
An Interface for Black Box Learning in Probabilistic Programs

Jan-Willem van de Meent Brooks Paige David Tolpin Frank Wood
Department of Engineering Science, University of Oxford

We define a family of parameter learning methods for
probabilistic program systems (PPSs) [1–10] that per-
form stochastic gradient ascent using sample-based es-
timates of the gradient. These algorithms are specified
in terms of the interaction between a back end B and
a probabilistic program P, which is treated as a black
box computation. The result is a language-agnostic
infterface for learning of probabilistic programs. The
described methods can be used to perform both varia-
tional Bayes (VB) [11–13], which approximates a pos-
terior distribution, and empirical Bayes (EB) [14, 15],
which maximizes the marginal likelihood with respect
to the prior hyperparameters. Moreover, EB estima-
tion is equivalent to (upper-level) policy search [15, 16]
in programs where the exponent of the reward takes
the place of the likelihood [17, 18].

In this abstract we are interested in algorithms that
combine inference with learning. As a motivating ex-
ample we consider a program (see Figure 1), written in
the language Anglican [7], which simulates the Cana-
dian traveler problem (CTP) domain. In the CTP, an
agent must travel along a graph, which represents a
network of roads, to get from the start node (green) to
the target node (red). Due to bad weather some roads
are blocked, but the agent does not know which in ad-
vance. The agent performs depth-first search along the
graph, which will require a varying number of steps,
depending on which edges are closed, and incurs a cost
for the traveled distance. The program in Figure 1 de-
fines two types of policies for the CTP. For the policy
where edges are chosen at random, we may perform
online planning by simulating future actions and out-
comes, also known as rollouts, and choosing the ac-
tion that minimizes the expected cost. Alternatively
we may learn a policy that, after an initial training pe-
riod, can be applied without calculating rollouts. To
do so we consider a deterministic policy for which we
learn a set of parameters (the edge preferences).

Structural operational semantics for probabilistic pro-
gramming languages typically specify the result and
associated probability for each elementary step in an
execution. We here specify an interface between a
stateful computation P, which performs all determin-
istic steps in the execution, and a back end B, which
handles 3 types of events: 1. sample signifies that
the back end must supply a value for a random vari-

able 2. learn is the same as sample, but additionally
indicates that this is the back end must learn hyperpa-
rameters for the distribution on the random variable.
3. factor assigns a probability to the execution.

We write θb for the random variables in a program
P that are considered parameters and za for all other
random variables. Here a ∈ A and b ∈ B are unique
identifiers, also known as addresses, in sets A and B
that can vary from execution to execution. We as-
sume that factor statements have computable densities
wc with c ∈ C. A program P then defines a density
πP(z, θ) = γP(z, θ)/Z, where

γP(z, θ) :=
∏
a∈A

fa(za |φa)
∏
b∈B

fb(θb | ηb)
∏
c∈C

wc.

Here, the run-time densities fa(· |φa) and fb(· | ηb) for
each variable may vary from execution to execution,
and it is assumed that their dependency on previous
random variables is not known to the back end.

We define the density of a variational program Qλ as
the unconditioned variant of P in which learned vari-
ational parameters λb replace run-time parameters ηb

pQλ(z, θ) :=
∏
a∈A

fa(za |φa)
∏
b∈B

fb(θb |λb).

We now define the inference semantics of an impor-
tance sampler that targets γP by proposing from pQλ :

• Initially B calls P with no arguments P()

• A call to P returns one of four responses to B:

1. (sample, a, f, φ): B samples za ∼ fa(· |φa).
Execution continues by calling P(za).

2. (learn, b, f, η): B samples θb ∼ fb(· |λb),
registers wb = fb(θb | ηb)/fb(θb |λb) and calls
P(θb).

3. (factor, c, w): B registers wc and calls P().
4. (return, v): P terminates, returning v.

Repeated execution of P through this interface re-
sults in a sequence of weighted samples (w[n], θ[n], z[n]),
whose importance weight w[n] is defined as

w[n] := γP(z
[n], θ[n]) / pQλ(z

[n], θ[n]) =
∏
b∈B

wb
∏
c∈C

wc.

An Interface for Black Box Learning in Probabilistic Programs

(defquery ctp
[problem base-prob make-policy]
(let [graph (get problem :graph)

start (get problem :s)
target (get problem :t)
sub-graph (sample-weather graph base-prob)
[path dist counts]
(dfs-agent sub-graph s t (make-policy))]

(factor (- (or dist inf)))
(predict :path path)
(predict :distance dist)
(predict :counts counts))))

(defm dfs-agent
[graph start target policy]
(loop [path [start]

counts {}
dist 0.0]

(let [u (peek path)]
(if (= u target)
[path dist counts]
(let [unvisited

(filter
(fn [v] (not (get counts #{u v})))
(adjacent graph u))]

(if (empty? unvisited)
(if (empty? (pop path))
[nil dist counts]
(let [v (peek (pop path))]
(recur (pop path)

(assoc counts #{u v} 2)
(+ dist (distance graph u v)))))

(let [v (policy u unvisited)]
(recur (conj path v)

(assoc counts #{u v} 1)
(+ dist

(distance graph u v)))))))))))

(defm make-random-policy []
(fn policy [u vs]
(sample
(categorical
(zipmap vs (repeat (count vs) 1.))))))

(defm make-edge-policy []
(let [Q (mem (fn [u v]

(sample
(learn [u v] (gamma 1. 1.)))))]

(fn policy [u vs]
(argmax
(zipmap vs (map (fn [v] (Q u v)) vs))))))

Open Probability = 1.0 Open Probability = 0.9

Open Probability = 0.8 Open Probability = 0.7

Figure 1: A Canadian traveler problem (CTP) implementation in Anglican. The function dfs-agent walks
the graph by performing depth-first search, calling a function policy to choose the next destination based on
the current and unvisited locations. The function make-random-policy returns a policy function that selects
destinations uniformly at random, whereas make-edge-policy constructs a policy that selects according to
sampled edge preferences (Q u v). By learning a distribution on each value (Q u v) through gradient ascent
on the marginal likelihood, we obtain a heuristic offline policy that follows the shortest path when all edges are
open, and explores more alternate routes as more edges are closed.

This importance sampling protocol allows us to per-
form black box variational inference (BBVI) [12, 13,
15], which optimizes a lower bound Lλ on logZ

Lλ = EpQλ [log γP(z, θ)− log pQλ(z, θ)],

= logZ −DKL(pQλ(z, θ) || γP(z, θ)/Z) ≤ logZ,

by calculating a sample-based estimate of ∇λLλ

∇̂λbLλ =
∑

n∈{n:b∈Bn}

∇λb log pQλ(z[n], θ[n])(logw[n] − b̂i),

in which w[n] is the importance weight defined above,
and b̂b is a control variate (see [12, 13, 15] for details).
We note that this estimate only requires calculation
of ∇λb log pQλ(z, θ), which is trivial since λ-dependent
terms in pQλ(z, θ) are independent by construction.

This gradient estimator can be used in 3 types of learn-
ing algorithms. In VB estimation we consider updates

λk+1 = λk + ρk∇̂λLλ
∣∣
λ=λk

,

where ρk is a Robbins-Monro sequence of step sizes[19].

In EB estimation we define the lower bound Lλ,λk in
terms of a density γQλk where the learned distribution
pQλk replaces the prior, and perform updates

λk+1 = λk + ρk∇̂λLλ,λk
∣∣
λ=λk

.

In models where wc = exp(Rc) is defined in terms of
the reward Rc, EB estimation is equivalent to policy
search, and maximizes the expected reward [15].

In summary, we have specified the inference seman-
tics for a family of learning algorithms for probabilistic
programs, in which importance sampling semantics are
used as a basis for computation of a sample-based esti-
mate of the gradient. This estimate can be calculated
in any stystem that (a) implements the importance
sampling interface defined above and (b) implements
derivatives for the density of each primitive distribu-
tion type in the language. Since no automatic differ-
entiation implementation is needed for this gradient
estimate, this family of algorithms provides a natural
“light-weight” baseline for learning in programs.

Jan-Willem van de Meent Brooks Paige David Tolpin Frank Wood

References
[1] Brian Milch, Bhaskara Marthi, Stuart Russell, David

Sontag, Daniel L. Ong, and Andrey Kolobov. BLOG
: Probabilistic Models with Unknown Objects. In IJ-
CAI, 2005.

[2] Luc De Raedt, Angelika Kimmig, and Hannu Toivo-
nen. ProbLog: A probabilistic prolog and its applica-
tion in link discovery. IJCAI International Joint Con-
ference on Artificial Intelligence, pages 2468–2473,
2007.

[3] Noah Goodman, Vikash Mansinghka, Daniel M Roy,
Keith Bonawitz, and Joshua B Tenenbaum. Church:
a language for generative models. In Proc. 24th Conf.
Uncertainty in Artificial Intelligence (UAI), pages
220–229, 2008.

[4] Avi Pfeffer. Figaro: An object-oriented probabilistic
programming language. Technical report, 2009.

[5] a McCallum, K Schultz, and S Singh. Factorie: Prob-
abilistic programming via imperatively defined factor
graphs. In Advances in Neural Information Processing
Systems, volume 22, pages 1249–1257, 2009.

[6] T Minka, J Winn, J Guiver, and D Knowles. Infer
.NET 2.4, Microsoft Research Cambridge, 2010.

[7] F Wood, JW van de Meent, and VMansinghka. A new
approach to probabilistic programming inference. In
Artificial Intelligence and Statistics, pages 1024–1032,
2014.

[8] Brooks Paige and Frank Wood. A Compilation Target
for Probabilistic Programming Languages. Interna-
tional Conference on Machine Learning (ICML), 32,
mar 2014.

[9] Vikash Mansinghka, Daniel Selsam, and Yura Perov.
Venture: a higher-order probabilistic programming
platform with programmable inference. arXiv,
page 78, mar 2014. URL http://arxiv.org/abs/
1404.0099.

[10] Stan Development Team. Stan: A C++ Library for
Probability and Sampling, Version 2.4, 2014.

[11] Martin J Wainwright and Michael I Jordan. Graphical
Models, Exponential Families, and Variational Infer-
ence. Foundations and Trends in Machine Learning,
1(1âĂŞ2):1–305, 2008.

[12] David Wingate and Theo Weber. Automated varia-
tional inference in probabilistic programming. arXiv
preprint arXiv:1301.1299, pages 1–7, 2013. URL
http://arxiv.org/abs/1301.1299.

[13] Rajesh Ranganath, Sean Gerrish, and David M Blei.
Black Box Variational Inference. In Artificial Intelli-
gence and Statistics, 2014. URL http://arxiv.org/
abs/1401.0118.

[14] J S Maritz and T Lwin. Empirical Bayes methods,
volume 35. Chapman and Hall, London, 1989. ISBN
0412277603.

[15] Jan-Willem van de Meent, David Tolpin, Brooks
Paige, and Frank Wood. Black-Box Policy Search
with Probabilistic Programs. pages 1–22, 2015. URL
http://arxiv.org/abs/1507.04635.

[16] Marc Peter Deisenroth, Gerhard Nuemann, and Jan
Peters. A Survey on Policy Search for Robotics. Foun-
dations and Trends in Robotics, 2(2011):1–142, 2011.

[17] Marc Toussaint, Stefan Harmeling, and Amos Storkey.
Probabilistic inference for solving (PO)MDPs. Neural
Computation, 31(December):357–373, 2006.

[18] Matthew Botvinick and Marc Toussaint. Planning as
inference. Trends in Cognitive Sciences, 16(10):485–
488, 2012.

[19] H Robbins and S Monro. A Stochastic Approxima-
tion Method. The Annals of Mathematical Statistics,
22(3):400–407, 1951. URL http://www.jstor.org/
stable/10.2307/2236626.

http://arxiv.org/abs/1404.0099
http://arxiv.org/abs/1404.0099
http://arxiv.org/abs/1301.1299
http://arxiv.org/abs/1401.0118
http://arxiv.org/abs/1401.0118
http://arxiv.org/abs/1507.04635
http://www.jstor.org/stable/10.2307/2236626
http://www.jstor.org/stable/10.2307/2236626

