to the maximiza-
tion of the marginal likelihood py(r = 1) with respect
to the hyperparameters A. In a Bayesian context this
is known as empirical Bayes (EB) [Maritz and Lwin,
1989, or type II maximum likelihood estimation.

4 Black-box Variational Inference

Variational Bayesian methods [Wainwright and Jordan,
2008| approximate an intractable posterior with a more
tractable family of distributions. For purposes of ex-
position we consider the case of a posterior p(z,6|y),
in which y is a set of observations, 6 is a set of model
parameters, and z is a set of latent variables. We write
p(2,0]y) = 2(2,0)/Z with

1(2,0) = p(y| 2,0)p(2 | 0)p(0), (9)

zzfﬂamww. (10)

Variational methods approximate the posterior using a
parametric family of distributions ¢y by maximizing a
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lower bound on log Z with respect to A

Ly =Eq, [logv(z,0) —loggx(z,0)] (11)
—log Z — Die(ax(2) 11(2)/2) <logZ.  (12)

This objective may be optimized with stochastic gradi-
ent ascent [Hoffman et al., 2013]

>\k+1 =A\; + ka)\,C)\ (13)

MICLIN B
qx (Z7 0))

Here py, is a sequence of step sizes that satisfies the
conditions > 2, pr = oo and Y ;o p7 < oo. The
calculation of the gradient V)L, requires an integral
over ¢y. For certain models, specifically those where
the likelihood and prior are in the conjugate exponen-
tial family [Hoffman et al., 2013], this integral can be
performed analytically.

.

VaLx =Eg, (z) | Valogagn(z) log

Black box variational inference targets a much broader
class of models by sampling z[", (" ~ ¢y and replacing
the gradient for each component ¢ with a sample-based
estimate [Ranganath et al., 2014]

N

VaLa =Y Vi logaa (2", 60M) (logwl™ —b;), (15)
n=1

wi™h = 5 (21, 617 g (2171, 61, (16)

in which I;Z is a control variate that reduces the variance
of the estimator

i ot (Vo Joga (2, 01l
XN (Vo logga(zl, gy

5 Black-box Policy Search

(17)

The sample-based gradient estimator in BBVI resem-
bles the one used in classic likelihood-ratio policy gra-
dient methods [Deisenroth et al., 2011|, such as RE-
INFORCE [Williams, 1992], G(PO)MDP [Baxter and
Bartlett, 1999, Baxter et al., 1999], and PGT [Sutton
et al., 1999]. There is in fact a close connection be-
tween BBVI and these methods, as has been noted by
e.g. Dayan et al. [1995], Mnih and Gregor [2014] and
Ba et al. [2014].

To make this connection precise, let us consider what it
would mean to perform variational inference in a plan-
ning as inference setting. In this case, we can define
a lower bound L ), on log Z), in terms of a varia-
tional distribution gy (7, 0) with parameters A and an
unnormalized density 7, (7, 8) of the form in equation
5, with parameters \g

L, = Eqg, [logya, (2,0) —log gr(z, 0)] (18)
Pxo (Tv 9)

= E,, |BR(T)+ log N

(19)

If we now choose a variational distribution with the
same form as the prior, then g, (7,0) = px,(7,0) when-
ever A = \g. Under this assumption, the lower bound
at A = Ay simplifies to

Lanl,_, =En BR[|, =BA| . (0)

/\:)\0 =0

In other words, the lower bound L}, is proportional to
the expected reward Jy when the variational posterior
is equal to the prior.

The gradient of the lower bound similarly simplifies to

VL
A=A

.0
= g, |:V>\ log gx (7, 0) log %“(7)} ‘A:A

=)o Q)\(Tv 0)
= EqAO |:v)\ IOg D) (Ta 0)’ _ OﬂR(T):|
= / drdf Vag(r, O)IA:A BR(7)

- VAJA‘

=)o

The implication of this identity is that we can perform
gradient ascent on J, by making a slight modification
to the update equation

Aet1 = Mo+ o VAL x ‘)\:Ak. (21)

The difference in these updates is that instead of cal-
culating the gradient \V/ ALy, estimate relative to a
fixed set of prior parameters \g, we update the pa-
rameters of the prior py, (,0) after each gradient step,
and calculate the gradient VL »,. We note that the
constant § is simply a scaling factor on the step sizes
Pk, and will from here on assume that 5 = 1.

When BBVI is performed using the update step in
equation 21, and the variational family ¢, is chosen
to have the same form as the prior py, we obtain a
procedure for EB estimation, which maximizes the
normalizing constant Z with respect to the parameters
A of the prior. The difference between the EB and
maximum likelihood (ML) methods is that the first
calculates the gradient relative to hyperparameters A,
whereas the other calculates the gradient relative to the
parameters 6. Because this difference relates only to the
assumed model structure, EB estimation is sometimes
referred to as Type II maximum likelihood.

As is evident from equation 20, EB estimation in the
context of planning as inference formulations maxi-
mizes the expected reward Jy. In the context of a
probabilistic programming system this means that we
can effectively get three algorithms for the price of one:
If we can provide an implementation of BBVI, then
this implementation can be adapted to perform EB
estimation, which in turn allows us to perform pol-
icy search by simply defining models where exponent
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of the reward takes the place of the likelihood terms.
This results in a method that we call black box policy
learning (BBPL), which is equivalent to variants of
REINFORCE applied to upper-level policy search.

6 Learning Probabilistic Programs

An implementation of BBVI and BBPL for probabilistic
program inference needs to address two domain-specific
issues. The first is that probabilistic programs need not
always instantiate the same set of random variables,
the second is that we need to distinguish between dis-
tributions that define model parameters 6 and those
that define latent variables z, or variables that are part
of the context = in the case of decision problems.

Let us refer back to the program in Figure 1. The func-
tion dfs-agent performs a recursive loop until a stop-
ping criterion is met: either the target node is reached,
or there are no more paths left to try. At each step
dfs-agent makes a call to policy, which is created by ei-
ther calling make-random-policy or make-edge-policy.
A random policy samples uniformly from unexplored
directions. When depth first search is performed with
this policy, we are defining a model in which the num-
ber of context variables is random, since the number of
steps required to reach the goal state will vary. In the
case of the edge policy, we use a memoized function to
sample edge preference values as needed, choosing the
unexplored edge with the highest preference at each
step. In this case the number of parameter variables
is random, since we only instantiate preferences for
edges that are (a) open, and (b) connect to the current
location of the agent.

As has been noted by Wingate and Weber [2013], BBVI
can deal with varying sets of random variables quite
naturally. Since the gradient is computed from a sam-
ple estimate, we can compute gradients for a each
random variable by simply averaging over those execu-
tions in which the variable exists. Sampling variables
as needed can in fact be more statistically efficient,
since irrelevant variables that never affect the trajec-
tory of the agent will not contribute to the gradient
estimate. BBVI has the additional advantage of having
relatively light-weight implementation requirements; it
only requires differentiation of the log proposal den-
sity, which is a product over primitive distributions
of a limited number of types, for which derivatives
can be computed analytically. This is in contrast to
implementations based on (reverse-mode) automatic
differentiation [Pearlmutter and Siskind, 2008], as is
used in Stan [Kucukelbir et al., 2015], which store
derivative terms for the entire computation graph.

To provide a language-agnostic definition of BBVI and
BBPL, we formalize learning in probabilistic programs

as the interaction between a program P and an in-
ference back end B. The program P represents all
deterministic steps in the computation and has inter-
nal state (e.g. its environment variables). The back
end B performs all inference-related tasks.

A program P executes as normal, but delegates to the
inference back end whenever it needs to instantiate a
random variable, or evaluate a conditioning statement.
The back end B then supplies a value for the random
variable, or makes note of the probability associated
with the conditioning statement, and then delegates
back to P to continue execution. We will assume
that the programming language provides some way
to differentiate between latent variables z, which are
simply to be sampled, and parameters 6 for which a
distribution is to be learned. In Anglican the syntax
(sample (tag :policy d)), as used in Fig. 1, is used
as a general-purpose mechanism to label distributions
on random variables. An inference back end can simply
ignore these labels, or implement algorithm-specific
actions for labeled subsets.

In order for the learning algorithm to be well-defined in
programs that instantiate varying numbers of random
variables, we require that the each random variable z,
is uniquely identified by an address a, which may either
be generated automatically by the language runtime,
or specified by the programmer. Each model parameter
0y is similarly identified by an address b.

In BBVI, the interface between a program P and the
back end B can be formalized with the following rules:

e Initially B calls P with no arguments P().

e A call to P returns one of four responses to B:

1. (sample,a, f, ¢): Identifies a latent random
variable (not a policy parameter) z, with
unique address a, distributed according to
fa(-|#a). The back end generates a value
2 ~ fo(] ¢a) and calls P(z,).

2. (learn, b, f,n): For policy parameters, the ad-
dress b identifies a random variable 6 in the
model, distributed according to a distribution
fv with parameters 7. The back end gener-
ates 0, ~ fp(-| A\p) conditioned on a learned
variational parameter )\, and registers an im-
portance weight wy = fp(0s | 76)/ fo (0 | Ap)-
Execution continues by calling P(6y,).

3. (factor,¢,!): Here cis a unique address for a
factor with log probability /. and importance
weight w. = exp(l.). Execution continues by
calling P().

4. (return,v): Execution completes, returning
a value v.
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Because each call to P is deterministic, an execution
history is fully characterized by the values for each
random variable that are generated by B. However the
set of random variables that is instantiated may vary
from execution to execution. We write A, B, C for the
set of addresses of each type visited in a given execution.
The program P now defines an unnormalized density
~vp of the form

773('2’ 9) = pp(z,H) H exp(lc)v (22)
ceC
9) = Hfa(za|¢a)Hfb(0b|nb) . (23)
acA beB

Implicit in this notation is the fact that the distribution
types fuo(- | #a) and fu(- | ) are return values from calls
to P, which implies that both the parameter values
and the distribution type may vary from execution
to execution. While f,(-|¢,) and fp(-|m) are fully
determined by preceding values for z and 6, we assume
they are opaque to the inference algorithm, in the
sense that no analysis is performed to characterize
the conditional dependence of each ¢, or 7, on other
random variables in the program.

Given the above definition of a target density yp(z, ),
we are now in a position to define the density of a
variational approximation Q) to the program. In this
density, the runtime values 7, are replaced by varia-
tional parameters )\

= [ falzal@a) [T foO 1 2) . (24)

acA beB

prze

This density corresponds to that of a mean-field proba-
bilistic program, where the dependency of each 6, on
other random variables is ignored.

Repeated execution of P given the interface described
above results in a sequence of weighted samples
(w[”},ﬁ[”],z["]), whose importance weight w!™ is de-
fined as

witl = w(zw,ew) / po, (1", 67

H n] [ 70)

expl["] 25

ber 0[77 |)‘b ceC ( )
With this notation in place, it is clear that we can
define a lower bound Lo, o, analogous to that of
Equation 19, and a gradient estimator analogous to
that of Equation 15, in which the latent variables z
take the role of the trajectory variables 7. In summary,
we can describe a sequential decision problem as a
probabilistic program P in which the log probabilities
l. are interpreted as rewards, parameters 6, define the
policy and all other latent variables z, are trajectory
variables. EB inference can then be used to learn the

Algorithm 1 Black-box Policy Learning

initialize parameters g < 7, iteration £ =0
repeat
Set initial )\k+1 = {)\k,b}beB
Run N executions of program Q),, generating
(w[”], 9["],2["]) according to Eqns. 24, 25
for each address b do
Let Ny < N be the # of runs containing b
Let g[[)"] =V, log f(HI[)n]|/\k7b)
Compute baseline BAM from Eq. 17
@Ak,b‘])\k — Nb_l Zgl[)n] (]'ng[n] - l;/\k,b)
Update Apy1p <= Akp + PV, Iae
end for
k+—k+1
until parameters \, converge

hyperparameters A that maximize the expected reward,
as described in Algorithm 1.

An assumption that we made when deriving BBPL is
that the variational distribution ¢ (7, #) must have the
same analytical form as the prior py, (7, 6). Practically
this requirement means that a program P must be
written in such a way that the values of the hyperpa-
rameters 7, have the same constant values in every
execution, since their values may not depend on those
of random variables. One way to enforce this is to pass
7 as a parameter in the initial call P(n) by B, though
we do not formalize such a requirement here.

7 Case Studies

We demonstrate the use of programs for policy search
in three problem domains: (1) the Canadian Traveler
Problem, (2) a modified version of the RockSample
POMDP, and (3) an optimal diagnosis benchmark in-
spired by the classic children’s game Guess Who.

These three domains are examples of deterministic
POMDPs, in which the initial state of the world is not
known, and observations may be noisy, but the state
transitions are deterministic. Even for discrete variants
of such problems, the number of possible information
states x; = (ug,01,...,Ut—1,0) grows exponentially
with the horizon T', meaning that it is not possible to
fully parameterize a distribution 7(u | z, #) in terms of a
conditional probability table 0 ,. In our probabilistic
program formulations for these problems, the agent is
modeled as an algorithm with a number of random
parameters, and we use BBPL to learn the distribution
on parameters that maximizes the reward.

We implement our case studies using the probabilistic
programming system Anglican [Wood et al., 2014]. We
use the same experimental setup in each of the three
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Figure 2: Convergence for CTP domains of 20 and

50 nodes. Blue lines show the mean traveled distance
using the learned policy, averaged over 5 domains. Red
lines show the mean traveled distance for the optimistic
heuristic policy. Dash length indicates the fraction of
open edges, which ranges from 1.0 to 0.6.

domains. A trial begins with a learning phase, in which
BBPL is used to learn the policy hyperparameters,
followed by a number of testing episodes in which the
agent chooses actions according to a fixed learned policy.
At each gradient update step, we use 1000 samples
to calculate a gradient estimate. Each testing phase
consists of 1000 episodes. All shown results are based
on test-phase simulations.

Stochastic gradient methods can be sensitive to the
learning rate parameters. Results reported here use a
RMSProp style rescaling of the gradient [Hinton et al.],
which normalizes the gradient by a discounted rolling
decaying average of its magnitude with decay factor
0.9. We use a step size schedule px = po/(7 + k)" as
reported in Hoffman et al. [2013], with 7 =1, k = 0.5
in all experiments. We use a relatively conservative
base learning rate pp = 0.1 in all reported experi-
ments. For independent trials performed across a range
1,2,5,10,...,1000 of total gradient steps, consistent
convergence was observed in all runs using over 100
gradient steps.

The source code for the case studies, as well as the
BBPL implementation, is available online.’

7.1 Canadian Traveler Problem

In the Canadian Traveler Problem (CTP) [Papadim-
itriou and Yannakakis, 1991], an agent must traverse a
graph G = (V, E), in which edges may be missing at
random. It is assumed the agent knows the distance
d : EF — R+ associated with each edge, as well as
the probability p : E — (0,1] that the edge is open,
but has no advance knowledge of the edges that are
blocked. The problem is NP-hard [Fried et al., 2013,

1 https://bitbucket.org/probprog/black-box-policy-search
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Figure 3: Learned policies for the Rock Sample domain.
Edge weights indicate the frequency at which the agent
moves between each pair of rocks. Starting points are
in green, exit paths in red.

and heuristic online and offline approaches [Eyerich
et al., 2010] are used to solve problem instances.

The results in Figure 1 show that the learned policy
behaves in a reasonable manner. When edges are open
with high probability, the policy takes the shortest
path from the start node, marked in green, to the
target node, marked in red. As the fraction of closed
edges increases, the policy makes more frequent use
of alternate routes. Note that each edge has a fixed
probability of being open in our set-up, resulting in a
preference for routes that traverse fewer edges.

Figure 2 shows convergence as a function of the number
of gradient steps. Results are averaged over 5 domains
of 20 and 50 nodes respectively. Convergence plots
for each individual domain can be found in the sup-
plementary material. We compare the learned policies
against the optimistic policy, a heuristic that selects
edges according to the shortest path, assuming that
all unobserved edges are open. We observe that mean
traveled distance for the learned policy converges to
that of the optimistic policy, which is close to optimal.

7.2 RockSample POMDP

In the RockSample POMDP [Smith and Simmons,
2004], an N x N square field with M rocks is given. A
rover is initially located in the middle of the left edge of
the square. Each of the rocks can be either good or bad;
the rover must traverse the field and collect samples
of good rocks while minimizing the traveled distance.
The rover can sense the quality of a rock remotely with
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Figure 4: (left) Average reward in Guess Who as a

function of number of questions. (right) Convergence
of rewards as function number of gradient steps. Each
dot marks an independent restart.

an accuracy decreasing with the distance to the rock.
We consider a finite-horizon variant of the RockSample
domain, described in the supplementary material, with
a structured policy in which a robot travels along rocks
in a left-to-right order.

The policy plots in Figure 3 show that this simple policy
results in sensible movement preferences. In particular
we point out that in the 5 x 5 instance, the agent always
visits the top-left rock when traveling to the top-middle
rock, since doing so incurs no additional cost. Similarly,
the agent follows an almost deterministic trajectory
along the left-most 5 rocks in the 10 x 10 instance, but
does not always make the detour towards the lower
rocks afterwards.

7.3 Guess Who

Guess Who is a classic game in which players pick a
card depicting a face, belonging to a set that is known
to both players. The players then take turns asking
questions until they identify the card of the other player
[Coster and Coster, 1979]. We here consider a single-
player setting where an agent asks a pre-determined
number of questions, but the responses are inaccurate
with some probability. This is sometimes known as a
measurement selection, or optimal diagnosis problem.
We make use of a feature set based on the original
game, consisting of 24 individuals, characterized by
11 binary attributes and two multi-class attributes,
resulting in a total of 19 possible questions. We assume
a response accuracy of 0.9. By design, the structure
of the domain is such that there is no clear winning
opening question. However the best question at any
point is highly contextual.

We assume that the agent knows the reliability of the
response and has an accurate representation of the
posterior belief b;(s) = p(s|x;) for each candidate s

in given questions and responses. The agent selects
randomly among the highest ranked candidates after
the final question. We consider 3 policy variants, two
of which are parameter-free baselines. In the first base-
line, questions are asked uniformly at random. In
the second, questions are asked according to a my-
opic estimate of the value of information [Hay et al.,
2012], i.e. the change in expected reward relative to
the current best candidates, which is myopically op-
timal in this setting. Finally, we consider a policy
that empirically samples questions ¢ according to a
weight v, = v"4(Ab),, based on the current belief b, a
weight matrix A, and a discount factor v™¢ based on the
number of times n4 a question was previously asked. In-
tuitively, this algorithm can be understood as learning
a small set of a-vectors, one for each question, similar
to those learned in point-based value iteration [Pineau
et al., 2003]. The discounting effectively “shrinks” the
belief-space volume associated with the a-vector of the
current best question, allowing the agent to select the
next-best question.

The results in Figure 4 show that the learned policy
clearly outperforms both baselines, which is a surpris-
ing result given the complexity of the problem and the
relatively simplistic form of this heuristic policy. While
these results should not be expected to be in any way
optimal, they are encouraging in that they illustrate
how probabilistic programming can be used to imple-
ment and test policies that rely on transformations
of the belief or information state in a straightforward
manner.

8 Discussion

In this paper we put forward the idea that probabilistic
programs can be a productive medium for describing
both a problem domain and the agent in sequential
decision problems. Programs can often incorporate
assumptions about the structure of a problem domain
to represent the space of policies in a more targeted
manner, using a much smaller number of variables than
would be needed in a more general formulation. By
combining probabilistic programming with black-box
variational inference we obtain a generalized variant of
well-established policy gradient techniques that allow us
to define and learn policies with arbitrary levels of algo-
rithmic sophistication in moderately high-dimensional
parameter spaces. Fundamentally, policy programs rep-
resent some form of assumptions about what contextual
information is most relevant to a decision, whereas the
policy parameters represent domain knowledge that
generalizes across episodes. This suggests future work
to explore how latent variable models may be used to
represent past experiences in a manner that can be
related to the current information state.
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