
An Introduction to Probabilistic
Programming

Jan-Willem van de Meent
College of Computer and Information Science

Northeastern University
j.vandemeent@northeastern.edu

Brooks Paige
Alan Turing Institute

University of Cambridge
bpaige@turing.ac.uk

Hongseok Yang
School of Computing

KAIST
hongseok.yang@kaist.ac.kr

Frank Wood
Department of Computer Science

University of British Columbia
fwood@cs.ubc.ca

ar
X

iv
:1

80
9.

10
75

6v
1

 [
st

at
.M

L
]

 2
7

Se
p

20
18

Contents

Abstract 1

Acknowledgements 3

1 Introduction 8
1.1 Model-based Reasoning 10
1.2 Probabilistic Programming 21
1.3 Example Applications . 26
1.4 A First Probabilistic Program 29

2 A Probabilistic Programming Language Without Recursion 31
2.1 Syntax . 32
2.2 Syntactic Sugar . 37
2.3 Examples . 42
2.4 A Simple Purely Deterministic Language 48

3 Graph-Based Inference 51
3.1 Compilation to a Graphical Model 51
3.2 Evaluating the Density 66
3.3 Gibbs Sampling . 74
3.4 Hamiltonian Monte Carlo 80
3.5 Compilation to a Factor Graph 89

3.6 Expectation Propagation 94

4 Evaluation-Based Inference I 102
4.1 Likelihood Weighting . 105
4.2 Metropolis-Hastings . 116
4.3 Sequential Monte Carlo 125
4.4 Black Box Variational Inference 131

5 A Probabilistic Programming Language With Recursion 138
5.1 Syntax . 142
5.2 Syntactic sugar . 143
5.3 Examples . 144

6 Evaluation-Based Inference II 155
6.1 Explicit separation of model and inference code 156
6.2 Addressing Transformation 161
6.3 Continuation-Passing-Style Transformation 165
6.4 Message Interface Implementation 171
6.5 Likelihood Weighting . 175
6.6 Metropolis-Hastings . 175
6.7 Sequential Monte Carlo 178

7 Advanced Topics 181
7.1 Inference Compilation . 181
7.2 Model Learning . 186
7.3 Hamiltonian Monte Carlo and Variational Inference 191
7.4 Nesting . 193
7.5 Formal Semantics . 196

8 Conclusion 201

References 205

Abstract

This document is designed to be a first-year graduate-level introduc-
tion to probabilistic programming. It not only provides a thorough
background for anyone wishing to use a probabilistic programming
system, but also introduces the techniques needed to design and build
these systems. It is aimed at people who have an undergraduate-level
understanding of either or, ideally, both probabilistic machine learning
and programming languages.

We start with a discussion of model-based reasoning and explain
why conditioning as a foundational computation is central to the
fields of probabilistic machine learning and artificial intelligence. We
then introduce a simple first-order probabilistic programming language
(PPL) whose programs define static-computation-graph, finite-variable-
cardinality models. In the context of this restricted PPL we introduce
fundamental inference algorithms and describe how they can be imple-
mented in the context of models denoted by probabilistic programs.

In the second part of this document, we introduce a higher-order
probabilistic programming language, with a functionality analogous to
that of established programming languages. This affords the opportu-
nity to define models with dynamic computation graphs, at the cost
of requiring inference methods that generate samples by repeatedly
executing the program. Foundational inference algorithms for this kind
of probabilistic programming language are explained in the context of

1

Abstract 2

an interface between program executions and an inference controller.
This document closes with a chapter on advanced topics which

we believe to be, at the time of writing, interesting directions for
probabilistic programming research; directions that point towards a
tight integration with deep neural network research and the development
of systems for next-generation artificial intelligence applications.

Acknowledgements

We would like to thank the very large number of people who have read
through preliminary versions of this manuscript. Comments from the
reviewers have been particularly helpful, as well as general interactions
with David Blei and Kevin Murphy in particular. Some people we would
like to individually thank are, in no particular order, Tobias Kohn, Rob
Zinkov, Marcin Szymczak, Gunes Baydin, Andrew Warrington, Yuan
Zhou, and Celeste Hollenbeck, as well as numerous other members of
Frank Wood’s Oxford and UBC research groups graciously answered
the call to comment and contribute.

We would also like to acknowledge colleagues who have contributed
intellectually to our thinking about probabilistic programming. First
among these is David Tolpin, whose work with us at Oxford decisively
shaped the design of the Anglican probabilistic programming language,
and forms the basis for the material in Chapter 6. We would also like
to thank Josh Tenenbaum, Dan Roy, Vikash Mansinghka, and Noah
Goodman for inspiration, periodic but important research interactions,
and friendly competition over the years. Chris Heunen, Ohad Kammar
and Sam Staton helped us to understand subtle issues about the se-
mantics of higher-order probabilistic programming languages. Lastly
we would like to thank Mike Jordan for asking us to do this, providing
the impetus to collate everything we thought we learned while having
put together a NIPS tutorial years ago.

3

Acknowledgements 4

During the writing of this manuscript the authors received generous
support from various granting agencies. Most critically, while all of the
authors were at Oxford together, three of them were explicitly supported
at various times by the DARPA under its Probabilistic Programming
for Advanced Machine Learning (PPAML) (FA8750-14-2-0006) pro-
gram. Jan-Willem van de Meent was additionally supported by startup
funds from Northeastern University. Brooks Paige and Frank Wood
were additionally supported by the Alan Turing Institute under the
EPSRC grant EP/N510129/1. Frank Wood was also supported by In-
tel, DARPA via its D3M (FA8750-17-2-0093) program, and NSERC
via its Discovery grant program. Hongseok Yang was supported by
the Engineering Research Center Program through the National Re-
search Foundation of Korea (NRF) funded by the Korean Government
MSIT (NRF-2018R1A5A1059921), and also by Next-Generation In-
formation Computing Development Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science,
ICT (2017M3C4A7068177).

Notation

Grammars

c ::= A constant value or primitive function.
v ::= A variable.
f ::= A user-defined procedure.

e ::= c | v | (let [v e1] e2) | (if e1 e2 e3) | (f e1 ... en)
| (c e1 ... en) | (sample e) | (observe e1 e2)
An expression in the first-order probabilistic
programming language (FOPPL).

E ::= c | v | (if E1 E2 E3) | (c E1 ... En)
An expression in the (purely deterministic) target language.

e ::= c | v | f | (if e e e) | (e e1 ... en)
| (sample e) | (observe e e) | (fn [v1 ... vn] e)
An expression in the higher-order probabilistic
programming language (HOPPL).

q ::= e | (defn f [v1 ... vn] e) q

A program in the FOPPL or the HOPPL.

Sets, Lists, Maps, and Expressions

C = {c1, .. ., cn} A set of constants
(ci ∈ C refers to elements).

C = (c1, .. ., cn) A list of constants
(Ci indexes elements ci).

5

Notation 6

C = [v1 7→ c1, .. ., vn 7→ cn] A map from variables to constants
(C(vi) indexes entries ci).

C′ = C[vi 7→ c′i] A map update in which C′(vi) = c′i
replaces C(vi) = ci.

C(vi) = c′i An in-place update in which C(vi) =
c′i replaces C(vi) = ci.

C = dom(C) = {v1, .. ., vn} The set of keys in a map.

E = (* v v) An expression literal.
E′ = E[v := c] = (* c c) An expression in which a constant

c replaces the variable v.
free-vars(e) The free variables in an expression.

Directed Graphical Models

G = (V,A,P,Y) A directed graphical model.

V = {v1, .. ., v|V |} The variable nodes in the graph.
Y = dom(Y) ⊆ V The observed variable nodes.
X = V \ Y ⊆ V The unobserved variable nodes.
y ∈ Y An observed variable node.
x ∈ X An unobserved variable node.

A = {(u1, v1), .. ., (u|A|, v|A|)} The directed edges (ui, vi) between par-
ents ui ∈ V and children vi ∈ V .

P = [v1 7→ E1, .. ., v|V | 7→ E|V |] The probability mass or density for each
variable vi, represented as a target lan-
guage expression P(vi) = Ei

Y = [y1 7→ c1, .. ., y|Y | 7→ c|Y |] The observed values Y(yi) = ci.

pa(v) = {u : (u, v) ∈ A} The set of parents of a variable v.

Notation 7

Factor Graphs

G = (V, F,A,Ψ) A factor graph.

V = {v1, .. ., v|V |} The variable nodes in the graph.
F = {f1, .. ., f|F |} The factor nodes in the graph.
A = {(v1, f1), .. ., (v|A|, f|A|)} The undirected edges between variables

vi and factors fi.
Ψ = [f1 7→ E1, .. ., f|F | 7→ E|F |] Potentials for factors fi, represented as

target language expressions Ei.

Probability Densities

p(Y,X) = p(V) The joint density over all variables.
p(X) The prior density over unobserved variables.
p(Y | X) The likelihood of observed variables Y given

unobserved variables X.
p(X | Y) The posterior density for unobserved variables

X given unobserved variables Y .

X = [x1 7→ c1, .. ., xn 7→ cn] A trace of values X (xi) = ci asso-
cated with the instantiated set of
variables X = dom(X).

p(X=X) = p(x1 =c1, .. ., xn=cn) The probability density p(X) evalu-
ated at a trace X .

p0(v0 ; c1, .. ., cn) A probability mass or density func-
tion for a variable v0 with parame-
ters c1, .. ., cn.

P (v0) = (p0 v0 c1 . . . cn) The language expression that evalu-
ates to the probability mass or den-
sity p0(v0; c1, .. ., cn).

1
Introduction

How do we engineer machines that reason? This is a question that has
long vexed humankind. The answer to this question is fantastically valu-
able. There exist various hypotheses. One major division of hypothesis
space delineates along lines of assertion: that random variables and
probabilistic calculation are more-or-less an engineering requirement
(Ghahramani, 2015; Tenenbaum et al., 2011) and the opposite (LeCun
et al., 2015; Goodfellow et al., 2016). The field ascribed to the former
camp is roughly known as Bayesian or probabilistic machine learning;
the latter as deep learning. The first requires inference as a fundamental
tool; the latter optimization, usually gradient-based, for classification
and regression.

Probabilistic programming languages are to the former as automated
differentiation tools are to the latter. Probabilistic programming is
fundamentally about developing languages that allow the denotation of
inference problems and evaluators that “solve” those inference problems.
We argue that the rapid exploration of the deep learning, big-data-
regression approach to artificial intelligence has been triggered largely by
the emergence of programming language tools that automate the tedious
and troublesome derivation and calculation of gradients for optimization.

8

9

Probabilistic programming aims to build and deliver a toolchain that
does the same for probabilistic machine learning; supporting supervised,
unsupervised, and semi-supervised inference. Without such a toolchain
one could argue that the complexity of inference-based approaches to
artificial intelligence systems are too high to allow rapid exploration of
the kind we have seen recently in deep learning.

While such a next-generation artificial intelligence toolchain is of
particular interest to the authors, the fact of the matter is that the
probabilistic programming tools and techniques are already transform-
ing the way Bayesian statistical analyses are performed. Traditionally
the majority of the effort required in a Bayesian statistical analysis
was in iterating model design where each iteration often involved a
painful implementation of an inference algorithm specific to the current
model. Automating inference, as probabilistic programming systems
do, significantly lowers the cost of iterating model design leading to
both a better overall model in a shorter period of time and all of the
consequent benefits.

This introduction to probabilistic programming covers the basics
of probabilistic programming from language design to evaluator imple-
mentation with the dual aim of explaining existing systems at a deep
enough level that readers of this text should have no trouble adopting
and using any of both the languages and systems that are currently out
there and making it possible for the next generation of probabilistic
programming language designers and implementers to use this as a
foundation upon which to build.

This introduction starts with an important, motivational look at
what a model is and how model-based inference can be used to solve
many interesting problems. Like automated differentiation tools for
gradient-based optimization, the utility of probabilistic programming
systems is grounded in applications simpler and more immediately
practical than futuristic artificial intelligence applications; building
from this is how we will start.

1.1. Model-based Reasoning 10

1.1 Model-based Reasoning

Model-building starts early. Children build model airplanes then blow
them up with firecrackers just to see what happens. Civil engineers
build physical models of bridges and dams then see what happens in
scale-model wave pools and wind tunnels. Disease researchers use mice
as model organisms to simulate how cancer tumors might respond to
different drug dosages in humans.

These examples show exactly what a model is: a stand-in, an im-
poster, an artificial construct designed to respond in the same way as
the system you would like to understand. A mouse is not a human
but it is often close enough to get a sense of what a particular drug
will do at particular concentrations in humans anyway. A scale-model
of an earthen embankment dam has the wrong relative granularity of
soil composition but studying overtopping in a wave pool still tells us
something about how an actual dam might respond.

As computers have become faster and more capable, numerical
models have come to the fore and computer simulations have replaced
physical models. Such simulations are by nature approximations. How-
ever, now in many cases they can be as exacting as even the most highly
sophisticated physical models – consider that the US was happy to
abandon physical testing of nuclear weapons.

Numerical models emulate stochasticity, i.e. using pseudorandom
number generators, to simulate actually random phenomena and other
uncertainties. Running a simulator with stochastic value generation
leads to a many-worlds-like explosion of possible simulation outcomes.
Every little kid knows that even the slightest variation in the placement
of a firecracker or the most seemly minor imperfection of a glue joint
will lead to dramatically different model airplane explosions. Effective
stochastic modeling means writing a program that can produce all
possible explosions, each corresponding to a particular set of random
values, including for example the random final resting position of a
rapidly dropped lit firecracker.

Arguably this intrinsic variability of the real world is the most
significant complication for modeling and understanding. Did the mouse
die in two weeks because of a particular individual drug sensitivity,

1.1. Model-based Reasoning 11

because of its particular phenotype, or because the drug regiment trial
arm it was in was particularly aggressive? If we are interested in average
effects, a single trial is never enough to learn anything for sure because
random things almost always happen. You need a population of mice
to gain any kind of real knowledge. You need to conduct several wind-
tunnel bridge tests, numerical or physical, because of variability arising
everywhere – the particular stresses induced by a particular vortex,
the particular frailty of an individual model bridge or component, etc.
Stochastic numerical simulation aims to computationally encompass
the complete distribution of possible outcomes.

When we write model we generally will mean stochastic simulator
and the measurable values it produces. Note, however, that this is not
the only notion of model that one can adopt. Notably there is a related
family of models that is specified solely in terms of an unnormalized
density or “energy” function; this is treated in Chapter 3.

Models produce values for things we can measure in the real world; we
call such measured values observations. What counts as an observation
is model, experiment, and query specific – you might measure the daily
weight of mice in a drug trial or you might observe whether or not a
particular bridge design fails under a particular load.

Generally one does not observe every detail produced by a model,
physical or numerical, and sometimes one simply cannot. Consider the
standard model of physics and the large hadron collider. The standard
model is arguably the most precise and predictive model ever conceived.
It can be used to describe what can happen in fundamental particle
interactions. At high energies these interactions can result in a particle
jet that stochastically transitions between energy-equivalent decompo-
sitions with varying particle-type and momentum constituencies. It is
simply not possible to observe the initial particle products and their
first transitions because of how fast they occur. The energy of particles
that make up the jet deposited into various detector elements constitute
the observables.

So how does one use models? One way is to use them to falsify
theories. To this one needs encode the theory as a model then simulate
from it many times. If the population distribution of observations
generated by the model is not in agreement with observations generated

1.1. Model-based Reasoning 12

by the real world process then there is evidence that the theory can be
falsified. This describes science to a large extent. Good theories take the
form of models that can be used to make testable predictions. We can
test those predictions and falsify model variants that fail to replicate
observed statistics.

Models also can be used to make decisions. For instance when
playing a game you either consciously or unconsciously use a model of
how your opponent will play. To use such a model to make decisions
about what move to play next yourself, you simulate taking a bunch
of different actions, then pick one amongst them by simulating your
opponent’s reaction according to your model of them, and so forth
until reaching a game state whose value you know, for instance, the
end of the game. Choosing the action that maximizes your chances
of winning is a rational strategy that can be framed as model-based
reasoning. Abstracting this to life being a game whose score you attempt
to maximize while living requires a model of the entire world, including
your own physical self, and is where model-based probabilistic machine
learning meets artificial intelligence.

A useful model can take a number of forms. One kind takes the form
of a reusable, interpretable abstraction with a good associated infer-
ence algorithm that describes summary statistic or features extracted
from raw observable data. Another kind consists of a reusable but non-
interpretable and entirely abstract model that can accurately generate
complex observable data. Yet another kind of model, notably models in
science and engineering, takes the form of a problem-specific simulator
that describes a generative process very precisely in engineering-like
terms and precision. Over the course of this introduction it will be-
come apparent how probabilistic programming addresses the complete
spectrum of them all.

All model types have parameters. Fitting these parameters, when
few, can sometimes be performed manually, by intensive theory-based
reasoning and a priori experimentation (the masses of particles in
the standard model), by measuring conditional subcomponents of a
simulator (the compressive strength of various concrete types and their
action under load), or by simply fiddling with parameters to see which
values produce the most realistic outputs.

1.1. Model-based Reasoning 13

Automated model fitting describes the process of using algorithms
to determine either point or distributional estimates for model param-
eters and structure. Such automation is particularly useful when the
parameters of a model are uninterpretable or many. We will return
to model fitting in Chapter 7 however it is important to realize that
inference can be used for model learning too, simply by lifting the
inference problem to include uncertainty about the model itself (e.g. see
the neural network example in 2.3 and the program induction example
in 5.3).

The key point now is to understand that models come in many forms,
from scientific and engineering simulators in which the results of every
subcomputation are interpretable to abstract models in statistics and
computer science which are, by design, significantly less interpretable
but often are valuable for predictive inference none-the-less.

1.1.1 Model Denotation

An interesting thing to think about, and arguably the foundational idea
that led to the field of probabilistic programming, is how such models
are denoted and, respectively, how such models are manipulated to
compute quantities of interest.

To see what we mean about model denotation let us first look
at a simple statistical model and see how it is denoted. Statistical
models are typically denoted mathematically, subsequently manipulated
algebraically, then “solved” computationally. By “solved” we mean that
an inference problem involving conditioning on the values of a subset of
the variables in the model is answered. Such a model denotation stands
in contrast to simulators which are often denoted in terms of software
source code that is directly executed. This also stands in contrast,
though less so, to generative models in machine learning which usually
take the form of probability distributions whose factorization properties
can be read from diagrams like graphical models or factor graphs.

Nearly the simplest possible model one could write down is a beta-
Bernoulli model for generating a coin flip from a potentially biased coin.

1.1. Model-based Reasoning 14

Such a model is typically denoted

x ∼ Beta(α, β)
y ∼ Bernoulli(x) (1.1)

where α and β are parameters, x is a latent variable (the bias of the
coin) and y is the value of the flipped coin. A trained statistician will
also ascribe a learned, folk-meaning to the symbol ∼ and the keywords
Beta and Bernoulli. For example Beta(a, b) means that, given the value
of arguments a and b we can construct what is effectively an object
with two methods. The first method being a probability density (or
distribution) function that computes

p(x|a, b) = Γ(a+ b)
Γ(a)Γ(b)x

a−1(1− x)b−1,

and the second a method that draws exact samples from said distribution.
A statistician will also usually be able to intuit not only that some
variables in a model are to be observed, here for instance y, but that
there is an inference objective, here for instance to characterize p(x|y).
This denotation is extremely compact, and being mathematical in nature
means that we can use our learned mathematical algebraic skills to
manipulate expressions to solve for quantities of interest. We will return
to this shortly.

In this tutorial we will generally focus on conditioning as the goal,
namely the characterization of some conditional distribution given a
specification of a model in the form of a joint distribution. This will
involve the extensive use of Bayes rule

p(X|Y) = p(Y |X)p(X)
p(Y) = p(X,Y)

p(Y) = p(X,Y)∫
p(X,Y)dX . (1.2)

Bayes rule tells us how to derive a conditional probability from a joint,
conditioning tells us how to rationally update our beliefs, and updating
beliefs is what learning and inference are all about.

The constituents of Bayes rule have common names that are well
known and will appear throughout this text: p(Y |X) the likelihood, p(X)
the prior, p(Y) the marginal likelihood (or evidence), and p(X|Y) the

1.1. Model-based Reasoning 15

Table 1.1: Probabilistic Programming Models

X Y

scene description image
simulation simulator output

program source code program return value
policy prior and world simulator rewards
cognitive decision making process observed behavior

posterior. For our purposes a model is the joint distribution p(Y,X) =
p(Y |X)p(X) of the observations Y and the random choices made in the
generative model X, also called latent variables.

The subject of Bayesian inference, including both philosophical
and methodological aspects, is in and of itself worthy of book length
treatment. There are a large number of excellent references available,
foremost amongst them the excellent book by Gelman et al. (2013). In
the space of probabilistic programming arguably the recent books by
Davidson-Pilon (2015) and Pfeffer (2016) are the best current references.
They all aim to explain what we expect you to gain an understanding of
as you continue to read and build experience, namely, that conditioning
a joint distribution – the fundamental Bayesian update – describes a
huge number of problems succinctly.

Before continuing on to the special-case analytic solution to the
simple Bayesian statistical model and inference problem, let us build
some intuition about the power of both programming languages for
model denotation and automated conditioning by considering Table 1.1.
In this table we list a number of X,Y pairs where denoting the joint
distribution of P (X,Y) is realistically only doable in a probabilistic
programming language and the posterior distribution P (X|Y) is of
interest. Take the first, “scene description” and “image.” What would
such a joint distribution look like? Thinking about it as P (X,Y) is
somewhat hard, however, thinking about P (X) as being some kind of
distribution over a so-called scene graph – the actual object geometries,
textures, and poses in a physical environment – is not unimaginably

1.1. Model-based Reasoning 16

hard, particularly if you think about writing a simulator that only needs
to stochastically generate reasonably plausible scene graphs. Noting
that P (X,Y) = P (Y |X)P (X) then all we need is a way to go from
scene graph to observable image and we have a complete description of
a joint distribution. There are many kinds of renderers that do just this
and, although deterministic in general, they are perfectly fine to use
when specifying a joint distribution because they map from some latent
scene description to observable pixel space and, with the addition of
some image-level pixel noise reflecting, for instance, sensor imperfections
or Monte-Carlo ray-tracing artifacts, form a perfectly valid likelihood.

An example of this “vision as inverse graphics” idea (Kulkarni
et al., 2015b) appearing first in Mansinghka et al. (2013) and then
subsequently in Le et al. (2017b,a) took the image Y to be a Captcha
image and the scene description X to include the obscured string. In
all three papers the point was not Captcha-breaking per se but instead
demonstrating both that such a model is denotable in a probabilistic
programming language and that such a model can be solved by general
purpose inference.

Let us momentarily consider alternative ways to solve such a “Captcha
problem.” A non-probabilistic programming approach would require
gathering a very large number of Captchas, hand-labeling them all,
then designing and training a neural network to regress from the image
to a text string (Bursztein et al., 2014). The probabilistic program-
ming approach in contrast merely requires one to write a program that
generates Captchas that are stylistically similar to the Captcha family
one would like to break – a model of Captchas – in a probabilistic
programming language. Conditioning such a model on its observable
output, the Captcha image, will yield a posterior distribution over text
strings. This kind of conditioning is what probabilistic programming
evaluators do.

Figure 1.1 shows a representation of the output of such a conditioning
computation. Each Captcha/bar-plot pair consists of a held-out Captcha
image and a truncated marginal posterior distribution over unique string
interpretations. Drawing your attention to the middle of the bottom row,
notice that the noise on the Captcha makes it more-or-less impossible to
tell if the string is “aG8BPY” or “aG8RPY.” The posterior distribution

1.1. Model-based Reasoning 17
Fig. 4. Posteriors of real Facebook and Wikipedia Captchas. Conditioning on each Captcha, we show an approximate posterior produced by a set of weighted
importance sampling particles {(wm, x(m))}M=100

m=1 .

synthetic data generative model sets an empirical cornerstone
for future theory that quantifies and bounds the impact of
model mismatch on neural network and approximate inference
performance.

ACKNOWLEDGMENTS

Tuan Anh Le is supported by EPSRC DTA and Google
(project code DF6700) studentships. Atılım Güneş Baydin and
Frank Wood are supported under DARPA PPAML through
the U.S. AFRL under Cooperative Agreement FA8750-14-2-
0006, Sub Award number 61160290-111668. Robert Zinkov
is supported under DARPA grant FA8750-14-2-0007.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[2] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best
practices for convolutional neural networks applied to

visual document analysis,” in Proceedings of the Seventh
International Conference on Document Analysis and
Recognition - Volume 2, ser. ICDAR ’03. Washington,
DC: IEEE Computer Society, 2003, pp. 958–962.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in Neural Information Processing Systems,
2012, pp. 1097–1105.

[4] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zis-
serman, “Synthetic data and artificial neural networks
for natural scene text recognition,” arXiv preprint
arXiv:1406.2227, 2014.

[5] ——, “Reading text in the wild with convolutional neural
networks,” International Journal of Computer Vision,
vol. 116, no. 1, pp. 1–20, 2016.

[6] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic Data
for Text Localisation in Natural Images,” in Proceedings

Figure 1.1: Posterior uncertainties after inference in a probabilistic programming
language model of 2017 Facebook Captchas (reproduced from Le et al. (2017a))

P (X|Y) arrived at by conditioning reflects this uncertainty.
By this simple example, whose source code appears in Chapter 5 in

a simplified form, we aim only to liberate your thinking in regards to
what a model is (a joint distribution, potentially over richly structured
objects, produced by adding stochastic choice to normal computer pro-
grams like Captcha generators) and what the output of a conditioning
computation can be like. What probabilistic programming languages
do is to allow denotation of any such model. What this tutorial cov-
ers in great detail is how to develop inference algorithms that allow
computational characterization of the posterior distribution of interest,
increasingly very rapidly as well (see Chapter 7).

1.1.2 Conditioning

Returning to our simple coin-flip statistics example, let us continue and
write out the joint probability density for the distribution on X and Y .
The reason to do this is to paint a picture, by this simple example, of
what the mathematical operations involved in conditioning are like and
why the problem of conditioning is, in general, hard.

Assume that the symbol Y denotes the observed outcome of the
coin flip and that we encode the event “comes up heads” using the
mathematical value of the integer 1 and 0 for the converse. We will
denote the bias of the coin, i.e. the probability it comes up heads, using

1.1. Model-based Reasoning 18

the symbol x and encode it using a real positive number between 0 and
1 inclusive, i.e. x ∈ R ∩ [0, 1]. Then using standard definitions for the
distributions indicated by the joint denotation in Equation (1.1) we can
write

p(x, y) = xy(1− x)1−y Γ(α+ β)
Γ(α)Γ(β)x

α−1(1− x)β−1 (1.3)

and then use rules of algebra to simplify this expression to

p(x, y) = Γ(α+ β)
Γ(α)Γ(β)x

y+α−1(1− x)β−y. (1.4)

Note that we have been extremely pedantic here, using words like
“symbol,” “denotes,” “encodes,” and so forth, to try to get you, the
reader, to think in advance about other ways one might denote such
a model and to realize if you don’t already that there is a fundamen-
tal difference between the symbol or expression used to represent or
denote a meaning and the meaning itself. Where we haven’t been pedan-
tic here is probably the most interesting thing to think about: What
does it mean to use rules of algebra to manipulate Equation (1.3) into
Equation (1.4)? To most reasonably trained mathematicians, apply-
ing expression transforming rules that obey the laws of associativity,
commutativity, and the like are natural and are performed almost un-
consciously. To a reasonably trained programming languages person
these manipulations are meta-programs, i.e. programs that consume and
output programs, that perform semantics-preserving transformations on
expressions. Some probabilistic programming systems operate in exactly
this way (Narayanan et al., 2016). What we mean by semantics preserv-
ing in general is that, after evaluation, expressions in pre-simplified and
post-simplified form have the same meaning; in other words, evaluate
to the same object, usually mathematical, in an underlying formal
language whose meaning is well established and agreed. In probabilistic
programming semantics preserving generally means that the mathe-
matical objects denoted correspond to the same distribution (Staton
et al., 2016). Here, after algebraic manipulation, we can agree that,
when evaluated on inputs x and y, the expressions in Equations (1.3)
and (1.4) would evaluate to the same value and thus are semantically
equivalent alternative denotations. In Chapter 7 we touch on some of the

1.1. Model-based Reasoning 19

challenges in defining the formal semantics of probabilistic programming
languages.

That said, our implicit objective here is not to compute the value of
the joint probability of some variables, but to do conditioning instead,
for instance, to compute p(x|y = “heads′′). Using Bayes rule this is
theoretically easy to do. It is just

p(x|y) = p(x, y)∫
p(x, y)dx =

Γ(α+β)
Γ(α)Γ(β)x

y+α−1(1− x)β−y∫ Γ(α+β)
Γ(α)Γ(β)x

y+α−1(1− x)β−ydx
. (1.5)

In this special case the rules of algebra and semantics preserving
transformations of integrals can be used to algebraically solve for an
analytic form for this posterior distribution.

To start the preceding expression can be simplified to

p(x|y) = xy+α−1(1− x)β−y∫
xy+α−1(1− x)β−ydx. (1.6)

which still leaves a nasty looking integral in the denominator. This is
the complicating crux of Bayesian inference. This integral is in gen-
eral intractable as it involves integrating over the entire space of the
latent variables. Consider the Captcha example: simply summing over
the latent character sequence itself would require an exponential-time
operation.

This special statistics example has a very special property, called con-
jugacy, which means that this integral can be performed by inspection,
by identifying that the integrand is the same as the non-constant part
of the beta distribution and using the fact that the beta distribution
must sum to one∫

xy+α−1(1− x)β−ydx = Γ(α+ y)Γ(β − y + 1)
Γ(α+ β + 1) . (1.7)

Consequently,

p(x|y) = Beta(α+ y, β − y + 1), (1.8)

which is equivalent to

x|y ∼ Beta(α+ y, β − y + 1). (1.9)

1.1. Model-based Reasoning 20

There are several things that can be learned about conditioning
from even this simple example. The result of the conditioning operation
is a distribution parameterized by the observed or given quantity. Un-
fortunately this distribution will in general not have an analytic form
because, for instance, we usually won’t be so lucky that the normalizing
integral has an algebraic analytic solution nor, in the case that it is not,
will it usually be easily calculable.

This does not mean that all is lost. Remember that the ∼ operator
is overloaded to mean two things, density evaluation and exact sampling.
Neither of these are possible in general. However the latter, in particular,
can be approximated, and often consistently even without being able
to do the former. For this reason amongst others our focus will be on
sampling-based characterizations of conditional distributions in general.

1.1.3 Query

Either way, having such a handle on the resulting posterior distribution,
density function or method for drawing samples from it, allows us to
ask questions, “queries” in general. These are best expressed in integral
form as well. For instance, we could ask: what is the probability that
the bias of the coin is greater than 0.7, given that the coin came up
heads? This is mathematically denoted as

p(x > 0.7|y = 1) =
∫

I(x > 0.7)p(x|y = 1)dx (1.10)

where I(·) is an indicator function which evaluates to 1 when its argu-
ment takes value true and 0 otherwise, which in this instance can be
directly calculated using the cumulative distribution function of the
beta distribution.

Fortunately we can still answer queries when we only have the ability
to sample from the posterior distribution owing to the Markov strong
law of large numbers which states under mild assumptions that

lim
L→∞

1
L

L∑
`=1

f(X`)→
∫
f(X)p(X)dX, X` ∼ p(X), (1.11)

for general distributions p and functions f . This technique we will
exploit repeatedly throughout. Note that the distribution on the right

1.2. Probabilistic Programming 21

hand side is approximated by a set of L samples on the left and that
different functions f can be evaluated at the same sample points chosen
to represent p after the samples have been generated.

This more or less completes the small part of the computational
statistics story we will tell, at least insofar as how models are denoted
then algebraically manipulated. We highly recommend that unfamiliar
readers interested in the fundamental concepts of Bayesian analysis and
mathematical evaluation strategies common there to read and study
the “Bayesian Data Analysis” book by Gelman et al. (2013).

The field of statistics long-ago, arguably first, recognized that com-
puterized systemization of the denotation of models and evaluators
for inference was essential and so developed specialized languages for
model writing and query answering, amongst them BUGS (Spiegelhalter
et al., 1995) and, more recently, STAN (Stan Development Team, 2014).
We could start by explaining these and only these languages but this
would do significant injustice to the emerging breadth and depth of the
the field, particularly as it applies to modern approaches to artificial
intelligence, and would limit our ability to explain, in general, what
is going on under the hood in all kinds of languages not just those
descended from Bayesian inference and computational statistics in finite
dimensional models. What is common to all, however, is inference via
conditioning as the objective.

1.2 Probabilistic Programming

The Bayesian approach, in particular the theory and utility of condition-
ing, is remarkably general in its applicability. One view of probabilistic
programming is that it is about automating Bayesian inference. In this
view probabilistic programming concerns the development of syntax
and semantics for languages that denote conditional inference problems
and the development of corresponding evaluators or “solvers” that com-
putationally characterize the denoted conditional distribution. For this
reason probabilistic programming sits at the intersection of the fields
of machine learning, statistics, and programming languages, drawing
on the formal semantics, compilers, and other tools from programming
languages to build efficient inference evaluators for models and applica-

1.2. Probabilistic Programming 22

Statistics

y

p(y|x)p(x)

p(x|p(x|y)

Intuition

Parameters

Program

Output

CS

Parameters

Program

Observations

Probabilistic Programming

Inference

Figure 1.2: Probabilistic programming, an intuitive view.

tions from machine learning using the inference algorithms and theory
from statistics.

Probabilistic programming is about doing statistics using the tools
of computer science. Computer science, both the theoretical and en-
gineering discipline, has largely been about finding ways to efficiently
evaluate programs, given parameter or argument values, to produce
some output. In Figure 1.2 we show the typical computer science pro-
gramming pipeline on the left hand side: write a program, specify the
values of its arguments or situate it in an evaluation environment in
which all free variables can be bound, then evaluate the program to
produce an output. The right hand side illustrates the approach taken
to modeling in statistics: start with the output, the observations or data
Y , then specify a usually abstract generative model p(X,Y), often de-
noted mathematically, and finally use algebra and inference techniques
to characterize the posterior distribution, p(X |Y), of the unknown
quantities in the model given the observed quantities. Probabilistic
programming is about performing Bayesian inference using the tools of
computer science: programming language for model denotation and sta-
tistical inference algorithms for computing the conditional distribution
of program inputs that could have given rise to the observed program
output.

1.2. Probabilistic Programming 23

Thinking back to our earlier example, reasoning about the bias of a
coin is an example of the kind of inference probabilistic programming
systems do. Our data is the outcome, heads or tails, of one coin flip.
Our model, specified in a forward direction, stipulates that a coin and
its bias is generated according to the hand-specified model then the coin
flip outcome is observed and analyzed under this model. One challenge,
the writing of the model, is a major focus of applied statistics research
where “useful” models are painstakingly designed for every new impor-
tant problem. Model learning also shows up in programming languages
taking the name of program induction, machine learning taking the
form of model learning, and deep learning, particularly with respect to
the decoder side of autoencoder architectures. The other challenge is
computational and is what Bayes rule gives us a theoretical framework
in which to calculate: to computationally characterize the posterior dis-
tribution of the latent quantities (e.g. bias) given the observed quantity
(e.g. “heads” or “tails”). In the beta-Bernoulli problem we were able
to analytically derive the form of the posterior distribution, in effect,
allowing us to transform the original inference problem denotation into
a denotation of a program that completely characterizes the inverse
computation.

When performing inference in probabilistic programming systems,
we need to design algorithms that are applicable to any program that
a user could write in some language. In probabilistic programming
the language used to denote the generative model is critical, ranging
from intentionally restrictive modeling languages, such as the one used
in BUGS, to arbitrarily complex computer programming languages
like C, C++, and Clojure. What counts as observable are the outputs
generated from the forward computation. The inference objective is
to computationally characterize the posterior distribution of all of the
random choices made during the forward execution of the program
given that the program produces a particular output.

There are subtleties, but that is a fairly robust intuitive definition
of probabilistic programming. Throughout most of this tutorial we will
assume that the program is fixed and that the primary objective is
inference in the model specified by the program. In the last chapter we
will talk some about connections between probabilistic programming

1.2. Probabilistic Programming 24

and deep learning, in particular through the lens of semi-supervised
learning in the variational autoencoder family where parts of or the
whole generative model itself, i.e. the probabilistic program or “decoder,”
is also learned from data.

Before that, though, let us consider how one would recognize or
distinguish a probabilistic program from a non-probabilistic program.
Quoting Gordon et al. (2014), “probabilistic programs are usual func-
tional or imperative programs with two added constructs: the ability
to draw values at random from distributions, and the ability to condi-
tion values of variables in a program via observations.” We emphasize
conditioning here. The meaning of a probabilistic program is that it
simultaneously denotes a joint and conditional distribution, the latter
by syntactically indicating where conditioning will occur, i.e. which
random variable values will be observed. Almost all languages have
pseudo-random value generators or packages; what they lack in compar-
ison to probabilistic programming languages is syntactic constructs for
conditioning and evaluators that implement conditioning. We will call
languages that include such constructs probabilistic programming lan-
guages. We will call languages that do not but that are used for forward
modeling stochastic simulation languages or, more simply, programming
languages.

There are many libraries for constructing graphical models and
performing inference; this software works by programmatically con-
structing a data structure which represents a model, and then, given
observations, running graphical model inference. What distinguishes
between this kind of approach and probabilistic programming is that
a program is used to construct a model as a data structure, rather
than considering the “model” that arises implicitly from direct evalu-
ation of the program expression itself. In probabilistic programming
systems, either a model data structure is constructed explicitly via a
non-standard interpretation of the probabilistic program itself (if it
can be, see Chapter 3), or it is a general Markov model whose state
is the evolving evaluation environment generated by the probabilistic
programming language evaluator (see Chapter 4). In the former case,
we often perform inference by compiling the model data structure to a
density function (see Chapter 3), whereas in the latter case, we employ

1.2. Probabilistic Programming 25

methods that are fundamentally generative (see Chapters 4 and 6).

1.2.1 Existing Languages

The design of any tutorial on probabilistic programming will have to
include a mix of programming languages and statistical inference mate-
rial along with a smattering of models and ideas germane to machine
learning. In order to discuss modeling and programming languages
one must choose a language to use in illustrating key concepts and for
showing examples. Unfortunately there exist a very large number of lan-
guages from a number of research communities; programming languages:
Hakaru (Narayanan et al., 2016), Augur (Tristan et al., 2014), R2 (Nori
et al., 2014), Figaro (Pfeffer, 2009), IBAL (Pfeffer, 2001)), PSI (Gehr
et al., 2016); machine learning: Church (Goodman et al., 2008), Angli-
can (Wood et al., 2014a) (updated syntax (Wood et al., 2015)), BLOG
(Milch et al., 2005), Turing.jl (Ge et al., 2018), BayesDB (Mansinghka
et al., 2015), Venture (Mansinghka et al., 2014), Probabilistic-C (Paige
and Wood, 2014), webPPL (Goodman and Stuhlmüller, 2014), CPProb
(Casado, 2017), (Koller et al., 1997), (Thrun, 2000); and statistics: Biips
(Todeschini et al., 2014), LibBi (Murray, 2013), Birch (Murray et al.,
2018), STAN (Stan Development Team, 2014), JAGS (Plummer, 2003),
BUGS (Spiegelhalter et al., 1995)1.

In this tutorial we will not attempt to explain each of the languages
and catalogue their numerous similarities and differences. Instead we
will focus on the concepts and implementation strategies that underlie
most, if not all, of these languages. We will highlight one extremely
important distinction, namely, between languages in which all programs
induce models with a finite number of random variables and languages
for which this is not true. The language we choose for the tutorial has
to be a language in which a coherent shift from the former to the latter
is possible. For this and other reasons we chose to write the tutorial
using an abstract language similar in syntax and semantics to Anglican.
Anglican is similar to WebPPL, Church, and Venture and is essentially
a Lisp-like language which, by virtue of its syntactic simplicity, also
makes for efficient and easy meta-programming, an approach many

1sincere apologies to the authors of any languages left off this list

1.3. Example Applications 26

implementors will take. That said the real substance of this tutorial is
entirely language agnostic and the main points should be understood
in this light.

We have left off of the preceding extensive list of languages both
one important class of language – probabilistic logic languages ((Kim-
mig et al., 2011),(Sato and Kameya, 1997) – and sophisticated, useful,
and widely deployed libraries/embedded domain-specific languages for
modeling and inference (Infer.NET (Minka et al., 2010a), Factorie (Mc-
Callum et al., 2009), Edward (Tran et al., 2017), PyMC3 (Salvatier
et al., 2016)). One link between the material presented in this tuto-
rial and these additional languages and libraries is that the inference
methodologies we will discuss apply to advanced forms of probabilistic
logic programs (Alberti et al., 2016; Kimmig and De Raedt, 2017) and,
in general, to the graph representations constructed by such libraries.
In fact the libraries can be thought of as compilation targets for ap-
propriately restricted languages. In the latter case strong arguments
can be made that these are also languages in the sense that there is
an (implicit) grammar, a set of domain-specific values, and a library
of primitives that can be applied to these values. The more essential
distinction is the one we have structured this tutorial around, that being
the difference between static languages in which the denoted model can
be compiled to a finite-node graphical model and dynamic languages in
which no such compilation can be performed.

1.3 Example Applications

Before diving into specifics, let us consider some motivating examples
of what has been done with probabilistic programming languages and
how phrasing things in terms of a model plus conditioning can lead to
elegant solutions to otherwise extremely difficult tasks.

We argue that, besides the obvious benefits that derive from having
an evaluator that implements inference automatically, the main benefit
of probabilistic programming is having additional expressivity, signifi-
cantly more compact and readable than mathematical notation, in the
modeling language. While it is possible to write down the mathematical
formalism for a model of latents X and observables Y for each of the

1.3. Example Applications 27

examples shown in Table 1.1, doing so is usually neither efficient nor
helpful in terms of intuition and clarity. We have already given one
example, Captcha from earlier in this chapter. Let us proceed to more.

Constrained Simulation

Figure 1.3: Posterior samples of procedurally generated, constrained trees (repro-
duced from (Ritchie et al., 2015))

The constrained procedural graphics (Ritchie et al., 2015) is a
visually compelling and elucidating application of probabilistic program-
ming. Consider how one makes a computer graphics forest for a movie
or computer game. One does not hire one thousand designers to make
each create a tree. Instead one hires a procedural graphics programmer
who writes what we call a generative model – a stochastic simulator
that generates a synthetic tree each time it is run. A forest is then
constructed by calling such a program many times and arranging the
trees on a landscape. What if, however, a director enters the design
process and stipulates, for whatever reason, that the tree cannot touch
some other elements in the scene, i.e. in probabilistic programming lingo
we “observe” that the tree cannot touch some elements? Figure 1.3
shows examples of such a situation where the tree on the left must miss
the back wall and grey bars and the tree on the right must miss the
blue and red logo. In these figures you can see, visually, what we will
examine in a high level of detail throughout the tutorial. The random
choices made by the generative procedural graphics model correspond
to branch elongation lengths, how many branches diverge from the
trunk and subsequent branch locations, the angles that the diverged

1.3. Example Applications 28

branches take, the termination condition for branching and elongation,
and so forth. Each tree literally corresponds to one execution path or
setting of the random variables of the generative program. Conditioning
with hard constraints like these transforms the prior distribution on
trees into a posterior distribution in which all posterior trees conform
to the constraint. Valid program variable settings (those present in the
posterior) have to make choices at all intermediate sampling points that
allow all other sampling points to take at least one value that can result
in a tree obeying the statistical regularities specified by the prior and
the specified constraints as well.

Program Induction

How do you automatically write a program that performs an operation
you would like it to? One approach is to use a probabilistic programming
system and inference to invert a generative model that generates normal,
regular, computer program code and conditions on its output, when
run on examples, conforming to the observed specification. This is
the central idea in the work of Perov and Wood (2016) whose use
of probabilistic programming is what distinguishes their work from
the related literature (Gulwani et al., 2017; Hwang et al., 2011; Liang
et al., 2010). Examples such as this, even more than the preceding
visually compelling examples, illustrate the denotational convenience of
a rich and expressive programming language as the generative modeling
language. A program that writes programs is most naturally expressed
as a recursive program with random choices that generates abstract
syntax trees according to some learned prior on the same space. While
models from the natural language processing literature exist that allow
specification and generation of computer source code (e.g. adaptor
grammars (Johnson et al., 2007)), they are at best cumbersome to
denote mathematically.

Recursive Multi-Agent Reasoning

Some of the most interesting uses for probabilistic programming systems
derive from the rich body of work around the Church and WebPPL

1.4. A First Probabilistic Program 29

systems. The latter, in particular, has been used to study the mutually-
recurisive reasoning among multiple agents. A number of examples
on this are detailed in an excellent online tutorial (Goodman and
Stuhlmüller, 2014).

The list goes on and could occupy a substantial part of a book
itself. The critical realization to make is that, of course, any tradi-
tional statistical model can be expressed in a probabilistic programming
framework, but, more importantly, so too can many others and with
significantly greater ease. Models that take advantage of existing source
code packages to do sophisticated nonlinear deterministic computations
are particularly of interest. One exciting example application under
consideration at the time of writing is to instrument the stochastic sim-
ulators that simulate the standard model and the detectors employed
by the large hadron collider (Baydin et al., 2018). By “observing” the
detector outputs, inference in the generative model specified by the
simulation pipeline may prove to be able to produce the highest fidelity
event reconstruction and science discoveries.

This last example highlights one of the principle promises of proba-
bilistic programming. There exist a large number of software simulation
modeling efforts to simulate, stochastically and deterministically, engi-
neering and science phenomena of interest. Unlike in machine learning
where often the true generative model is not well understood, in en-
gineering situations (like building, engine, or other system modeling)
the forward model is sometimes in fact incredibly well understood and
already written. Probabilistic programming techniques and evaluators
that work within the framework of existing languages should prove to
be very valuable in disciplines where significant effort has been put into
modeling complex engineering or science phenomena of interest and
the power of general purpose inverse reasoning has not yet been made
available.

1.4 A First Probabilistic Program

Just before we dig in deeply, it is worth considering at least one simple
probabilistic program to informally introduce a bit of syntax and relate

1.4. A First Probabilistic Program 30

a model denotation in a probabilistic programming language to the
underlying mathematical denotation and inference objective. There will
be source code examples provided throughout, though not always with
accompanying mathematical denotation.

Recall the simple beta-Bernoulli model from Section 1.1. This is
one in which the probabilistic program denotation is actually longer
than the mathematical denotation. But that is largely unique to such
trivially simple models. Here is a probabilistic program that represents
the beta-Bernoulli model.
(let [prior (beta a b)

x (sample prior)
likelihood (bernoulli x)
y 1]

(observe likelihood y)
x))

Program 1.1: The beta-Bernoulli model as a probabilistic program

This program is written in the Lisp dialect we will use throughout,
and which we will define in glorious detail in the next chapter. Evaluating
this program performs the same inference as described mathematically
before, specifically to characterize the distribution on the return value
x that is conditioned on the observed value y. The details of what this
program means and how this is done form the majority of the remainder
of this tutorial.

2
A Probabilistic Programming Language Without

Recursion

In this and the next two chapters of this tutorial we will present the key
ideas of probabilistic programming using a carefully designed first-order
probabilistic programming language (FOPPL). The FOPPL includes
most common features of programming languages, such as conditional
statements (e.g. if) and primitive operations (e.g. +,-, etc.), and user-
defined functions. The restrictions that we impose are that functions
must be first order, which is to say that functions cannot accept other
functions as arguments, and that they cannot be recursive.

These two restrictions result in a language where models describe
distributions over a finite number of random variables. In terms of
expressivity, this places the FOPPL on even footing with many existing
languages and libraries for automating inference in graphical models with
finite graphs. As we will see in Chapter 3, we can compile any program
in the FOPPL to a data structure that represents the corresponding
graphical model. This turns out to be a very useful property when
reasoning about inference, since it allows us to make use of existing
theories and algorithms for inference in graphical models.

A corollary to this characteristic is that the computation graph of
any FOPPL program can be completely determined in advance. This

31

2.1. Syntax 32

v ::= variable
c ::= constant value or primitive operation
f ::= procedure
e ::= c | v | (let [v e1] e2) | (if e1 e2 e3)

| (f e1 . . . en) | (c e1 . . . en)
| (sample e) | (observe e1 e2)

q ::= e | (defn f [v1 . . . vn] e) q

Language 2.1: First-order probabilistic programming language (FOPPL)

suggests a place for FOPPL programs in the spectrum between static
and dynamic computation graph programs. While in a FOPPL program
conditional branching might dictate that not all of the nodes of its
computation graph are active in the sense of being on the control-
flow path, it is the case that all FOPPL programs can be unrolled to
computation graphs where all possible control-flow paths are explicitly
and completely enumerated at compile time. FOPPL programs have
static computation graphs.

Although we have endeavored to make this tutorial as self-contained
as possible, readers unfamiliar with graphical models or wishing to
brush up on them are encouraged to refer to the textbooks by Bishop
(2006), Murphy (2012), or Koller and Friedman (2009), all of which
contain a great deal of material on graphical models and associated
inference algorithms.

2.1 Syntax

The FOPPL is a Lisp variant that is based on Clojure (Hickey, 2008).
Lisp variants are all substantially similar and are often referred to as
dialects. The syntax of the FOPPL is specified by the grammar in
Language 2.1. A grammar like this formulates a set of production rules,
which are recursive, from which all valid programs must be constructed.

We define the FOPPL in terms of two sets of production rules: one
for expressions e and another for programs q. Each set of rules is shown
on the right hand side of ::= separated by a |. We will here provide a
very brief self-contained explanation of each of the production rules.

2.1. Syntax 33

For those who wish to read about programming languages essentials in
further detail, we recommend the books by Abelson et al. (1996) and
Friedman and Wand (2008).

The rules for q state that a program can either be a single expression
e, or a function declaration (defn f . . .) followed by any valid program
q. Because the second rule is recursive, these two rules together state
that a program is a single expression e that can optionally be preceded
by one or more function declarations.

The rules for expressions e are similarly defined recursively. For ex-
ample, in the production rule (if e1 e2 e3), each of the sub-expressions
e1, e2, and e3 can be expanded by choosing again from the matching
rules on the left hand side. The FOPPL defines eight expression types.
The first six are “standard” in the sense that they are commonly found
in non-probabilistic Lisp dialects:

1. A constant c can be a value of a primitive data type such as
a number, a string, or a boolean, a built-in primitive function
such as +, or a value of any other data type that can be con-
structed using primitive procedures, such as lists, vectors, maps,
and distributions, which we will briefly discuss below.

2. A variable v is a symbol that references the value of another
expression in the program.

3. A let form (let [v e1] e2) binds the value of the expression e1
to the variable v, which can then be referenced in the expression
e2, which is often referred to as the body of the let expression.

4. An if form (if e1 e2 e3) takes the value of e2 when the value of
e1 is logically true and the value of e3 when e1 is logically false.

5. A function application (f e1 . . . en) calls the user-defined function
f , which we also refer to as a procedure, with arguments e1 through
en. Here the notation e1 . . . en refers to a variable-length sequence
of arguments, which includes the case (f) for a procedure call
with no arguments.

6. A primitive procedure applications (c e1 . . . en) calls a built-in
function c, such as +.

2.1. Syntax 34

The remaining two forms are what makes the FOPPL a probabilistic
programming language:

7. A sample form (sample e) represents an unobserved random vari-
able. It accepts a single expression e, which must evaluate to a
distribution object, and returns a value that is a sample from this
distribution. Distributions are constructed using primitives pro-
vided by the FOPPL. For example, (normal 0.0 1.0) evaluates
to a standard normal distribution.

8. An observe form (observe e1 e2) represents an observed random
variable. It accepts an argument e1, which must evaluate to a
distribution, and conditions on the next argument e2, which is
the value of the random variable.

Some things to note about this language are that it is simple, i.e. the
grammar only has a small number of special forms. It also has no
input/output functionality which means that all data must be inlined in
the form of an expression. However, despite this relative simplicity, we
will see that we can express any graphical model as a FOPPL program.
At the same time, the relatively small number of expression forms makes
it much easier to reason about implementations of compilation and
evaluation strategies.

Relative to other Lisp dialects, the arguably most critical charac-
teristic of the FOPPL is that, provided that all primitives halt on all
possible inputs, potentially non-halting computations are disallowed; in
fact, there is a finite upper bound on the number of computation steps
and this upper bound can be determined in compilation time. This
design choice has several consequences. The first is that all data needs to
be inlined so that the number of data points is known at compile time.
A second consequence is that FOPPL grammar precludes higher-order
functions, which is to say that user-defined functions cannot accept
other functions as arguments. The reason for this is that a reference
to user-defined function f is in itself not a valid expression type. Since
arguments to a function call must be expressions, this means that we
cannot pass a function f ′ as an argument to another function f .

Finally, the FOPPL does not allow recursive function calls, although

2.1. Syntax 35

the syntax does not forbid them. This restriction can be enforced via
the scoping rules in the language. In a program q of the form

(defn f1 . . .) (defn f2 . . .) e

we can call f1 inside of f2, but not vice versa, since f2 is defined after
f1. Similarly, we impose the restriction that we cannot call f1 inside
f1, which we can intuitively think of as f1 not having been defined yet.
Enforcing this restriction can be done using a pre-processing step.

A second distinction between the FOPPL relative to other Lisp is
that we will make use of vector and map data structures, analogous to
the ones provided by Clojure:

- Vectors (vector e1 . . . en) are similar to lists. A vector can be
represented with the literal [e1 . . . en]. This is often useful when
representing data. For example, we can use [1 2] to represent a
pair, whereas the expression (1 2) would throw an error, since
the constant 1 is not a primitive function.

- Hash maps (hash-map e1 e′1 . . . en e′n) are constructed from a
sequence of key-value pairs ei e′i. A hash-map can be represented
with the literal{e1 e′1 . . . en e′n} .

Note that we have not explicitly enumerated primitive functions in
the FOPPL. We will implicitly assume existence of arithmetic primi-
tives like +, -, *, and /, as well as distribution primitives like normal
and discrete. In addition we will assume the following functions for
interacting with data structures

• (first e) retrieves the first element of a list or vector e.

• (last e) retrieves the last element of a list or vector e.

• (append e1 e2) appends e2 to the end of a list or vector e1.1

• (get e1 e2) retrieves an element at index e2 from a list or vector
e1, or the element at key e2 from a hash map e1.

1Readers familiar with Lisp dialects will notice that append differs somewhat
from the semantics of primitives like cons, which prepends to a list, or the Clojure
primitive conj which prepends to a list and appends to a vector.

2.1. Syntax 36

(defn observe-data [slope intercept x y]
(let [fx (+ (* slope x) intercept)]

(observe (normal fx 1.0) y)))

(let [slope (sample (normal 0.0 10.0))]
(let [intercept (sample (normal 0.0 10.0))]

(let [y1 (observe-data slope intercept 1.0 2.1)]
(let [y2 (observe-data slope intercept 2.0 3.9)]
(let [y3 (observe-data slope intercept 3.0 5.3)]
(let [y4 (observe-data slope intercept 4.0 7.7)]
(let [y5 (observe-data slope intercept 5.0 10.2)]

[slope intercept]))))))).

Program 2.2: Bayesian linear regression in the FOPPL.

• (put e1 e2 e3) replaces the element at index/key e2 with the value
e3 in a vector or hash-map e1.

• (remove e1 e2) removes the element at index/key e2 with the
value e2 in a vector or hash-map e1.

Note that FOPPL primitives are pure functions. In other words,
the append, put, and remove primitives do not modify e1 in place, but
instead return a modified copy of e1. Efficient implementations of such
functionality may be advantageously achieved via pure functional data
structures (Okasaki, 1999).

Finally we note that we have not specified any type system or
specified exactly what values are allowable in the language. For example,
(sample e) will fail if at runtime e does not evaluate to a distribution-
typed value.

Now that we have defined our syntax, let us illustrate what a
program in the FOPPL looks like. Program 2.2 shows a simple univariate
linear regression model. The program defines a distribution on lines
expressed in terms of their slopes and intercepts by first defining a
prior distribution on slope and intercept and then conditioning it using
five observed data pairs. The procedure observe-data conditions the
generative model given a pair (x,y), by observing the value y from a
normal centered around the value (+ (* slope x) intercept). Using a

2.2. Syntactic Sugar 37

procedure lets us avoid rewriting observation code for each observation
pair. The procedure returns the observed value, which is ignored in our
case. The program defines a prior on slope and intercept using the
primitive procedure normal for creating an object for normal distribution.
After conditioning this prior with data points, the program return a pair
[slope intercept], which is a sample from the posterior distribution
conditioned on the 5 observed values.

2.2 Syntactic Sugar

The fact that the FOPPL only provides a small number of expression
types is a big advantage when building a probabilistic programming
system. We will see this in Chapter 3, where we will define a translation
from any FOPPL program to a Bayesian network using only 8 rules
(one for each expression type). At the same time, for the purposes of
writing probabilistic programs, having a small number of expression
types is not always convenient. For this reason we will provide a number
of alternate expression forms, which are referred to as syntactic sugar,
to aid readability and ease of use.

We have already seen two very simple forms of syntactic sugar:
[. . .] is a sugared form of (vector . . .) and {. . .} is a sugared form
for (hash-map . . .). In general, each sugared expression form can be
desugared, which is to say that it can be reduced to an expression in the
grammar in Language 2.1. This desugaring is done as a preprocessing
step, often implemented as a macro rewrite rule that expands each
sugared expression into the equivalent desugared form.

2.2.1 Let forms

The base let form (let [v e1] e2) binds a single variable v in the
expression e2. Very often, we will want to define multiple variables,
which leads to nested let expressions like the ones in Program 2.2.
Another distracting piece of syntax in this program is that we define
dummy variables y1 to y5 which are never used. The reason for this is
that we are not interested in the values returned by calls to observe-data;
we are using this function in order to observe values, which is a side-effect

2.2. Syntactic Sugar 38

of the procedure call.
To accommodate both these use cases in let forms, we will make use

of the following generalized let form
(let [v1 e1

...
vn en]

en+1 . . . em−1 em).

This allows us to simplify the nested let forms in Program 2.2 to
(let [slope (sample (normal 0.0 10.0))

intercept (sample (normal 0.0 10.0))]
(observe-data slope intercept 1.0 2.1)
(observe-data slope intercept 2.0 3.9)
(observe-data slope intercept 3.0 5.3)
(observe-data slope intercept 4.0 7.7)
(observe-data slope intercept 5.0 10.2)
[slope intercept])

This form of let is desugared to the following expression in the FOPPL
(let [v1 e1]

...
(let [vn en]

(let [_ en+1]
...
(let [_ em−1]
em)· · ·))).

Here the underscore _ is a second form of syntactic sugar, that will be
expanded to a fresh (i.e. previously unused) variable. For instance
(let [_ (observe (normal 0 1) 2.0)] . . .)

will be expanded by generating some fresh variable symbol, say x284xu,
(let [x284xu (observe (normal 0 1) 2.0)] . . .)

We will assume each instance of _ is a guaranteed-to-be-unique or fresh
symbol that is generated by some gensym primitive in the implementing
language of the evaluator. We will use the concept of a fresh variable
extensively throughout this tutorial, with the understanding that fresh
variables are unique symbols in all cases.

2.2. Syntactic Sugar 39

2.2.2 For loops

A second syntactic inconvenience in Program 2.2 is that we have to
repeat the expression (observe-data . . .) once for each data point. Just
about any language provides looping constructs for this purpose. In
the FOPPL we will make use of two such constructs. The first is the
foreach form, which has the following syntax
(foreach c

[v1 e1 . . . vn en]
e′1 . . . e′k)

This form desugars into a vector containing c let forms
(vector

(let [v1 (get e1 0)
...
vn (get en 0)]

e′1 . . . e′k)
...
(let [v1 (get e1 (- c 1))

...
vn (get en (- c 1))]

e′1 . . . e′k))

Note that this syntax looks very similar to that of the let form. However,
whereas let binds each variable to a single value, the foreach form
associates each variable vi with a sequence ei and then maps over the
values in this sequence for a total of c steps, returning a vector of results.
If the length of any of the bound sequences is less than c, then let form
will result in a runtime error.

With the foreach form, we can rewrite Program 2.2 without having
to make use of the helper function observe-data

(let [y-values [2.1 3.9 5.3 7.7 10.2]
slope (sample (normal 0.0 10.0))
intercept (sample (normal 0.0 10.0))]

(foreach 5
[x (range 1 6)

y y-values]
(let [fx (+ (* slope x) intercept)]

2.2. Syntactic Sugar 40

(observe (normal fx 1.0) y)))
[slope intercept])

There is a very specific reason why we defined the foreach syntax
using a constant for the number of loop iterations (foreach c [. . .] . . .).
Suppose we were to define the syntax using an arbitrary expression
(foreach e [. . .] . . .). Then we could write programs such as
(let [m (sample (poisson 10.0))]

(foreach m []
(sample (normal 0 1))))

This defines a program in which there is no upper bound on the number
of times that the expression (sample (normal 0 1)) will be evaluated.
By requiring c to be a constant, we can guarantee that the number of
iterations is known at compile time.

Note that there are less obtrusive mechanisms for achieving the
functionality of foreach, which is fundamentally a language feature that
maps a function, here the body, over a sequence of arguments, here
the let-like bindings. Such functionality is much easier to express and
implement using higher-order language features like those discussed in
Chapter 5.

2.2.3 Loop forms

The second looping construct that we will use is the loop form, which
has the following syntax.
(loop c e f e1 . . . en)

Once again, c must be a non-negative integer constant and f a procedure,
primitive or user-defined. This notation can be used to write most kinds
of for loops. Desugaring this syntax rolls out a nested set of lets and
function calls in the following precise way
(let [a1 e1

a2 e2
...

an en]
(let [v0 (f 0 e a1 . . . an)]

(let [v1 (f 1 v0 a1 . . . an)]

2.2. Syntactic Sugar 41

(defn regr-step [n r2 xs ys slope intercept]
(let [x (get xn n)

y (get ys n)
fx (+ (* slope x) intercept)
r (- y fx)]

(observe (normal fx 1.0) y)
(+ r2 (* r r))))

(let [xs [1.0 2.0 3.0 4.0 5.0]
ys [2.1 3.9 5.3 7.7 10.2]
slope (sample (normal 0.0 10.0))
bias (sample (normal 0.0 10.0))
r2 (loop 5 0.0 regr-step xs ys slope bias)]

[slope bias r2])

Program 2.3: The Bayesian linear regression model, written using the loop form.

(let [v2 (f 2 v1 a1 . . . an)]
...

(let [vc−1 (f (- c 1) vc−2 a1 . . . an)]
vc−1) · · ·)))

where v0, . . . , vc−1 and a0, . . . , an are fresh variables. Note that the loop
sugar computes an iteration over a fixed set of indices.

To illustrate how the loop form differs from the foreach form, we
show a new variant of the linear regression example in Program 2.3. In
this version of the program, we not only observe a sequence of values yn
according to a normal centered at f(xn), but we also compute the sum
of the squared residuals r2 =

∑5
n=1(yn − f(xn))2. To do this, we define

a function regr-step, which accepts an argument n, the index of the
loop iteration. It also accepts a second argument r2, which represents
the sum of squares for the preceding datapoints. Finally it accepts the
arguments xs, ys, slope, and intercept, which we have also used in
previous versions of the program.

At each loop iteration, the function regr-step computes the residual
r = yn − f(xn) and returns the value (+ r2 (* r r)), which becomes
the new value for r2 at the next iteration. The value of the entire loop
form is the value of the final call to regr-step, which is the sum of

2.3. Examples 42

squared residuals.
In summary, the difference between loop and foreach is that loop

can be used to accumulate a result over the course of the iterations. This
is useful when you want to compute some form of sufficient statistics,
filter a list of values, or really perform any sort of computation that
iteratively builds up a data structure. The foreach form provides a much
more specific loop type that evaluates a single expression repeatedly
with different values for its variables. From a statistical point of view,
we can thing of loop as defining a sequence of dependent variables,
whereas foreach creates conditionally independent variables.

2.3 Examples

Now that we have defined the fundamental expression forms in the
FOPPL, along with syntactic sugar for variable bindings and loops, let
us look at how we would use the FOPPL to define some models that
are commonly used in statistics and machine learning.

2.3.1 Gaussian mixture model

We will begin with a three-component Gaussian mixture model (McLach-
lan and Peel, 2004). A Gaussian mixture model is a density estimation
model often used for clustering, in which each data point yn is assigned
to a latent class zn. We will here consider the following generative model

σk ∼ Gamma(1.0, 1.0), for k = 1, 2, 3, (2.1)
µk ∼ Normal(0.0, 10.0), for k = 1, 2, 3, (2.2)
π ∼ Dirichlet(1.0, 1.0, 1.0), (2.3)
zn ∼ Discrete(π), for n = 1, . . . , 7, (2.4)

yn|zn = k ∼ Normal(µk, σk). (2.5)

Program 2.4 shows a translation of this generative model to the
FOPPL. In this model we first sample the mean mu and standard
deviation sigma for 3 mixture components. For each observation y we
then sample a class assignment z, after which we observe according to
the likelihood of the sampled assignment. The return value from this

2.3. Examples 43

(let [data [1.1 2.1 2.0 1.9 0.0 -0.1 -0 .05]
likes (foreach 3 []

(let [mu (sample (normal 0.0 10.0))
sigma (sample (gamma 1.0 1.0))]

(normal mu sigma)))
pi (sample (dirichlet [1.0 1.0 1.0]))
z-prior (discrete pi)]

(foreach 7 [y data]
(let [z (sample z-prior)]

(observe (get likes z) y)
z)))

Program 2.4: FOPPL - Gaussian mixture model with three components

program is the sequence of latent class assignments, which can be used
to ask questions like, “Are these two datapoints similar?”, etc.

2.3.2 Hidden Markov model

As a second example, let us consider Program 2.5 which denotes a
hidden Markov model (HMM) (Rabiner, 1989) with known initial state,
transition, and observation distributions governing 16 sequential obser-
vations.

In this program we begin by defining a vector of data points data,
a vector of transition distributions trans-dists and a vector of state
likelihoods likes. We then loop over the data using a function hmm-step,
which returns a sequence of states.

At each loop iteration, the function hmm-step does three things. It
first samples a new state z from the transition distribution associated
with the preceding state. It then observes data point at time t according
to the likelihood component of the current state. Finally, it appends
the state z to the sequence states. The vector of accumulated latent
states is the return value of the program and thus the object whose
joint posterior distribution is of interest.

2.3. Examples 44

(defn hmm-step [t states data trans-dists likes]
(let [z (sample (get trans-dists

(last states)))]
(observe (get likes z)

(get data t))
(append states z)))

(let [data [0.9 0.8 0.7 0.0 -0 .025 -5.0 -2.0 -0.1
0.0 0.13 0.45 6 0.2 0.3 -1 -1]

trans-dists [(discrete [0.10 0.50 0.40])
(discrete [0.20 0.20 0.60])
(discrete [0.15 0.15 0.70])]

likes [(normal -1.0 1.0)
(normal 1.0 1.0)
(normal 0.0 1.0)]

states [(sample (discrete [0.33 0.33 0.34]))]]
(loop 16 states hmm-step

data trans-dists likes))

Program 2.5: FOPPL - Hidden Markov model

2.3.3 A Bayesian Neural Network

Traditional neural networks are fixed-dimension computation graphs
which means that they too can be expressed in the FOPPL. In the follow-
ing we demonstrate this with an example taken from the documentation
for Edward (Tran et al., 2016), a probabilistic programming library
based on fixed computation graph. The example shows a Bayesian
approach to learning the parameters of a three-layer neural network
with input of dimension one, two hidden layer of dimension ten, an
independent and identically Gaussian distributed output of dimension
one, and tanh activations at each layer. The program inlines five data
points and represents the posterior distribution over the parameters of
the neural network. We have assumed, in this code, the existence of
matrix primitive functions, e.g. mat-mul, whose meaning is clear from
context (matrix multiplication), sensible matrix-dimension-sensitive
pointwise mat-add and mat-tanh functionality, vector of vectors matrix
storage, etc.

2.3. Examples 45

(let [weight-prior (normal 0 1)
W_0 (foreach 10 []

(foreach 1 [] (sample weight-prior)))
W_1 (foreach 10 []

(foreach 10 [] (sample weight-prior)))
W_2 (foreach 1 []

(foreach 10 [] (sample weight-prior)))

b_0 (foreach 10 []
(foreach 1 [] (sample weight-prior)))

b_1 (foreach 10 []
(foreach 1 [] (sample weight-prior)))

b_2 (foreach 1 []
(foreach 1 [] (sample weight-prior)))

x (mat-transpose [[1] [2] [3] [4] [5]])
y [[1] [4] [9] [16] [25]]
h_0 (mat-tanh (mat-add (mat-mul W_0 x)

(mat-repmat b_0 1 5)))
h_1 (mat-tanh (mat-add (mat-mul W_1 h_0)

(mat-repmat b_1 1 5)))
mu (mat-transpose

(mat-tanh
(mat-add (mat-mul W_2 h_1)

(mat-repmat b_2 1 5))))]
(foreach 5 [y_r y

mu_r mu]
(foreach 1 [y_rc y_r

mu_rc mu_r]
(observe (normal mu_rc 1) y_rc)))

[W_0 b_0 W_1 b_1])

Program 2.6: FOPPL - A Bayesian Neural Network

2.3. Examples 46

This example provides an opportunity to reinforce the close rela-
tionship between optimization and inference. The task of estimating
neural-network parameters is typically framed as an optimization in
which the free parameters of the network are adjusted, usually via
gradient descent, so as to minimize a loss function. This neural-network
example can be seen as doing parameter learning too, except using
the tools of inference to discover the posterior distribution over model
parameters. In general, all parameter estimation tasks can be framed
as inference simply by placing a prior over the parameters of interest as
we do here.

It can also be noted that, in this setting, any of the activations
of the neural network trivially could be made stochastic, yielding a
stochastic computation graph (Schulman et al., 2015), rather than a
purely deterministic neural network.

Finally, the point of this example is not to suggest that the FOPPL
is the language that should be used for denoting neural network learn-
ing and inference problems, it is instead to show that the FOPPL is
sufficiently expressive to neural networks based on fixed computation
graphs. Even though we have shown only one example of a multilayer
perceptron, it is clear that convolutional neural networks, recurrent
neural networks of fixed length, and the like, can all be denoted in the
FOPPL.

2.3.4 Translating BUGS models

The FOPPL language as specified is sufficiently expressive to, for in-
stance, compile BUGS programs to the FOPPL. Program 2.7 shows
one of the examples included with the BUGS system (OpenBugs, 2009).
This model is a conjugate gamma-Poisson hierarchical model, which is
to say that it has the following generative model:

a ∼ Exponential(1), (2.6)
b ∼ Gamma(0.1, 1), (2.7)
θi ∼ Gamma(a, b), for i = 1, . . . , 10, (2.8)
yi ∼ Poisson(θiti) for i = 1, . . . , 10. (2.9)

Program 2.7 shows this model in the BUGS language. Program 2.8

2.3. Examples 47

data
list(t = c(94.3 , 15.7 , 62.9 , 126, 5.24 ,

31.4 , 1.05 , 1.05 , 2.1, 10.5) ,
y = c(5, 1, 5, 14, 3, 19, 1, 1, 4, 22),
N = 10)

inits
list(a = 1, b = 1)
model
{

for (i in 1 : N) {
theta[i] ~ dgamma (a, b)
l[i] <- theta[i] * t[i]
y[i] ~ dpois(l[i])

}
a ~ dexp (1)
b ~ dgamma (0.1 , 1.0)

}

Program 2.7: The Pumps example model from BUGS (OpenBugs, 2009).

show a translation to the FOPPL that was returned by an automated
BUGS-to-FOPPL compiler. Note the similarities between these lan-
guages despite the substantial syntactic differences. In particular, both
require that the number of loop iterations N = 10 is fixed and finite. In
BUGS the variables whose values are known appear in a separate data
block. The symbol ∼ is used to define random variables, which can be
either latent or observed, depending on whether a value for the random
variable is present. In our FOPPL the distinction between observed
and latent random variables is made explicit through the syntactic
difference between sample and observe. A second difference is that a
BUGS program can in principle be used to compute a marginal on
any variable in the program, whereas a FOPPL program specifies a
marginal of the full posterior through its return value. As an example,
in this particular translation, we treat θi as a nuisance variable, which
is not returned by the program, although we could have used the loop
construct to accumulate a sequence of θi values.

These minor differences aside, the BUGS language and the FOPPL
essentially define equivalent families of probabilistic programs. An ad-

2.4. A Simple Purely Deterministic Language 48

(defn data []
[[94.3 15.7 62.9 126 5.24 31.4 1.05 1.05 2.1 10.5]

[5 1 5 14 3 19 1 1 4 22]
[10]])

(defn t [i] (get (get (data) 0) i))
(defn y [i] (get (get (data) 1) i))

(defn loop-iter [i _ alpha beta]
(let [theta (sample (gamma a b))

l (* theta (t i))]
(observe (poisson l) (y i))))

(let [a (sample (exponential 1))
b (sample (gamma 0.1 1.0))]

(loop 10 nil loop-iter a b)
[a b])

Program 2.8: FOPPL - the Pumps example model from BUGS

vantage of writing this text using the FOPPL rather than an existing
language like BUGS is that FOPPL program are comparatively easy to
reason about and manipulate, since there are only 8 expression forms
in the language. In the next chapter we will exploit this in order to
mathematically define a translation from FOPPL programs to Bayesian
networks and factor graphs, keeping in mind that all the basic concepts
that we will employ also apply to other probabilistic programming
systems, such as BUGS.

2.4 A Simple Purely Deterministic Language

There is no optimal place to put this section so it appears here, although
it is very important for understanding what is written in the remainder
of this tutorial.

In subsequent chapters it will become apparent that the FOPPL
can be understood in two different ways – one way as being a language
for specifying graphical-model data-structures on which traditional in-
ference algorithms may be run, the other as a language that requires a

2.4. A Simple Purely Deterministic Language 49

non-standard interpretation in some implementing language to charac-
terize the denoted posterior distribution.

In the case of graphical-model construction it will be necessary to
have a language for purely deterministic expressions. To foreshadow, this
language will be used to express link functions in the graphical model.
More precisely, and contrasting to the usual definition of link function
from statistics, the pure deterministic language will encode functions
that take values of parent random variables and produce distribution
objects for children. These link functions cannot have random variables
inside them; such a variable would be another node in the graphical
model instead.

Moreover we can further simplify this link function language by
removing user defined functions, effectively requiring their function
bodies, if used, to be inlined. This yields a cumbersome language in
which to manually program but an excellent language to target and
evaluate because of its simplicity.

2.4.1 Deterministic Expressions

We will call expressions in the FOPPL that do not involve user-
defined procedure calls and involve only deterministic computations,
e.g. (+ (/ 2.0 6.0) 17) “0th-order expressions”. Such expressions will
play a prominent role when we consider the translation of our prob-
abilistic programs to graphical models in the next chapter. In order
to identify and work with these deterministic expressions we define a
language with the following extremely simple grammar:

c ::= constant value or primitive operation
v ::= variable
E ::= c | v | (if E1 E2 E3) | (c E1 . . . En)

Language 2.2: Sub-language for purely deterministic computations

Note that neither sample nor observe statements appear in the syntax,
and that procedure calls are allowed only for primitive operations, not
for defined procedures. Having these constraints ensures that expressions
E cannot depend on any probabilistic choices or conditioning.

2.4. A Simple Purely Deterministic Language 50

The examples provided in this chapter should convince you that
many common models and inference problems from statistics and ma-
chine learning can be denoted as FOPPL programs. What remains is to
translate FOPPL programs into other mathematical or programming
language formalisms whose semantics are well established so that we can
define, at least operationally, the semantics of FOPPL programs, and,
in so doing, establish in your mind a clear idea about how probabilistic
programming languages that are formally equivalent in expressivity to
the FOPPL can be implemented.

3
Graph-Based Inference

3.1 Compilation to a Graphical Model

Programs written in the FOPPL specify probabilistic models over finitely
many random variables. In this section, we will make this aspect clear
by presenting the translation of these programs into finite graphical
models. In the subsequent sections, we will show how this translation
can be exploited to adapt inference algorithms for graphical models to
probabilistic programs.

We specify translation using the following ternary relation ⇓, similar
to the so called big-step evaluation relation from the programming
language community.

ρ, φ, e ⇓ G,E (3.1)

In this relation, ρ is a mapping from procedure names to their definitions,
φ is a logical predicate for the flow control context, and e is an expression
we intend to compile. This expression is translated to a graphical model
G and an expression E in the deterministic sub-language described in
Section 2.4.1. The expression E is deterministic in the sense that it
does not involve sample nor observe. It describes the return value of
the original expression e in terms of random variables in G. Vertices in

51

3.1. Compilation to a Graphical Model 52

G represent random variables, and arcs dependencies among them. For
each random variable in G, we will define a probability density or mass
in the graph. For observed random variables, we additionally define the
observed value, as well as a logical predicate that indicates whether
the observe expression is on the control flow path, conditioned on the
values of the latent variables.

Definition of a Graphical Model

We define a graphical model G as a tuple (V,A,P,Y) containing (i)
a set of vertices V that represent random variables; (ii) a set of arcs
A ⊆ V ×V (i.e. directed edges) that represent conditional dependencies
between random variables; (iii) a map P from vertices to deterministic
expressions that specify the probability density or mass function for
each random variable; (iv) a partial map Y that for each observed
random variable contains a pair (E,Φ) consisting of a deterministic
expression E for the observed value, and a predicate expression Φ that
evaluates to true when this observation is on the control flow path.

Before presenting a set of translation rules that can be used to
compile any FOPPL program to a graphical model, we will illustrate
the intended translation using a simple example:

(let [z (sample (bernoulli 0.5))
mu (if (= z 0) -1.0 1.0)
d (normal mu 1.0)
y 0.5]

(observe d y)
z)

Program 3.1: A simple example FOPPL program.

This program describes a two-component Gaussian mixture with
a single observation. The program first samples z from a Bernoulli
distribution, based on which it sets a likelihood parameter µ to −1.0
or 1.0, and observes a value y = 0.5 from a normal distribution with
mean µ. This program defines a joint distribution p(y = 0.5, z). The
inference problem is then to characterize the posterior distribution
p(z | y). Figure 3.1 shows the graphical model and pure deterministic
link functions that correspond to Program 3.1.

3.1. Compilation to a Graphical Model 53

y

z

(pbern z (if (= z 0) -1.0 1.0) 1.0)

(pnorm y 0.5)

Figure 3.1: The graphical model corresponding to Program 3.1

In the evaluation relation ρ, φ, e ⇓ G, E, the source code of the
program is represented as a single expression e. The variable ρ is an
empty map, since there are no procedure definitions. At the top level, the
flow control predicate φ is true. The graphical model G = (V,A,P,Y)
and the result expression E that this program translates to are

V = {z, y},
A = {(z, y)},
P = [z 7→ (pbern z 0.5),

y 7→ (pnorm y (if (= z 0) -1.0 1.0) 1.0)],
Y = [y 7→ 0.5]
E = z

The vertex set V of the net G contains two variables, whereas the arc
set A contains a single pair (z, y) to mark the conditional dependence
relationship between these two variables. In the map P , the probability
mass for z is defined as the target language expression (pbern z 0.5).
Here pbern refers to a function in the target languages that implements
probability mass function for the Bernoulli distribution. Similarly, the
density for y is defined using pnorm, which implements the probability
density function for the normal distribution. Note that the expression
for the program variable mu has been substituted into the density for
y. Finally, the map Y contains a single entry that holds the observed
value for y.

3.1. Compilation to a Graphical Model 54

Assigning Symbols to Variable Nodes

In the above example we used the mathematical symbol z to refer to the
random variable associated with the expression (sample (bernoulli 0.5))
and the symbol y to refer to the observed variable with expression
(observe d y). In general there will be one node in the network for
each sample and observe expression that is evaluated in a program. In
the above example, there also happens to be a program variable z that
holds the value of the sample expression for node z, and a program
variable y that holds the observed value for node y, but this is of course
not necessarily always the case. A particularly common example of this
arises in programs that have procedures. Here the same sample and
observe expressions in the procedure body can be evaluated multiple
times. Suppose for example that we were to modify our program as
follows:

(defn norm-gamma
[m l a b]
(let [tau (sample (gamma a b))

sigma (/ 1.0 (sqrt tau))
mu (sample (normal m (/ sigma (sqrt l)))]

(normal mu sigma))))

(let [z (sample (bernoulli 0.5))
d0 (norm-gamma -1.0 0.1 1.0 1.0)
d1 (norm-gamma 1.0 0.1 1.0 1.0)]

(observe (if (= z 0) d0 d1) 0.5)
z)

In this version of our program we define two distributions d0 and d1
which are created by sampling a mean mu and a precision tau from
a normal-gamma prior. We then observe either according to d0 or d1.
Clearly the mapping from random variables to program variables is less
obvious here, since each sample expression in the body of norm-gamma is
evaluated twice.

Below, we will define a general set of translation rules that compile a
FOPPL program to a graphical model, in which we assign each vertex in
the graphical model a newly generated unique symbol. However, when
discussing programs in this tutorial, we will generally explicitly give

3.1. Compilation to a Graphical Model 55

names to returns from sample and observe expressions that correspond
to program variables to aid readability.

Recognize that assigning a label to each vertex is a way of assigning
a unique “address” to each and every random variable in the program.
Such unique addresses are important for the correctness and implemen-
tation of generic inference algorithms. In Chapter 6, Section 6.2 we
develop a more explicit mechanism for addressing in the more difficult
situation where not all control flow paths can be completely explored
at compile time.

If Expressions in Graphical Models

When compiling a program to a graphical model, if expressions require
special consideration. Before we set out to define translation rules that
construct a graphical model for a program, we will first spend some
time building intuition about how we would like these translation rules
to treat if expressions. Let us start by considering a simple mixture
model, in which only the mean is treated as an unknown variable:
(let [z (sample (bernoulli 0.5))

mu (sample (normal (if (= z 0) -1.0 1.0) 1.0))
d (normal mu 1.0)
y 0.5]

(observe d y)
z)

Program 3.2: A one-point mixture with unknown mean

This is of course a really strange way of writing a mixture model.
We define a single likelihood parameter µ, which is either distributed
according to Normal(−1, 1) when z = 0 and according to Normal(1, 1)
when z = 1. Typically, we would think of a mixture model as having
two components with parameter µ0 and µ1 respectively, where z selects
the component. A more natural way to write the model might be
(let [z (sample (bernoulli 0.5))

mu0 (sample (normal -1.0 1.0))
mu1 (sample (normal 1.0 1.0))
d0 (normal mu0 1.0)
d1 (normal mu1 1.0)
y 0.5]

3.1. Compilation to a Graphical Model 56

(observe (if (= z 0) d0 d1) y)
z)

Program 3.3: One-point mixture with explicit parameters

Here we sample parameters µ0 and µ1, which then define two compo-
nent likelihoods d0 and d1. The variable z then selects the component
likelihood for an observation y.

Even though the second program defines a joint density on four
variables p(y, µ1, µ0, z), whereas the first program defines a density
on three variables p(y, µ, z), it seems intuitive that these programs are
equivalent in some sense. The equivalence that we would want to achieve
here is that both programs define the same marginal posterior on z

p(z | y) =
∫
p(z, µ | y)dµ =

∫ ∫
p(z, µ0, µ1 | y)dµ0dµ1.

So is there a difference between these two programs when both return z?
The second program of course defines additional intermediate variables
d0 and d1, but these do not change the set of nodes in the corresponding
graphical model. The essential difference is that in the first program,
the if expression is placed inside the sample expression for mu, whereas
in the second it sits outside. If we wanted to make the second program
as similar as possible to the first, then we could write
(let [z (sample (bernoulli 0.5))

mu0 (sample (normal -1.0 1.0))
mu1 (sample (normal 1.0 1.0))
mu (if (= z 0) mu0 mu1)
d (normal mu 1.0)
y 0.5]

(observe d y)
z)

Program 3.4: One-point mixture with explicit parameters simplified

In other words, because we have moved the if expression, we now need
two sample expressions rather than one, resulting in a network with 4
nodes rather than 3. However, the distributions on return values of the
programs should be equivalent.

This brings us to what turns out to be a fundamental design choice
in probabilistic programming systems. Suppose we were to modify the
above program to read

3.1. Compilation to a Graphical Model 57

(let [z (sample (bernoulli 0.5))
mu (if (= z 0)

(sample (normal -1.0 1.0))
(sample (normal 1.0 1.0)))

d (normal mu 1.0)
y 0.5]

(observe d y)
z)

Program 3.5: One-point mixture with samples inside if.

Is this program now equivalent to the first program, or to the second?
The answer to this question depends on how we evaluate if expressions
in our language.

In almost all mainstream programming languages, if expressions
are evaluated in a lazy manner. In the example above, we would first
evaluate the predicate (= z 0), and then either evaluate the conse-
quent branch, (sample (normal -1.0 1.0)), or the alternative branch,
(sample (normal 1.0 1.0)), but never both. The opposite of a lazy
evaluation strategy is an eager evaluation strategy. In eager evaluation,
an if expression is evaluated like a normal function call. We first evaluate
the predicate and both branches. We then return the value of one of
the branches based on the predicate value.

If we evaluate if expressions lazily, then the program above is more
similar to Program 3.2, in the sense that the program evaluates two
sample expressions. If we use eager if, then the program evaluates three
sample expressions and is therefore equivalent to Program 3.4. As it
turns out, both strategies evaluation strategies offer certain advantages.

Suppose that we use µ0 and µ1 to refer to the sample expressions
in both branches, then the joint p(y, µ0, µ1, z) would have a conditional
dependence structure1

p(y, µ0, µ1, z) = p(y |µ0, µ1, z)p(µ0|z)p(µ1|z)p(z).
1It might be tempting to instead define a distribution p(y, µ, z) as in the first

program, by interpreting the entire if expression as a single random variable µ. For
this particular example, this would work since both branches sample from a normal
distribution. However, if we were for example to modify the z = 1 branch to sample
from a Gamma distribution instead of a normal, then µ ∈ (−∞,∞) when z = 0 and
µ ∈ (0,∞) when z = 1, which means that the variable µ would no longer have a
well-defined support.

3.1. Compilation to a Graphical Model 58

Here the likelihood p(y|µ0, µ1, z) is relatively easy to define,

p(y|µ0, µ1, z) = pnorm(y;µz, 1). (3.2)

When translating our source code to a graphical model, the target
language expression P(y) that evaluates this probability would read
(pnorm y (if (= z 0) µ0 µ1) 1).

The real question is how to define the probabilities for µ0 and
µ1. One choice could be to simply set the probability of unevaluated
branches to 1. One way to do this in this particular example is to write

p(µ0|z) = pnorm(µ0;−1, 1)z

p(µ1|z) = pnorm(µ1; 1, 1)1−z.

In the target language we could achieve the same effect by using if
expressions defining P (µ0) as (if (= z 0) (pnorm µ0 -1.0 1.0) 1.0)
and defining P(µ1) as (if (not (= z 0)) (pnorm µ1 1.0 1.0) 1.0).

On first inspection this design seems reasonable. Much in the way we
would do in a mixture model, we either include p(µ0|z = 0) or p(µ1|z = 1)
in the probability, and assume a probability 1 for unevaluated branches,
i.e. p(µ0|z = 1) and p(µ1|z = 0).

On closer inspection, however, it is not obvious what the sup-
port of this distribution should have. We might naively suppose that
(y, µ0, µ1, z) ∈ R×R×R×{0, 1}, but this definition is problematic. To
see this, let us try to calculate the marginal likelihood p(y),

p(y) = p(y, z = 0) + p(y, z = 1),

= p(z = 0)
∫
dµ0dµ1 p(y, µ0, µ1|z = 0)

+ p(z = 1)
∫
dµ0dµ1 p(y, µ0, µ1|z = 1),

= 0.5
∫
dµ1

(∫
dµ0 pnorm(y;µ0, 1)pnorm(µ0;−1, 1)

)
+ 0.5

∫
dµ0

(∫
dµ1 pnorm(y;µ1, 1)pnorm(µ1; 1, 1)

)
,

= ∞.

So what is going on here? This integral does not converge because
we have not assumed the correct support: We cannot marginalize

3.1. Compilation to a Graphical Model 59

∫
R dµ0 p(µ0|z = 0) and

∫
R dµ1 p(µ1|z = 1) if we assume p(µ0|z = 0) = 1

and p(µ1|z = 1) = 1. These uniform densities effectively specify im-
proper priors on unevaluated branches.

In order to make lazy evaluation of if expressions more well-behaved,
we could choose to define the support of the joint as a union over
supports for individual branches

(y, µ0, µ1, z) ∈ (R× R× {nil} × {0}) ∪ (R× {nil} × R× {1}). (3.3)

In other words, we could restrict the support of variables in unevaluated
branches to some special value nil to signify that the variable does
not exist. Of course this can result in rather complicated definitions
of the support in probabilistic programs with many levels of nested if
expressions.

Could eager evaluation of branches yield a more straightforward
definition of the probability distribution associated with a program?
Let us look at Program 3.5 once more. If we use eager evaluation, then
this program is equivalent to Program 3.3 which defines a distribution

p(y, µ0, µ1, z) = p(y|µ0, µ1, z)p(z)p(µ0)p(µ1).

We can now simply define p(µ0) = pnorm(µ0;−1, 1) and p(µ1) = pnorm(µ1; 1, 1)
and assume the same likelihood as in the equation in (3.2). This defines
a joint density that corresponds to what we would normally assume for
a mixture model. In this evaluation model, sample expressions in both
branches are always incorporated into the joint.

Unfortunately, eager evaluation would lead to counter-intuitive re-
sults when observe expressions occur in branches. To see this, Let us
consider the following form for our program
(let [z (sample (bernoulli 0.5))

mu0 (sample (normal -1.0 1.0))
mu1 (sample (normal 1.0 1.0))
y 0.5]

(if (= z 0)
(observe (normal mu0 1) y)
(observe (normal mu1 1) y))

z)

Program 3.6: One-point mixture with observes inside if.

3.1. Compilation to a Graphical Model 60

Clearly it is not the case that eager evaluation of both branches is
equivalent to lazy evaluation of one of the branches. When performing
eager evaluation, we would be observing two variables y0 and y1, both
with value 0.5. When performing lazy evaluation, only one of the two
branches would be included in the probability density. The lazy inter-
pretation is a lot more natural here. In fact, it seems difficult to imagine
a use case where you would want to interpret observe expressions in
branches in a eager manner.

So where does all this thinking about evaluation strategies for if
expressions leave us? Lazy evaluation of if expressions makes it difficult
to characterize the support of the probability distribution defined by a
program when branches contain sample expressions. However, at the
same time, lazy evaluation is essential in order for branches containing
observe expressions to make sense. So have we perhaps made a funda-
mentally flawed design choice by allowing sample and observe to be
used inside if branches?

It turns out that this is not necessarily the case. We just need to
understand that observe and sample expressions affect the marginal
posterior on a program output in very different ways. Sample expres-
sions that are not on the flow control path cannot affect the values of
any expressions outside their branch. This means they can be safely
incorporated into the model as auxiliary variables, since they do not
affect the marginal posterior on the return value. This guarantee does
not hold for observed variables, which as a rule change the posterior on
the return value when incorporated into a graphical model.2

Based on this intuition, the solution to our problem is straightfor-
ward: We can assign probability 1 to observed variables that are not
on the same flow control path. Since observed variables have constant
values, the interpretability of their support is not an issue in the way it
is with sampled variables. Conversely we assign the same probability
to sampled variables, regardless of the branch they occur in. We will
describe how to accomplish this in the following sections.

2The only exception to this rule is observe expressions that are conditionally
independent of the program output, which implies that the graphical model associated
with the program could be split into two independent networks out of which one
could be eliminated without affecting the distribution on return values.

3.1. Compilation to a Graphical Model 61

Support-Related Subtleties

As a last but important bit of understanding to convey before proceeding
to the translation rules in the next section it should be noted that
the following two programs are allowed by the FOPPL and are not
problematic despite potentially appearing to be.
(let [z (sample (poisson 10))

d (discrete (range 1 z))]
(sample d))

Program 3.7: Stochastic and potentially infinite discrete support

(let [z (sample (flip 0.5))
d (if z (normal 1 1) (gamma 1 1)]

(sample d)).

Program 3.8: Stochastic support and type

Program 3.7 highlights a subtlety of FOPPL language design and
interpretation, that being that the distribution d has support that
has potentially infinite cardinality. This is not problematic for the
simple reason that samples from d cannot be used as a loop bound
and therefore cannot possibly induce an unbounded number of random
variables. It does serve as an indication that some care should be taken
when reasoning about such programs and writing inference algorithms
for the same. As is further highlighted in Program 3.8, which adds a
seemingly innocuous bit of complexity to the control-flow examples from
earlier in this chapter, neither the support nor the distribution type
of a random variable need be the same between two different control
flow paths. The fact that the support might be quite large can yield
substantial value-dependent variation in inference algorithm runtimes.
Moreover, inference algorithm implementations must have distribution
library support that is robust to the possibility of needing to score
values outside of their support.

Translation rules

Now that we have developed some intuition for how one might translate
a program to a data structure that represents a graphical model and

3.1. Compilation to a Graphical Model 62

have been introduced to several subtleties that arise in designing ways to
do this, we are in a position to formally define a set of translation rules.
We define the ⇓ relation for translation using the so called inference-rules
notation from the programming language community. This notation
specifies a recursive algorithm for performing the translation succinctly
and declaratively. The inference-rules notation is

top
bottom (3.4)

It states that if the statement top holds, so does the statement bottom.
For instance, the rule

ρ, φ, e ⇓ G,E
ρ, φ, (− e) ⇓ G, (− E) (3.5)

says that if e gets translated to G,E under ρ and φ, then its negation
is translated to G, (− E) under the same ρ and φ.

The grammar for the FOPPL in Language 2.1 describes 8 distinct
expression types: (i) constants, (ii) variable references, (iii) let expres-
sions, (iv) if expressions, (v) user-defined procedure applications, (vi)
primitive procedure applications, (vi) sample expressions, and finally
(viii) observe expressions. Aside from constants and variable references,
each expression type can have sub-expressions. In the remainder of this
section, we will define a translation rule for f type, under the assumption
that we are already able to translate its sub-expressions, resulting in a
set of rules that can be used to define the translation of every possible
expression in the FOPPL language in a recursive manner.

Constants and Variables We translate constants c and variables z
in FOPPL to themselves and the empty graphical model:

ρ, φ, c ⇓ Gemp, c ρ, φ, z ⇓ Gemp, z

where Gemp is the tuple (∅, ∅, [], []) and represents the empty graphical
model.

Let We translate (let [v e1] e2) by first translating e1, then substi-
tuting the outcome of this translation for v in e2, and finally translating

3.1. Compilation to a Graphical Model 63

the result of this substitution:
ρ, φ, e1 ⇓ G1, E1 ρ, φ, e2[v := E1] ⇓ G2, E2

ρ, φ, (let [v e1] e2) ⇓ (G1 ⊕G2), E2

Here e2[v := E1] is a result of substituting E1 for v in the expression e1
(while renaming bound variables of e2 if needed). G1 ⊕G2 is the com-
bination of two disjoint graphical models: when G1 = (V1, A1, P1, Y1)
and G2 = (V2, A2, P2, Y2),

(G1 ⊕G2) = (V1 ∪ V2, A1 ∪A2, P1 ⊕ P2, Y1 ⊕ Y2)

where P1 ⊕ P2 and Y1 ⊕ Y2 are the concatenation of two finite maps
with disjoint domains. This combination operator assumes that the
input graphical models G1 and G2 use disjoint sets of vertices. This
assumption always holds because every graphical model created by our
translation uses fresh vertices, which do not appear in other networks
previously generated.

We would like to note that this translation rule has not been opti-
mized for computational efficiency. Because E2 is replace by v in E2,
we will evaluate E1 once for each occurrence of v. We could avoid these
duplicate computations by incorporating deterministic nodes into our
graph, but we omit this optimization in favor of readability.

If Our translation of the if expression is straightforward. It translates
all the three sub-expressions, and puts the results from these translations
together:

ρ, φ, e1 ⇓ G1, E1 ρ, (and φ E1), e2 ⇓ G2, E2

ρ, (and φ (not E1)), e3 ⇓ G3, E3

ρ, φ, (if e1 e2 e3) ⇓ (G1 ⊕G2 ⊕G3), (if E1 E2 E3)

As we have explained already, the graphical models G1, G2 and G3
use disjoint vertices, and so their combination G1 ⊕G2 ⊕G3 is always
defined. When we translate the sub-expressions for the consequent
and alternative branches, we conjoin the logical predicate φ with the
expression E1 or its negation. The role of this logical predicate was
established before; it being useful for including or excluding observe

3.1. Compilation to a Graphical Model 64

statements that are on or off the current-sample control-flow path. It
will be used in the upcoming translation of observe statements.

None of the rules for an expression e so far extends graphical models
from e’s sub-exressions with any new vertices. This uninteresting treat-
ment comes from the fact that the programming constructs involved in
these rules perform deterministic, not probabilistic, computations, and
the translation uses graphical models to express random variables. The
next two rules about sample and observe show this usage.

Sample We translate sample expressions using the following rule:

ρ, φ, e ⇓ (V,A,P,Y), E Choose a fresh variable v
Z = free-vars(E) F = score(E, v) 6= ⊥

ρ, φ, (sample e) ⇓ (V ∪ {v}, A ∪ {(z, v) | z ∈ Z}, P ⊕ [v 7→ F], Y), v

This rule states that we translate (sample e) in three steps. First, we
translate the argument e to a graphical model (V,A,P,Y) and a de-
terministic expression E. Both the argument e and its translation E
represent the same distribution, from which (sample e) samples. Sec-
ond, we choose a fresh variable v, collect all free variables in E that
are used as random variables of the network, and set Z to the set
of these variables. Finally, we convert the expression E that denotes
a distribution, to the probability density or mass function F of the
distribution. This conversion is done by calling score, which is defined
as follows:

score((if E1 E2 E3), v) = (if E1 F2 F3)
(when Fi = score(Ei, v) for i ∈ {2, 3} and it is not ⊥)

score((c E1 . . . En), v) = (pc v E1 . . . En)
(when c is a constructor for distribution and pc its pdf or pmf)

score(E, v) = ⊥
(when E is not one of the above cases)

The ⊥ (called “bottom”, indicating terminating failure) case happens
when the argument e in (sample e) does not denote a distribution. Our
translation fails in that case.

3.1. Compilation to a Graphical Model 65

Observe Our translation for observe expressions (observe e1 e2) is
analogous to that of sample expressions, but we additionally need to
account for the observed value e2, and the predicate φ:

ρ, φ, e1 ⇓ G1, E1 ρ, φ, e2 ⇓ G2, E2
(V,A,P,Y) = G1 ⊕G2 Choose a fresh variable v
F1 = score(E1, v) 6= ⊥ F = (if φ F1 1)
Z = (free-vars(F1) \ {v}) free-vars(E2) ∩ V = ∅
B = {(z, v) : z ∈ Z}

ρ, φ, (observe e1 e2) ⇓ (V ∪ {v}, A ∪B, P ⊕ [v 7→ F], Y ⊕ [v 7→ E2]), E2

This translation rule first translates the sub-expressions e1 and e2.
We then construct a network (V,A,P,Y) by merging the networks of
the sub-expressions and pick a new variable v that will represent the
observed random variable. As in the case of sample statements, the
deterministic expression E1 that is obtained by translating e1 must
evaluate to a distribution. We use the score function to construct an
expression F1 that represents the probability mass or density of v under
this distribution. We then construct a new expression F = (if φ F1 1)
to ensure that the probability of the observed variable evaluates to 1 if
the observe expression occurs in a branch that was not followed. The
free variables in this expression are the union of the free variables in
E1, the free variables in φ and the newly chosen variable v. We add a
set of arcs B to the network, consisting of edges from all free variables
in F to v, excluding v itself. Finally we add the expression F to P and
store the observed value E2 in Y.

In order for this notion of an observed random variable to make sense,
the expression E2 must be fully deterministic. For this reason we require
that free-vars(E2) ∩ V = ∅, which ensures that E2 cannot reference
any other random variables in the graphical model. Translation fails
when this requirement is not met. Remember that free-vars refers
to all unbound variables in an expression. Also note an important
consequence of E2 being a value, namely, although the return value of
an observe may be used in subsequent computation, no graphical model
edges will be generated with the observed random variable as a parent.
An alternative rule could return a null or nil value in place of E2 and,

3.2. Evaluating the Density 66

as a result, might potentially be “safer” in the sense of ensuring clarity
to the programmer. Not being able to bind the observed value would
mean that there is no way to imagine that an edge could be created
where one was not.

Procedure Call The remaining two cases are those for procedure
calls, one for a user-defined procedure f and one for a primitive function
c. In both cases, we first translate arguments. In the case of primitive
functions we then translate the expression for the call by substituting
translated arguments into the original expression, and merging the
graphs for the arguments

ρ, φ, ei ⇓ Gi, Ei for all 1 ≤ i ≤ n
ρ, φ, (c e1 . . . en) ⇓ G1 ⊕ . . .⊕Gn, (c E1 . . . En)

For user-defined procedures, we additionally transform the procedure
body. We do this by replacing all instances of the variable vi with the
expression for the argument Ei

ρ, φ, ei ⇓ Gi, Ei for all 1 ≤ i ≤ n ρ(f) = (defn f [v1 . . . vn] e)
ρ, φ, e[v1 := E1, . . . vn := En] ⇓ G, E

ρ, φ, (f e1 . . . en) ⇓ G1 ⊕ . . .⊕Gn ⊕G, E

3.2 Evaluating the Density

Before we discuss algorithms for inference in FOPPL programs, first
we make explicit how we can use this representation of a probabilistic
program to evaluate the probability of a particular setting of the vari-
ables in V . The Bayesian network G = (V,A,P,Y) that we construct
by compiling a FOPPL program is a mathematical representation of a
directed graphical model. Like any graphical model, G defines a prob-
ability density on its variables V . In a directed graphical model, each
node v ∈ V has a set of parents

pa(v) := {u : (u, v) ∈ A}. (3.6)

3.2. Evaluating the Density 67

The joint probability of all variables can be expressed as a product over
conditional probabilities

p(V) =
∏
v∈V

p(v |pa(v)). (3.7)

In our graph G, each term p(v |pa(v)) is represented as a deterministic
expression P(v) = (c v E1 . . . En), in which c is either a probability
mass function (for discrete variables) or a probability density function
(for continuous variables) and E1, . . . , En are expressions that evaluate
to parameters θ1, . . . , θn of this mass or density function.

Implicit in this notation is the fact that each expression has some
set of free variables. In order to evaluate an expression to a value, we
must specify values for each of these free variables. In other words, we
can think of each of these expressions Ei as a mapping from values of
free variables to a parameter value. By construction, the set of parents
pa(v) is nothing but the free variables in P(v) exclusive of v

pa(v) = free-vars(P(v)) \ {v}. (3.8)

Thus, the expression P(v) can be thought of as a function that maps
the v and its parents pa(v) to a probability or probability density. We
will therefore from now on treat these two as equivalent,

p(v |pa(v)) ≡ P(v). (3.9)

We can decompose the joint probability p(V) into a prior and a likelihood
term. In our specification of the translation rule for observe, we require
that the expression Y(v) for the observed value may not have free
variables. Each expression Y(v) will hence simplify to a constant when we
perform partial evaluation, a subject we cover extensively in Section 3.2.2
of this chapter. We will use Y to refer to all the nodes in V that
correspond to observed random variables, which is to say Y = dom(Y).
Similarly, we can use X to refer to all nodes in V that correspond
to unobserved random variables, which is to say X = V \ Y . Since
observed nodes y ∈ Y cannot have any children we can re-express the
joint probability in Equation (3.7) as

p(V) = p(Y,X) = p(Y |X)p(X), (3.10)

3.2. Evaluating the Density 68

where

p(Y |X) =
∏
y∈Y

p(y |pa(y)), p(X) =
∏
x∈X

p(x |pa(x)). (3.11)

In this manner, a probabilistic program defines a joint distribution
p(Y,X). The goal of probabilistic program inference is to characterize
the posterior distribution

p(X |Y) = p(X,Y)/p(Y), p(Y) :=
∫
dX p(X,Y). (3.12)

3.2.1 Conditioning with Factors

Not all inference problems for probabilistic programs target a posterior
p(X |Y) that is defined in terms of unobserved and observed random
variables. There are inference problems in which there is no notion of
observed data, but it is possible to define some notion of loss, reward, or
fitness given a choice of X. In the probabilistic programs written in the
FOPPL, the sample statements in a probabilistic program define a prior
p(X) on the random variables, whereas the observe statements define a
likelihood p(Y |X). To support a more general notion of soft constraints,
we can replace the likelihood p(Y |X) with a strictly positive potential
ψ(X) to define an unnormalized density

γ(X) = ψ(X)p(X). (3.13)

In this more general setting, the goal of inference is to characterize a
target density π(X), which we define as

π(X) := γ(X)/Z, Z :=
∫
dX γ(X). (3.14)

Here π(X) is the analogue to the posterior p(X |Y), the unnormalized
density γ(X) is the analogue to the joint p(Y,X), and the normalizing
constant Z is the analogue to the marginal likelihood p(Y).

From a language design point of view, we can now ask how the
FOPPL would need to be extended in order to support this more general
form of soft constraint. For a probabilistic program in the FOPPL, the
potential function is a product over terms

ψ(X) =
∏
y∈Y

ψy(Xy), (3.15)

3.2. Evaluating the Density 69

where we define ψy and Xy as

ψy(Xy) := p(y=Y(y) |pa(y)) ≡ P(y)[y := Y(y)] (3.16)
Xy := free-vars(P(y)) \ {y} = pa(y). (3.17)

Note that P(y)[y := Y(y)] is just some expression that evaluates to
either a probability mass or a probability density if we specify values for
its free variables Xy. Since we never integrate over y, it does not matter
whether P(y) represents a (normalized) mass or density function. We
could therefore in principle replace P(y) by any other expression with
free variables Xy that evaluates to a number ≥ 0.

One way to support arbitrary potential functions is to provide a
special form (factor log-p) that takes an arbitrary log probability
log-p (which can be both positive or negative) as an argument. We can
then define a translation rule that inserts a new node v with probability
P(v) = (exp log-p) and observed value nil into the graph:

ρ, φ, e ⇓ (V,A,P,Y), E F = (if φ (exp E) 1)

Choose a fresh variable v
ρ, φ, (factor e) ⇓ (V, A, P ⊕ [v 7→ F], Y ⊕ [v 7→ nil]), nil

In practice, we don’t need to provide separate special forms for
factor and observe, since each can be implemented as a special case of
the other. One way of doing so is to define factor as a procedure

(defn factor [log-p]
(observe (factor-dist log-p) nil))

in which factor-dist is a constructor for a "pseudo" distribution object
with corresponding potential

pfactor-dist(y;λ) :=
{

expλ y = nil
0 y 6= nil

(3.18)

We call this a pseudo distribution, because it defines a (unnormalized)
potential function, rather than a normalized mass or density.

Had we defined the FOPPL language using factor as the primary
conditioning form, then we could have implemented a primitive proce-
dure (log-prob dist v) that returns the log probability mass or density
for a value v under a distribution dist. This would then allow us to
define observe as a procedure

3.2. Evaluating the Density 70

(defn observe [dist v]
(factor (log-prob dist v))
y)

3.2.2 Partial Evaluation

An important and necessary optimization for our compilation procedure
is to perform a partial evaluation step. This step pre-evaluates expres-
sions E in the target language that do not contain any free variables,
which means that they take on the same value in every execution of
the program. It turns out that partial evaluation of these expressions is
necessary to avoid the appearance of "spurious" edges between variables
that are in fact not connected, in the sense that the value of the parent
does not affect the conditional density of the child.

Because our target language is very simple, we only need to consider
if-expressions and procedure calls. We can update the compilation rules
for these expressions to include a partial evaluation step

ρ, φ, e1 ⇓ G1, E1 ρ, eval((and φ E1)), e2 ⇓ G2, E2

ρ, eval((and φ (not E1))), e3 ⇓ G3, E3

ρ, φ, (if e1 e2 e3) ⇓ (G1 ⊕G2 ⊕G3), eval((if E1 E2 E3))

and
ρ, ei ⇓ Gi, Ei for all 1 ≤ i ≤ n

ρ, φ, (c e1 . . . en) ⇓ G1 ⊕ . . .⊕Gn, eval((c E1 . . . En))

The partial evaluation operation eval(e) can incorporate any number
of rules for simplifying expressions. We will begin with the rules

eval((if c1 E2 E3)) = E2
when c1 is logically true

eval((if c1 E2 E3)) = E3
when c1 is logically false

eval((c c1 . . . cn)) = c′

when calling c with arguments c1, . . . , cn evaluates to c′

eval(E) = E

in all other cases

3.2. Evaluating the Density 71

These rules state that an if statement (if E1 E2 E3) can be simplified
when E1 = c1 can be fully evaluated, by simply selecting the expression
for the appropriate branch. Primitive procedure calls can be evaluated
when all arguments can be fully evaluated.

In order to accommodate partial evaluation, we additionally modify
the definition of the score function. Distributions in the FOPPL are
constructed using primitive procedure applications. This means that
a distribution with constant arguments such as (beta 1 1) will be
partially evaluated to a constant c. To account for this, we need to
extend our definition of the score conversion with one rule

score(c, v) = (pc v)
(when c is a distribution and pc is its pdf or pmf)

To see how partial evaluation also reduce the number of edges in the
Bayesian network, let us consider the expression (if true v1 v2). This
expression nominally references two random variables v1 and v2. After
partial evaluation, this expression simplifies to v1, which eliminates the
spurious dependence on v2.

Another practical advantage of partial evaluation is that it gives us
a simple way to identify expressions in a program that are fully deter-
ministic (since such expression will be partially evaluated to constants).
This is useful when translating observe statements (observe e1 e2), in
which the expression e2 must be deterministic. In programs that use
the (loop c v e e1 . . . en) syntactic sugar, we can now substitute any
fully deterministic expression for the number of loop iterations c. For
example, we could define a loop in which the number of iterations is
given by the dataset size.

Lists, vectors and hash maps. Eliminating spurious edges in the
dependency graph becomes particularly important in programs that
make use of data structures. Let us consider the following example,
which defines a 3-state Markov chain
(let [A [[0.9 0.1]

[0.1 0.9]]
x1 (sample (discrete [1. 1.]))
x2 (sample (discrete (get A x1)))
x3 (sample (discrete (get A x2)))]

3.2. Evaluating the Density 72

[x1 x2 x3])

Compilation to a Bayesian network will yield three variable nodes. If
we refer to these nodes as v1, v2 and v3, then there will be arcs from v1
to v2 and from v2 to v3. Suppose we now rewrite this program using
the loop syntactic sugar that we introduced in Chapter 2

(defn markov-step
[n xs A]
(let [k (last xs)

Ak (get A k)]
(append xs (sample (discrete Ak)))))

(let [A [[0.9 0.1]
[0.1 0.9]]

x1 (sample (discrete [1. 1.]))]
(loop 2 markov-step [x1] A))

In this version of the program, each call to markov-step accepts a
vector of states xs and appends the next state in the Markov chain
by calling (append xs (sample (discrete Ak))). In order to sample
the next element, we need the row Ak for the transition matrix that
corresponds to the current state k, which is retrieved by calling (last xs)
to extract the last element of the vector.

The program above generates the same sequence of random vari-
ables as the previous one, and has the advantage of allowing us to
generalize to sequences of arbitrary length by changing the constant 2
in the loop to a different value. However, under the partial evaluation
rules that we have specified so far, we would obtain a different set of
edges. As in the previous version of the program, this version of the
program evaluates three sample statements. For the first statement,
(sample (discrete [1. 1.])) there will be no arcs. Translation of the
second sample statement (sample (discrete Ak)), which is evaluated
in the body of markov-step, results in an arc from v1 to v2, since the
expression for Ak expands to

(get [[0.9 0.1]
[0.1 0.9]]
(last [v1]))

3.2. Evaluating the Density 73

However, for the third sample statement there will be arcs from both
v1 and v2 to v3, since Ak expands to

(get [[0.9 0.1]
[0.1 0.9]]
(last (append [v1] v2)))

The extra arc from v1 to v3 is of course not necessary here, since the
expression (last (append [v1] v2)) will always evaluate to v2. What’s
more, if we run this program to generate more than 3 states, the node
vn for the n-th state will have incoming arcs from all preceding variables
v1, . . . , vn−1, whereas the only real arc in the Bayesian network is the
one from vn−1.

We can eliminate these spurious arcs by implementing an additional
set of partial evaluation rules for data structures,

eval((vector E1 . . . En)) = [E1 . . . En],

eval((hash-map c1 E1 . . . cn En)) ={c1 E1 . . . cn En} .

These rules ensure that expressions which construct data structures are
partially evaluated to data structures containing expressions. We can
similarly partially evaluate functions that add or replace entries. For
example, we can define the following rules for the conj primitive, which
appends an element to a data structure,

eval((append [E1 . . . En] En+1)) = [E1 . . . En En+1],

eval((put {c1 E1 . . . cn En} ck E′k)) ={c1 E1 . . . ck E′k . . . cn En} .

In the Markov chain example, the expression for Ak in the third sample
statement then simplifies to

(get [[0.9 0.1]
[0.1 0.9]]
(last [v1 v2]))

Now that partial evaluation constructs data structures containing ex-
pressions, we can use partial evaluation of accessor functions to extract

3.3. Gibbs Sampling 74

the expression corresponding to an entry

eval((last [E1 . . . En])) = En,

eval((get [E1 . . . En] k)) = Ek,

eval((get {c1 E1 . . . cn En} ck)) = Ek.

With these rules in place, the expression for Ak simplifies to

(get [[0.9 0.1]
[0.1 0.9]] v2)

This yields the correct dependency structure for the Bayesian network.

3.3 Gibbs Sampling

So far, we have just defined a way to translate probabilistic programs into
a data structure for finite graphical models. One important reason for
doing so is that many existing inference algorithms are defined explicitly
in terms of finite graphical models, and can now be applied directly to
probabilistic programs written in the FOPPL. We will consider such
algorithms now, starting with a general family of Markov chain Monte
Carlo (MCMC) algorithms.

MCMC algorithms perform Bayesian inference by drawing samples
from the posterior distribution; that is, the conditional distribution of
the latent variables X ⊆ V given the observed variables Y ⊂ V . This
is accomplished by simulating from a Markov chain whose transition
operator is defined such that the stationary distribution is the target
posterior p(X | Y). These samples are then used to characterize the
distribution of the return value r(X).

Procedurally, MCMC algorithms begin by initializing latent variables
to some value X(0), and repeatedly sampling from a Markov transition
density to produce a dependent sequence of samples X(1), . . . , X(S). For
purposes of this tutorial, we will not delve deeply into why MCMC
produces posterior samples; rather, we will simply describe how these
algorithms can be applied in the context of inference in graphs produced
by FOPPL compilation in the previous sections. For a review of MCMC
methods, see e.g. Neal (1993), Gelman et al. (2013), or Bishop (2006).

3.3. Gibbs Sampling 75

The Metropolis-Hastings (MH) algorithm provides a general recipe
for producing appropriate MCMC transition operators, by combining
a proposal step with an accept / reject step. Given some appropriate
proposal distribution q(X ′ | V), the MH algorithm simulates a candidate
X ′ from q(X ′ | V) conditioned on the value of the current sample X,
and then evaluates the acceptance probability

α(X ′, X) = min
{

1, p(Y,X
′)q(X | V ′)

p(Y,X)q(X ′ | V)

}
. (3.19)

With probability α(X ′, X), we “accept” the transition X → X ′ and
with probability 1 − α(X ′, X) we “reject” the transition and retain
the current sample X → X. When we repeatedly apply this transition
operator we obtain a Markov process

X ′ ∼ q(X ′ | V (s−1)),
u ∼ Uniform(0, 1)

X(s) =

X ′ u ≤ α(X ′, X(s−1)),
X(s−1) u > α(X ′, X(s−1)).

Gibbs sampling algorithms (Geman and Geman, 1984) are an im-
portant special case of MH, which cycle through all the latent variables
in the model and iteratively sample from the so-called full conditional
distributions

p(x | Y,X \ {x}) = p(x | V \ {x}). (3.20)

In some (important) special cases of models, these conditional distribu-
tions can be derived analytically and sampled from exactly. However,
this is not possible in general, and so as a general-purpose solution
one turns to Metropolis-within-Gibbs algorithms, which instead apply a
Metropolis-Hastings transition targeting p(x | V \ {x}).

From an implementation point of view, given our compiled graph
(V,A,P,Y) we can compute the acceptance probability in Equation (3.19)
by evaluating the expressions P(v) for each v ∈ V , substituting the
values for the current sample X and the proposal X ′. More precisely, if
we use X to refer to the set of unobserved variables and X to refer to
the map from variables to their values,

X = (x1, . . . , xN), X = [x1 7→ c1, . . . , xN 7→ cN], (3.21)

3.3. Gibbs Sampling 76

then we can use V = X ⊕ Y to refer to the values of all variables and
express the joint probability over the variables V as

p(V = V) =
∏
v∈V

eval(P(v)[V := V]). (3.22)

When we update a single variable x using a kernel q(x | V), we are
proposing a new mapping V ′ = V[x 7→ c′], where c′ is the candidate
value proposed for x. The acceptance probability for changing the value
of x from c to c′ then takes the form

α(V ′,V) = min
{

1, p(V = V ′)q(x = c | V = V ′)
p(V = V)q(x = c′ | V = V)

}
. (3.23)

From a computational point of view, the important thing to note
is that many terms in this ratio will actually cancel out. The joint
probabilities p(V = V) are composed of a product of conditional density
terms

∏
v∈V p(v | pa(v)); the individual expressions p(v | pa(v)) ≡ P(v)

depend on the value c or its proposed alternative c′ of the node x only
if v = x, or x ∈ pa(v), which equates to the condition

x ∈ free-vars(P(v)). (3.24)

If we define Vx to be the set of variables whose densities depend on x,

Vx := {v : x ∈ free-vars(P(v))},
= {x} ∪ {v : x ∈ pa(v)},

(3.25)

then we can decompose the joint p(V) into terms that depend on x and
terms that do not

p(V) =

 ∏
w∈V \Vx

p(w | pa(w))

 ∏
v∈Vx

p(v | pa(v))

 .
We now note that all terms w ∈ V \ Vx in the acceptance ratio cancel,
with the same value in both numerator and denominator. Denoting the
values of a variable v as cv, c′v for the maps V,V ′ respectively, we can
simplify the acceptance probability α to

α(V ′,V) = min
{

1,
∏
v∈Vx

p(v = c′v|pa(v))∏
v∈Vx

p(v = cv|pa(v))
q(x = c | V = V ′)
q(x = c′ | V = V)

}
. (3.26)

3.3. Gibbs Sampling 77

This restriction means that we can compute the acceptance ratio in
O(|Vx|) time rather than O(|V |), which is advantageous when |V | grows
with the size of the dataset, whereas |Vx| does not.

In order to implement a Gibbs sampler, we additionally need to
specify some form of proposal. We will here assume a map Q from
unobserved variables to expressions in the target language

Q := [x1 7→ E1, . . . , xN 7→ EN]. (3.27)

For each variable x, the expression E defines a distribution, which can
in principle depend on other unobserved variables X. We can then use
this distribution to both generate samples and evaluate the forward and
reverse proposal densities q(x = c′ | V = V) and q(x = c | V = V ′). To
do so, we first evaluate the expression to a distribution

d = eval(Q(x)[V := V]). (3.28)

We then assume that we have an implementation for functions sample
and log-prob which allow us to generate samples and evaluate the
density function for the distribution

c′ = sample(d), q(x = c′ | V) = log-prob(d, c′). (3.29)

Algorithm 1 shows pseudo-code for a Gibbs sampler with this type
of proposal. In this algorithm we have several choices for the type of
proposals that we define in the mapQ. A straightforward option is to use
the prior as the proposal distribution. In other words, when compiling an
expression (sample e) we first compile e to a target language expression
E, then pick a fresh variable v, define P(v) = score(E, v), and finally
define Q(v) = E. In this type of proposal q(x = c′ | X) = p(x = c′ |
pa(x)), which means that the acceptance ratio simplifies further to

α(V ′,V) = min
{

1,
∏
v∈Vx\{x} p(v = c′v|pa(v))∏
v∈Vx\{x} p(v = cv|pa(v))

}
. (3.30)

Instead of proposing from the prior, we can also consider a broader
class of proposal distributions. For example, a common choice for contin-
uous random variables is to propose from a Gaussian distribution with
small standard deviation, centered at the current value of x; there exist

3.3. Gibbs Sampling 78

Algorithm 1 Gibbs Sampling with Metropolis-Hastings Updates
1: global V,X, Y,A,P,Y . A directed graphical model
2: global Q . A map of proposal expressions
3: function accept(x,X ′,X)
4: d← eval(Q(x)[X := X])
5: d′ ← eval(Q(x)[X := X ′])
6: logα← log-prob(d′,X (x))− log-prob(d,X ′(x))
7: Vx ← {v : x ∈ free-vars(P(v))}
8: for v in Vx do
9: logα← logα+ eval(P(v)[Y := Y, X := X ′])

10: logα← logα− eval(P(v)[Y := Y, X := X])
11: return α

12: function gibbs-step(X)
13: for x in X do
14: d← eval(Q(x)[X := X])
15: X ′ ← X
16: X ′(x)← sample(d)
17: α← accept(x,X ′,X)
18: u ∼ Uniform(0, 1)
19: if u < α then
20: X ← X ′
21: return X
22: function gibbs(X (0), S)
23: for s in 1, . . . , S do
24: X (s) ← gibbs-step(X (s−1))
25: return X (1), . . .X (S)

schemes to tune the standard deviation of this proposal online during
sampling (Łatuszyński et al., 2013). In this case, the proposal is sym-
metric, which is to say that q(x′ | x) = q(x | x′), which means that the
acceptance probability simplifies to the same form as in Equation (3.30).

A second extension involves “block sampling”, in which multiple
random variables nodes are sampled jointly, rather than cycling through
and updating only one at a time. This can be very advantageous in cases

3.3. Gibbs Sampling 79

where two latent variables are highly correlated: when updating one
conditioned on a fixed value of the other, it is only possible to make very
small changes at a time. wIn contrast, a block proposal which updates
both these random variables at once can move them larger distances,
in sync. As a pathological example, consider the FOPPL program

(let [x0 (sample (normal 0 1))
x1 (sample (normal 0 1))]

(observe (normal (+ x0 x1) 0.01) 2.0))

in which we observe the sum of two standard normal random variates
is very close to 2.0. If initialized at any particular pair of values (x0, x1)
for which x0 + x1 ≈ 2.0, a Gibbs sampler which updates one random
choice at a time will quickly become “stuck”.

Consider instead a proposal which updates a subset of latent vari-
ables S ⊆ X, according to a proposal q(S | V \S). The “trivial” choice of
proposal distribution — proposing values of each random variable x in
S by simulating from the prior p(x | pa(x)) — would, for S = {x0, x1}
in this example, sample both values from their independent normal
priors. While this is capable of making larger moves (unlike the previous
one-choice-at-a-time proposal, it would be possible for this proposal
to go in a single step from e.g. (2.0, 0.0) to (0.0, 2.0)), with this naïve
choice of block proposal overall performance may actually be worse
than that with independent proposals: now instead of sampling a single
value which needs to be “near” the previous value to be accepted, we
are sampling two values, where the second value x1 needs to be “near”
the sampled x0− 2.0, something quite unlikely for negative values of x0.
Constructing block proposals which have high acceptance rates require
taking account of the structure of the model itself. One way of doing this
adaptively, analogous to estimating posterior standard deviations to be
used as scale parameters in univariate proposals, is to estimate posterior
covariance matrices and using these for jointly proposing multiple latent
variables (Haario et al., 2001).

As noted already, it is sometimes possible to analytically derive the
complete conditional distribution of a single variable in a graphical
model. Such cases include all random variables whose value is discrete
from a finite set, many settings in which all the densities in Vx are in the

3.4. Hamiltonian Monte Carlo 80

exponential family, and so forth. Programming languages techniques can
be used to identify such opportunities by performing pattern matching
analyses of the source code of the link functions in Vx. If, as is the
case in the simplest example, x itself is determined to be governed by
a discrete distribution then, instead of using Metropolis within Gibbs,
one would merely enumerate all possible values of x under the support
of its distribution, score each, normalize, then sample from this exact
conditional.

Inference algorithms vary in their performance, sometimes dramati-
cally. Metropolis Hastings within Gibbs is sometimes efficient but even
more often is not, unless utilizing intelligent block proposals (often, ones
customized to the particular model). This has led to a proliferation
of inference algorithms and methods, some but not all of which are
directly applicable to probabilistic programming. In the next section,
we consider Hamiltonian Monte Carlo, which incorporates gradient
information to provide efficient high-dimensional block proposals.

3.4 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a MCMC algorithm that makes use
of gradients to construct an efficient MCMC kernel for high dimensional
distributions. The HMC algorithm applies to a target density π(X) =
γ(X)/Z of the general form defined in Equation (3.14), in which each
variable x ∈ X is continuous. This unnormalized density is traditionally
re-expressed by defining a potential energy function

U(X) := − log γ(X). (3.31)

With this definition we can write

π(X) = 1
Z

exp {−U(X)} . (3.32)

Next, we introduce a set of auxiliary “momentum” variables R, one for
each variable in x ∈ X, together with a function K(R) representing the
kinetic energy of the system. These variables are typically defined as
samples from a zero-mean Gaussian with covariance M . This choice of

3.4. Hamiltonian Monte Carlo 81

K then yields a joint target distribution π′(X,R) defined as follows:

π′(X,R) = 1
Z ′

exp{−U(X)−K(R)}

= 1
Z ′

exp
{
−U(X) + 1

2R
>M−1R

}
.

Since marginalizing over R in π′ recovers the original density π, we can
jointly sample X and R from π′ to generate samples X from π. The
central idea in HMC is to construct an MCMC kernel that changes
(X,R) in a way that preserves the HamiltonianH(X,R), which describes
the total energy of the system

H(X,R) = U(X) +K(R). (3.33)
By way of physical analogy, an HMC sampler constructs samples by
simulating the trajectory of a “marble” with position X and a mo-
mentum R as it rolls through an energy “landscape” defined by U(X).
When moving “uphill” in the direction of the gradient ∇U(X), the
marble loses momentum. Conversely when moving “downhill” (i.e. away
from ∇U(X)), the marble gains momentum. By requiring that the total
energy H is constant, we can derive the equations of motion

dX

dt
= ∇RH(X,R) = M−1R,

dR

dt
= −∇XH(X,R) = −∇XU(X).

(3.34)

That is, paths of X and R that solve the above differential equations
preserve the total energy H(X,R). The HMC sampler proceeds by
alternately sampling the momentum variables R, and then simulating
(X,R) forward according to a discretized version of the above differential
equations. Since π′(X,R) factorizes into a product of independent dis-
tributions on X and R, the momentum variables R are simply sampled
in a Gibbs step according to their full conditional distribution (i.e. the
marginal distribution) of Normal(0,M). The forward simulation (called
Hamiltonian dynamics) generates a new proposal (X ′, R′), which then
is accepted with probability

α = min
{

1, π
′(X ′, R′)
π′(X,R)

}
= min

{
1, exp

{
−H(X ′, R′) +H(X,R)

}}
.

3.4. Hamiltonian Monte Carlo 82

Note here that if when were able to perfectly integrate the equations
of motion in (3.34), then the sample is accepted with probability 1. In
other words, the acceptance ratio purely is purely due to numerical
errors that arise from the discretization of the equations of motion.

3.4.1 Automatic Differentiation

The essential operation that we need to implement in order to perform
HMC for either a suitably restricted block proposal in the Metropolis-
within-Gibbs FOPPL inference algorithm from Section 3.3 of this chap-
ter or another suitably restricted FOPPL-like language (Gram-Hansen
et al., 2018; Stan Development Team, 2014) is the computation of the
gradient

∇U(X) = −∇ log γ(X). (3.35)

When γ(X) is the density associated with a probabilistic program,
we must take steps to ensure that this density is differentiable at all
points X = X in the support of the distribution, noting that the
class of all FOPPL programs includes conditional branching statements
which renders HMC incompatible with whole FOPPL program inference.
We will further discuss what implications this has for the structure
of a program in Section 3.4.2. For now we will assume that γ(X) is
indeed differentiable everywhere, and either refers to a joint p(Y,X)
over continuous variables, or that we are using HMC as a block Gibbs
update to sample a subset of continuous variables Xb ⊂ X from the
conditional p(Xb | Y,X \Xb).

Given that γ(X) is differentiable, how can we compute the gradient?
For a program with graph (V,A,P,Y) and variables V = Y ∪X, the
component of the gradient for a variable x ∈ X is

∇xU(X) = −∂ log p(Y,X)
∂x

= −
∑
x′∈X

∂ log p(x′|pa(x′))
∂x

−
∑
y∈Y

∂ log p(y|pa(y))
∂x

.
(3.36)

In our graph compilation procedure, we have constructed expressions
p(x|pa(x)) ≡ P(x) and p(y|pa(y)) ≡ P(y)[y := Y(y)] for each random

3.4. Hamiltonian Monte Carlo 83

variable. In order to calculate ∇U(X) we will first construct a single
expression EU that represents the potential U(X) ≡ EU as an explicit
sum over the variables X = {x1, . . . , xN} and Y = {y1, . . . , yM}

EX :=(+ (log P(x1)) . . . (log P(xN)))

EY :=(+ (log P(y1)[y1 := Y(y1)]) . . . (log P(yM)[yM := Y(yM)]))

EU :=(* -1.0 (+ EX EY))

We can then define point-wise evaluation of the potential function by
means of the partial evaluation operation eval after substitution of a
map X of values

U(X = X) := eval(EU [X := X]). (3.37)

In order to compute the gradients of the potential function, we
will use reverse-mode automatic differentiation (AD) (Griewank and
Walther, 2008; Baydin et al., 2015), which is the technique that forms
the basis for modern deep learning systems such as TensorFlow (Abadi
et al., 2015), PyTorch (Paszke et al., 2017), MxNET (Chen et al., 2016),
and CNTK (Seide and Agarwal, 2016).

To perform reverse-mode AD, we augment all real-valued primitive
procedures in a program with primitives for computing the partial
derivatives with respect to each of the inputs. We additionally construct
a data structure that represents the computation as a graph. This graph
contains a node for each primitive procedure application and edges
for each of its inputs. There are a number of ways to construct such
a computation graph. In Section 3.5 we will show how to compile a
Bayesian network to a factor graph. This graph will also contain a node
for each primitive procedure application, and edges for each of its inputs.
In this section, we will compute this graph dynamically as a side-effect
of evaluation of an expression E in the target language.

Suppose that E contains the free variables V = {v1, . . . , vD}. We
can think of this expression as a function E ≡ F (v1, . . . , vD). Suppose
that we wish to compute the gradient of F at values

V = [v1 7→ c1, . . . , vD 7→ cD], (3.38)

Our goal is now to to define a gradient operator

grad (eval (F [V := V])) , (3.39)

3.4. Hamiltonian Monte Carlo 84

which computes the map of partial derivatives

G :=
[
v1 7→

∂F (V)
∂v1

∣∣∣∣
V=V

, . . . , vD 7→
∂F (V)
∂vD

∣∣∣∣
V=V

]
. (3.40)

Given that F is an expression in the target language, we can solve the
problem of differentiating F by defining the derivative of each expression
type E recursively in terms of the derivatives of its sub-expressions. To
do so, we only need to consider 4 cases:

1. Constants E = c have zero derivatives
∂E

∂vi
= 0. (3.41)

2. Variables E = v have derivatives

∂E

∂vi
=
{

1 v = vi,

0 v 6= vi.
(3.42)

3. For if expressions E = (if E1 E2 E3) we can define the derivative
recursively in terms of the value c′1 of E1,

∂E

∂vi
=
{
∂E2 / ∂vi c′1 = true
∂E3 / ∂vi c′1 = false

(3.43)

4. For primitive procedure applications E =(f E1 . . . En) we apply
the chain rule

∂E

∂vi
=

n∑
j=1

∂f(v′1, . . . , v′n)
v′j

∂Ej
∂vi

. (3.44)

The first 3 base cases are trivial. This means that we can compute
the gradient of any target language expression E with respect to the
values of its free variables as long as we are able calculate the partial
derivatives of values returned by primitive procedure applications with
respect to the values of the inputs.

Let us discuss this last case in more detail. Suppose that f is a
primitive that accepts n real-valued inputs, and returns a real-valued
output c = f(c1, . . . , cn). In order to perform reverse-mode AD, we will

3.4. Hamiltonian Monte Carlo 85

Algorithm 2 Primitive function lifting for reverse-mode AD.
1: function unbox(c̃)
2: if c̃ = (c,_) then
3: return c . Unpack value from c̃

4: else
5: return c̃ . Return value as is
6: function lift-ad(f , ∇f , n)
7: function f̃(c̃1, . . . , c̃n)
8: c1, . . . , cn ← unbox(c̃1), . . . ,unbox(c̃n)
9: c← f(c1, . . . , cn)

10: ċ1, . . . , ċn ← ∇f(c1, . . . , cn)
11: return (c, ((c̃1, . . . , c̃n), (ċ1, . . . , ċn)))
12: return f̃

replace this primitive with a “lifted” variant f̃ such that c̃ = f̃(c̃1, . . . , c̃n)
will return a boxed value

c̃ = (c, ((c̃1, . . . , c̃n), (ċ1, . . . , ċn))), (3.45)

which contains the return value c of f , the input values c̃i, and the
values of the partial derivatives ċi = ∂f(v1, . . . , vn)/∂vi|vi=ci of the
output with respect to the inputs. Algorithm 2 shows pseudo-code
for an operation that constructs an AD-compatible primitive f̃ from
a primitive f and a second primitive ∇f that computes the partial
derivatives of f with respect to its inputs.

The boxed value c̃ is a recursive data structure that we can use to
walk the computation graph. Each of the input values c̃i corresponds
the value of a sub-expression that is either a constant, a variable, or the
return value of another primitive procedure application. The first two
cases correspond leaf nodes in the computation graph. In the case of a
variable v (Equation 3.42), we are at an input where the gradient is 1
for the component associated with v, and 0 for all other components.
We represent this sparse vector as a map G = [v 7→ 1]. When we reach a
constant value (Equation 3.41), we do don’t need to do anything, since
the gradient of a constant is 0. We represent this zero gradient as an
empty map G = []. In the third case (Equation 3.44), we can recursively

3.4. Hamiltonian Monte Carlo 86

Algorithm 3 Reverse-mode automatic differentiation.
1: function grad(c̃)
2: match c̃ . Pattern match against value type
3: case (c, v) . Input value
4: return [v 7→ 1]
5: case (c, ((c̃1, . . . , c̃n), (ċ1, . . . , ċn))) . Intermediate value
6: G ← []
7: for i in 1, . . . , n do
8: Gi ← grad(c̃i)
9: for v in dom(Gi) do

10: if v ∈ dom(G) then
11: G(v)← G(v) + ċi · Gi(v)
12: else
13: G(v)← ċi · Gi(v)
14: return G
15: return [] . Base case, return zero gradient

unpack the boxed values c̃i to compute gradients with respect to input
values, multiply the resulting gradient terms partial derivatives ċi, and
finally sum over i.

Algorithm 3 shows pseudo-code for an algorithm that performs the
reverse-mode gradient computation according to this recursive strategy.
In this algorithm, we need to know the variable v that is associated
with each of the inputs. In order to ensure that we can track these
correspondences we will box an input value c associated with variable v
into a pair c̃ = (c, v). The gradient computation in Algorithm 3 now
pattern matches against values c̃ to determine whether the value is
an input, and intermediate value that was returned from a primitive
procedure call, or any other value (which has a 0 gradient).

Given this implementation of reverse-mode AD, we can now compute
the gradient of the potential function in two steps

Ũ = eval(EU [V := V]), (3.46)
G = grad(Ũ). (3.47)

3.4. Hamiltonian Monte Carlo 87

Algorithm 4 Hamiltonian Monte Carlo
1: global X,EU
2: function gradient(c̃, ċ)
3: As in Algorithm 3
4: function ∇U(X)
5: Ũ ← eval(EU [X := X])
6: return grad(Ũ)
7: function leapfrog(X0, R0, T , ε)
8: R1/2 ← R0 − 1

2ε∇U(X0)
9: for t in 1, . . . , T − 1 do

10: Xt ← Xt−1 + εRt−1/2
11: Rt+1/2 ← Rt−1/2 − ε∇U(Xt)
12: XT ← XT−1 + εRT−1/2
13: RT ← R0 − 1

2ε∇U(XT−1/2)
14: return XT ,RT
15: function hmc(X (0), S, T , ε, M)
16: for s in 1, . . . , S do
17: R(s−1) ∼ Normal(0,M)
18: X ′,R′ ← leapfrog(X (s−1),R(s−1), T, ε)
19: u ∼ Uniform(0, 1)
20: if u < exp

(
−H(X ′,R′) +H(X (s−1),R(s−1))) then

21: X (s) ← X ′
22: else
23: X (s) ← X

return X (1), . . . ,X (S)

3.4.2 Implementation Considerations

Algorithm 4 shows pseudocode for an HMC algorithm that makes use
of automatic differentiation to compute the gradient ∇U(X). There are
a number of implementation considerations to this algorithm that we
have thus far not discussed. Some of these considerations are common to
all HMC implementations. Algorithm 4 performs numerical integration
using a leapfrog scheme, which discretizes the trajectory for the position
X to time points at an interval ε and computes a correponding trajectory

3.4. Hamiltonian Monte Carlo 88

for the momentum R at time points that are shifted by ε/2 relative to
those at which we compute the position. There is a trade-off between
the choice of step size ε and the numerical stability of the integration
scheme, which affects the acceptance rate. Moreover, this step size
should also appropriately account for the choice of mass matrix M ,
which is generally chosen to match the covariance in the posterior
expectation M−1

ij ' Eπ(X)[xixj]− Eπ(X)[xi]Eπ(X)[xj]. Finally, modern
implemenations of HMC typically employ a No-Uturn sampling (NUTS)
scheme to ensure that the number of time steps T is chosen in a way
that minimizes the degree of correlation between samples.

An implementation consideration unique to probabilistic program-
ming is that not all FOPPL programs define densities γ(X) = p(Y,X)
that are differentiable at all points in the space. The same is true
for systems like Stan (Stan Development Team, 2014) and PyMC3
(Salvatier et al., 2016), which opt to provide users with a relatively
expressive modeling language that includes if expressions, loops, and
even recursion. While these systems enforce the requirement that a
program defines a density over set of continuous variables that is known
at compile time, they do not enforce the requirement that the density
is differentiable. For example, the following FOPPL program would be
perfectly valid when expressed as a Stan or PyMC3 model

(let
[x (sample (normal 0.0 1.0))

y 0.5]
(if (> x 0.0)

(observe (normal 1.0 0.1) y)
(observe (normal -1.0 0.1) y)))

This program corresponds to an unnormalized density

γ(x) = Norm(0.5; 1, 0)I[x>0]Norm(0.5;−1, 0)I[x≤0]Norm(x; 0, 1),

for which the derivative is clearly undefined at x = 0, since γ(x) is
discontinuous contains at this point. This means that HMC will not
sample from the correct distribution if we were to naively compute the
derivatives at x 6= 0. Even in cases where the density is continuous, the
derivative may not be defined at every point.

3.5. Compilation to a Factor Graph 89

In other words, it is easy to define a program that may not satisfy
the requirements necessary for HMC. So what are these requirements?
Precisely characterizing them is complex although early attempts are
being made (Gram-Hansen et al., 2018). In practice, to be safe, a
program should not contain if expressions that cannot be partially
evaluated, all primitive functions must be differentiable everywhere, and
cannot contain unobserved discrete random variables.

3.5 Compilation to a Factor Graph

In Section 3.2, we showed that a Bayesian network is a representation
of a joint probability p(Y,X) of observed random variables Y , each of
which corresponds to an observe expression, and unobserved random
variables X, each of which corresponds to a sample expression. Given
this representation, we can now reason about a posterior probability
p(X |Y) of the sampled values, conditioned on the observed values. In
Section 3.2.1, we showed that we can generalize this representation to
an unnormalized density γ(X) = ψ(X)p(X) consisting of a directed
network that defines a prior probability p(X) and a potential term (or
factor) ψ(X). In this section, we will represent a probabistic program
in the FOPPL as a factor graph, which is a fully undirected network.
We will use this representation in Section 3.6 to define an expectation
propagation algorithm.

A factor graph defines an unnormalized density on a set of variables
X in terms of a product over an index set F

γ(X) :=
∏
f∈F

ψf (Xf), (3.48)

in which each function ψf , which we refer to as a factor, is itself an
unnormalized density over some subset of variables Xf ⊆ X. We can
think of this model as a bipartite graph with variable nodes X, factor
nodes F and a set of undirected edges A ⊆ X × F that indicate which
variables are associated with each factor

Xf := {x : (x, f) ∈ A}. (3.49)

Any directed graphical model (V,A,P,Y) can be interpreted as a factor
graph in which there is one factor f ∈ F for each variable v ∈ V . In

3.5. Compilation to a Factor Graph 90

ρ, c ⇓f c ρ, v ⇓f v
e1 ⇓f e′1 e2 ⇓f e′2

ρ,(let [v e1] e2) ⇓f (let [v e′1] e′2)

e ⇓f e′

ρ,(sample e) ⇓f (sample e′)

e1 ⇓f e′1 e2 ⇓f e′2
ρ,(observe e1 e2) ⇓f (observe e′1 e′2)

ρ, ei ⇓f e′i for i = 0, . . . , n ρ(f) = (defn [v1. . .vn] e0)

ρ, e0 ⇓f e′0 ρ(f ′) = (defn [v1. . .vn] e′0)

ρ,(f e1 . . . en) ⇓f (f ′ e′1 . . . e′n)

ρ, ei ⇓f e′i for i = 1, . . . , n op = if or op = c

ρ,(op e1 . . . en) ⇓f (sample (dirac (op e′1 . . . e′n)))

Figure 3.2: Inference rules for the transformation ρ, e ⇓f e
′, which replaces if forms

and primitive procedure calls with expressions of the form (sample (dirac e)).

other words we could define

γ(X) :=
∏
v∈V

ψv(Xv), (3.50)

where the factors ψv(Xv) equivalent to the expressions P(v) that eval-
uate the probability density for each variable v, which can be either
observed or unobserved,

ψv(Xv) ≡

P(v)[v := Y(v)], v ∈ dom(Y),
P(v), v 6∈ dom(Y).

(3.51)

A factor graph representation of a density is not unique. For any
factorization, we can merge two factors f and g into a new factor h

ψh(Xh) := ψf (Xf)ψg(Xg), Xh := Xf ∪Xg. (3.52)

A graph in which we replace the factors f and g with the merged factor
h is then an equivalent representation of the density. The implication
of this is that there is a choice in the level of granularity at which
we wish to represent a factor graph. The representation above has a
comparatively low level of granularity. We will here consider a more

3.5. Compilation to a Factor Graph 91

fine-grained representation, analogous to the one used in Infer.NET
(Minka et al., 2010b). In this representation, we will still have one factor
for every variable, but we will augment the set of nodes X to contain
an entry x for every deterministic expression in a FOPPL program.
We will do this by defining a source code transformation ρ, e ⇓f e′

that replaces each deterministic sub-expressions (i.e. if expressions and
primitive procedure calls) with expressions of the form

(sample (dirac e′))

Where (dirac e′) refers to the Dirac delta distribution with density

pdirac(x ; c) = I[x = c]

After this source code transformation, we can use the rules from Sec-
tion 3.1 to compile the transformed program into a directed graphical
model (V,A,P,Y). This model will be equivalent to the directed graph-
ical model of the untransformed program, but contains an additional
node for each Dirac-distributed deterministic variable.

The inference rules for the source code transformation ρ, e ⇓f e′ are
much simpler than the rules that we wrote down in Section 3.1. We
show these rules in Figure 3.2. The first two rules state that constants
c and variables v are unaffected. The next rules state that let, sample,
and observe forms are transformed by transforming each of the sub-
expressions, inserting deterministic variables where needed. User-defined
procedure calls are similarly transformed by transforming each of the
arguments e1, . . . , en, and transforming the procedure body e0. So
far, none of these rules have done anything other than state that we
transform an expression by transforming each of its sub-expressions.
The two cases where we insert Dirac-distributed variables are if forms
and primitive procedure applications. For these expression forms e, we
transform the sub-expressions to obtain a transformed expression e′

and then return the wrapped expression (sample (dirac e′)).
As noted above, a directed graphical model can always be interpreted

as a factor graph that contains single factor for each random variable. To
aid discussion in the next section, we will explicitly define the mapping
from the directed graph (V dg, Adg,Pdg,Ydg) of a transformed program

3.5. Compilation to a Factor Graph 92

onto a factor graph (X,F,A,Ψ) that defines a density of the form in
Equation 3.48.

A factor graph (X,F,A,Ψ) is a bipartite graph in which X is the set
of variable nodes, F is the set of factor nodes, A is a set of undirected
edges between variables and factors, and Ψ is a map of factors that
will be described shortly. The set of variables is identical to the set of
unobserved variables (i.e. the set of sample forms) in the corresponding
directed graph

X := Xdg = V dg \ dom(Ydg). (3.53)

We have one factor f ∈ F for every variable v ∈ V dg, which includes
both unobserved variables x ∈ Xdg, corresponding to sample expressions,
and observed variables y ∈ Y dg. We write F 1−1= V dg to signify that
there is a bijective relation between these two sets and use vf ∈ V to
refer to the variable node that corresponds to the factor f . Conversely
we use fv ∈ F to refer to the factor that corresponds to the variable
node v. We can then define the set of edges A 1−1= Adg as

A := {(v, f) : (v, vf) ∈ Adg}. (3.54)

The map Ψ contains an expression Ψ(f) for each factor, which evaluates
the potential function of the factor ψf (Xf). We define Ψ(f) in terms of
the of the corresponding expression for the conditional density Pdg(vf),

Ψ(f) :=

Pdg(vf)[vf := Ydg(vf)], vf ∈ dom(Ydg),
Pdg(vf), vf 6∈ dom(Ydg).

(3.55)

This defines the usual correspondence between ψf (Xf) and Ψ(f), where
we note that the set of variables Xf associated with each factor f is
equal to the set of variables in Ψ(f),

ψf (Xf) ≡ Ψ(f), Xf = free-vars(Ψ(f)). (3.56)

For purposes of readability, we have omitted one technical detail in this
discussion. In Section 3.2.2, we spent considerable time on techniques
for partial evaluation, which proved necessary to avoid graphs that con-
tain spurious edges for between variable that are in fact conditionally
independent. In the context of factor graphs, we can similarly eliminate

3.5. Compilation to a Factor Graph 93

unnecessary factors and variables. Factors that can be eliminated are
those in which the expression Ψ(f) either takes the form (pdirac v c) or
(pdirac c v). In such cases we remove the factor f , the node v, and substi-
tute v := c in the expressions of all other potential functions. Similarly,
we can eliminate all variables with factors of the form (pdirac v1 v2) by
substituting v1 := v2 everywhere.

To get a sense of how a factor graph differs from a directed graph, let
us look at a simple example, inspired by the TrueSkill model (Herbrich
et al., 2007). Suppose we consider a match between two players who
each have a skill variable s1 and s2. We will assume that the player 1
beats player 2 when (s1− s2) > ε, which is to say that the skill of player
1 exceeds the skill of player 2 by some margin ε. Now suppose that we
define a prior over the skill of each player and observe that player 1
beats player 2. Can we reason about the posterior on the skills s1 and
s2? We can translate this problem to the following FOPPL program

(let [s1 (normal 0 1.0)
s2 (normal 0 1.0)
delta (- s1 s2)
epsilon 0.1
w (> delta epsilon)
y true]

(observe (dirac w) y)
[s1 s2])

This program differs from the ones we have considered so far in that
we are using a Dirac delta to enforce a hard constraint on observations,
which means that this program defines an unnormalized density

γ(s1, s2) =
(
pnorm(s1; 0, 1) pnorm(s2; 0, 1)

)I[(s1−s2)>ε]
. (3.57)

This type of hard constraint poses problems for many inference al-
gorithms for directed graphical models. For example, in HMC this
introduces a discontinuity in the density function. However, as we will
see in the next section, inference methods based on message passing are
much better equipped to deal with this form of condition.

When we compile the program above to a factor graph we obtain a

3.6. Expectation Propagation 94

set of variables X = (s1, s2, δ, w) and the map of potentials

Ψ =

fs1 7→ (pnorm s1 0.0 1.0),

fs2 7→ (pnorm s2 0.0 1.0),

fδ 7→ (pdirac δ (- s1 s2)),

fw 7→ (pdirac w (> δ 0.1)),

fy 7→ (pdirac true w)

. (3.58)

Note here that the variables s1 and s2 would also be present in the
directed graph corresponding to the unstransformed program. The
deterministic variables δ and w have been added as a result of the
transformation in Figure 3.2. Since the factor fy restricts w to the value
true, we can eliminate fy from the set of factors and w from the set of
varables. This results in a simplified graph where X = (s1, s2, δ) and
the potentials

Ψ =

fs1 7→ (pnorm 0.0 1.0),

fs2 7→ (pnorm 0.0 1.0),

fδ 7→ (pdirac δ (- s1 s2)),

fw 7→ (pdirac true (> δ 0.1))

 . (3.59)

In summary, we have now created an undirected graphical model,
in which there is deterministic variable node x ∈ X for all primitive
operations such as (> v1 v2) or (- v1 v2). In the next section, we will
see how this representation helps us when performing inference.

3.6 Expectation Propagation

One of the main advantages in representing a probabilistic program as
a factor graph is that we can perform inference with message passing
algorithms. As an example of this we will consider expectation propa-
gation (EP), which forms the basis of the runtime of Infer.NET (Minka
et al., 2010b), a popular probabilistic programming language.

EP considers an unnormalized density γ(X) that is defined in terms
of a factor graph (X,F,A,Ψ). As noted in the preceding section, a
factor graph defines a density as a product over an index set F

π(X) := γ(X)/Zπ, γ(X) :=
∏
f∈F

ψf (Xf). (3.60)

3.6. Expectation Propagation 95

We approximate π(X) with a distribution q(X) that is similarly defined
as a product over factors

q(X) := 1
Zq

∏
f∈F

φf (Xf). (3.61)

The objective in EP is to make q(X) as similar as possible to π(X) by
minimizing the Kullback-Leibler divergence

argmin
q

DKL (π(X) || q(X)) = argmin
q

∫
π(X) log π(X)

q(X) dX, (3.62)

EP algorithms minimize the KL divergence iteratively by updating one
factor φf at a time

• Define a tilted distribution

πf (X) := γf (X)/Zf , γf (X) := ψf (Xf)
φf (Xf) q(X). (3.63)

• Update the factor by minimizing the KL divergence

φf = argmin
φf

DKL (πf (X) || q(X)) . (3.64)

In order to ensure that the KL minimization step is tractable, EP
methods rely on the properties of exponential family distributions. We
will here consider the variant of EP that is implemented in Infer.NET,
which assumes a fully-factorized form for each of the factors in q(X)

φf (Xf) :=
∏
x∈Xf

φf→x(x). (3.65)

We refer to the potential φf→x(x) as the message from factor f to the
variable x. We assume that messages have an exponential form

φf→x(x) = exp[λ>f→xt(x)], (3.66)

in which λf→x is the vector of natural parameters and t(x) is the vector
of sufficient statistics of an exponential family distribution. We can then
express the marginal q(x) as an exponential family distribution

q(x) = 1
Zqx

∏
f :x∈Vf

φf→x(x),

= h(x) exp (λxt(x)− a(λx)) ,
(3.67)

3.6. Expectation Propagation 96

where a(λx) is the log normalizer of the exponential family and λx is
the sum over the parameters for individual messages

λx =
∑

f :x∈Xf

λf→x. (3.68)

Note that we can express the normalizing constant Zq as a product
over per-variable normalizing constants Zqx,

Zq :=
∏
x∈X

Zqx, Zqx :=
∫
dx

∏
f :x∈Xf

φf→x(x), (3.69)

where we can compute Zqx in terms of λx using

Zqx = exp (a(λx)) = exp
(
a
(∑

f :x∈Xf
λf→x

))
. (3.70)

Exponential family distributions have many useful properties. One such
property is that expected values of the sufficient statistics t(x) can be
computed from the gradient of the log normalizer

∇λxa(λx) = Eq(x)[t(x)]. (3.71)

In the context of EP, this property allows us to express KL minimization
as a so-called moment-matching condition. To explain what we mean
by this, we will expand the KL divergence

DKL (πf (X) || q(X)) = log Z
q

Zf
+ Eπf (X)

[
log ψf (Xf)

φf (Xf)

]
. (3.72)

We now want to minimize this KL divergence with respect the param-
eters λf→v. When we ignore all terms that do not depend on these
parameters, we obtain

∇λf→x
DKL (πf (X) || q(X)) =

∇λf→x

(
logZqx − Eπf (X)[log φf→x(x)]

)
= 0.

When we substitute the message φf→x(x) from Equation 3.66, the nor-
malizing constant Zqx(λx) from Equation 3.70, and apply Equation 3.71,
then we obtain the moment matching condition

Eq(x)[t(x)] = ∇λf→x
Eπf (X)[log φf→x(x)],

= ∇λf→x
Eπf (X)[λ>f→xt(x)], (3.73)

= Eπf (X)[t(x)].

3.6. Expectation Propagation 97

Algorithm 5 Fully-factorized Expectation Propagation
1: function proj(G,λ, f)
2: X,F,A,Ψ← G

3: γf (X)← ψf (X)q(X)/φf (X) . Equation (3.63)
4: Zf ←

∫
dX γf (X) . Equation (3.75)

5: for x in Xf do
6: t̄← 1/Zf

∫
dX γf (X)t(x) . Equation (3.77)

7: λ∗x ← moment-match(t̄) . Equation (3.73)
8: λf→x ← λ∗x −

∑
f ′ 6=f :x∈Xf ′

λf ′→x . Equation (3.74)

9: return λ, logZf
10: function ep(G)
11: X,F,A,Ψ← G

12: λ← initialize-parameters(G)
13: for f in schedule(G) do
14: λ, logZf ← proj(G,λ, f)
15: for x in X do
16: logZqx ← a(λx) . Equation (3.70)
17: logZπ ←

∑
f logZf +

∑
x logZqx . Equation (3.78)

18: return λ, logZπ

If we assume that the parameters λ∗x satisfy the condition above, then
we can use Equation 3.68 to define the update for the message φf→x

λf→x ← λ∗x −
∑

f ′ 6=f :x∈Xf ′

λf ′→x. (3.74)

In order to implement the moment matching step, we have to solve
two integrals. The first computes the normalizing constant Zf . We can
express this integral, which is nominally an integral over all variables
X, as an integral over the variables Xf associated with the factor f ,

Zf =
∫
dX

ψf (Xf)
φf (Xf) q(X) =

∫
dXf

ψf (Xf)
φf (Xf)

∏
x∈Xf

1
Zqx

∏
f ′ :x∈Vf ′

φf ′→x(x),

=
∫
dXf ψf (Xf)

∏
x∈Xf

1
Zqx
φx→f (x). (3.75)

3.6. Expectation Propagation 98

Here, the function φx→f (x) is known as the message from the variable
v to the factor f , which is defined as

φx→f (x) :=
∏
x∈Xf

∏
f ′ 6=f :x∈Xf ′

φf ′→x(x). (3.76)

These messages can also be used to compute the second set of integrals
for the sufficient statistics

t̄ = Eπf (V)[t(v)] = 1
Zf

∫
dVf t(x)ψf (Xf)

∏
x∈Xf

1
Zqx
φx→f (x). (3.77)

Algorithm 5 summarizes these computations. We begin by initial-
izing parameter values for each of the messages. We then pick factors
f to update according to some schedule. For each update we then
compute Zf . For each each x ∈ Xf we then compute t̄, find the the
parameters λ∗x that satisfy the moment-matching condition and then use
these parameters to update parameters λf→x. Finally, we note that EP
obtains an approximation to the normalizing constant Zπ for the full
unnormalized distribution π(X) = γ(X)/Zπ. This approximation can
be computed from the normalizing constants of the tilted distributions
Zf and the normalizing constants Zqx,

Zπ '
∏
f∈F

Zf
∏
x∈X

Zqx. (3.78)

3.6.1 Implementation Considerations

There are a number of important considerations when using EP for
probabilistic programming in practice. The type of schedule implemented
by the function schedule(G) is perhaps the most important design
consideration. In general, EP updates are not guaranteed to converge
to a fixed point, and choosing a schedule that is close to optimal is an
open problem. In fact, a large proportion of the development effort for
Infer.NET (Minka et al., 2010b) has focused on identifying heuristic for
choosing this schedule.

As with HMC, there are also restrictions to the types of programs
that are amenable to inference with EP. To perform EP, a FOPPL
program needs to satisfy the following requirements

3.6. Expectation Propagation 99

1. We need to be able to associate an exponential family distribution
with each variable x in the program.

2. For every factor f , we need to be able to compute the integral for
Zf in Equation (3.75).

3. For every message φf→x(x), we need to be able to compute the
sufficient statistics t̄ in Equation (3.77).

The first requirement is relatively easy to satisfy. The exponential
family includes the Gaussian, Gamma, Discrete, Poisson, and Dirichlet
distributions, which covers the cases of real-valued, positive-definite,
discrete with finite cardinality and discrete with infinite cardinality.

The second and third requirement impose more substantial restric-
tions on the program. To get a clearer sense of these requirements, let
us return to the example that we looked at in Section 3.5
(let [s1 (normal 0 1.0)

s2 (normal 0 1.0)
delta (- s1 s2)
epsilon 0.1
w (> delta epsilon)
y true]

(observe (dirac w) y)
[s1 s2])

After elimination of unnecessary factors and variables, this program
defines a model with variables X = (s1, s2, δ) and potentials

Ψ =

f1 7→ (pnorm 0.0 1.0),

f2 7→ (pnorm 0.0 1.0),

f3 7→ (pdirac δ (- s1 s2)),

f4 7→ (pdirac true (> δ 0.1))

 . (3.79)

In fully-factorized EP, we assume an exponential family form for each of
the variables s1, s2 and d12. The obvious choice here is to approximate
each variable with an unnormalized Gaussian, for which the sufficient
statistics are t(x) = (x2, x). The Gaussian marginals q(s1), q(s2) and
q(d12) will then approximate the the corresponding marginals π(s1),
π(s2), and π(d12) of the target density.

3.6. Expectation Propagation 100

Let us now consider what operations we need to implement to
compute the integrals in Equation (3.75) and Equation (3.77). We will
start with the case of the integral for Zf when updating the factor f3,

Zf = 1
Zqs1Z

q
s2Z

q
δ

∫
ds1 ds2 dδ I[δ = s1 − s2]

φs1→f3(s1)φs2→f3(s2)φδ→f3(δ).
(3.80)

We can the substitute δ := s1 − s2 to eliminate δ, which yields an
integral over s1 and s2

Zf = 1
Zqs1Z

q
s2Z

q
δ

∫
ds1 ds2 φs1→f3(s1)φs2→f3(s2)φδ→f3(s1 − s2).

Each of the messages is an unnormalized Gaussian, so this is an integral
over a product of 3 Gaussians, which we can compute in closed form.

Now let us consider the case of the update for factor f4. For this
factor the integral for Zf takes the form

Zf = 1
Zqδ

∫ ∞
−∞

dδ I[δ > 0.1] φδ→f4(δ),

= 1
Zqδ

∫ ∞
0.1
dδ φδ→f4(δ).

(3.81)

This is just an integral over a truncated Gaussian, which is also some-
thing that we can approximate numerically.

We now also see why it is advantageous to introduce a factor for
each primitive operation. In the case above, if we were to combine the
factors f3 and f4 into a single factor, then we would obtain the integral

Zf = 1
Zqs1Z

q
s2

∫
ds1 ds2I[s1 − s2 > 0.1]

φs1→f3+4(s1)φs2→f3+4(s2).
(3.82)

Integrals involving constraints over multiple deterministic operations
will be much harder to compute in an automated manner than inte-
grals involving constraints over atomic operations. Representing each
deterministic operation as a separate factors avoids this problem.

To provide a full implementation of EP for the FOPPL, we need to
be able to solve the integral for Zf in Equation (3.75) and the integrals

3.6. Expectation Propagation 101

for the sufficient statistics in Equation (3.77) for each potential type.
This requirement imposes certain constraints on the programs we can
write. The cases that we have to consider are stochastic factors (sample
and observe expressions) and deterministic factors (if expressions and
primitive procedure calls).

For sample and observe expressions, potentials have the form Ψ(f) =
(p v0 v1 . . . vn) and Ψ(f) = (p c0 v1 . . . vn) respectively. For these
potentials, we have to integrate over products of densities, which can in
general be done only for a limited number of cases, such as conjugate
prior and likelihood pairs. This means that the exponential family that
is chosen for the messages needs to be compatible with the densities in
sample and observe expressions.

Deterministic factors take the form (pdirac v0 E) where E is an
expression in which all sub-expressions are variable references,
E ::= (if v1 v2 v3) | (c v1 . . . vn)

For if expressions (if v1 v2 v3), it is advantageous to employ contructs
known as gates (Minka and Winn, 2009), which treat the if block as a
mixture over two distributions and propagate messages by computing
expected values of over the indicator variable accordingly.

In the case of primitive procedure calls, we need to provide imple-
mentations of the integrals that only depend on the primitive c, but
also on the type of exponential family that is used for the messages v1
through vn. For example, if we consider the expression (- v1 v2), then
our implementation for the integrals will be different when v1 and v2
are both Gaussian, both Gamma-distributed, or when one variable is
Gaussian distributed and the other is Gamma-distributed.

4
Evaluation-Based Inference I

In the previous chapter, our inference algorithms operated on a graph
representation of a probabilistic model, which we created through a
compilation of a program in our first-order probabilistic programming
language. Like any compilation step, the construction of this graph is
performed ahead of time, prior to running inference. We refer to graphs
that can be constructed at compile time as having static support.

There are many models in which the graph of conditional depen-
dencies is dynamic, in the sense that it cannot be constructed prior
to performing inference. One way that such graphs arise is when the
number of random variables is itself not known at compile time. For
example, in a model that performs object tracking, we may not know
how many objects will appear, or for how long they will be in the field of
view. We will refer to these types of models as having dynamic support.

There are two basic strategies that we can employ to represent
models with dynamic support. One strategy is to introduce an upper
bound on the number of random variables. For example, we can specify
a maximum number of objects that can be tracked at any one time.
When employing this type of modeling strategy, we additionally need
to specify which variables are needed at any one time. For example, if

102

103

we had random variables corresponding to the position of each possible
object, then we would have to introduce auxiliary variables to indicate
which objects are in view. This process of "switching" random variables
"on" and "off" allows us to approximate what is fundamentally a dynamic
problem with a static one.

The second is strategy is to implement inference methods that
dynamically instantiate random variables. For example, at each time
step an inference algorithm could decide whether there are any new
objects have appeared in the field of view, and then create random
variables for the position of these objects as needed. A particular strategy
for dynamic instantiation of variables is to generate values for variables
by simply running a program. We refer to such strategies as evaluation-
based inference methods.

Evaluation-based methods differ from their compilation-based coun-
terparts in that they do not require a representation of the dependency
graph to be known prior to execution. Rather, the graph is either built
up dynamically at run time, or never explicitly constructed at all. This
means that many evaluation-based strategies can be applied to mod-
els that can in principle instantiate an unbounded number of random
variables.

One of the main things we will change in evaluation-based methods is
how we deal with if-expressions. In the previous chapter we realized that
if-expressions require special consideration in probabilistic programs.
The question that we identified was whether lazy or eager evaluation
should be used in if expressions that contain sample and/or observe
expressions. We showed that lazy evaluation is necessary for observe
expressions, since these expressions affect the posterior distribution on
the program output. However, for sample expressions, we have a choice
between evaluation strategies, since we can always treat variables in
unused branches as auxiliary variables. Because lazy evaluation makes
it difficult to characterize the support, we adopted an eager evaluation
strategy, in which both branches of each if expression are evaluated, but
a symbolic flow control predicate determines when observe expressions
need to be incorporated into the likelihood.

In practice, this eager evaluation strategy for if expressions has its
limitations. The language that we introduced in chapter 2 was carefully

104

designed to ensure that programs always evaluate a bounded set of
sample and observe expressions. Because of this, programs that are
written in the FOPPL can be safely eagerly evaluated. It is very easy
to create a language in which this is no longer the case. For example, if
we simply allow function definitions to be recursive, then we can now
write programs such as this one

(defn sample-geometric [alpha]
(if (= (sample (bernoulli alpha)) 1)

1
(+ 1 (sample-geometric p))))

(let [alpha (sample (uniform 0 1))
k (sample-geometric alpha)]

(observe (poisson k) 15)
alpha)

In this program, the recursive function sample-geometric defines the
functional programming equivalent of a while loop. At each iteration,
the function samples from a Bernoulli distribution, returning 1 when
the sampled value is 1 and recursively calling itself when the value is 0.
Eager evaluation of if expressions would result in an infinite recursion
for this program, so the compilation strategy that we developed in
the previous chapter would clearly fail here. This makes sense, since
the expression (sample (bernoulli p)) can in principle be evaluated
an unbounded number of times, implying that the number of random
variables in the graph is unbounded as well.

Even though we can no longer compile the program above to a
static graph, it turns out that we can still perform inference in order
to characterize the posterior on the program output. To do so, we
rely on the fact that we can always simply run a program (using lazy
evaluation for if expressions) to generate a sample from the prior. In
other words, even though we might not be able to characterize the
support of a probabilistic program, we can still generate a sample
that, by construction, is guaranteed to be part of the support. If we
additionally keep track of the probabilities associated with each of
the observe expressions that is evaluated in a program, then we can
implement sampling algorithms that either evaluate an Metropolis-

4.1. Likelihood Weighting 105

Hastings acceptance ratio, or assuming an importance weight to each
sample.

While many evaluation-based methods in principle apply to models
with unbounded numbers of variables, there are in practice some sub-
tleties that arise when reasoning about such inference methods. In this
chaper, we will therefore assume that programs are defined using the
first order language form Chapter 2, but that a lazy evaluation strategy
is used for if expressions. Evaluation-based methods for these programs
are still easier to reason about, since we know that there is some finite
set of sample and observe expressions that can be evaluated. In the
next chapter, we will discuss implementation issues that arise when
probabilistic programs can have unbounded numbers of variables.

4.1 Likelihood Weighting

Arguably the simplest evaluation-based method is likelihood weighting,
which is a form of importance sampling in which the proposal is the prior.
In order to see how importance sampling methods can be implemented
using evaluation-based strategies, we will first discuss what operations
need to be performed in importance sampling. We then briefly discuss
how we could implement likelihood weighting for a program that has
been compiled to a graphical model. We will then move on to discussing
how we can implement importance sampling by repeatedly running the
program.

4.1.1 Background: Importance Sampling

Like any Monte Carlo technique, importance sampling methods ap-
proximates the posterior distribution p(X|Y) with a set of (weighted)
samples. The trick that importance sampling methods rely upon is that
we can replace an expectation over p(X|Y), which is generally hard to
sample from, with an expectation over a proposal distribution q(X),

4.1. Likelihood Weighting 106

which is chosen to be easy to sample from

Ep(X|Y)[r(X)] =
∫
dX p(X|Y)r(X),

=
∫
dX q(X)p(X|Y)

q(X) r(X) = Eq(X)

[
p(X|Y)
q(X) r(X)

]
.

The above equality holds as long as p(X|Y) is absolutely continuous
with respect to q(X), which informally means that if according to
p(X|Y), the random variable X has a non-zero probability of being in
some set A, then q(X) assigns a non-zero probability to X being in the
same set. If we draw samples X l ∼ q(X) and define importance weights
wl := p(X l|Y)/q(X l) then we can express our Monte Carlo estimate as
an average over weighted samples {(wl, X l)}Ll=1,

Eq(X)

[
p(X|Y)
q(X) r(X)

]
' 1
L

L∑
l=1

wlr(X l).

Unfortunately, we cannot calculate the importance ratio p(X|Y)/q(X).
This requires evaluating the posterior p(X|Y), which is what we did
not know how to do in the first place. However, we are able to evaluate
the joint p(Y,X), which allows us to define an unnormalized weight,

W l := p(Y,X l)
q(X l) = p(Y) wl. (4.1)

If we substitute p(X|Y) = p(Y,X)/p(Y) then we can re-express the
expectation over q(X) in terms of the unnormalized weights,

Eq(X)

[
p(X|Y)
q(X) r(X)

]
= 1
p(Y)Eq(X)

[
p(Y,X)
q(X) r(X)

]
, (4.2)

' 1
p(Y)

1
L

L∑
l=1

W lr(X l), (4.3)

This solves one problem, since the unnormalized weights W l are quan-
tities that we can calculate directly, unlike the normalized weights wl.
However, we now have a new problem: We also don’t know how to
calculate the normalization constant p(Y). Thankfully, we can derive
an approximation to p(Y) using the same unnormalized weights W l by

4.1. Likelihood Weighting 107

considering the special case r(X) = 1,

p(Y) = Eq(X)

[
p(Y,X)
q(X) 1

]
' 1
L

L∑
l=1

W l. (4.4)

In other words, if we define Ẑ := 1
L

∑L
l=1W

l as the average of the
unnormalized weights, then Ẑ is an unbiased estimate of the marginal
likelihood p(Y) = E[Ẑ]. We can now use this estimate to approximate
the normalization term in Equation (4.3),

Eq(X)

[
p(X|Y)
q(X) r(X)

]
' 1
p(Y)

1
L

L∑
l=1

W lr(X l), (4.5)

' 1
Ẑ

1
L

L∑
l=1

W lr(X l) =
L∑
l=1

W l∑
kW

k
r(X l). (4.6)

To summarize, as long as we can evaluate the joint p(Y,X l) for a
sample X l ∼ q(X), then we can perform importance sampling using
unnormalized weights W l. As a bonus, we obtain an estimate Ẑ ' p(Y)
of the marginal likelihood as a by-product of this computation, a number
which turns out to be of practical importance for many reasons, not
least because it allows for Bayesian model comparison (Rasmussen and
Ghahramani, 2001).

We have played a little fast and loose with notation here with
the aim of greater readability. Throughout we have focused on the
fact that a FOPPL program represents a marginal projection of the
posterior distribution, but in the above we temporarily pretended that
a FOPPL program represented the full posterior distribution on X. It
is entirely correct and acceptable to reread the above with r(X) being
the return value projection of X. The most important fact that we have
skipped in this entire work up until now is that this posterior marginal
will almost always be used in an outer host program to compute an
expectation, say of a test function f applied to the posterior distribution
of the return value r(X). Note that no matter what the test function
is, Ep(X|Y)[f(r(X))] ≈

∑L
l=1wkf(r(X l)) meaning that {(wl, r(X l))}Ll=1

is the a weighted sample-based posterior marginal representation that
can be used to approximate any expectation.

4.1. Likelihood Weighting 108

Likelihood weighting is a special case of importance sampling, in
which we use the prior as the proposal distribtion, i.e. q(X) = p(X).
The reason this strategy is known as likelihood weighting is that unnor-
malized weight evaluates to the likelihood when X l ∼ p(X),

W l = p(Y,X l)
q(X l) = p(Y |X l)p(X l)

p(X l) = p(Y |X l). (4.7)

4.1.2 Graph-based Implementation

Suppose that we compiled our program to a graphical model as described
in Section 3.1. We could then implement likelihood weighting using the
following steps:

1. For each x ∈ X: sample from the prior xl ∼ p(x |pa(x)).

2. For each y ∈ Y : calculate the weights W l
y = p(y |pa(y)).

3. Return the weighted set of return values r(X l)
L∑
l=1

W l∑L
k=1W

k
δr(Xl),W

l :=
∏
y∈Y

W l
y.

where δx denotes an atomic mass centered on x.
Sampling from the prior for each x ∈ X is more or less trivial. The

only thing we need to make sure of is that we sample all parents pa(x)
before sampling x, which is to say that we need to loop over nodes
x ∈ X according to their topological order. As described in Section 3.2,
the termsW l

y can be calculated by simply evaluating the target language
expression P(y)[y := Y(y)], substituting the sampled value xl for each
x ∈ pa(y).

4.1.3 Evaluation-based Implementation

So how can we implement this same algorithm using an evaluation-based
strategy? The basic idea in this implementation will be that we can
generate samples by simply running the program. More precisely, we will
sample a value x ∼ d whenever we encounter an expression (sample d).
By definition, this will generate samples from the prior. We can then

4.1. Likelihood Weighting 109

Algorithm 6 Base cases for evaluation of a FOPPL program.
1: global ρ . Procedure definitions
2: function eval(e, σ, `)
3: match e

4: case (sample d)
5: Algorithm-specific
6: case (observe d y)
7: Algorithm-specific
8: case c
9: return c, σ

10: case v
11: return `(v), σ
12: case (let [v1 e1] e0)
13: c1, σ ← eval(e1, σ, `)
14: return eval(e0, σ `[v1 7→ c1])
15: case (if e1 e2 e3)
16: e′1, σ ← eval(e1, σ, `)
17: if e′1 then
18: return eval(e2, σ, `)
19: else
20: return eval(e3, σ, `)
21: case (e0 e1 . . . en)
22: for i in 1, . . . , n do
23: ci, σ ← eval(ei, σ, `)
24: match e0
25: case f
26: (v1, . . . , vn), e′0 ← ρ(f)
27: return eval(e′0, σ, `[v1 7→ c1, . . . , vn 7→ cn])
28: case c
29: return c(c1, . . . , cn), σ
Constants c are returned as is. Symbols v return a constant from the
local environment `. When evaluating the body e0 of a let form or a
procedure f , free variables are bound in `. Evaluation of if expressions
is lazy. The sample and observe cases are algorithm-specific.

4.1. Likelihood Weighting 110

calculate the likelihood as a side-effect of running the program. To do so,
we initalize a state variable σ with a single entry logW = 0, which tracks
the log of the unnormalized importance weight. Each time we encounter
an expression (observe d y), we calculate the log likelihood log pd(y)
and update the log weight to logW ← logW + log pd(y), ensuring that
logW = log p(Y |X) at the end of the execution.

In order to define this method more formally, let us specify what we
mean by “running” the program. In Chapter 2, we defined a program q

in the FOPPL as
q ::= e | (defn f [x1 . . . xn] e) q

In this definition, a program is a single expression e, which evaluates to
a return value r, which is optionally preceded by one or more definitions
for procedures that may be used in the program. Our language contained
eight expression types
e ::= c | v | (let [v e1] e2) | (if e1 e2 e3)

| (f e1 . . . en) | (c e1 . . . en)
| (sample e) | (observe e1 e2)

Here we used c to refer to a constant or primitive operation in the
language, v to refer to a program variable, and f to refer to a user-
defined procedure.

In order to “run” a FOPPL program, we will define a function that
evaluates an expression e to a value c. We can define this function
recursively; if we want to evaluate the expression (+ (* 2 3) (* 4 5))
then we would first recursively evaluate the sub-expressions (* 2 3) and
(* 4 5). We then obtain values 6 and 20 that can be used to perform
the function call (+ 6 20). As long as our evaluation function knows
how to recursively evaluate each of the eight expression forms above,
then we can use this function to evaluate any program written in the
FOPPL.

Algorithm 6 shows pseudo-code for a function eval(e, σ, `) that
implements evaluation of each of the non-probabilistic expression forms
in the FOPPL (that is, all forms except sample and observe). The
arguments to this function are an expression e, a mapping of inference
state variables σ and a mapping of local variables `, which we refer to
as the local environment. The map σ allows us to store variables needed

4.1. Likelihood Weighting 111

for inference, which are computed as a side-effect of the computation.
The map ` holds the local variables that are bound in let forms and
procedure calls. As in Section 3.1, we also assume a mapping ρ, which
we refer to as the global environment. For each procedure f the global
environment holds a pair ρ(f) = ([v1, . . . , vn], e0) consisting of the
argument variables and the body of the procedure.

In the function eval(e, σ, `), we use thematch statement to pattern-
match (Wikipedia contributors, 2018) the expression e against each of
the 6 non-probabilistic expression forms. These forms are then evaluated
as follows:

• Constant values c are returned as is.

• For program variables v, the evaluator returns the value `(v) that
is stored in the local environment.

• For let forms (let [v1 e1] e0), we first evaluate e1 to obtain a
value c1. We then evaluate the body e0 relative to the extended
environment `[v1 7→ c1]. This ensures that every reference to v1
in e0 will evaluate to c1.

• For if forms (if e1 e2 e3), we first evaluate the predicate e1 to a
value c1. If c1 is logically true, then we evaluate the expression for
the consequent branch e2; otherwise we evaluate the alternative
branch e3. Since we only evaluate one of the two branches, this
implements a lazy evaluation strategy for if expressions.

• For procedure calls (f e1 . . . en), we first evaluate each of the
arguments to values c1, . . . , cn. We then retrieve the argument list
[v1, . . . , vn] and the procedure body e0 from the global environment
ρ. As with let forms, we then evaluate the body e0 relative to an
extended environment `[v1 7→ c1, . . . , vn 7→ cn].

• For primitive calls (c0 e1 . . . en), we similarly evaluate each of
the arguments to values c1, . . . , cn. We assume that the primitive
c0 is a function that can be called in the language that implements
eval. The value of the expression is therefore simply the value of
the function call c0(c1, . . . , cn).

4.1. Likelihood Weighting 112

The pseudo-code in Algorithm 6 is remarkably succinct given that
this function can evaluate any non-probabilistic program in our first
order language. Of course, we are hiding a little bit of complexity.
Each of the cases in matches against a particular expression template.
Implementing these matching operations can require a bit of extra code.
That said, you can write your own LISP interpreter, inclusive of the
parser, in about 100 lines of Python (Norvig, 2010).

Now that we have formalized how to evaluate non-probabilistic
expressions, it remains to define evaluation for sample and observe forms.
As we described at a high level, these evaluation rules are algorithm-
dependent. For likelihood weighting, we want to draw from the prior
when evaluating sample expressions and update the importance weight
when evaluting observe expressions. In Algorithm 7 we show pseudo-
code for an implementation of these operations. We assume a variable
logW , that holds the log importance weight.

Sample and observe are now implemented as follows:

• For sample forms (sample e), we first evaluate the distribution ar-
gument e to obtain a distribution value d. We then call sample(d)
to generative a sample from this distribution. Here sample is a
function in the language that implements the evaluator, which
needs to be able to generate samples of each distribution type in
the FOPPL (in other words, we can think of sample as a required
method for each type of distribution object).

• For observe forms (observe e1 e2) we first evaluate the argument
e1 to a distribution d1 and the argument e2 to a value c2. We
then update a variable σ(logW), which is stored in the inference
state, by adding log-prob(d1, c2), which is the log likelihood of
c2 under the distribution d1. Finally we return c2. The function
log-prob similarly needs to be able to compute log probability
densities for each distribution type in the FOPPL.

Given a program with procedure definitions ρ and body e, the like-
lihood weighting algorithm repeatedly evaluates the program, starting
from an initial state σ ← [logW → 0]. It returns the value rl and the
final log weight σ(logW l) for each execution.

4.1. Likelihood Weighting 113

Algorithm 7 Evaluation-based likelihood weighting
1: global ρ, e . Program procedures, body
2: function eval(e, σ, `)
3: match e

4: case (sample e)
5: d, σ ← eval(e, σ, `)
6: return sample(d), σ
7: case (observe e1 e2)
8: d1, σ ← eval(e1, σ, `)
9: c2, σ ← eval(e2, σ, `)

10: σ(logW)← σ(logW)+ log-prob(d1, c2)
11: return c2, σ
12: Base cases (as in Algorithm 6)
13: function likelihood-weighting(L)
14: σ ← [logW 7→ 0]
15: for l in 1, . . . , L do . Initialize state
16: rl, σl ← eval(e, σ, []) . Run program
17: logW l ← σ(logW) . Store log weight
18: return ((r1, logW 1), . . . , (rL, logWL))

To summarize, we have now defined an evaluated-based inference
algorithm that applies generally to probabilistic programs written in
the FOPPL. This algorithm generates a sequence of weighted samples
by simply running the program repeatedly. Unlike the algorithms that
we defined in the previous chapter, this algorithm does not require
any explicit representation of the graph of conditional dependencies
between variables. In fact, this implementation of likelihood weighting
does not even track how many sample and observe statements a program
evaluates. Instead, it draws from the prior as needed and accumulates
log probabilities when evaluating observe expressions.

Aside 1: Relationship between Evaluation and Inference Rules

In order to evaluate an expression e, we first evaluate its sub-expressions
and then compute the value of the expression from the values of the

4.1. Likelihood Weighting 114

sub-expressions. In Section 3.1 we implicitly followed the same pattern
when defining inference rules for our translation. For example, the rule
for translation of a primitive call was

ρ, φ, ei ⇓ Gi, Ei for all 1 ≤ i ≤ n
ρ, φ, (f e1 . . . en) ⇓ G1 ⊕ . . .⊕Gn, (c E1 . . . En)

This rule states that if we were implementing a function translate
then translate(ρ, φ, e) should perform the following steps when e is
of the form (f e1 . . . en):

1. Recursively call translate(ρ, φ, ei) to obtain a pair Gi, Ei for
each of the sub-expresions e1, . . . , en.

2. Merge the graphs G← G1 ⊕ . . .⊕Gn

3. Construct an expression E ← (c E1 . . . En)

4. Return the pair G,E

In other words, inference rules do not only formally specify how our
translation should behave, but also give us a recipe for how to implement
a recursive translate operation for each expression type.

This similarity is not an accident. In fact, inference rules are com-
monly used to specify the big-step semantics of a programming language,
which defines the value of each expression in terms of the values of
its sub-expressions. We can similarly use inference rules to define our
evaluation-based likelihood weighting method. We show these inference
rules in Figure 4.1.

Aside 2: Side Effects and Referential Transparency

The implementation in Algorithm 7 highlights a fundamental distinction
between sample and observe forms relative to the non-probabilistic
expression types in the FOPPL. If we do not include sample and observe
in our syntax, then our first order language is not only deterministic,
but it is also pure in a functional sense. In a purely functional language,
there are no side effects. This means that every expression e will always
evaluate to the same value. An implication of this is that any expression

4.1. Likelihood Weighting 115

ρ, `, c ⇓ c, 0
`(v) = c

ρ, `, v ⇓ c
ρ, `, e1 ⇓ c1, l1 ρ, `⊕ [v1 7→ c1], e0 ⇓ c0, l0

ρ, `,(let [v1 e1] e0) ⇓ c0, l0 + l1

ρ, `, e1 ⇓ true, l1
ρ, `, e2 ⇓ c2, l2

ρ, `,(if e1 e2 e3) ⇓ c2, l1 + l2

ρ, `, e1 ⇓ false, l1
ρ, `, e3 ⇓ c3, l3

ρ, `,(if e1 e2 e3) ⇓ c3, l1 + l3

ρ(f) = [v1, . . . , vn], e0 ρ, `, ei ⇓ ci, li for i = 1, . . . , n
ρ, `⊕ [v1 7→ c1, . . . , vn 7→ cn], e0 ⇓ c0, l0

ρ, `,(f e1 . . . en) ⇓ c0, l0 + l1 + . . .+ ln

ρ, `, ei ⇓ ci, li for i = 1, . . . , n c(c1, . . . , cn) = c0

ρ, `,(c e1 . . . en) ⇓ c0, l1 + . . .+ ln

ρ, `, e ⇓ d, l c ∼ d
ρ, `,(sample e) ⇓ c, l

ρ, `, e1 ⇓ d1, l1 ρ, `, e2 ⇓ c2, l2 log pd1(c2) = l0

ρ, `,(observe e1 e2) ⇓ c2, l0 + l1 + l2

Figure 4.1: Big-step semantics for likelihood weighting. These rules define an
evaluation operation ρ, `, e ⇓ c, l, in which ρ and ` refers to the global and local
environment, refers to the local environment, e is an expression, c is the value of the
expression and l is its log likelihood.

in a program can be replaced with its corresponding value without
affecting the behavior of the rest of the program. We refer to expressions
with this property as referentially transparent, and expressions that
lack this property as referentially opaque.

Once we incorporate sample and observe into our language, our lan-
guage is no longer functionally pure, in the sense that not all expressions
are referentially transparent. In our implementation in Algorithm 7, a
sample expression does not always evaluate to the same value and is
therefore referentially opaque. By extension, any expression containing
a sample form as a sub-expression is also opaque. An observe expression
(observe e1 e2) always evaluates to the same value as long as e2 is
referentially transparent. However observe expressions have a side effect,
which is that they increment the log weight stored in the inference
state σ(logW). If we replaced an observe form (observe e1 e2) with

4.2. Metropolis-Hastings 116

the expression for its observed value e2, then the program would still
produce the same distribution on return values when sampling from the
prior, but the log weight σ(logW) would be 0 after every execution.

The distinction between referentially transparent and opaque expres-
sions also implicitly showed up in our compilation procedure in Section
3.1. Here we translated an opaque program into a set of target-language
expressions for conditional probabilities, which were referentially trans-
parent. In these target-language expressions, each sub-expression cor-
responding to sample or observe was replaced with a free variable v.
If a translated expression has no free variables, then the original un-
translated expression is referentially transparent. In Section 3.2.2, we
implicitly exploited this property to replace all target-language expres-
sions without free variables with their values. We also relied on this
property in Section 3.1 to ensure that observe forms (observe e1 e2)
always contained a referentially transparent expression for the observed
value e2.

4.2 Metropolis-Hastings

In the previous section, we used evaluation to generate samples from
the program prior while calculating the likelihood associated with these
samples as a side-effect of the computation. We can use this same
strategy to define Markov-chain Monte Carlo (MCMC) algorithms. We
already discussed two such algorithms, Gibbs Sampling and Hamiltonian
Monte Carlo in Sections 3.3 and 3.4 respectively. Both these methods
implicitly relied on the fact that we were able to represent a probabilistic
program as a static graphical model. In Gibbs sampling, we explicitly
made use of the conditional dependency graph in order to identify the
minimal set of variables needed to compute the acceptance ratio. In
Hamiltonian Monte Carlo, we relied on being able to calculate the
gradient ∇X log p(X), which relies on the fact that there is some well-
defined set of unobserved random variables X, corresponding to sample
expressions that will be evaluated in every execution.

Metropolis-Hastings (MH) methods, which we also mentioned in Sec-
tion 3.3 generate a Markov chain of program return values r(X)1, . . . , r(X)S
by accepting or rejecting a newly proposed sample according to the

4.2. Metropolis-Hastings 117

following pseudo-algorithm.
- Initialize the current sample X. Return X1 ← X.
- For each subsequent sample s = 2, . . . , S

- Generate a proposal X ′ ∼ q(X ′ |X)
- Calculate the acceptance ratio

α = p(Y ′, X ′)q(X |X ′)
p(Y,X)q(X ′ |X) (4.8)

- Update the current sample X ← X ′ with probability max(1, α),
otherwise keep X ← X. Return Xs ← X.

An evaluation-based implementation of a MH sampler needs to do two
things. It needs to be able to run the program to generate a proposal,
conditioned on the values X of sample expressions that were evaluated
previously. The second is that we need to be able to compute the
acceptance ratio α as a side effect.

Let us begin by considering a simplified version of this algorithm.
Suppose that we defined q(X ′|X) = p(X ′). In other words, at each
step we generate a sample X ′ ∼ p(X) from the program prior, which is
independent of the previous sample X. We already know that we can
generate these samples simply by running the program. The acceptance
ratio now simplifies to:

α = p(Y ′, X ′)q(X |X ′)
p(Y,X)q(X ′ |X) = p(Y ′ |X ′)p(X ′)p(X)

p(Y |X)p(X)p(X ′) = p(Y ′ |X ′)
p(Y |X) (4.9)

In other words, when we propose from the prior, the acceptance ratio
is simply the ratio of the likelihoods. Since our likelihood weighting
algorithm computes σ(logW) = log p(Y | X) as a side effect, we can re-
use the evaluator from Algorithm 7 and simply evaluate the acceptance
ratio as W ′/W , where W ′ = p(Y ′|X ′) is the likelihood of the proposal
and W = p(Y |X) is the likelihood associated with the previous sample.
Pseudo-code for this implementation is shown in Algorithm 8.

4.2.1 Single-Site Proposals

Algorithm 8 is so simple because we have side-stepped the difficult
operations in the more general MH algorithm: In order to generate a

4.2. Metropolis-Hastings 118

Algorithm 8 Evaluation-based Metropolis-Hastings with independent
proposals from the prior.
1: global ρ, e
2: function eval(e, σ, `)
3: As in Algorithm 7
4: function independent-mh(S)
5: σ ← [logW 7→ 0]
6: r ← eval(e, σ, [])
7: logW ← logW
8: for s in 1, . . . , S do
9: r′, σ′ ← eval(e, σ, [])

10: logW ′ ← σ′(logW)
11: α←W ′/W

12: u ∼ uniform-continuous(0, 1)
13: if u < α then
14: r, logW ← r′, logW ′

15: rs ← r

16: return (r1, . . . , rS)

proposal, we have to run our program in a manner that generates a
sample X ′ ∼ q(X ′|X) which is conditioned on the values associated
with our previous sample. In order to evaluate the acceptance ratio, we
have to calculate the probability of the reverse proposal q(X|X ′). Both
these operations are complicated by the fact that X and X ′ potentially
refer to different subsets of sample expressions in the program. To see
what we mean by this, Let us take another look at Example 3.5, which
we introduced in Section 3.1

(let [z (sample (bernoulli 0.5))
mu (if (= z 0)

(sample (normal -1.0 1.0))
(sample (normal 1.0 1.0)))

d (normal mu 1.0)
y 0.5]

(observe d y)
z)

4.2. Metropolis-Hastings 119

In Section 3.1, we would compile this model to a Bayesian network
with three latent variables X = {µ0, µ1, z} and one observed variable
Y = {y}. In this section, we evaluate if-expressions lazily, which means
that we will either sample µ1 (when z = 1) or µ0 (when z = 0), but not
both. This introduces a complication: What happens when we update
z = 0 to z = 1 in the proposal? This now implies that X contains
a variable µ0, which is not defined for X ′. Conversely, X ′ needs to
instantiate a value for the variable µ1 which was not defined in X.

In order to define an evaluation-based algorithm for constructing
a proposal, we will construct a map σ(X), such that X (x) refers to
the value of a variable x. In order to calculate the acceptance ratio,
we will similarly construct a map σ(logP). Section 3.1 contained a
target-language expression logP(v) that evaluates to the density for
each variable v ∈ X ∪ Y . In our evaluation-based algorithm, we will
store the log density

σ(logP(x)) = log-prob(d,X (x)). (4.10)

for each sample expression (sample d), as well as the log density

σ(logP(y)) = log-prob(d, c) (4.11)

for each observe expression (observe d c).
With this notation in place, let us define the most commonly used

evaluation-based proposal for probabilistic programming systems: the
single-site Metropolis-Hastings update. In this algorithm we change the
value for one variable x0, keeping the values of other variables fixed
whenever possible. To do so, we sample x0 from the program prior,
as well as any variables x 6∈ dom(X). For all other variables, we reuse
the values X (x). This strategy can be summarized in the following
pseudo-algorithm:

- Pick a variable x0 ∈ dom(X) at random from the current sample.

- Construct a proposal X ′,P ′ by re-running the program:

- For expressions (sample d) with variable x:
- If x = x0, or x 6∈ dom(X), then sample X ′(x) ∼ d.
Otherwise, reuse the value X ′(x)← X (x).

4.2. Metropolis-Hastings 120

Algorithm 9 Acceptance ratio for single-site proposals
1: function accept(x0,X ′,X , logP ′, logP)
2: X ′sampled ← {x0} ∪ (dom(X ′) \ dom(X))
3: Xsampled ← {x0} ∪ (dom(X) \ dom(X ′))
4: logα← log |dom(X)| − log |dom(X ′)|
5: for v in dom(logP ′) \X ′sampled do
6: logα← logα+ logP ′(v)
7: for v in dom(logP) \Xsampled do
8: logα← logα− logP(v)
9: return α

- Calculate the probability P ′(x)← prob(d,X ′(x)).
- For expressions (observe d c) with variable y:

- Calculate the probability P ′(y)← prob(d, c)

What is convenient about this proposal strategy is that it becomes
comparatively easy to evaluate the acceptance ratio α. In order to
evaluate this ratio, we will rearrange the terms in Equation (4.8) into a
ratio of probabilities for X ′ and a ratio of probabilities for X:

α = p(Y ′, X ′)q(X|X ′)
p(Y,X)q(X ′|X) (4.12)

= p(Y ′, X ′)
q(X ′|X,x0)

q(X|X ′, x0)
p(Y,X)

q(x0|X ′)
q(x0|X) . (4.13)

Here the ratio q(x0|X ′)/q(x0|X) accounts for the relative probability
of selecting the initial site. Since x0 is chosen at random, this is

q(x0|X ′)
q(x0|X) = |X|

|X ′|
. (4.14)

We can now express the ratio p(Y ′, X ′)/q(X ′|X,x0) in terms of the
probabilities P ′. The joint probability is simply the product

p(Y ′, X ′) = p(Y ′|X ′)p(X ′) =
∏
y∈Y ′
P ′(y)

∏
x∈X′

P ′(x), (4.15)

where X ′ = dom(X ′) and Y ′ = dom(P ′) \X ′.

4.2. Metropolis-Hastings 121

To calculate the probability q(X ′|X,x0) we decompose the set of
variables X ′ = X ′sampled ∪ X ′reused into the set of sampled variables
X ′sampled and the set of reused variables X ′reused. Based on the rules
above, the set of sampled variables is given by

X ′sampled = {x0} ∪ (dom(X ′) \ dom(X)). (4.16)

Since all variables in X ′sampled were sampled from the program prior,
the proposal probability is

q(X ′|X,x0) =
∏

x∈X′sampled

P ′(x). (4.17)

Since some of the terms in the prior and the proposal cancel, the ratio
p(Y ′, X ′)/q(X ′|X,x0) simplifies to

p(Y ′, X ′)
q(X ′|X,x0) =

∏
y∈Y ′
P ′(y)

∏
x∈X′reused

P ′(x) (4.18)

We can define the ratio p(Y,X)/q(X|X ′, x0) for the reverse transition
by noting that this transition would require sampling a set of variables
Xsampled from the prior whilst reusing a set of variables Xreused

p(Y,X)
q(X|X,x0) =

∏
y∈Y
P(y)

∏
x∈Xreused

P(x). (4.19)

Here the set of reused variable Xreused for the reverse transition is, by
definition, identical that of the forward transition X ′reused,

X ′reused = (dom(X ′) ∩ dom(X)) \ {x0} = Xreused. (4.20)

Putting all the terms together, the acceptance ratio becomes:

α = |dom(X)|
|dom(X ′)|

∏
y∈Y P ′(y)

∏
x∈X′reused P ′(x)∏

y∈Y P(y)
∏
x∈Xreused P(x) . (4.21)

If we look at the terms above, then we see that the acceptance
ratio for single-site proposals is a generalization of the acceptance ratio
that we obtained for independent proposals. When using independent
proposals, we could express the acceptance ratio α = W ′/W in terms
of the likelihood weights W ′ = p(Y ′, X ′)/q(X ′) = p(Y ′ |X ′). In the

4.2. Metropolis-Hastings 122

ρ, c ⇓α c ρ, v ⇓α v
ρ, e1 ⇓α e′1 ρ, e0 ⇓α e′0

ρ,(let [v1 e1] e0) ⇓α (let [v1 e′1] e′0)

ρ, ei ⇓α e′i for i = 1, . . . , n op = if or op = c

ρ,(op e1 . . . en) ⇓α (op e′1 . . . e′n)

ρ, ei ⇓α e′i for i = 0, . . . , n ρ(f) = (defn [v1. . .vn] e0)
ρ,(let [vn e

′
n] e′0) ⇓α e′′n ρ,(let [vi−1 e

′
i−1] e′′i) ⇓α e′′i−1 for i = n, . . . , 2

ρ,(f e1 . . . en) ⇓α e′′1

ρ, e ⇓α e′ fresh v
ρ,(sample e) ⇓α (sample v e′)

ρ, e1 ⇓α e′1 ρ, e2 ⇓α e′2 fresh v
ρ,(observe e1 e2) ⇓α (observe v e′1 e′2)

Figure 4.2: Addressing transformation for FOPPL programs.

single-site proposal, we treat retained variables X ′reused = Xreused as if
they were observed variables. In other words, we could define

W ′ = p(Y ′, X ′)
q(X ′|X,x0) . (4.22)

Addressing Transformation

In defining the acceptance ratio in Equation (4.21), we have tacitly
assumed that we can associate a variable x or y with each sample or
observe expression. This is in itself not such a strange assumption, since
we did just that in Section 3.1, where we assigned a unique variable
v to every sample and observe expression as part of our compilation
of a graphical model. In the context of evaluation-based methods, this
type of unique identifier for a sample or observe expression is commonly
referred to as an address.

If needed, unique addresses can be constructed dynamically at run
time. We will get back to this in Chapter 6, Section 6.2. For programs in
the FOPPL, we can create addresses using a source code transformation
that is similar to the one we defined in Section 3.1, albeit a much
simpler one. In this transformation we replace all expressions of the

4.2. Metropolis-Hastings 123

Algorithm 10 Evaluator for single-site proposals
1: global ρ
2: function eval(e, σ, `)
3: match e

4: case (sample v e)
5: d, σ ← eval(e, σ, `)
6: if v ∈ dom(σ(C)) \ {σ(x0)} then
7: c,← σ(C(v)) . Retain previous value
8: else
9: c← sample(d) . Sample new value

10: σ(X (v))← c . Store value
11: σ(logP(v))← log-prob(d, c) . Store log density
12: return c, σ
13: case (observe v e1 e2)
14: d, σ ← eval(e1, σ, `)
15: c, σ ← eval(e2, σ, `)
16: σ(logP(v))← log-prob(d, c) . Store log density
17: return c, σ
18: Base cases (as in Algorithm 6)

form (sample e) with expressions of the form (sample v e) in which v
is a newly created variable. Similarly, we replace (observe e1 e2) with
(observe v e1 e2). Figure 4.2 defines this translation ρ, e ⇓α e′. As in
Section 3.1, this translation accepts a map of function definitions ρ, e
and returns a transformed expression e′ in which addresses have been
inserted into all sample and observe expressions.

Evaluating Proposals

Now that we have incorporated addresses that uniquely identify each
sample and observe expression, we are in a position to formally define
the pseudo-algorithm for single-site Metropolis Hastings that we oulined
in Section 4.2.1.

In Algorithm 10, we define the evaluation rules for sample and
observe expressions. We assume that the inference state σ holds a value

4.2. Metropolis-Hastings 124

Algorithm 11 Single-site Metropolis Hastings
1: global ρ, e
2: function eval(e, σ, `)
3: As in Algorithm 10
4: function accept(x0,X ′,X , logP ′, logP)
5: As in Algorithm 9
6: function single-site-mh(S)
7: σ0 ← [x0 ← nil, C 7→, [],X 7→ [], logP 7→ []]
8: r, σ ← eval(e, σ0, [])
9: for s in 1, . . . , S do

10: v ∼ uniform(dom(σ(X)))
11: σ′ ← σ0[x0 7→ v, C 7→ σ(X)]
12: r′, σ′ ← eval(e, σ′, [])
13: u ∼ uniform-continuous(0, 1)
14: α← accept(x0, σ

′(X), σ(X), σ′(logP), σ(logP))
15: if u < α then
16: r, σ ← r′, σ′

17: rs ← r

18: return (r1, . . . , rS)

σ(x0), which is the site of the proposal, a map σ(X) map σ(logP),
which holds the log density for each variable, and finally a “cache” σ(C)
of values that we would like to condition the execution on.

For a sample expression with address v, we reuse the value X (v)←
C(v) when possible, unless we are evaluating the proposal site v = x0.
In all other cases, we sample X (v) from the prior. For both sample and
observe expressions we calculate the log probability logP(v).

The Metropolis Hastings implementation is shown in Algorithm 11.
This algorithm initializes the state σ sample by evaluating the program,
storing the values σ(X) and log probabilities σ(logP) for the current
sample. For each subsequent sample the algorithm then selects the
initial site x0 at random from the domain of the current sample σ(X).
We then rerun the program accordingly to construct a proposal and
either accept or reject according to the ratio defined in Algorithm 9.

4.3. Sequential Monte Carlo 125

4.3 Sequential Monte Carlo

One of the limitations of the likelihood weighting algorithm that we
introduced in Section 4.1 is that it is essentially a “guess and check”
algorithm; we guess by sampling a proposal X l from the program prior
and then check whether this is in fact a good proposal by calculating a
weight W l = p(Y |X l) according to the probabilities of observe expres-
sions in the program. The great thing about this algorithm is that it is
both simple and general. Unfortunately it is not necessarily efficient.
In order to get a high weight sample, we have to generate reasonable
values for all random variables X. This means that likelihood weighting
will work well in programs with a small number of sample expressions,
where we can expect to “get lucky” for all sample expressions with
reasonable frequency. However, the frequency with which we generate
good proposals decreases exponentially with the number of sample
expressions in the program.

Sequential Monte Carlo (SMC) methods solve this problem by
turning a sampling problem for a high dimensional distribution into
a sequence of sampling problems for lower dimensional distributions.
In their most general form, SMC methods consider a sequence of un-
normalized densities γ1(X1), . . . , γN (XN), where each γn(Xn) has the
form that we discussed in Section 3.2.1. Here γ1(X1) is typically a low
dimensional distribution, for which it is easy to perform importance
sampling, whereas γN (XN) is a high dimensional distribution, for which
want to generate samples. For each γn(Xn) in between increases in
dimensionality to interpolate between these two distributions. For a
FOPPL program, we can define γN (XN) = γ(X) = p(Y,X) as the joint
density associated with the program.

Given a set of unnormalized densities γn(Xn), SMC sequentially
generates weighted samples {(X l

n,W
l
n)}Ll=1 by performing importance

sampling for each of the normalized densities πn(Xn) = γn(Xn)/Zn
according to the following rules

- Initialize a weighted set {(X l
1,W

l
1)}Ll=1 using importance sampling

X l
1 ∼ q1(X1), W l

1 := γ1(X l
1)

q1(X l
1)
. (4.23)

4.3. Sequential Monte Carlo 126

- For each subsequent generation n = 2, . . . , N :

1. Select a value Xk
n−1 from the preceding set by sampling an

ancestor index aln−1 = k with probability proportional to W k
n−1

aln−1 ∼ Discrete
(

W 1
n−1∑

lW
l
n−1

, . . . ,
WL
n−1∑

lW
l
n−1

,

)
, (4.24)

2. Generate a proposal conditioned on the selected particle

X l
n ∼ qn(Xn |X

al
n−1
n−1), (4.25)

and define the importance weights

W l
n := W l

n\n−1Ẑn−1 (4.26)

where W l
n\n−1 is the incremental weight

W l
n\n−1 := γn(X l

n)

γn−1(Xal
n−1
n−1)qn(X l

n |X
al

n−1
n−1)

, (4.27)

and Ẑn−1 is defined as the average weight

Ẑn−1 = 1
L

L∑
l=1

W l
n−1. (4.28)

The defining operation in this algorithm is in Equation (4.24), which
is known as the resampling step. We can think of this operation as
performing “natural selection” on the sample set; samples Xk

n−1 with
a high weight W k

n−1 will be used more often to construct proposals
equation in (4.25), whereas samples with a low weight will with high
probability not be used at all. In other words, SMC uses the weight
of a sample at generation n − 1 as a heuristic for the weight that it
will have at generation n, which is a good strategy whenever weights in
subsequent densities are strongly correlated.

4.3.1 Defining Intermediate Densities with Breakpoints

As we discussed in Section 3.2.1, a FOPPL program defines an unnor-
malized distribution γ(X) = p(Y,X). When inference is performed with

4.3. Sequential Monte Carlo 127

SMC we define the final density as γN (XN) = γ(X). In order to de-
fine intermediate densities γn(Xn) = p(Yn, Xn) we consider a sequence
of truncated programs that evaluate successively larger subsets of the
sample and observe expressions

X1 ⊆ X2 ⊆ . . . ⊆ XN = X, (4.29)
Y1 ⊆ Y2 ⊆ . . . ⊆ YN = Y. (4.30)

The definition of a truncated program that we employ here is programs
that halt at a breakpoint. Breakpoints can be specified explicitly by the
user, constructed using program analysis, or even dynamically defined
at run time. The sequence of breakpoints needs to satisfy the following
two properties in order.

1. The breakpoint for generation n must always occur after the
breakpoint for generation n− 1.

2. Each breakpoint needs to occur at an expression that is evalu-
ated in every execution of a program. In particular, this means
that breakpoints should not be associated with expressions inside
branches of if expressions.

In this section we will assume that we first apply the addressing trans-
formation from Section 4.2.1 to a FOPPL program. We then assume
that the user identifies a sequence of symbols y1, . . . , yN−1 for observe
expressions that satisfy the two properties above. An alternative design,
which is often used in practice, is to simply break at every observe and
assert that each sample has halted at the same point at run time.

4.3.2 Calculating the Importance Weight

Now that we have defined a notion of intermediate densities γn(Xn)
for FOPPL programs, we need to specify a mechanism for generating
proposals from a distribution qn(Xn|Xn−1). The SMC analogue of likeli-
hood weighting is to simply sample from the program prior p(Xn|Xn−1),
which is sometimes known as a bootstrapped proposal. For this proposal,

4.3. Sequential Monte Carlo 128

we can express γn(Xn) in terms of γn−1(Xn−1) as

γn(Xn) = p(Yn, Xn)
= p(Yn|Yn−1, Xn)p(Xn|Xn−1)p(Yn−1, Xn−1)
= p(Yn|Yn−1, Xn)p(Xn|Xn−1)γn−1(Xn−1).

If we substitute this expression back into Equation (4.27), then the
incremental weight W l

n\n−1 simplifies to

W l
n\n−1 = p(Y l

n |X l
n)

p(Y al
n−1

n−1 |X
al

n−1
n−1)

=
∏

y∈Y l
n\n−1

p(y |X l
n), (4.31)

where Y l
n\n−1 is the set difference between the observed variables at

generation n and the observed variables at generation n− 1.

Y l
n\n−1 = dom(Y ln) \ dom(Ya

l
n−1
n−1).

In other words, for a bootstrapped proposal, the importance weight at
each generation is defined in terms of the joint probability of observes
that have been evaluated at breakpoint n but not at n− 1.

4.3.3 Evaluating Proposals

To implement SMC, we will introduce a function propose(Xn−1, yn).
This function evaluates the program that truncates at the observe
expression with address yn, conditioned on previously sampled values
Xn−1, and returns a pair (Xn, log Λn) containing a map Xn of values
associated with each sample expression and the log likelihood log Λn =
log p(Yn|Xn). To construct the proposal for the final generation we will
call propose(XN−1, nil, yN−1), which returns a pair (r, log Λ) in which
the return value r replaces the values X .

In Algorithm 12 we define this function and its evaluator. When
evaluating sample expressions, we reuse previously sampled values X (v)
for previously sampled variables v and sample from the prior for new
variables v. When evaluating observe expressions, we accomulate log
probability into a state variable log Λ as we have done with likelihood
weighting. When we reach the observe expression with a specified symbol

4.3. Sequential Monte Carlo 129

Algorithm 12 Evaluator for bootstrapped sequential Monte Carlo
1: global ρ, e
2: function eval(e, σ, `)
3: match e

4: case (sample v e)
5: d, σ ← eval(e, σ, `)
6: if v 6∈ dom(σ(X)) then
7: σ(X (v))← sample(d)
8: return σ(X (v)), σ
9: case (observe v e1 e2)

10: d, σ ← eval(e1, σ, `)
11: c, σ ← eval(e2, σ, `)
12: σ(log Λ)← σ(log Λ) + log-prob(d, c)
13: if v = σ(yr) then
14: error resample-breakpoint()
15: return c, σ
16: Base cases (as in Algorithm 6)
17: function propose(X , y)
18: σ ← [yr 7→ y,X 7→ X , log Λ 7→ 0]
19: try
20: r, σ ← eval(e, σ, [])
21: return r, σ(log Λ)
22: catch resample-breakpoint()
23: return σ(X), σ(log Λ)

yr, we terminate the program by throwing a special-purpose resample-
breakpoint error. In the function propose, we initialize X ← Xn−1
and y ← yn. The evaluator will then reuse all the previously sampled
values Xn−1 and run the program until the observe with address yn,
which samples Xn|Xn−1 from the program prior. We then catch the
resampe-breakpoint error to return (Xn, log Λn) for a program that
truncates at yn, and return (r, log Λ) when no such error occurs.

4.3. Sequential Monte Carlo 130

Algorithm 13 Sequential Monte Carlo with bootstrapped proposals
1: global ρ, e
2: function eval(e, σ, `)
3: As in Algorithm 12
4: function propose(X , y)
5: As in Algorithm 12
6: function smc(L, y1, . . . , yN−1)
7: log Ẑ0 ← 0
8: for l in 1, . . . , L do
9: X l1, log Λl1 ← propose([], y1)

10: logW l
1 ← log Λl1

11: for n in 2, . . . , N do
12: log Ẑn−1 ← log-mean-exp(logW 1:L

n−1)
13: for l in 1, . . . , L do
14: aln−1 ∼ discrete(W 1:L

n−1/
∑
lW

l
n−1)

15: if n < N then
16: (X ln, log Λln)← propose(X a

l
n−1

n−1 , yn)
17: else
18: (rl, log ΛlN)← propose(X a

l
N−1

N−1 , nil)
19: logW l

n ← log Λln − log Λa
l
n−1
n−1 + log Ẑn−1

20: return ((r1, logW 1
N), . . . , (rL, logWL

N))

4.3.4 Algorithm Implementation

In Algorithm 13 we use this proposal mechanism to calculate the
importance weight at each generation as according to Equation (4.31)

logWn = log Λn − log Λn−1 + Ẑn−1 (4.32)

We calculate log Ẑn−1 at each iteration by evaluating the function

log-mean-exp(logW 1:L
n−1) = log

(
1
L

L∑
l=1

W l
n−1

)
. (4.33)

4.4. Black Box Variational Inference 131

4.3.5 Computational Complexity

The proposal generation mechanism in Algorithm 12 has a lot in common
with the mechanism for single-site Metropolis Hastings proposals in
Algorithm 10. In both evaluators, we rerun a program conditioned on
previously sampled values X . The advantage of this type of proposal
strategy is that it is relatively easy to define and understand; a program
in which all sample expressions evaluate to their previously sampled
values is fully deterministic, so it is intuitive that we can condition on
values of random variables in this manner.

Unfortunately this implementation is not particularly efficient. SMC
is most commonly used in settings where we evaluate one additional
observe expression for each generation, which means that the cardinality
of the set of variables |Y l

n\n−1| that determines the incremental weight
in Equation (4.31) is either 1 or O(1). Generally this implies that we
can also generate proposals and evaluate the incremental weight in
constant time, which means that a full SMC sweep with L samples
and N generations requires O(LN) computation. For this particular
proposal strategy, each proposal step will require O(n) time, since we
must rerun the program for the first n steps, which means that the full
SMC sweep will require O(LN2) computation.

For this reason, the SMC implementation in this section is more
a proof-of-concept implementation than an implementation that one
would use in practice. We will define a more realistic implementation
of SMC in Section 6.7, once we have introduced an execution model
based on continuations, which eliminates the need to rerun the first
n− 1 steps at each stage of the algorithm.

4.4 Black Box Variational Inference

In the sequential Monte Carlo method that we developed in the last
section, we performed resampling at observes in order to obtain high
quality importance sampling proposals. A different strategy for impor-
tance sampling is to learn a parameterized proposal distribution q(X;λ)
in order to maximize some notion of sample quality. In this section we
will learn proposals by performing variational inference, which optimizes

4.4. Black Box Variational Inference 132

the evidence lower bound (ELBO)

L(λ) := Eq(X;λ)

[
log p(Y,X)

q(X;λ)

]
,

= log p(Y)−DKL (q(X;λ) || p(X|Y)) ≤ log p(Y).
(4.34)

In this definition, DKL (q(X;λ) || p(X|Y)) is the KL divergence between
the distribution q(X;λ) and the posterior p(X|Y),

DKL (q(X;λ) || p(X)) := Eq(X;λ)

[
log q(X;λ)

p(X|Y)

]
. (4.35)

The KL divergence is a positive definite measure of dissimilarity be-
tween two distributions; it is 0 when q(X;λ) and p(X|Y) are identical
and greater than 0 otherwise, which implies L(λ) ≤ log p(Y). We can
therefore maximize L(λ) with respect to λ to minimize the KL term,
which yields a distribution q(X;λ) that approximates p(X|Y).

In this section we will use variational inference to learn a distribution
q(X;λ) that we will then use as an importance sampling proposal. We
will assume an approximation q(X;λ) in which all variables x are
independent, which in the context of variational inference is known as
a mean field assumption

q(X;λ) =
∏
x∈X

q(x;λx). (4.36)

4.4.1 Likelihood-ratio Gradient Estimators

Black-box variational inference (BBVI) (Wingate and Weber, 2013;
Ranganath et al., 2014) optimizes L(λ) by performing gradient updates
using a noisy estimate of the gradient ∇̂L(λ)

λt = λt−1 + ηt∇̂λL(λ)
∣∣
λ=λt−1

,
∞∑
t=1

ηt =∞,
∞∑
t=1

η2
t <∞. (4.37)

BBVI uses a particular type of estimator for the gradient, which is
alternately referred to as a likelihood-ratio estimator or a REINFORCE-
style estimator. In general, likelihood-ratio estimators compute a Monte

4.4. Black Box Variational Inference 133

Carlo approximation to an expectation of the form

∇λEq(X;λ)[r(X;λ)] =
∫
dX ∇λq(X;λ)r(X;λ) + q(X;λ)∇λr(X;λ)

=
∫
dX ∇λq(X;λ)r(X;λ) + Eq(X;λ)[∇r(X;λ)].

(4.38)

Clearly, this expression is equal to the ELBO in Equation (4.34) when we
substitute r(X;λ) := log

(
p(Y,X)/q(X;λ)

)
. For this particular choice

of r(X;λ), the second term in the equation above is 0,

Eq(X;λ)

[
∇λ log p(Y,X)

q(X;λ)

]
= −Eq(X;λ) [∇λ log q(X;λ)]

= −
∫
dX q(X;λ)∇λ log q(X;λ)

= −
∫
dX ∇λq(X;λ) = −∇λ1 = 0,

(4.39)

where the final equalities make use of the fact that, by definition,∫
dX q(X;λ) = 1 since a probability distribution is normalized.
If we additionally substitute ∇λq(X;λ) := q(X;λ)∇λ log q(X;λ) in

Equation (4.38), then we can express the gradient of the ELBO as

∇λL(λ) = Eq(X;λ)

[
∇λ log q(X;λ)

(
log p(Y,X)

q(X;λ) − b
)]

, (4.40)

where b is arbitrary constant vector, which does not change the expected
value since Eq(X;λ)[∇λ log q(X;λ)] = 0.

The likelihood-ratio estimator for the gradient of the ELBO ap-
proximates the expectation with a set of samples X l ∼ q(X;λ). If we
define the standard importance weight W l = p(Y l, X l)/q(X l;λ), the
the likelihood-ratio estimator is defined as

∇̂λL(λ) := 1
L

L∑
l=1
∇λ log q(X l;λ)

(
logW l − b̂

)
. (4.41)

Here we set b̂ to a value that minimizes the variance of the estimator.
If we use (λv,1, . . . , λv,Dv) to refer to the components of the parameter

4.4. Black Box Variational Inference 134

Algorithm 14 Evaluator for Black Box Variational Inference
1: global ρ
2: function eval(e, σ, `)
3: match e

4: case (sample v e)
5: p, σ ← eval(e, σ, `)
6: if v 6∈ dom(σ(Q)) then
7: σ(Q(v))← p . Initialize proposal using prior
8: c ∼ sample(σ(Q(v)))
9: σ(G(v))← grad-log-prob(σ(Q(v)), c)

10: logWv ← log-prob(p, c)− log-prob(σ(Q(v)), c)
11: σ(logW)← σ(logW) + logWv

12: return c, σ
13: case (observe v e1 e2)
14: p, σ ← eval(e1, σ, `)
15: c, σ ← eval(e2, σ, `)
16: σ(logW)← σ(logW) + log-prob(p, c)
17: return c, σ
18: Base cases (as in Algorithm 6)

vector λv, then the variance reduction constant b̂v,d for the component
λv,d is defined as

b̂v,d :=
covar(F 1:L

v,d , G
1:L
v,d)

var(G1:L
v,d)

, (4.42)

F lv,d := ∇λv,d
log q(X l

v;λv) logW l, (4.43)
Glv,d := ∇λv,d

log q(X1:L
v ;λv). (4.44)

4.4.2 Evaluator for Gradient Estimation

From the equations above, we see that we need to calculate two sets
of quantities in order to estimate the gradient of the ELBO. The
first consists of the importance weights logW l. The second consists
of the gradients of the log proposal density for each variable Glv =

4.4. Black Box Variational Inference 135

Algorithm 15 Black Box Variational Inference
1: global ρ, e
2: function eval(e, σ, `)
3: As in Algorithm 14
4: function optimizer-step(q, ĝ)
5: for v in dom(ĝ) do
6: λ(v)← get-parameters(Q(v))
7: λ′(v)← λ(v) + SGD/Adagrad/Adam update
8: Q′(v)← set-parameters(Q(v), λ′)

return Q′

9: function elbo-gradients(G1:L, logW 1:L)
10: for v in dom(G1) ∪ . . . ∪ dom(GL) do
11: for l in 1, . . . , L do
12: if v ∈ dom(Gl) then
13: F l(v)← Gl(v) logW 1:L

14: else
15: F l(v), Gl(v)← 0, 0
16: b̂← sum(covar(F 1:L(v), G1:L(v)))/sum(var(G1:L(v)))
17: ĝ(v)← sum(F 1:L(v)− b̂ G1:L(v))/L
18: return ĝ

19: function bbvi(S, L)
20: σ ← [logW 7→ 0, q 7→ [], G 7→ []]
21: for t in 1, . . . , T do
22: for l in 1, . . . , L do
23: rt,l, σt,l ← eval(e, σ, [])
24: Gt,l, logW t,l ← σt,l(G), σt,l(logW)
25: ĝ ← elbo-gradients(Gs,1:L, logW s,1:L)
26: σ(Q])← optimizer-step(σ(Q), ĝ)
27: return ((r1,1, logW 1,1), . . . , (r1,L, logW 1,L), . . . , (rT,L, logW T,L))

∇λv log q(X l
v|λv).

In Algorithm 14 we define an evaluator that extends the likelihood-
ratio evaluator from Algorithm 7 in two ways:

1. Instead of sampling proposals from the program prior, we now

4.4. Black Box Variational Inference 136

propose from a distribution Q(v) for each variable v and update
the importance weight logW accordingly.

2. When evaluating a sample expression, we additionally calculate the
gradient of the log proposal density G(v) = ∇λv log q(Xv|λv). For
this we assume an implementation of a function grad-log-prob(d, c)
for each primitive distribution type supported by the language.

Algorithm 15 defines a BBVI algorithm based on this evaluator.
The function elbo-gradients returns a map ĝ in which each entry
ĝ(v) := ∇̂λvL(λ) contains the gradient components for the variable v
as defined in Equations (4.41)-(4.44). The main algorithm bbvi then
simply runs the evaluator L times at each iteration and then passes the
computed gradient estimates ĝ to a function optimizer-step, which
can either implement the vanilla stochastic gradient updates defined
in Equation (4.37), or more commonly updates for an extension of
stochastic gradient descent such as Adam (Kingma and Ba, 2015) or
Adagrad (Duchi et al., 2011).

4.4.3 Computational Complexity and Statistical Efficiency

From an implementation point of view, BBVI is a relatively simple
algorithm. The main reason for this is the mean field approximation for
q(X;λ) in Equation (4.36). Because of this approximation, calculating
the gradients ∇λ log q(X;λ) is easy, since we can calculate the gradients
∇λv log q(Xv;λv) for each component independently, which only requires
that we implement gradients of the log density for each primitive
distribution type.

One of the main limitations of this BBVI implementation is that the
gradient estimator tends to be relatively high variance, which means
that we will need a relatively large number of samples per gradient step
L in order to ensure convergence. Values of L of order 102 or 103 are not
uncommon, depending on the complexity of the model. For comparison,
methods for variational autoencoders that compute the gradient of a
reparameterized objective (Kingma and Welling, 2014; Rezende et al.,
2014) can be evaluated with L = 1 samples for many models. In addition
to this, the number of iterations T that is needed to achieve convergence

4.4. Black Box Variational Inference 137

can easily be order 103 to 104. This means that BBVI we may need
order 106 or more samples before BBVI starts generating high quality
proposals.

When we compile a program to a graph (V,A,P,Y) we can perform
an additional optimization to reduce the variance. To do so, we replace
the term logW in the objective with a vector in which each component
logWv contains a weight that is restricted to the variables in the Markov
blanket,

logWv =
∑

w∈mb(v)}

p(w|pa(w))
q(w|λw) , (4.45)

where the Markov blanket mb(v) of a variable v is

mb(v) = pa(v) ∪ {w : w ∈ pa(v)}

∪
{
w : ∃u

(
v ∈ pa(u) ∧ w ∈ pa(u)

)}
.

(4.46)

This can be interpreted as a form of Rao-Blackwellization (Ranganath
et al., 2014), which reduces the variance by ignoring the components of
the weight that are not directly associated with the sampled value Xv.
In a graph-based implementation of BBVI, one can easily construct this
Markov blanket, which we rely upon in the implementation of Gibbs
sampling 3.3.

5
A Probabilistic Programming Language With

Recursion

In the three preceding chapters we have introduced a first-order prob-
abilistic programming language and described graph- and evaluation-
based inference methods. The defining characteristic of the FOPPL is
that it is suitably restricted to ensure that there can only ever be a
finite number of random variables in any model denoted by a program.

In this chapter we relax this restriction by introducing a higher-order
probabilistic programming language (HOPPL) that supports program-
ming language features, such as higher-order procedures and general
recursion. HOPPL programs can denote models with an unbounded
number of random variables. This rules out graph-based evaluation
strategies immediately, since an infinite graph cannot be represented on
a finite-capacity computer. However, it turns out that evaluation-based
inference strategies can still be made to work by considering only a
finite number of random variables at any particular time, and this is
what will be discussed in the subsequent chapter.

In the FOPPL, we ensured that programs could be compiled to a
finite graph by placing a number of restrictions on the language:

• The defn forms disallow recursion;

• Functions are not first class objects, which means that it is not

138

139

possible to write higher-order functions that accept functions as
arguments;

• The first argument to the loop form, the loop depth, has to be
a constant, as loop was syntactic sugar unrolled to nested let
expressions at compile time.

Say that we wish to remove this last restriction, and would like to
be able to loop over the range determined by the runtime value of a
program variable.

This means that the looping construct cannot be syntactic sugar, but
must instead be a function that takes the loop bound as an argument
and repeats the execution of the loop body up to this dynamically-
determined bound.

If we wanted to implement a loop function that supports a dynamic
number of loop iterations, then we could do so as follows
(defn loop-helper [i c v f a1 . . . an]

(if (= i c)
v
(let [v′ (f i v a1 . . . an)]

(loop-helper (+ i 1) c v′ f a1 . . . an))))
(defn loop [c v f a1 . . . an]

(loop-helper 0 c v f a1 . . . an)).

In order to implement this function we have to allow the defn form
to make recursive calls, a large departure from the FOPPL restriction.
Doing so gives us the ability to write programs that have loop bounds
that are determined at runtime rather than at compile time, a feature
that most programmers expect to have at their disposal when writing
any program. However, as soon as loop is a function that takes a runtime
value as a bound, then we could write programs such as
(defn flip-and-sum [i v]

(+ v (sample (bernoulli 0.5))))
(let [c (sample (poisson 1))]

(loop c 0 flip-and-sum)).

This program, which represents the distribution over the sums of the
outcomes of a Poisson distributed number of of fair coin flips, is one of
the shortest programs that illustrates concretely what we mean by a

140

program that denotes an infinite number of random variables. Although
this program is not particularly useful, we will soon show many practical
reasons to write programs like this. If one were to attempt the loop
desugaring approach of the FOPPL here one would need to desugar
this loop for all of the possible constant values c could take. As the
support of the Poisson distribution is unbounded above, one would
need to desugar a loop indefinitely, leading to an infinite number of
random variables (the Bernoulli draws) in the expanded expression. The
corresponding graphical model would have an infinite number of nodes,
which means that it is no longer possible to compile this model to a
graph.

The unboundedness of the number of random variables is the central
issue. It arises naturally when one uses stochastic recursion, a common
way of implementing certain random variables. Consider the example
(defn geometric-helper [n dist]

(if (sample dist)
n
(geometric-helper (+ n 1))))

(defn geometric [p]
(let [dist (flip p)]

(geometric-helper 0 dist))).

This is a well-known sampler for geometrically distributed random
variables. Although a primitive for the geometric distribution would
definitely be provided by a probabilistic programming language (e.g. in
the FOPPL), the point of this example is to demonstrate that the use of
infinitely many random variables arises with the introduction of stochas-
tic recursion. Notably, here, it could be that this particular computation
never terminates, as at each stage of the recursion (sample dist) could
return false, with probability p. Leveraging referential transparency,
one could attempt to inline the helper function above as

141

(defn geometric [p]
(let [dist (flip p)]

(if (sample dist)
0
(if (sample dist)

1
(if (sample dist)

2
...

(if (sample dist)
∞
(geometric-helper (+ ∞ 1))))))))

but the problem in attempting to do so quickly becomes apparent.
Without a deterministic loop bound, the inlining cannot be terminated,
showing that the denoted model has an infinite number of random
variables. No inference approach which requires eager evaluation of if
statements, such as the graph compilation techniques in the previous
chapter, can be applied in general.

While expanding the class of denotable models is important, the
primary reason to introduce the complications of a higher-order modeling
language is that ultimately we would like simply to be able to do
probabilistic programming using any existing programming language
as the modeling language. If we make this choice, we need to be able
to deal with all of the possible models that could be written in said
language and, in general, we will not be able to syntactically prohibit
stochastic loop bounds or conditioning on data whose size is known only
at runtime. Furthermore, in the following chapter we will show how to
do probabilistic programming using not just an existing language syntax
but also an existing compiler and runtime infrastructure. Then, we may
not even have access to the source code of the model. A probabilistic
programming approach that extends an existing language in this manner
will typically target a family of models that are, roughly speaking, in
the same class as models that can be defined using the HOPPL.

5.1. Syntax 142

5.1 Syntax

Relative to the first-order language in Chapter 2, the higher-order
language that we introduce here has two additional features. The first
is that functions can be recursive. The second is that functions are
first-class values in the language, which means that we can define higher-
order functions (i.e. functions that accept other functions as arguments).
The syntax for the HOPPL is shown in Language 5.4.

v ::= variable
c ::= constant value or primitive operation
f ::= procedure
e ::= c | v | f | (if e e e) | (e e1 . . . en) | (sample e)

| (observe e e) | (fn [v1 . . . vn] e)
q ::= e | (defn f [v1 . . . vn] e) q.

Language 5.4: Higher-order probabilistic programming language (HOPPL)

While a procedure had to be declared globally in the FOPPL,
functions in the HOPPL can be created locally using an expression
(fn [v1 . . . vn] e). Also, the HOPPL lifts the restriction of the FOPPL
that the operators in procedure calls are limited to globally declared
procedures f or primitive operations c; as the case (e e1 . . . en) in the
grammar indicates, a general expression e may appear as an operator in
a procedure call in the HOPPL. Finally, the HOPPL drops the constraint
that all procedures are non-recursive. When defining a procedure f
using (defn f [v1 . . . vn] e) in the HOPPL, we are no longer forbidden
to call f in the body e of the procedure.

These features are present in Church, Venture, Anglican, andWebPPL
and are required to reason about languages like Probabilistic-C, Tur-
ing, and CPProb. In the following we illustrate the benefits of having
these features by short evocative source code examples of some kinds of
advanced probabilistic models that can now be expressed. In the next
chapter we describe a class of inference algorithms suitable for perform-
ing inference in the models that are denotable in such an expressive
higher-order probabilistic programming language.

5.2. Syntactic sugar 143

5.2 Syntactic sugar

We will define syntactic sugar that re-establishes some of the convenient
syntactic features of the HOPPL. Note that the syntax of the HOPPL
omits the let expression. This is because it can be defined in terms of
nested functions as
(let [x e1] e2) = ((fn [x] e2) e1).

For instance,
(let [a (+ k 2)

b (* a 6)]
(print (+ a b))
(* a b))

gets first desugared to the following expression
(let [a (+ k 2)]

(let [b (* a 6)]
(let [c (print (+ a b))]

(* a b))))

where c is a fresh variable. This can then be desugared to the expression
without let as follows
((fn [a]

((fn [b]
((fn [c] (* a b))

(print (+ a b))))
(* a 6)))

(+ k 2)).

While we already described a HOPPL loop implementation in the
preceding text, we have elided the fact that the FOPPL loop accepts
a variable number of arguments, a language feature we have not ex-
plicitly introduced here. An exact replica of the FOPPL loop can be
implemented as HOPPL sugar, with loop desugaring occurring prior to
the let desugaring. If we define the helper function
(defn loop-helper [i c v g]

(if (= i c)
v
(let [v′ (g i v)]

(loop-helper (+ i 1) c v′ g))))

5.3. Examples 144

the expression (loop c e f e1 · · · en) can be desugared to
(let [bound c

initial-value e
a1 e1

...
an en

g (fn [i w] (f i w a1 . . . an))]
(loop-helper 0 bound initial-value g)).

With this loop and let sugar defined, and the implementation of foreach
straightforward, any valid FOPPL program is also valid in the HOPPL.

5.3 Examples

In the HOPPL, we will employ a number of design patterns from
functional programming, which allow us to write more conventional
code than was necessary to work around limitations of the FOPPL. Here
we give some examples of higher-order function implementations and
usage in the HOPPL before revisiting models previously discussed in
chapter 2 and introducing new examples which depend on new language
features.

Examples of higher-order functions

We will frequently rely on higher-order functions map and reduce. We
can write these explicitly as HOPPL functions which take functions as
arguments, and do so here by way of introduction to HOPPL usage
before considering generative model code.

Map. The higher-order function map takes two arguments: a function
and a sequence. It then returns a new sequence, constructed by applying
the function to every individual element of the sequence.
(defn map [f values]

(if (empty? values)
values
(prepend (map f (rest values))

(f (first values)))))

5.3. Examples 145

Here prepend is a primitive that prepends a value to the beginning
of a sequence. This “loop” works by applying f to the first element of
the collection values, and then recursively calling map with the same
function on the rest of the sequence. At the base case, for an empty
input values, we return the empty sequence of values.

Reduce. The reduce operation, also known as “fold”, takes a function
and a sequence as input, along with an initial state; unlike map, it returns
a single value. The fixed-length loop construct we defined as syntactic
sugar in the FOPPL can be thought of as a poor-man’s reduce. The
function passed to reduce takes a state and a value, and computes a
new state. We get the output by repeatedly applying the function to
the current state and the first item in the list, recursively processing
the rest of the list.
(defn reduce [f x values]

(if (empty? values)
x
(reduce f (f x (first values)) (rest values))))

Whereas map is a function that maps a sequence of values onto a sequence
of function outputs, reduce is a function that produces a single result.
An example of where you might use reduce is when writing a function
that computes the sum of all entries in a sequence:
(defn sum [items]

(reduce + 0.0 items))

Note that the output of reduce depends on the return type of the
provided function. For example, to return a list with the same entries
as the original list, but reversed, we can use a reduce with a function
that builds up a list from back-to-front:
(defn reverse [values]

(reduce prepend [] values))

No need to inline data. A consequence of allowing unbounded num-
bers of random variables in the model is that we no longer need to
“inline” our data. In the FOPPL, each loop needed to have an explicit
integer literal representing the total number of iterations in order to

5.3. Examples 146

desugar to let forms. As a result, each program that we wrote had to
hard-code the total number of instances in any dataset. Flexible looping
structures mean we can read data into the HOPPL in a more natural
way; assuming libraries for e.g. file access, we could read data from disk,
and use a recursive function to loop through entries until reaching the
end of the file.

For example, consider the hidden Markov model in the FOPPL given
by Program 2.5. In that implementation, we hard coded the number
of loop iterations (there, 16) to the length of the data. In the HOPPL,
suppose instead we have a function which can read the data in regardless
of its length.

(defn read-data []
(read-data-from-disk " filename .csv"))

;; Sample next HMM latent state and condition
(defn hmm-step [trans-dists obs-dists]

(fn [states data]
(let [state (sample (get trans-dists

(last states)))]
(observe (get obs-dists state) data)
(conj states state))))

(let [trans-dists [(discrete [0.10 0.50 0.40])
(discrete [0.20 0.20 0.60])
(discrete [0.15 0.15 0.70])]

obs-dists [(normal -1.0 1.0)
(normal 1.0 1.0)
(normal 0.0 1.0)]

state [(sample (discrete [0.33 0.33 0.34]))]]
;; Loop through the data, return latent states
(reduce (hmm-step trans-dists obs-dists)

[state]
(read-data)))

The hmm-step function now takes a vector containing the current
states, and a single data point, which we observe. Rather than using
an explicit iteration counter n, we can use reduce to traverse the data
recursively, building up and returning a vector of visited states.

5.3. Examples 147

Open-universe Gaussian Mixtures

The ability to write loops of unknown or random iterations is not
just a handy tool for writing more readable code; as hinted by the
recursive geometric sampler example, it also increases the expressivity
of the model class. Consider the Gaussian mixture model example we
implemented in the FOPPL in Program 2.4: there we had two explicit
loops, one over the number of data points, but the other over the
number of mixture components, which we had to fix at compile time.
As an alternative, we can re-write the Gaussian mixture to define a
distribution over the number of components. We do this by introducing
a prior over the number of mixture components; this prior could be
e.g. a Poisson distribution, which places non-zero probability on all
positive integers.

To implement this, we can define a higher-order function, repeatedly,
which takes a number n and a function f , and constructs a sequence of
length n where each entry is produced by invoking f .
(defn repeatedly [n f]

(if (<= n 0)
[]
(append (repeatedly (- n 1) f) (f))))

The repeatedly function can stand in for the fixed-length loops that
we used to sample mixture components from the prior in the FOPPL
implementation. An example implementation is in Program 5.5.
(defn sample-likelihood []

(let [sigma (sample (gamma 1.0 1.0))
mean (sample (normal 0.0 sigma))]

(normal mean sigma)))

(let [ys [1.1 2.1 2.0 1.9 0.0 -0.1 -0 .05]
K (sample (poisson 3)) ;; random, with mean 3
ones (repeatedly K (fn [] 1.0))
z-prior (discrete (sample (dirichlet ones)))
likes (repeatedly K sample-likelihood)]

(map (fn [y]
(let [z (sample z-prior)]

(observe (nth likes z) y)
z))

5.3. Examples 148

ys))
Program 5.5: HOPPL: An open-universe Gaussian mixture model with an unknown
number of components

Here we still used a fixed, small data set (the ys values, same as
before, are inlined) but the model code would not change if this were
replaced by a larger data set. Models such as this one, where the
distribution over the number of mixture components K is unbounded
above, are sometimes known as open-universe models: given a small
amount of data, we may infer there are only a small number of clusters;
however, if we were to add more and more entries to ys and re-run
inference, we do not discount the possibility that there are additional
clusters (i.e. a larger value of K) than we had previously considered.

Notice that the way we wrote this model interleaves sampling from z

with observing values of y, rather than sampling all values z1, z2, z3, . . .

up front. While this does not change the definition of the model (i.e. does
not change the joint distribution over observed and latent variables),
writing the model in a formulation which moves observe statements as
early as possible (or alternatively delays calls to sample) yields more
efficient SMC inference.

Sampling with constraints

One common design pattern involves simulating from a distribution,
subject to constraints. Obvious applications include sampling from
truncated variants of known distributions, such as a normal distribution
with a positivity constraint; however, such rejection samplers are in
fact much more common than this. In fact, samplers for most standard
distributions (e.g. Gaussian, gamma, Dirichlet) are implemented under
the hood as rejection samplers which propose from some known simpler
distribution, and evaluate an acceptance criteria; they continue looping
until the criteria evaluates to true.

In a completely general form, we can write this algorithm as a higher-
order function which takes two functions as arguments: a proposal
function which simulates a candidate point, and is-valid? which returns
true when the value passed satisfies the constraint.
(defn rejection-sample [proposal is-valid?]

5.3. Examples 149

(let [value (proposal)]
(if (is-valid? value)

value
(rejection-sample proposal is-valid?))))

This sort of accept-reject algorithm can take an unknown number of
iterations, and thus cannot be expressed in the FOPPL.

The rejection-sample function can be used to implement samplers
for distributions which do not otherwise have samplers, for example
when sampling from constrained in simulation-based models in the
physical sciences.

Program synthesis

As a more involved modeling example which cannot be written with-
out exploiting higher-order language features, we consider writing a
generative model for mathematical functions. The representation of
functions we will use here is actually literal code written in the HOPPL:
that is, our generative model will produce samples of function bodies
(fn []. . .). For purposes of illustration, suppose we restrict to simple
arithmetic functions of a single variable, which we could generate using
the grammar

op ::= + | - | * | /
num ::= 0 | 1 | . . . | 9
e ::= num | x | (op e e)
f ::= (fn [x] (op e e))

We can sample from the space of all functions f(x) generated by com-
position of digits with +, -, *, and /, by starting from the initial rule
for expanding f and recursively applying rules to fill in values of op,
num, and e until only terminals remain. To do so, we need to assign a
probability for sampling each rule at each stage of the expansion. In the
following example, when expanding each e we choose a number with
probability 0.4, the symbol x with probability 0.3, and a new function
application with probability 0.3; both operations and numbers 0, . . . , 9
are chosen uniformly.
(defn gen-operation []

(sample (uniform [+ - * /])))

5.3. Examples 150

(defn gen-expr []
(let [expr-prior (discrete [0.4 0.3 0.3])

expr-type (sample expr-prior)]
(case expr-type

0 (sample (uniform-discrete 0 10))
1 (quote x)
2 (let [operation (gen-operation)]

(list operation
(gen-expr)
(gen-expr))))))

(defn gen-function []
(list (quote fn) [(quote x)]

(list (gen-operation)
(gen-expr)
(gen-expr))))

Program 5.6: generative model for function of a single variable

In this program we make use of two constructs that we have not
previously encountered. The first is the (case v e1 . . . en) form, which
is syntactic sugar that allows us to select between more than two
branches, depending on the value of the variable v. The second is the
list data type. A call (list 1 2 3) returns a list of values (1 2 3).
We differentiate a list from a vector by using round parentheses (...)
rather than squared parentheses [...].

In this program we see one of the advantages of a language which
inherits from LISP and Scheme: programmatically generating code in
the HOPPL is quite straightforward, requiring only standard operations
on a basic list data type. The function gen-function in Program 5.6
returns a list, not a “function”. That is, it does not directly produce a
HOPPL function which we can call, but rather the source code for a
function. In defining the source code, we used the quote function to wrap
keywords and symbols in the source code, e.g. (quote x). This primitive
prevents the source code from being evaluated, which means that the
variable name x is included into the list, rather than the value of the
variable (which does not exist). Repeated invocation of (gen-function)
produces samples from the grammar, which can be used as a basic
diagnostic:

5.3. Examples 151

(fn [x] (- (/ (- (* 7 0) 2) x) x))
(fn [x] (- x 8))
(fn [x] (* 5 8))
(fn [x] (+ 7 6))
(fn [x] (* x x))
(fn [x] (* 2 (+ 0 1)))
(fn [x] (/ 6 x))
(fn [x] (- 0 (+ 0 (+ x 5))))
(fn [x] (- x 6))
(fn [x] (* 3 x))
(fn [x]

(+ (+ 2
(- (/ x x)

(- x (/ (- (- 4 x) (* 5 4))
(* 6 x)))))

x))
(fn [x] (- x (+ 7 (+ x 4))))
(fn [x] (+ (- (/ (+ x 3) x) x) x))
(fn [x] (- x (* (/ 8 (/ (+ x 5) x)) (- 0 1))))
(fn [x] (/ (/ x 7) 7))
(fn [x] (/ x 2))
(fn [x] (* 8 x))

Program 5.7: Unconditioned samples from a generative model for arithmetic
expressions, produced by calling (gen-function)

Most of the generated expressions are fairly short, with many contain-
ing only a single function application. This is because the choice of
probabilities in Program 5.6 is biased towards avoiding nested function
applications; the probability of producing a number or the variable x is
0.7, a much larger value than the probability 0.3 of producing a function
application. However, there is still positive probability of sampling an
expression of any arbitrarily large size — there is nothing which explic-
itly bounds the number of function applications in the model. Such a
model could not be written in the FOPPL without introducing a hard
bound on the recursion depth. In the HOPPL we can allow functions to
grow long if necessary, while still preferring short results, thanks to the
eager evaluation of if statements and the lack of any need to enumerate
possible random choices.

Note that some caution is required when defining models which
can generate a countably infinite number of latent random variables:

5.3. Examples 152

it is possible to write programs which do not necessarily terminate.
In this example, had we assigned a high enough probability to the
expansion rule e → (op e e), then it is possible that, with positive
probability, the program never terminates. In contrast, it is not possible
to inadvertently write an infinite loop in the FOPPL.

If we wish to fit a function to data, it is not enough to merely
generate the source code for the function — we also need to actually
evaluate it. This step actually requires invoking either a compiler or an
interpreter to parse the symbolic representation of the function (i.e., as
a list containing symbols) and evaluate it to a user-defined function,
just as if we had included the expression (fn [x]. . .) in our original
program definition. The magic word is eval, which we assume to be
supplied as a primitive in the HOPPL target language. We use eval to
evaluate code that has previously been quoted with quote. Consider the
function (fn [x] (- x 8)). Using quote, we can define source code (in
the form of a list) that could then be evaluated to produce the function
itself,
;; These two lines are identical:
(eval (quote (fn [x] (- x 8))))
(fn [x] (- x 8))

For our purposes, we will want to evaluate the generated functions at
particular inputs to see how well they conform to some specific target
data, e.g.
;; Calling the function at x=10 (outputs: 2)
(let [f (eval (quote (fn [x] (- x 8))))]

(f 10))

Running a single-site Metropolis-Hastings sampler, using an algo-
rithm similar to that in Section 4.2 (which we will describe precisely
in Section 6.6), we can draw posterior samples given particular data.
Some example functions are shown in Figure 5.1, conditioning on three
input-output pairs.

Captcha-breaking

We can also now revisit the Captcha-breaking example we discussed
in Chapter 1, and write a generative model for Captcha images in the

5.3. Examples 153

4 2 0 2 4 6
(fn [x] (/ (+ 0 (* 7 (- 5 x))) (+ 8 (/ (* x x) (+ 4 (- 3 x))))))

0

1

2

3

4

5

6

7

4 2 0 2 4 6
(fn [x] (/ (+ 0 (* 7 (- 5 x))) (+ 8 (/ (* x x) (+ (/ x 8) 5)))))

0

1

2

3

4

5

4 2 0 2 4 6
(fn [x] (/ (+ 0 (* 7 (- 5 x))) (+ 8 (/ (* x x) (+ (/ (- 8 x) x) 5)))))

20

10

0

10

20

30

40

50

4 2 0 2 4 6
(fn [x] (/ (+ 0 (* 8 (- 5 x))) 9))

0

2

4

6

8

Figure 5.1: Examples of posterior sampled functions, drawn from the same MH
chain.

HOPPL. Unlike the FOPPL, the HOPPL is a fully general programming
language, and could be used to write functions such as a Captcha
renderer which produces images similar to those in Figure 1.1. If we
write a render function, which takes as input a string of text to encode
and a handful of parameters governing the distortion, and returns the
a rendered image, it is straightforward to then include this function in
a probabilistic program that then can be used for inference. We simply
define a distribution (perhaps even uniform) over text and parameters

;; Define a function to sample a single character
(defn sample-char []

(sample (uniform ["a" "b" . . . "z"
"A" "b" . . . "Z"
"0" "1" . . . "9"])))

;; Define a function to generate a Captcha
(defn generate-captcha [text]

(let [char-rotation (sample (normal 0 1))
add-distortion? (sample (flip 0.5))
add-lines? (sample (flip 0.5))

5.3. Examples 154

add-background? (sample (flip 0.4))]
;; Render a Captcha image
(render text char-rotation

add-distortion? add-lines? add-background?)))

and then to perform inference on the text
(let [image (...) ;; read target Captcha from disk

num-chars (sample (poisson 4))
text (repeatedly num-chars sample-char)
generated (generate-captcha text)]

;; score using any image similarity measure
(factor (image-similarity image generated))
text)

Here we treated the render function as a black box, and just assumed
it could be called by the HOPPL program. In fact, so long as render
has purely deterministic behavior and no side-effects it can actually be
written in another language entirely, or even be a black-box precompiled
binary; it is just necessary that it can be invoked in some manner by
the HOPPL code (e.g. through a foreign function interface, or some
sort of inter-process communication).

6
Evaluation-Based Inference II

Programs in the HOPPL can represent an unbounded number of ran-
dom variables. In such programs, the compilation stategies that we
developed in Chapter 3 will not terminate, since the program repre-
sents a graphical model with an infinite number of nodes and vertices.
In Chapter 4, we developed inference methods that generate samples
by evaluating a program. In the context of the FOPPL, the defining
difference between graph-based methods and evaluation-based methods
lies in the semantics of if forms, which are evaluated eagerly in graph-
based methods and lazily in evaluation-based methods. In this chapter,
we generalize evaluation-based inference to probabilistc programs in
general-purpose languages such as the HOPPL. A simple yet important
insight behind this strategy is that every terminating execution of an
HOPPL program works on only finitely many random variables, so that
program evaluation provides a systematic way to select a finite subset
of random variables used in the program.

As in Chapter 4, the inference algorithms in this chapter use pro-
gram evaluation as one of their core subroutines. However, to more
clearly illustrate how evaluation-based inference can be implemented
by extending existing languages, we abandon the definition of inference

155

6.1. Explicit separation of model and inference code 156

algorithms in terms of evaluators in favor of a more language-agnostic
formulation; we define inference methods as non-standard schedulers of
HOPPL programs. The guiding intuition in this formulation is that the
majority of operations in HOPPL programs are deterministic and refer-
entially transparent, with the exception of sample and observe, which
are stochastic and have side-effects. In the evaluators in Chapter 4, this
is reflected in the fact that only sample and observe expressions are
algorithm specific; all other expression forms are always evaluated in the
same manner. In other words, a probabilistic program is a computation
that is mostly inference-agnostic. The abstraction that we will employ
in this chapter is that of a program as a deterministic computation
that can be interrupted at sample and observe expressions. Here, the
program cedes control to an inference controller, which implements
probabilistic and stochastic operations in an algorithm-specific manner.

Representing a probabilistic program as an interruptible compu-
tation can also improve computational efficiency. If we implement an
operation that “forks” a computation in order to allow multiple indepen-
dent evaluations, then we can avoid unnecessary re-evaluation during
inference. In the single-site Metropolis-Hastings algorithm in Chapter 4,
we re-evaluate a program in its entirety for every update, even when
this update only changes the value of a single random variable. In the
sequential Monte Carlo algorithm, the situation was even worse; we
needed to re-evaluate the program at observe, which lead to an overall
runtime that is quadratic in the number of observations, rather than
linear. As we will see, forking the computation at sample and observe
expressions avoids this re-evaluation, while this forking operation almost
comes for free in languages such as the HOPPL, in which there are no
side effects outside of sample and observe.

6.1 Explicit separation of model and inference code

A primary advantage of using a higher-order probabilistic programming
language is that we can leverage existing compilers for real-world lan-
guages, rather than writing custom evaluators and custom languages. In
the interface we consider here, we assume that a probabilistic program
is a deterministic computation that is interrupted at every sample and

6.1. Explicit separation of model and inference code 157

observe expression. Inference is carried out using a “controller” process.
The controller needs to be able to start executions of a program, receive
the return value when an execution terminates, and finally control
program execution at each sample and observe expression.

The inference controller interacts with program executions via a
messaging protocol. When a program reaches a sample or observe
expression, it sends a message back to the controller and waits a response.
This message will typically include a unique identifier (i.e. an address)
for the random variable, and a representation of the fully-evaluated
arguments to sample and observe. The controller then performs any
operations that are necessary for inference, and sends back a message
to the running program. The message indicates whether the program
should continue execution, fork itself and execute muliple times, or halt.
In the case of sample forms, the inference controller must also provide
a value for the random variable (when continuing), or multiple values
for the random variable (when forking).

This interface defines an abstraction boundary between program
execution and inference. From the perspective of the inference controller,
the deterministic steps in the execution of a probabilistic program can
be treated as a black box. As long as the program executions implement
the messaging interface, inference algorithms can be implemented in
a language-agnostic manner. In fact, it is not even necessary that the
inference algorithm and the program are implemented in the same
language, or execute on the same physical machine. We will make this
idea explicit in Section 6.4.

Example: likelihood weighting. To build intuition, we begin by out-
lining how a controller could implement likelihood weighting using
a messaging inteface (a precise specification will be presented in Sec-
tion 6.5). In the evaluation-based implementation of likelihood weighting
in Section 4.1, we evaluate sample expressions by drawing from the prior,
and increment the log importance weight at every observe expresion.
The controller for this inference strategy would repeat the following
operations:

• The controller starts a new execution of the HOPPL program,

6.1. Explicit separation of model and inference code 158

and iniatilizes its log weight logW = 0.0;

• The controller repeatedly receives messages from the running
program, and dispatches based on type:

– At a (sample d) form, the controller samples x from the
distribution d and sends the sampled value x back to the
program to continue execution;

– At an (observe d c) form, the controller increments logW
with the log probability of c under d, and sends a message
to continue execution;

– If the program has terminated with value c, the controller
stores a weighted sample (c, logW) and exits the loop.

Messaging Interface. In the inference algorithm above, a program
pauses at every sample and observe form, where it sends a message to
the inference process and awaits a response. In likelihood weighting,
the response is always to continue execution. To support algorithms
such as sequential Monte Carlo, the program execution process will
additionally need to implement a forking operation, which starts multiple
independent processes that each resume from the same point in the
execution.

To support these operations, we will define an interface in which an
inference process can send three messages to the execution process:

1. ("start", σ): Start a new execution with process id σ.

2. ("continue", σ, c): Continue execution for the process with id σ,
using c as the argument value.

3. ("fork", σ, σ′, c): Fork the process with id σ into a new process
with id σ′ and continue execution with argument c.

4. ("kill", σ): Terminate the process with id σ.

Conversely, we will assume that the program execution process can
send three types of messages to the inference controller:

6.1. Explicit separation of model and inference code 159

1. ("sample", σ, α, d): The execution with id σ has reached a sample
expression with address α and distribution d.

2. ("observe", σ, α, d, c): The execution with id σ has reached an
observe expression with address α, distribution d, and value c.

3. ("return", σ, c): The execution with id σ has terminated with
return value c.

Implementations of interruption and forking. To implement this in-
terface, program execution needs to support interruption, resuming and
forking. Interruption is relatively straightforward. In the case of the
HOPPL, we will assume two primitives (send µ) and (receive σ). At
every sample and observe, we send a message µ to the inference process,
and then receive a response with process id σ. The call to receive then
effectively pauses the execution until a response arrives. We will discuss
this implementation in more detail in Section 6.4.

Support for forking can be implemented in a number of ways. In
Chapter 4 we wrote evaluators that could be conditioned on a trace
of random values to re-execute a program in a deterministic manner.
This strategy can also be used to implement forking; we could simply
re-execute the program from the start, conditioning on values of sample
expressions that were already evaluated in the parent execution. As we
noted previously, this implementation is not particularly efficient, since
it requires that we re-execute the program once for every observe in
the program, resulting a computational cost that is quadratic in the
number of observe expressions, rather than linear.

An alternative strategy is to implement an evaluator which keeps
track of the current execution state of the machine; that is, it explicitly
manages all memory which the program is able to access, and keeps
track of the current point of execution. To interrupt a running program,
we simply store the memory state. The program can then be forked by
making a (deep) copy of the saved memory back into the interpreter,
and resuming execution. The difficulty with this implementation is
that although the asymptotic performance may be better — since the
computational cost of forking now depends on the size of the saved

6.1. Explicit separation of model and inference code 160

memory, not the total length of program execution — there is a large
fixed overhead cost in running an interpreted rather than compiled
language, with its explicit memory model.

In certain cases, it is possible to leverage support for process control
in the language, or even the operating system itself. An example of
this is probabilistic C (Paige and Wood, 2014), which literally uses
the system call fork to implement forking. In the case of Turing (Ge
et al., 2018), the implementing language (Julia) provides coroutines,
which specify computations that may be interrupted and resumed later.
Turing provides a copy-on-write implementation for cloning coroutines,
which is used to support forking of a process in a manner that avoids
eagerly copying the memory state of the process.

As it turns out, forking becomes much more straightforward when we
restrict the modeling language to prohibit mutable state. In a probabilis-
tic variant of such a language, we have exactly two stateful operations:
sample and observe. All other operations are guaranteed to have no side
effects. In languages without mutable state, there is no need to copy
the memory associated with a process during forking, since a variable
cannot be modified in place once it has been defined.

In the HOPPL, we will implement support for interruption and fork-
ing of program executions by way of a transformation to continuation-
passing style (CPS), which is a standard technique for supporting
interruption of programs in purely functional languages. This trans-
formation is used by both Anglican, where the underlying language
Clojure uses data types which are by default immutable, as well as by
WebPPL, where the underlying Javascript language is restricted to a
purely-functional subset. Intuitively, this transformation makes every
procedure call in a program happen as the last step of its caller, so
that the program no longer needs to keep a call stack, which stores
information about each procedure call. Such stackless programs are easy
to stop and resume, because we can avoid saving and restoring their
call stacks, the usual work of any scheduler in an operating system.

In the remainder of this chapter, we will first describe two source
code transformations for the HOPPL. The first transformation is an
addressing transformation, somewhat analogous to the one that we
introduced in Section 4.2, which ensures that we can associate a unique

6.2. Addressing Transformation 161

address with the messages that need to be sent at each sample and
observe expression. The second transformation converts the HOPPL
program to continuation passing style. Unlike the graph compiler in
Chapter 3 and the custom evaluators in Chapter 4, both these code
transformations take HOPPL programs as input and then yield output
which are still HOPPL programs — they do not change the language.
If the HOPPL has an existing efficient compiler, we can still use that
compiler on the addressed and CPS-transformed output code. Once we
have our model code transformed into this format, we show how we
can implement a thin client-server layer and use this to define HOPPL
variants of many of the evaluation-based inference algorithms from
Chapter 4; this time, without needing to write an explicit evaluator.

6.2 Addressing Transformation

An addressing transformation modifies the source code of the program
to a new program that performs the original computation whilst keeping
track of an address: a representation of the current execution point
of the program. This address should uniquely identify any sample and
observe expression that can be reached in the course of an execution of
a program. Since HOPPL programs can evaluate an unbounded number
of sample and observe expressions, the transformation that we used
to introduce addresses in Section 4.2 is not applicable here, since this
transformation inlines the bodies of all function applications to create
an exhaustive list of sample and observe statements, which may not be
possible for HOPPL programs.

The most familiar notion of an address is a stack trace, which is
encountered whenever debugging a program that has prematurely ter-
minated: the stack trace shows not just which line of code (i.e. lexical
position) is currently being executed, but also the nesting of function
calls which brought us to that point of execution. In functional pro-
gramming languages like the HOPPL, a stack trace effectively provides
a unique identifier for the current location in the program execution. In
particular, this allows us to associate a unique address with each sample
and observe expresssion at run time, rather than at compile time, which
we can then use in our implementations of inference methods.

6.2. Addressing Transformation 162

The addressing transformation that we present here follows the
design introduced by Wingate et al. (2011); all function calls, sample
statements, and observe statements are modified to take an additional
argument which provides the current address. We will use the symbol
α to refer to the address argument, which must be a fresh variable that
does not occur anywhere else in the program. As in previous chapters, we
will describe the addressing transformation in terms of a (e, α ⇓addr e

′)
relation, which translates a HOPPL expression e and a variable α to a
new expression which incorporates addresses. We additionally define a
secondary ↓addr relation that operates on the top-level HOPPL program
q. This secondary evaluator serves to define the top-level outer address;
that is, the base of the stack trace.

Variables, procedure names, constants, and if. Since addresses track
the call stack, evaluation of expressions that do not increase the depth
of the call stack leave the address unaffected. Variables v and procedure
names f are invariant under the addressing transformation:

v, α ⇓addr v f, α ⇓addr f

Evaluation of constants similarly ignores addressing. Ground types
(e.g. booleans or floating point numbers) are invariant, whereas primitive
procedures are transformed to accept an address argument. Since we are
not able to “step in” primitive procedure calls, these calls do not increase
the depth of the call stack. This means that the address argument to
primitive procedure calls can be ignored.

c is a constant value
c, α ⇓addr c

c is a primitive function with n arguments
c, α ⇓addr (fn [α v1 . . . vn] (c v1 . . . vn))

User-defined functions are similarly updated to take an extra address
argument, which may be referenced in the function body:

e, α ⇓addr e
′

(fn [v1 . . . vn] e), α ⇓addr (fn [α v1 . . . vn] e′)

Here, the translated expression e′ may contain a free variable α, which
(as noted above) must be a unique symbol that cannot occur anywhere
in the original expression e.

6.2. Addressing Transformation 163

Evaluation of if forms also does not modify the address in our
implementation, which means that translation only requires translation
of each of the sub-expression forms.

e1, α ⇓addr e
′
1 e2, α ⇓addr e

′
2 e3, α ⇓addr e

′
3

(if e1 e2 e3), α ⇓addr (if e′1 e′2 e′3)

This is not the only choice one could make for this rule, as making
an address more complex is completely fine so long as each random
variable remains uniquely identifiable. If one were to desire interpretable
addresses one might wish to add to the address, in a manner somewhat
similar to the rules that immediately follow, a value that indicates the
conditional branch. This could be useful for debugging or other forms
of graphical model inspection.

Functions, sample, and observe. So far, we have simply threaded
an address through the entire program, but this address has not been
modified in any of the expression forms above. We increase the depth
of the call stack at every function call:

ei, α ⇓addr e
′
i for i = 0, . . . , n Choose a fresh value c

(e0 e1 . . . en), α ⇓addr (e′0 (push-addr α c) e′1 . . . e′n)

In this rule, we begin by translating the expression e0, which returns a
transformed function e′0 that now accepts an address argument. This
address argument is updated to reflect that we are now nested one level
deeper in the call stack. To do so, we assume a primitive (push-addr α c)
which creates a new address by combining the current address α with
some unique identifier c which is generated at translation time. The
translated expression will contain a new free variable α since this
variable is unbound in the expression (push-addr α c). We will bind α
to a top-level address using the ↓addr relation.

If we take the stack trace metaphor literally, then we can think
of α a list-like data structure, and of push-addr as an operation that
appends a new unique identifier c to the end of this list. Alternatively,
push-addr could perform some sort of hash on α and c to yield an
address of constant size regardless of recursion depth. The identifier c

6.2. Addressing Transformation 164

can be any, such as an integer counter for the number of function calls
in the program source code, or a random hash. Alternatively, if we want
addresses to be human-readable, then c can be string representation of
the expression (e0 e1 . . . en) or its lexical position in the source code.

The translation rules sample and observe can be thought of as
special cases of the rule for general function application.

e, α ⇓addr e
′ Choose a fresh value c

(sample e) ⇓addr (sample (push-addr α c) e′)

e1, α ⇓addr e
′
1 e2, α ⇓addr e

′
2 Choose a fresh value c

(observe e1 e2) ⇓addr (observe (push-addr α c) e′1 e′2)

The result of this translation is that each sample and observe expression
in a program will now have a unique address associated with it. These
addresses are constructed dynamically at run time, but are well-defined
in the sense that a sample or observe expression will have an address
that is fully determined by its call stack. This means that this address
scheme is valid for any HOPPL program, including programs that can
instantiate an unbounded number of variables.

Top-level addresses and program translation. Translation of function
calls introduces an unbound variable α into the expression. To associate
a top-level address to a program execution, we define a relation ↓addr
that translates the program body and wraps it in a function.

Choose a fresh variable α e, α ⇓addr e
′

e, α ↓addr (fn [α] e′)

For programs which include functions that are user-defined at the top
level, this relation also inserts the additional address argument into
each of the function definitions.

Choose a fresh variable α e, α ⇓addr e
′ q ↓addr q

′

(defn f [v1 . . . vn] e) q ↓addr (defn f [α v1 . . . vn] e′) q′

These rules translate our program into an address-augmented version
which is still in the same language, up to the definitions of sample and
observe, which are redefined to take a single additional argument.

6.3. Continuation-Passing-Style Transformation 165

6.3 Continuation-Passing-Style Transformation

Now that each function call in the program has been augmented with
an address that tracks the location in the program execution, the next
step is to transform the computation in a manner that allows us to
pause and resume, potentially forking it multiple times if needed. The
continuation-passing-style (CPS) transformation is a standard method
from functional programming that achieves these goals.

A CPS transformation linearizes a computation into a sequence
of stepwise computations. Each step in this computation evaluates an
expression in the program and passes its value to a function, known as
a continuation, which carries out the remainder of the computation. We
can think of the continuation as a “snapshot” of an intermediate state
in the computation, in the sense that it represents both the expressions
that have been evaluated so far, and the expressions that need to be
evaluated to complete the computation.

In the context of the messaging interface that we define in this
chapter, a CPS transformation is precisely what we need to implement
pausing, resuming, and forking. Once we transform a HOPPL program
into CPS form, we gain access to the continuation at every sample and
observe expression. This continuation can be called once to continue
the computation, or multiple times to fork the computation.

There are many ways of translating a program to continuation
passing style. We will here describe a relatively simple version of the
transformation; for better optimized CPS transformations, see Appel
(2006). We define the ⇓c relation

e, κ, σ ⇓c e′.

Here e is a HOPPL expression, and κ is the continuation. The last
e′ is the result of CPS-transforming e under the continuation κ. As
with other relations, we define the ⇓c relation by considering each
expression form separately and using inference-rules notation. As with
the addressing transformation, we then use this relation to define the
CPS transformation of program q, which is specified by another relation

q, σ ↓c q′.

6.3. Continuation-Passing-Style Transformation 166

For purposes of generality, we will incorporate an argument σ, which is
not normally part of a CPS transformation. This variable serves to store
mutable state, or any information that needs to be threaded through
the computation. For example, if we wanted to implement support for
function memoization, then σ would hold the memoization tables.

In Anglican and WebPPL, σ holds any state that needs to be
tracked by the inference algorithm, and hereby plays a role analogous
to that of the variable σ that we thread through our evaluators in
Chapter 6. In the messaging interface that we define in this chapter, all
inference state is stored by the controller process. Moreover, there is no
mutable state in the HOPPL. As a result, the only state that we need
to pass to the execution is the process id, which is needed to allow an
execution to communicate its id when messaging the controller process.
For notational simplicity, we therefore use σ to refer to both the CPS
state and the process id in the sections that follow.

Variables, Procedure Names and Constants

v, κ, σ ⇓c (κ σ v) f, κ, σ ⇓c (κ σ f)
cps(c) = c

c, κ, σ ⇓c (κ σ c)

When e is a variable v or a procedure name f , the CPS transform
simply calls the continuation on the value of the variable. The same
is true for constant values c of a ground type, such as boolean values,
integers and real numbers. The case that requires special treatment is
that of constant primitive functions c, which need to be transformed
to accept a continuation and a state as arguments. We do so using a
subroutine cps(c), which leaves constants of ground type invariant and
transforms this primitive functions into a procedure

c = cps(c) = (fn [v1 v2 κ σ] (κ σ (c v1 v2))).

The transformed procedure accepts κ and σ as additional arguments.
When called, it evaluates the return value (c v1 v2) and passes this
value to the continuation κ, together with the state σ. For all the usual
operators c, such as + and *, we represent CPS variants with c, such as
+ and * .

6.3. Continuation-Passing-Style Transformation 167

If Forms. Evaluation of if forms involves two steps. First we evaluate
the predicate, and then we either evaluate the consequent or the alter-
native branch. When transforming an if form to CPS, we turn this order
“inside out”, which is to say that we first transform the consequent and
alternative branches, and then use the transformed branches to define
a transformed if expression that evaluates the predicate and selects the
correct branch

e2, κ, σ ⇓c e′2 e3, κ, σ ⇓c e′3
Choose a fresh variable v e1,(fn [σ v] (if v e′2 e′3)), σ ⇓c e′

(if e1 e2 e3), κ, σ ⇓c e′

The inference rule begins by transforming both branches e1 and e2 under
the continuation κ. This yields expressions e′1 and e′2 that pass the value
of each branch to the continuation. Given these expressions, we then
define a new continuation (fn [σ v] (if v e′2 e′3)) which accepts the
value of a predicate and selects the appropriate branch. We then use
this continuation to transform the expression for the predicate e1.

This inference rule illustrates one of the basic mechanics of the CPS
transformation, which is to create continuations dynamically during
evaluation. To see what we mean by this, let us consider the expression
(if true 1 0), which translates to

((fn [σ v]
(if v

(κ σ 1)
(κ σ 0))) σ true)

The CPS transformation accepts a HOPPL program and two variables
κ and σ, and returns a HOPPL program in which κ and σ are free
variables. When we evaluate this program, we pass the state and the
value of the predicate to a newly created anonymous procedure that
calls the continuation κ on the value of the appropriate branch. The
important point is that the CPS transformation creates the source code
for a procedure, not a procedure itself. In other words, the top-level
continuation is not created until we evaluate the transformed program.
This property will prove essential when we define the CPS tranformation
for procedure calls.

6.3. Continuation-Passing-Style Transformation 168

Procedure Definition To tranform an anonymous procedure, we need
to transform the procedure to accept continuation and state arguments,
and transform the procedure body to pass the return value to the
continuation. We do so using the following rule

Choose a fresh variable κ′ e, κ′, σ ⇓c e′
(fn [v1 . . . vn] e), κ, σ ⇓c (κ σ (fn [v1 . . . vn κ′ σ] e′))

We introduce a new continuation variable κ′, and transform the proce-
dure body e recursively under this new κ′. Then, we use the transformed
body e′ to define a new procedure, which is passed to the original con-
tinuation κ. Note that the original continuation expects a procedure,
not the return value of a procedure. For instance,

(fn [] 1), κ, σ ⇓c (κ σ (fn [κ′ σ] (κ′ σ 1)))

The continuation parameter κ′ takes the result of the original procedure
1 while the current continuation κ takes the CPS-transformed version
of the procedure itself.

Procedure Call To evaluate a procedure call, we normally evaluate
each of the arguments, bind the argument values to argument variables
and then evaluate the body of the procedure. When performing the
CPS transformation we once again reverse this order

Choose fresh variables v0, . . . , vn
en, (fn [σ vn] (v0 v1 . . . vn κ σ)), σ ⇓c e′n
ei, (fn [σ vi] e′i+1), σ ⇓c e′i for i = (n− 1), . . . , 0

(e0 e1 . . . en), κ, σ ⇓c e′0

We begin by constructing a continuation (fn [σ vn] (v0 v1 . . . vn κ σ))
that calls a transformed procedure v0 with continuation κ and state
σ. Note that this continuation is “incomplete”, in the sense that
v0, . . . , vn−1 are unbound variables that are not passed to the con-
tinuation. In order to bind these variables, we transform the expression,
and put the result e′n inside another expression that creates the contin-
uation for variable vn−1. We continue this transformation-then-nesting
recursively until we have defined source code that creates a continuation

6.3. Continuation-Passing-Style Transformation 169

(fn [σ v0] . . .), which accepts the transformed procedure as an argu-
ment. It is here where the ability to create continuations dynamically,
which we highlighted in our earlier discussion of if expressions, becomes
essential.

To better understand what is going on, let us consider the HOPPL
expression (+ 1 2). Based on the rules we defined above, we know that 1
and 2 are invariant and that the primitive function + will be transformed
to a procedure + that accepts a continuation and a state as additional
arguments. The CPS tranform of (+ 1 2) is

((fn [σ v0]
((fn [σ v1]

((fn [σ v2]
(v0 v1 v2 κ σ)

) σ 2)
) σ 1)

) σ +)

This expression may on first inspection not be the easiest to read. It
is equivalent to the following nested let expressions, which are much
easier understand (you can check this by desugaring)

(let [σ σ
v0 +]

(let [σ σ
v1 1]

(let [σ σ
v2 2]

(v0 v1 v2 κ σ))))

In order to highlight where continuations are defined, we can equivalently
rewrite the expression by assigning each anonymous procedure to a
variable name

(let [κ0 (fn [σ v0]
(let [κ1 (fn [σ v1]

(let [κ2 (fn [σ v2]
(v0 v1 v2 κ σ))]

(κ2 σ 2)))]
(κ1 σ 1)))

(κ0 σ +))

6.3. Continuation-Passing-Style Transformation 170

In this form of the expression we see clearly that we define 3 continua-
tions at runtime in a nested manner. The outer continuation κ0 accepts
σ and + . This continuation κ0 in turn defines a continuation κ1, which
accepts σ and the first argument. The continuation κ1 defines a third
continuation κ2, which accepts the σ and the second argument, and
calls the CPS-transformed function.

This example illustrates how continuations record both the remain-
der of the computation and variables that have been defined thus far.
κ2 references v0 and v1, which are in scope because κ2 is defined inside
a call to κ1 (where v1 is defined), which is in turn defined in a call to
κ0 (where v0 is defined). In functional programming terms, we say that
the continuation κ2 closes over the variables v0 and v1. If we want to
interrupt the computation, then we can return a tuple [κ2 σ v2], rather
than evaluating the continuation call (κ2 σ v2). The continuation κ2
then effectively contains a snapshot of the variables v0 and v1.

Observe and Sample

Choose fresh variables vaddr, v1, v2
e2, (fn [σ v2] (observe vaddr v1 v2 κ σ)), σ ⇓c e′2
e1, (fn [σ v1] e′2), σ ⇓ e′1
eaddr, (fn [σ vaddr] e′1), σ ⇓ e′addr

(observe eaddr e1 e2), κ, σ ⇓c e′addr

Choose a fresh variable vaddr, v

e, (fn [σ v] (sample vaddr v κ σ)), σ ⇓c e′
eaddr, (fn [σ vaddr] e′), σ ⇓ e′addr

(sample eaddr e), κ, σ ⇓c e′addr

These two rules are unique for the CPS transform of probabilistic pro-
gramming languages. They replace observe and sample operators with
their CPS equivalents observe and sample, which take two additional
parameters κ for the current continuation and σ for the current state.
In this translation we assume that an addressing tranformation has
already been applied to add an address eaddr as an argument to sample
and observe.

6.4. Message Interface Implementation 171

Implementing observe and sample corresponds to writing an infer-
ence algorithm for probabilistic programs. When a program execution
hits one of observe and sample expressions, it suspends the execution,
and returns its control to an inference algorithm with information about
address α, parameters, current continuation κ and current state σ. In
the next section we will discuss how we can implement these operations.

Program translation The CPS tranformation of expression defined
so far enables the translation of programs. It is shown in the following
inference rules in terms of the relation q ↓c q′, which means that the
CPS transformation of the program q is q′:

Choose fresh variables v, σ, σ′ e, (fn [σ v] (return v σ)), σ′ ⇓c e′
(fn [α] e) ↓c (fn [α σ] e′)

Choose fresh variables κ, σ e, κ, σ ⇓c e′ q ↓c q′
(defn f [v1 . . . vn] e) q ↓c (defn f [v1 . . . vn κ σ] e′) q′

The main difference between the CPS transformation of programs and
that of expressions is the use of the default continuation in the first
rule, which returns its inputs v, σ by calling the return function.

6.4 Message Interface Implementation

Now that we have inserted addresses into our programs, and transformed
them into CPS, we are ready to perform inference. To do so, we will
implement the messaging interface that we outlined in Section 6.1. In this
interface, an inference controller process starts copies of the probabilistic
program, which are interrupted at every sample and observe expression.
Upon interruption, each program execution sends a message to the
controller, which then carries out any inference operations that need
to be performed. These operations can include sampling a new value,
reusing a stored value, computing the log probabilies, and resampling
program executions. After carrying out these operations, the controller
sensds messages to the program executions to continue or fork the
computation.

As we noted previously, the messaging interface creates an abstrac-
tion boundary between the controller process and the execution process.

6.4. Message Interface Implementation 172

As long as each process can send and receive messages, it need not have
knowledge of the internals of the other process. This means that the
two processes can be implemented in different languages if need be, and
can even be executed on different machines.

In order to clearly highlight this separation between model execution
and inference, we will implement our messaging protocol using a client-
server architecture. The server carries out program executions, and
the client is the inference process, which sends requests to the server
to start, continue, and fork processes. We assume the existence of an
interface that supports centrally-coordinated asynchronous message
passing in the form of request and response. Common networking
packages such as ZeroMQ (Powell, 2015) provide abstractions for these
patterns. We will also assume a mechanism for defining and serializing
messages, e.g. protobuf (Google, 2018). At an operational level, the
most important requirement in this interface is that we are able to
serialize and deserialize distribution objects, which effectively means
that the inference process and the modeling language must implement
the same set of distribution primitives.

Messages in the Inference Controller. In the language that imple-
ments the inference controller (i.e. the client), we assume the existence
of a send method with 4 argument signatures, which we previously
introduced in Section 6.1

1. send("start", σ): Start a new process with id σ.

2. send("continue", σ, c): Continue process σ with argument c.

3. send("fork", σ, σ′, c): Fork process σ into a new process with id
σ′ and continue execution with argument c.

4. send("kill", σ): Halt execution for process σ.

In addition, we assume a method receive, which listens for responses
from the execution server.

Messages in the Execution Server. The execution server, which runs
CPS-transformed HOPPL programs, can itself entirely be implemented

6.4. Message Interface Implementation 173

in the HOPPL. The execution server must be able to receive requests
from the inference controller and return responses. We will assume
that primitive functions receive and send exist for this purpose. The 3
repsonses that we defined in Section 6.1 were

1. (send "sample" σ α d): The process σ has arrived at a sample
expression with address α and distribution d.

2. (send "observe" σ α d c): The process σ has arrived at an observe
expression with address α, distribution d, and value c.

3. (send "return" σ c): Process σ has terminated with value c.

To implement this messaging architecture, we need to change the
behavior of sample and observe. Remember that in the CPS transforma-
tion, we make use of CPS analogues sample and observe. To interrupt
the computation, we will provide an implementation that returns a
tuple, rather than calling the continuation. Similarly, we will also im-
plement return to yield a tuple containing the state (i.e. the process
id) and the return value

(defn sample [α d κ σ]
[" sample " α d κ σ])

(defn observe [α d c κ σ]
[" observe " α d c κ σ])

(defn return [c σ]
[" return " c σ])

Now we will assume that execution server reads in some program
source from a file, parses the source, applies the address transformation
and the cps transformation, and then evaluates the source code to create
the program

(def program
(eval (cps-transform

(address-transform
(parse " program .hoppl")))))

Now that this program is defined, we will implement a request
handler that accepts a process table and an incoming message.

6.4. Message Interface Implementation 174

(defn handler [processes message]
(let [request-type (first message)]

(case request-type
"start" (let [[σ] (rest message)

output (program default-addr σ)]
(respond processes output))

" continue " (let [[σ c] (rest message)
κ (get processes σ)
output (κ σ c)]

(respond processes output))
"fork" (let [[σ σ′ c] (rest message)

κ (get processes σ)
output (κ σ′ c)]

(respond (put processes σ′ κ) output))
"kill" (let [[σ] (rest message)]

(remove processes σ)))))

To process a message, the handler dispatches on the request type. For
"start", it starts a new process by calling the compiled program. For
"kill", it simply deletes the continuation from the process table. For
"continue" and "fork", it retrieves one of continuations from the process
table and continues executions. For each request type the program/con-
tinuation will return a tuple that is the output from a call to sample,
observe, or return. The handler then calls a second function

(defn respond [processes output]
(let [response-type (first output)]

(case response-type
" sample " (let [[α d κ σ] (rest output)]

(send " sample " σ α d)
(put processes σ κ))

" observe " (let [[α d c κ σ] (rest output)]
(send " observe " σ α d c)
(put processes σ κ))

" return " (let [[c σ] (rest output)]
(send " return " σ c)
(remove processes σ)))))

This function dispatches on the response type, sends the appropriate
message, and returns a process table that is updated with the continu-
ation if needed. Now that we have all the machinery in place, we can
define the execution loop as a recursive function

6.5. Likelihood Weighting 175

(defn execution-loop [processes]
(let [processes (handler processes (receive))]

(execution-loop processes)))

6.5 Likelihood Weighting

Setting up the capability to run, interrupt, resume, and fork HOPPL
programs, required a fair amount of work. However, the payoff is that
we have now implemented an interface which we can use to easily write
many different inference algorithms. We illustrate this benefit with a
series of inference algorithms, starting with likelihood weighting.

Algorithm 16 shows an explicit definition of the inference controller
for likelihood weighting that we described high-level at the beginning
of this chapter. In this implementation, we launch L executions of the
program. For each execution, we define a unique process id σ using
a function newid, and intialize the log weight to logWσ ← 0. We
then repeatedly listen for responses. At "sample" interrupts, we draw a
sample from the prior and continue execution. At "observe" interrupts,
we update the log weight of the process with id σ and continue execution
with the observed value. When an execution completes with a "return"
interrupt, we output the return value c and the accumulated log weight
logWσ by calling a procedure output, which depending on our needs
could either save to disk, print to standard output, or store the sample
in some database.

Note that this controller process is fully asynchronous. This means
that if we were to implement the function execution-loop to be multi-
threaded, then we can trivially exploit the embarrassingly parallel nature
of the likelihood weighting algorithm to speed up execution.

6.6 Metropolis-Hastings

We next implement a single-site Metropolis-Hastings algorithm using
this interface. The full algorithm, given in Algorithm 17, has an overall
structure which closely follows that of the evaluation-based algorithm
for the first-order language given in Section 4.2.

6.6. Metropolis-Hastings 176

Algorithm 16 Inference controller for Likelihood Weighting
1: repeat
2: for ` = 1, . . . , L do . Start L copies of the program
3: σ ← newid()
4: logWσ ← 0
5: send("start", σ)
6: l← 0
7: while l < L do
8: µ← receive()
9: switch µ do

10: case ("sample", σ, α, d)
11: x← sample(d)
12: send("continue", σ, x)
13: case ("observe", σ, α, d, c)
14: logWσ ← logWσ + log-prob(d, c)
15: send("continue", σ, c)
16: case ("return", σ, c)
17: l← l + 1
18: output(c, logWσ)
19: until forever

The primary difference between this algorithm and that of Section 4.2
is due to the dynamic addressing. In the FOPPL, each function is
guaranteed to be called a finite number of times. This means that
we can unroll the entire computation, inlining functions, and literally
annotate every sample and observe that can ever be evaluated with a
unique identifier. In the HOPPL, programs can have an unbounded
number of addresses that can be encountered, which necessitates the
addressing transformation that we defined in Section 6.2.

As in the evaluator-based implementation in Section 4.2, the infer-
ence controller maintains a trace X for the current sample and a trace
X ′ for the current proposal, which track the values for sample form that
is evaluated. We also maintain maps logP and logP ′ that hold the log
probability for each sample and observe form. The acceptance ratio is

6.6. Metropolis-Hastings 177

Algorithm 17 Inference Controller for Metropolis-Hastings
1: `← 0 . Iteration counter
2: r,X , logP ← nil, [], [] . Current trace
3: X ′, logP ′ . Proposal trace
4: function accept(β,X ′,X , logP ′, logP)
5: as in Algorithm 9
6: repeat
7: `← `+ 1
8: β ∼ uniform(dom(X)) . Choose a single address to modify
9: send("start", newid())

10: repeat
11: µ← receive()
12: switch µ do
13: case ("sample", σ, α, d)
14: if α ∈ dom(X) \ {β} then
15: X ′(α)← X (α)
16: else
17: X ′(α)← sample(d)
18: logP ′(α)← log-prob(d,X ′(α))
19: send("continue", σ,X ′(α))
20: case ("observe", σ, α, d, c)
21: logP ′(α)← log-prob(d, c)
22: send("continue", σ, c)
23: case ("return", σ, c)
24: if ` = 1 then
25: u← 1 . Always accept first iteration
26: else
27: u ∼ uniform-continuous(0, 1)
28: if u < accept(β,X ′,X , logP ′, logP) then
29: r,X , logP ← c,X ′, logP ′

30: output(r, 0.0) . MH samples are unweighted
31: break
32: until forever
33: until forever

6.7. Sequential Monte Carlo 178

calculated in exactly the same way as in Algorithm 9.
As with the implementation in Chapter 4, an inefficiency in this

algorithm is that we need to re-run the entire program when proposing
a change to a single random choice. The graph-based MH sampler from
Section 3.3, in contrast, was able to avoid re-evaluation of expressions
that do not reference the updated random variable. Recent work has
explored a number of ways to avoid this overhead. In a CPS-based
implementation, we store the continuation function at each address α.
When proposing an update to variable α, we know that none of the
steps in the computation that precede α can change. This means we can
skip re-execution of this part of the program by calling the continuation
at α. The implementation in Anglican makes use of this optimization
(Tolpin et al., 2016). A second optimization is callsite caching (Ritchie
et al., 2016a), which memoizes return values of functions in a manner
that accounts for both the argument values and the environment that a
function closes over, allowing re-execution in the proposal to be skipped
when the arguments and environment are identical.

6.7 Sequential Monte Carlo

While the previous two algorithms were very similar to those presented
for the FOPPL, running SMC in the HOPPL context is slightly more
complex, though doing so opens up significant opportunities for scaling
and efficiency of inference. We will need to take advantage of the "fork"
message, and due to the (potentially) asynchronous nature in which
the HOPPL code is executed, we will need to be careful in tracking
execution ids of particular running copies of the model program.

An inference controller for SMC is shown in Algorithm 18. As in
the implementation of likelihood weighting, we start L executions in
parallel, and then listen for responses. When an execution reaches
a sample interrupt, we simply sample from the prior and continue
execution. When one of the executions reaches an observe, we will need
to perform a resampling step, but we cannot do so until all executions
have arrived at the same observe. For this reason we store the address
of the current observe in a variable αcur, and use a particle counter l
to track how many of executions have arrived at the current observe.

6.7. Sequential Monte Carlo 179

Algorithm 18 Inference Controller for SMC
1: repeat
2: log Ẑ ← 0.0
3: for l in 1, . . . , L do . Start L copies of the program
4: send("start", newid())
5: l← 0 . Particle counter
6: while l < L do
7: µ← receive()
8: switch µ do
9: case ("sample", σ, α, d)

10: x← sample(d)
11: send("continue", σ, x)
12: case ("observe", σ, α, d, c)
13: l← l + 1
14: σl, logWl ← σ, log-prob(d, c)
15: if l = 1 then
16: αcur ← α . Set address for current observe

17: if l > 1 then
18: assert αcur = α . Ensure same address
19: if l = L then
20: o1, . . . , oL ← resample(W1, . . . ,WL)
21: log Ẑ ← log Ẑ + log 1

L

∑L
l=1Wl

22: for l′ = 1, . . . , L do
23: for i = 1, . . . , ol do
24: send("fork", σl′ , newid(), c)
25: send("kill", σl′)
26: l← 0 . Reset particle counter
27: case ("return", σ, c)
28: l← l + 1
29: output(c, log Ẑ)
30: until forever

6.7. Sequential Monte Carlo 180

For each execution, we store the process id σl and the incremental
log weight logWl at the observe. Note that, since the order in which
messages are received from the running programs is nondeterministic,
the individual indices 1, . . . , L for different particles do not hold any
particular meaning from one observe to the next.

An important consideration in this algorithm, which also applies to
the implementation in Section 4.3, is that resampling in SMC must hap-
pen at some sequence of interrupts that are reached in every execution
of a program. In Section 4.3 we performed resampling at a user-specified
sequence of breakpoint addresses y1, . . . , yN . Here, we simply assume
that the HOPPL program will always evaluate the same sequence of
observes in the same order, and throw an error when this is not the
case. A limitation of this strategy is that it cannot handle observe
forms that appear conditionally; e.g. observe forms that appear inside
branches of if forms. If we needed to support SMC inference for such
programs, then we could carry resampling at a subset of observe forms
which are guaranteed to appear in the same order in every execution
of the program. This could be handled by manually augmenting the
observe form (and the "observe" message) to annotate which observes
should be treated as triggering a resample. Alternatively, one could
implement an addressing scheme in which addresses are ordered, which
is to say that we can define a comparison α < α′ that indicates whether
an interrupt at address α precedes an interrupt at address at α′ during
evaluation. When addresses are ordered, we can implement a variety of
resampling policies that generalize from SMC (Whiteley et al., 2016),
such as policies that resample the subset of executions at an address α
once all remaining executions have reached interrupts with addresses
α′ > α.

This SMC algorithm can additionally be used as a building-block
for particle MCMC algorithms (Andrieu et al., 2010), which uses a
single SMC sweep of L particles as a block proposal in a Metropolis-
Hastings algorithm. Particle MCMC algorithms for HOPPL languages
are discussed in detail in Wood et al. (2014b) and Paige and Wood
(2014).

7
Advanced Topics

So far in this tutorial we have looked at how to design first-order
and higher-order probabilistic programming languages, and provided
a blueprint for implementation of automatic inference in each. In this
chapter, we change direction, and describe some recent advances around
current questions of research interest in the field at the time of writing.
We look in a few different directions, beginning with two ways in
which probabilistic programming can benefit from integration with
deep learning frameworks, and then move on to looking at challenges
to implementing Hamiltonian Monte Carlo and variational inference
within the HOPPL and implementing expressive models by recursively
nesting probabilistic programs. We conclude with an introduction to
formal semantics for probabilistic programming languages.

7.1 Inference Compilation

Most of the inference methods described in the previous chapters have
been specified assuming we are performing inference for a given model
exactly once, on a single fixed dataset. In statistics it is usually the case
that there is a (single, fixed) dataset which one would like to understand
by employing a model to test hypotheses about its characteristics.

181

7.1. Inference Compilation 182

In many real-world applications in engineering, finance, science, and
artificial intelligence, we would like to perform inference in the same
model many times, whenever new data are collected. There is often a
model in which, if it were possible, repeated, rapid inference given new
data each time is, instead, of interest. Consider, for instance, stochastic
simulators of engines, or of factories: in these, diagnostic queries could
easily be framed as inference in the simulator given a sufficiently rapid
inference procedure. In finance, rapid inference in more powerful, richly
structured models than can be inverted analytically could lead to high-
speed trading decision engines with higher performance. Science is no
different in its use of simulators and the value that could be derived from
rapid Bayesian inversion; take, for example, the software simulators that
describe the standard model of physics and particle detector responses to
see how useful efficient repeated inference could be, even in a fixed model.
Artificial intelligence requires repeated, rapid inference; in particular for
agents to understand the world around them that they only partially
observe.

In all the situations described, the model — both structure and pa-
rameters — is fixed, and rapid repeated inference is desired. This setting
has been described as amortized inference (Gershman and Goodman,
2014), due to the tradeoff made between up-front and inference-time
computation. Specific implementations of this idea have appeared in the
probabilistic programming literature (Kulkarni et al., 2015a; Ritchie
et al., 2016b), where program-specific neural networks were trained to
guide forward inference.

Le et al. (2017a) and Paige and Wood (2016) introduce a general
approach we will call “inference compilation”, for amortized inference
in probabilistic programming systems. This approach is diagrammed in
Figure 7.1, where the denotation of the joint distribution provided by a
probabilistic program is leveraged in two ways: both to obtain via source
code analysis some parts of the structure of a bottom-up inference neural
network, and to generate synthetic training data via ancestral sampling
of the joint distribution. A network trained with these synthetic data
is later used repeatedly to perform inference with real data. Paige
and Wood (2016) introduced a strategy for learning inverse programs
for models with finite parameter dimension, i.e. models denotable in

7.1. Inference Compilation 183

Compilation

Probabilistic program
p��;y)

Inference

Training data
����);y��)g

Test data
y

Posterior
p��jy)

Training �

Expensive / slow Cheap / fast

SIS
NN architecture

Compilation artifact

q��jy;�)

DKL �p��jy) jj
q��jy;�))

Figure 7.1: An outline of an approach to inference compilation for amortized
inference for probabilistic programs. Re-used with permission from Le et al. (2017a).

the FOPPL. Le et al. (2017a) uses the same training objective, which
we will describe next, but shows how to construct a neural inference
compilation artifact compatible with HOPPL program inference.

We will follow Le et al. (2017a) and describe, briefly, the idea
for HOPPLs. Recall Section 4.1.1 in which importance sampling in
its general form was discussed. Immediately after the presentation of
importance sampling a choice of the proposal distribution was made,
namely, the prior, and this choice was fixed for the remainder leading
to discussion of likelihood weighting rather than importance sampling
throughout. In particular, in Chapters 4 and 6 where evaluation-based
inference was introduced, in both likelihood weighting and SMC, the
weights computed and combined were always simply the observe log
likelihoods owing to the choice of prior as proposal.

This choice is easy — propose by simply running the program
forward — and always available, but is not necessarily a good choice. In
particular, when observations are highly informative, proposing from the
prior distribution may be arbitrarily statistically inefficient (Del Moral
and Murray, 2015). To motivate this approach to inference compilation,
we note that this choice is not the only possibility, and if a good
proposal were available then the quality of inference performed could
be substantially improved in terms of number of effective samples per

7.1. Inference Compilation 184

unit computation.
Consider, for the moment, what would happen if someone provided

you with a “good” proposal for every address α

qα(xα|Xn−1, Y) (7.1)

noting that this is not the incremental prior and that it in general
depends on all observations Y . Here we assume that the n-th sample is
drawn at α for some n, and writeXn−1 for the samples drawn beforehand.
The likelihood-weighting evaluators can be transformed into importance
sampling evaluators by changing the sample method implementations to
draw xα according to Equation (7.1) instead of pα(xα|Xn−1). The rules
for sample would then need to generate a weight too (as opposed to
generating such side-effects at the evaluation of only observe statements,
not sample statements). This weight would be

W `
α = pα(xα|Xn−1)

qα(xα|Xn−1, Y) (7.2)

leading to, for importance sampling rather than likelihood weighting, a
total unnormalized weight per trace ` of

W ` = p(Y |X)
∏

α∈dom(X)

pα(xα|Xn−1)
qα(xα|Xn−1, Y) . (7.3)

The problem then becomes: what is a good proposal, and how do we
find it? There is a body of literature on adaptive importance sampling
and optimal proposals for sequential Monte Carlo that addresses this
question. Doucet et al. (2000) and Cornebise et al. (2008) show that
optimal proposal distributions are in general intractable. So, in practice,
good proposal distributions are either hand-designed prior to sampling
or are approximated using some kind of online estimation procedure
to approximate the optimal proposal during inference (as in e.g. Van
Der Merwe et al. (2000) or Cornebise et al. (2014) for state-space
models).

Inference compilation trains a “good” proposal distribution at com-
pile time — that is, before the observation Y is given — by minimizing
the Kullback–Leibler divergence between the target posterior and the
proposal distribution DKL (p(X|Y) || q(X|Y ;φ)) with respect to the

7.1. Inference Compilation 185

parameters φ of the proposal distribution. The aim here is finding a
proposal that is good not just for one observation Y but instead is
good in expectation over the entire distribution of Y . To achieve this,
inference compilation minimizes the expected KL under the distribution
p(Y)

L(φ) := Ep(Y) [DKL (p(X|Y) || q(X|Y ;φ))] (7.4)

=
∫
Y
p(Y)

∫
X
p(X|Y) log p(X|Y)

q(X|Y ;φ) dX dY

= Ep(X,Y) [− log q(X|Y ;φ)] + const. (7.5)

Conveniently, again, the probabilistic program denotes the joint distri-
bution (simply de-sugar all observe statements to sample statements,
e.g. (observe d c) becomes (sample d)) which means that an un-
bounded number of importance-weighted samples can be drawn from
the joint distribution to compute Monte Carlo estimates of the expecta-
tion.

What remains is to choose a specific form for the proposal distribu-
tion to be learned. Consider a form like

q(X|Y ;φ) =
∏

α∈dom(X)
qα(xα|η(α,Xn−1, Y, φ)) (7.6)

and let η be a differentiable function parameterized by φ that takes
the address of the next sample to be drawn, the trace sample values
to that point, and the values of all of the observations, and produces
parameters for a proposal distribution for that address. The values of
X and Y are given and we choose qα such that it will be differentiable
with respect to its own parameters; if these parameters are computed
by a differentiable function η, then learning of φ using Equation (7.5)
can be done using standard gradient-based optimization techniques.

Now the question that remains is what form does the function η
take. In, e.g. (Le et al., 2017a), a polymorphic neural network with a
program specific encoder network and a stacked long-short-term-memory
recurrent neural network backbone was used. In (Paige and Wood, 2016)
a masked auto-regression density estimator was used. In short, and
in particular in the HOPPL, whatever neural network architecture is
used, it must be able to map to a variable number of outputs, and

7.2. Model Learning 186

incorporate sampled values in a sequential manner, concurrent with
the running of the inference engine. It should be noted also that, once
trained, the inference compilation network is entirely compatible with
the client/server inference architecture explained in Chapter 6.

Such inference compilation has been shown to dramatically speed
inference in the underlying models in a number of cases, bringing
probabilistic programming ever closer to real practicality. There remain
a number of interesting research problems currently under consideration
here too. Chief amongst them is: is there a way to structure the bottom-
up program advantageously and automatically given the top-down
program or vice versa? Important initial work has been done on this
problem (Webb et al., 2017; Paige and Wood, 2016; Stuhlmüller et al.,
2013) but much remains. Were there to be good, broadly applicable
algorithms, they would do much to close the emerging gap between the
broadly independent research disciplines of discriminative learning and
generative modeling.

7.2 Model Learning

It might seem like this tutorial has implicitly advocated for unsupervised
model-based inference. One thing machine learning and deep learning
have reminded us over and over again is that writing good, detailed,
descriptive, and useful models is itself very hard. Time and again,
data-driven discriminative techniques have been shown to be generally
superior at solving specific posed tasks, with the significant caveat that
large amounts of labeled training data are typically required. Taking
inspiration from this encourages us to think about how we can use
data-driven approaches to learn generative models, either in part or in
whole, rather than writing them entirely by hand. In this section we
look at how probabilistic programming techniques can generalize such
that “bottom-up” deep learning and “top-down” probabilistic modeling
can work together in concert.

Top-down model specification is equivalent to the act of writing a
probabilistic program: top-down means, roughly, starting with latent
variables and performing a forward computation to arrive at an ob-
servation. Our journey from FOPPL to HOPPL merely increased our

7.2. Model Learning 187

flexibility in specifying and structuring this computation.
In contrast, bottom-up computation starts at the observations and

computes the value or parameters of a distribution over a latent quantity
(such as a probability vector over possible output labels). Such bottom-
up computation traditionally used compositions of hand-engineered
feature extraction and combination algorithms but as of now is firmly
the domain of deep neural networks. Deep networks are parameterized,
structured programs that feed forward from a value in one domain
to a value in another; the case of interest here being transformations
from the space of observation to the parameters for the latents. Neural
network programs only roughly structure a computation (for instance
specifying that it uses convolutions) but do not usually fully specify
the specific computation to be performed until being trained using
input/output supervision data to perform a specific regression, clas-
sification, or inference computation task. Their observed efficacy is
remarkable, particularly when they can be viewed as partially specified
programs whose refinement or induction from input/output examples
is computed by stochastic gradient descent.

Consider what you have learned about how probabilistic programs
are evaluated. Such evaluations require running one of the generic
inference algorithms discussed. Each inference program, an evaluator,
was, throughout this tutorial, taken to be fixed, i.e. fully parameterized.
Furthermore, also throughout this tutorial, the probabilistic program
itself – the model – was also assumed to be fixed in both structure and
parameterization.

7.2.1 Helmholtz machines and variational autoencoders

What inference compilation does not do is to adapt the model; it assumes
that the given model p(X,Y) is fixed and correct. It can make inference
in models fast and accurate, but writing accurate generative models is
an extremely difficult task as well. Perhaps more to the point, manually
writing an efficient, fully specified generative model that is accurate
all the way down to naturally occurring observable data is fiendishly
difficult; perhaps impossible, particularly when data are raw signals
such as audio or video.

7.2. Model Learning 188

Additionally, it is clear that intelligent agents must adapt at least
some parts of their model in response to a changing world. While human
brain structure is regular between individuals at a coarse scale, it is
clear that fine-grained structure is dictated primarily by exposure to
the environment. People react differently to the same stimuli.

A large number of computational neuroscientists, cognitive scientists,
machine learning researchers believe in a well-established formal model
of how agents choose and plan their actions (Levine, 2018; Tenenbaum
et al., 2011; Ghahramani, 2015). In this model agents construct and
reason in models of their worlds (simulators), and use them to compute
the expected utility of, or return to be had by, effecting some action
— i.e. applying control inputs to their musculoskeletal systems, in the
case of animals.

An abstraction of a significant part of this model building and
inference paradigm was laid out by Dayan et al. (1995). They called
their abstract machine for model-based perception and world-prediction
the “Helmholtz machine.” They posited the existence of intertwined
forward and backward models in which the forward “decoder” model is
used for simulating or predicting the world and the backward “encoder”
model is used to encode a percept into a representation of the world in
the latent space of the model. In other words, every state of the world
is represented by a latent code, or, more precisely, a distribution over
latent states of the world due to the fact that not everything is directly
observable.

Kingma and Welling (2014) and Rezende et al. (2014) introduced a
specific reduction of this idea to practice in the form of the variational
autoencoder. In their work, specific architectures and techniques for
realizing the general Helmholtz machine idea were proposed, using a
variational inference objective of the form

log p(Y ; θ) ≥ log p(Y ; θ)−DKL (q(X|Y ;φ) || p(X|Y ; θ)) (7.7)

=
∫
q(X|Y ;φ) [log p(X,Y ; θ)− log q(X|Y ;φ)] dX (7.8)

= ELBO(θ, φ, Y). (7.9)

Provided we assume that the generative model is differentiable with
respect to its parameters θ, the sampling process for drawing a ran-

7.2. Model Learning 189

dom variate X from the distribution q(X|Y ;φ) can be expressed in a
manner which composes a differentiable deterministic function g and
independent noise distribution p(ε), such that g(Y, ε;φ) d= q(X|Y ;φ),
then the evidence lower bound ELBO(θ, φ, Y) can be optimized via
gradient ascent techniques using

∇θ,φ ELBO(θ, φ, Y) = ∇θ,φEq(X|Y ;φ)

[
log p(X,Y ; θ)

q(X|Y ;φ)

]
= Ep(ε)

[
∇θ,φ log p(g(Y, ε;φ), Y ; θ)

q(g(Y, ε; θ)|Y ;φ)

]

≈ 1
L

L∑
`=1

[
∇θ,φ log p(g(Y, ε`;φ), Y ; θ)

q(g(Y, ε`;φ)|Y ;φ)

]
,

where ε` ∼ p(ε). Note that what is written here applies to a single
observation Y only, and the log evidence of a dataset consisting of many
observations would accumulate over the set of all observations yielding
an outer loop around all gradient computations.

What the variational autoencoder does is quite elegant. Starting from
observational data and parameterized encoder and decoder programs we
can simultaneously adjust, via gradient ascent on the ELBO objective,
the parameters of the generative model θ and the parameters of the
inference network/encoder φ so as to simultaneously produce a good
model p(X,Y ; θ) and an amortized inference engine q(X|Y ;φ) for the
same model.

Variational autoencoders and probabilistic programming meet in
many places. The most straightforward to see is that rather than
the typically simple specific architecture choices for p and q, using
probabilistic programming techniques to specify both can increase
their expressivity and thereby potentially their performance too. Most
variational autoencoder instantiations specify a single, conditionally
independent and identically distributed prior for a single layer of latents,
p(X), and then via a purely deterministic differentiable procedure f map
that code to the parameters of a usually simple likelihood p(Y |f(X, θ)).
This is, of course, rather different from the rich structure of possible
generative programs denotable in probabilistic programming languages
and means that simple, non-structured decoders must learn much of

7.2. Model Learning 190

what could be included explicitly as structural prior information. Some
work has been done to increase the generality of the modeling language,
such as making the decoder generative model a graphical model (Johnson
et al., 2016). Work on program induction in the programming languages
community, which is one way model learning can be understood, suggests
a rule of thumb that says it is a good idea to impose as much structure
as possible when learning or inducting a program. It remains to be seen
whether very general model architectures and the magic of gradient
descent will win out dominantly in the end over the top-down structuring
approach.

On the flip side, the encoder q(X|Y ;φ) is equivalent to our inference
compilation artifacts in action. It so being, should it not reflect the
structure of the generative model in order to achieve optimal perfor-
mance? Also, would not it be better if the encoder could “reach into”
the generative model and directly address conditional random choices
made during the forward execution of the decoder if the decoder were
more richly structured?

Various approaches to this have started to appear in the literature
and these form the basis for the most tight connections between what we
will also refer to as a variational autoencoder, but are more general and
flexible than the original specification, and probabilistic programming.
This has recently instantiated themselves in the form of probabilistic
programming languages built on top of deep learning libraries. On top
of TensorFlow, a distributions library (Dillon et al., 2017) provides im-
plementations of random variable primitives which can be incorporated
into deep generative models; Edward (Tran et al., 2016) provides a
modeling and inference environment for defining structured, hierarchical
distributions for encoders and decoders. On top of PyTorch, at time
of writing a similar distributions library is in development, and two
probabilistic programming languages (including Pyro (Uber, 2018) and
probabilistic Torch (Siddharth et al., 2017)) are built. Unlike Tensor-
Flow, PyTorch uses a dynamic approach to constructing computation
graphs, making it easy to define models which include recursion and
unbounded numbers of random choices — in short, HOPPL programs.

A potentially very exciting new chapter in the continuing collision
between variational methods and probabilistic programming follows on

7.3. Hamiltonian Monte Carlo and Variational Inference 191

from the recent realization that general purpose inference methods like
those utilized in probabilistic programming offer an avenue for tighten-
ing the lower bound for model evidence during variational autoencoder
training while remaining compatible with more richly structured models
and inference networks. Arguably the first example of this was the
importance weighted autoencoder (Burda et al., 2016) which, effectively,
uses an importance sampling inference engine during variational autoen-
coder training to both tighten the bound and minimize the variance
of gradient estimates during training. A more advanced version of this
idea that uses sequential Monte Carlo instead of importance sampling
has appeared recently in triplicate simultaneously (Le et al., 2017c;
Naesseth et al., 2017; Maddison et al., 2017). These papers all roughly
identify and exploit the fact that the marginal probability estimate
computed by sequential Monte Carlo tightens the ELBO even further
(by giving it a new form), and moreover, the power of sequential Monte
Carlo allows for the efficient and full intertwining of the decoder and
encoder architectures even when either or both have internal latent
stochastic random variables. The goal and hope is that the variational
techniques combined with powerful inference algorithms will allow for
simultaneous model refinement/learning and inference compilation in
the full family of HOPPL-denotable models and beyond.

7.3 Hamiltonian Monte Carlo and Variational Inference

We introduced Hamiltonian Monte Carlo in Section 3.4 as a graph-based
inference approach, and variational inference in Section 4.4 as evaluation-
based inference in the FOPPL; neither of these we revisited in Chapter 6
as HOPPL inference algorithms. This is not because these algorithms
are fundamentally difficult to adopt as HOPPL evaluators — in fact, it
is straightforward to convert the BBVI evaluator in Algorithm 14 to the
HOPPL — but rather because it is unclear whether these algorithms
yield accurate posterior approximations for programs written in the
HOPPL.

The particular challenge is the possibility of HOPPL programs
to generate an unbounded number of random variables, where the
number of random variables may differ from execution to execution.

7.3. Hamiltonian Monte Carlo and Variational Inference 192

Our BBVI evaluator in Section 4.4 produces a variational parameter
at each random choice encountered during course of execution; for the
FOPPL evaluator in which all random variables can be enumerated, this
yields a fixed-size set of variational parameters. The direct approach to
translating this algorithm to the HOPPL is to associate a variational
parameter with each address α that corresponds to a sample statement.
However, this can lead to pathological behaviour where certain addresses
may never be encountered even once while fitting the approximating
distribution, although those addresses may still eventually be produced
by the program. A workaround is to consider a variational approximation
which is defined by a finite set of approximating distributions, even if the
probabilistic program itself can generate an arbitrary number of random
variables during its execution; this can be done by defining equivalence
classes over addresses α, such that multiple sample statements share a
posterior approximation. This is particularly sensible for e.g. random
choices which occur inside a rejection sampler, where multiple calls to
the same distribution in the same function really do have the same
posterior, conditioned on the fact that the random variable exists in
the execution. However, in general it is difficult to decide automatically
which random choices should share the same approximating distribution.
Such systems can be used in practice so long as these mappings can be
annotated manually, as for example in van de Meent et al. (2016).

Further difficulties arise if attempting to run Hamiltonian Monte
Carlo on HOPPL programs. A Hamiltonian Monte Carlo transition
kernel is not designed to run on spaces of varying dimensionality; instead,
it could be used as a conditional update or proposal for a given fixed
set of instantiated random variables. In a reversible jump MCMC
setting, the HMC proposal could update these values while an additional
alternative transition kernel could propose changes to the dimensionality
of the model. However, this is also difficult to handle automatically in
HOPPL programs; there is not necessarily any fixed parameter which
denotes the dimensionality of the model, which instead depends on
the control flow path of a particular execution. Changing the value of
any continuous latent random variable could push the program onto a
different branch (e.g. by changing the number of iterations of a stochastic
recursion), which would then change the dimensionality of the model.

7.4. Nesting 193

Implementing HMC in a higher-order programming language safely
requires explicitly separating the latent random variables into those
which are “structure preserving” (Yang et al., 2014), i.e. for which a
change in value cannot change the dimensionality of the target, from
those which may affect control flow.

7.4 Nesting

In this tutorial we have not provided a HOPPL construct for nesting
probabilistic programs. However, embedded languages like Anglican,
WebPPL, and Church inevitably tempt such a facility for many reasons
including the existence of a porous boundary between the PPL and its
host language. Nesting, in our terminology, means treating a HOPPL
program like a distribution and using it within another HOPPL program
as a distribution-type object, analogous to distributions provided as
primitives in the language. In statistics this can correspond to a double
intractable inference problem (Murray et al., 2012). Nesting would
seem a natural and perhaps even straightforward thing to do because
a HOPPL program denotes a parameterized conditional distribution
(one for each set of observed variable values). As a consequence one
might naturally ask why this HOPPL-denoted distribution ought not be
treated just as any other distribution value, in the sense that it can be
nested and passed as an argument to sample and observe in an another
or outer HOPPL program. It turns out that this is very tricky to do
correctly and that there remain opportunities to design languages and
inference algorithm evaluators that do.

To even discuss this we need to assume the existence of two addi-
tional HOPPL features. One is a syntactic nesting construct; effectively
a boundary around a HOPPL program. The shared query syntax that is
used to separate Anglican, Church, and WebPPL programs from their
host languages is one such example. Second, we need to assume the ex-
istence of a construct that reifies a HOPPL program into a distribution
type. In Church and WebPPL this is implicitly tied up in the query con-
struct itself, specifically rejection-query and enumerate-query. Other
examples of this include the theoretically-grounded but impossible
norm function of Staton et al. (2016), and the intentionally hidden

7.4. Nesting 194

conditional construct from Anglican, which has flaws uncovered and
criticized by Rainforth (2018).

Take for example the following hypothetical nesting-HOPPL pro-
gram.
(let [inner (query [y D]

(let [z (sample (gamma y 1))]
(observe (normal y z) D)

z))
outer (query [D]

(let [y (sample (beta 2 3))
z (sample (inner y D))]

[y z D]))]
(sample (outer D)))

Even the casual meaning of such a program is open to interpretation.
Should the joint distribution over the return value be

π1(y, z,D) = p(y)p(z|y)p(D|y, z)

= Beta(y; 2, 3)Γ(z; y, 1)N
(
D; y, z2

)
or

π2(y, z,D) = p(y)p(z|y,D) = p(y)p(z|y)p(D|y, z)∫
p(z|y)p(D|y, z)dz

= p(y)p(z|y)p(D|y, z)
p(D|y) 6= π1(z, y,D)

?

The first interpretation is what you would expect if you were to inline
the inner query as one can do for a function body in a pure functional
language. While doing such a thing introduces no mathematical compli-
cations, it is incompatible with the conditional distribution semantics
we have established for HOPPL programs. The second interpretation is
correct in that it is in keeping with such semantics but introduces the
extra marginal probability term p(D|y) which is impossible to compute
in the general case, complicating matters rather a lot.

Rainforth (2018) categorizes nesting into three types: “sampling
from the conditional distribution of another query” (which we refer
to as nested inference), “factoring the trace probability of one query
with the partition function estimate of another” (which we refer to as
nested conditioning), and “using expectation estimates calculated using

7.4. Nesting 195

one query as first class variables in another.” While this terminology is
rather inelegant (and potentially confusing because it conflates problem
and solution differences in the same categorization), the point remains.
To even do “nested inference” one both must pay close attention to
Rainforth et al. (2018) warnings about convergence rates for nested
sampling and also utilize sampling methodologies that are specifically
tailored to this situation (Rainforth, 2018; Naesseth et al., 2015).

Beyond these concerns Staton et al. (2016) also noticed that the
posterior distribution fails to be defined in some models with certain
observation distributions because the marginal likelihood of the obser-
vation can become infinite (Staton et al., 2016; Staton, 2017). Here is a
variant of their example.
(let [x (sample (normal 0 1))

px (* (/ 1 (sqrt (* 2 pi)))
(exp (- (/ (* x x) 2))))]

(observe (exponential (/ 1 px)) 0)
x)

Program 7.1: HOPPL program with undefined posterior

This program defines a model with prior p(x) = Normal(x; 0, 1) and
likelihood p(y|x) = Exponential(y; 1/p(x)), and expresses that y = 0
is observed. The model fails to have a posterior because its marginal
likelihood at y = 0 is infinite

p(y = 0) =
∫
p(x, y = 0)dx =

∫
p(x)p(y = 0|x)dx

=
∫
p(x) 1

p(x)dx =∞.

Staton et al. (2016) argued that the formal semantics of a language
construct for performing inference, such as doquery in Anglican, should
account for this failure case. A message of this research to us is that
when we define a model using the outcome of posterior inference of
another nested model, we should make sure that this outcome is well-
defined, because otherwise even a prior used within an outer model may
become undefined.

Currently probabilistic programming languages perform inference
on nested models in a way that is similar to the bad naïve nested

7.5. Formal Semantics 196

Monte-Carlo identified by Rainforth et al. (2018) and in a way that is
not immune to the problem identified by Staton et al. (2016), and so
they suffer from inefficiencies and, worse, inaccuracies. This suggests a
potentially fruitful avenue for future research.

What should be noted is that nested query language constructs, were
they to be operationalized efficiently and correctly, allow one to express
extremely interesting and complex generative models that can involve
mutually recursive theory-of-mind type reasoning, and so on. Goodman
and his colleagues highlight many such models for agent interactions
that capture agents’ knowledge about other agents (Stuhlmüller and
Goodman, 2014) and many source code examples are available online
(Stuhlmüller, 2014).

7.5 Formal Semantics

Programs in probabilistic programming languages correspond to proba-
bilistic models, and characterizing aspects of these models is the goal
of inference algorithms. In most cases, the characterization is approx-
imate, and describes the target model only partially. Although such
partial description is good enough for many applications, it is not so for
the developers of these languages, who have to implement compilers,
optimizers, and inference algorithms and need to ensure that these
implementations do not have bugs. For instance an optimizer within a
PPL compiler should not change the probabilistic models denoted by
programs, and an inference algorithm should be able to handle corner
cases correctly, such as Program 7.1 in Section 7.4 that does not have
a posterior distribution. To meet this obligation, developers need a
method for mapping probabilistic programs to their precise meanings,
i.e., a strict mathematical description of the denoted probabilistic mod-
els. The method does not have to be computable, but it should be formal
and unambiguous, so that it can serve as ruler for judging correctness
of transformations and implementations.

A formal semantics is such a method. It defines the mathematical
meaning of every program in a probabilistic programming language. For
instance, the semantics may map
(let [x (sample (normal 0 1))]

7.5. Formal Semantics 197

(observe (normal x 1) 2)
x)

to the normalized posterior distribution of the returned latent vari-
able x (namely, Normal(x; 1,

√
2)), or to its unnormalized counterpart

Normal(x; 0, 1)×Normal(2;x, 1), which comes directly from the joint
distribution of the latent x and the observed y that has the value 2.

A formal semantics is like integration. The integral of a complicated
function may be impossible to compute, but its mathematical meaning
is clearly defined. Similarly, the semantics might not tell us how to
compute a probabilistic model from a given complicated program, but
it tells us precisely what the model is.

Giving a good formal semantics to probabilistic programming lan-
guages turns out to be very challenging, and even requires revising
the measure-theoretic foundation of modern probability theory in some
cases. These issues can be seen in articles by Borgström et al. (2013),
Staton et al. (2016), and Staton (2017). In the rest of this section, we
focus on one issue caused by so-called higher-order functions, which are
functions that take other functions as arguments or return functions
as results; higher-order function are fully or partially supported by
many probabilistic programming languages such as Church, Venture,
Anglican, WebPPL and Pyro.

A good way to understand the issue with higher-order functions
is to attempt to build a formal semantics for a language with higher-
order functions and to observe how a natural decision in this endeavor
ultimately leads to a dead end. The first step of this attempt is to
notice that a large class of probability distributions can be expressed
in the HOPPL and most other probabilistic programming languages.
In particular, using these languages, we can express distributions on
real numbers that do not have density functions with respect to the
Lebesgue measure, and go easily outside of the popular comfort zone
of using density functions to express and reason about probabilistic
models. For instance, the HOPPL program
(if (sample (flip 0.5)) 1 (sample (normal 0 1)))

expresses a mixture of the Dirac distribution at 1 and the standard
normal distribution, but because of the Dirac part, this mixture does

7.5. Formal Semantics 198

not have a density function with respect to Lebesgue measure.
A standard approach of formally dealing with such distributions is to

use measure theory. In this theory, we use a so called measurable space,
which is just a set X equipped with a family Σ of subsets of X that
satisfies certain conditions. Elements in Σ are called measurable, and
they denote events that can be assigned probabilities. A representative
example of measurable space is the set of reals R together with the
family B of so called Borel sets. A probability distribution on X is then
defined to be a function from Σ to [0, 1] satisfying certain properties.
For instance, the above HOPPL program denotes a distribution that
assigns

0.5× I(a < 1 < b) + 0.5×
∫ b

a

1√
2π

exp
(
−x2

2

)
dx

to every interval (a, b). Another important piece of measure theory is
that we consider only good functions f between two measurable spaces
(X,Σ) and (X ′,Σ′) in the sense that the inverse image of a measurable
B ∈ Σ′ according to f is always measurable (i.e. f−1(B) ∈ Σ). These
functions are called measurable functions. When the domain (X,Σ)
of such a measurable function is given a probability distribution, we
often say that the function is a random variable. Using measure theory
amounts to formalizing objects of interest in terms of measurable spaces,
measurable sets, measurable functions and random variables (instead
of usual sets and functions).

The second step of giving a semantics to the HOPPL is to interpret
HOPPL programs using measure theory. It means to map HOPPL
programs to measurable functions, constants in measurable spaces, or
probability distributions. Unfortunately, this second step cannot be
completed because of the following impossibility result by Aumann
(1961):

Theorem 7.1 (Aumann). Let F be the set of measurable functions on
(R,B). Then, no matter which family Σ of measurable sets we use for
F , we cannot make the following evaluation function measurable:

app : F × R→ R
app(f, r) = f(r).

7.5. Formal Semantics 199

Here we assume that B is used as a family of measurable sets for R and
that F ×R means the standard cartesian product of measurable spaces
(F,Σ) and (R,B).

The result implies that the HOPPL function

(fn [f x] (f x))

cannot be interpreted as a measurable function, and so it lives outside
of the realm of measure theory, regardless of what measurable space we
use for the set of measurable functions on (R,B). We thus have to look
for a more flexible alternative than measure theory.

Finding such an alternative has been a topic of active research.
Here we briefly review a proposal by Heunen, Kammar, Staton and
Yang (Heunen et al., 2017). The key of the proposal lies in their new
formalization of probability theory that treats the random variable as
a primary concept and axiomatizes it directly. Contrast this with the
situation in measure theory where measurable sets are axiomatized first
and then the notion of random variable is derived from this axiomatiza-
tion (as measurable function from a measurable space with a probability
distribution). It turns out that this shift of focus leads to a new notion
of good functions, which is more flexible than measurability and lets
one interpret HOPPL programs, such as the application function from
above, as good functions.

More concretely, Heunen et al. (2017) axiomatized a set X equipped
with a collection of X-valued random variables in terms of what they
call quasi-Borel space. A quasi-Borel space is a pair of a set X and a
collection M of functions from R to X that satisfies certain conditions,
such as all constant functions being included in M . Intuitively, the
functions in M represent X-valued random variables, and they use real
numbers as random seeds and are capable of converting such random
seeds to values in X. The measurable space (R,B) is one of the best-
behaving measurable spaces, and using real numbers in this space as
random seeds ensures that quasi-Borel spaces avoid pathological cases
in measure theory. A less exciting but useful quasi-Borel space is R
with the set MR of measurable functions from R to itself, which is an
example of quasi-Borel space generated from a measurable space. But

7.5. Formal Semantics 200

there are more exotic, interesting quasi-Borel spaces that do not arise
from this recipe.

Heunen et al.’s axiomatization regards a function f from a quasi-
Borel space (X,M) to (Y,N) as good if f ◦ r ∈ N for all r ∈ M ; in
words, f maps a random variable inM to a random variable in N . They
have shown that such good functions on (R,MR) themselves form a
quasi-Borel space when equipped with a particular set of function-valued
random variables. Furthermore, they have proved that the application
function (fn [f x] (f x)) from above is a good function in their sense
because it maps a pair of such function-valued random variable and
R-valued random variable to a random variable in MR.

Heunen et al.’s axiomatization has been used to define the semantics
of probabilistic programming languages with higher-order functions and
also to validate inference algorithms for such languages. For interested
readers, we suggest Heunen et al. (2017) as well as Scibior et al. (2018).

8
Conclusion

Having made it this far (congratulations!), we can now summarize
probabilistic programming relatively concisely and conclude with a few
general remarks.

Probabilistic programming is largely about designing languages,
interpreters, and compilers that translate inference problems denoted
in programming language syntax into formal mathematical objects that
allow and accommodate generic probabilistic inference, particularly
Bayesian inference and conditioning. In the same way that techniques in
traditional compilation are largely independent of both the syntax of the
source language and the peculiarities of the target language or machine
architecture, the probabilistic programming ideas and techniques that
we have presented are largely independent of both the source language
and the underlying inference algorithm.

While some might argue that knowing how a compiler works is not
really a requirement for being a good programmer, we suggest that this
is precisely the kind of deep knowledge that distinguishes truly excellent
developers from the rest. Furthermore, as traditional compilation and
evaluation infrastructure has been around, at the time of this writing,
for over half a century, the level of sophistication and reliability of

201

202

implementations underlying abstractions like garbage collection are
sufficiently high that, indeed, perhaps one can be a successful user of
such a system without understanding deeply how it works. However,
at this point in time, probabilistic programming systems have not
developed to such a level of maturity and as such knowing something
about how they are implemented will help even those people who only
wish to develop and use probabilistic programs rather than develop
languages and evaluators.

It may be that this state of affairs in probabilistic programming
remains for comparatively longer time because of the fundamental com-
putational characteristic of inference relative to forward computation.
We have not discussed computational complexity at all in this text
largely because there is, effectively, no point in doing so. It is well
known that inference in even discrete-only random variable graphical
models is NP-hard if no restrictions (e.g. bounding the maximum clique
size) are placed on the graphical model itself. As the language designs
we have discussed do not easily allow denoting or enforcing such restric-
tions, and, worse, allow continuous random variables, and in the case of
HOPPLs, a potentially infinite collection of the same, inference is even
harder. This means that probabilistic programming evaluators have to
be founded on approximate algorithms that work well some of the time
and for some problem types, rather than in the traditional programming
language setting where the usual case is that exact computation works
most of the time even though it might be prohibitively slow on some
inputs. This is all to say that knowing intimately how a probabilistic
programming system works will be, for the time being, necessary to be
even a proficient power user.

These being early days in the development of probabilistic program-
ming languages and systems means that there exist multiple oppor-
tunities to contribute to the foundational infrastructure, particularly
on the approximate inference algorithm side of things. While the cor-
respondence between first-order probabilistic programming languages
and graphical models means that research to improve general-purpose
inference algorithms for graphical models applies more-or-less directly
to probabilistic programming systems, the same is not quite as true for
HOPPLs. The primary challenge in HOPPLs, the infinite-dimensional

203

parameter space, is effectively unavoidable if one is to use a “standard”
programming language as the model denotation language. This opens
challenges related to inference that have not yet been entirely resolved
and suggests a research quest towards developing a truly general-purpose
inference algorithm.

In either case it should be clear at this point that not all inference
algorithm research and development is equally useful in the probabilis-
tic programming context. In particular developing a special-purpose
inference algorithm designed to work well for exactly one model is,
from the programming languages perspective, like developing a compiler
optimization for a single program – not a good idea unless that one
program is very important. There are indeed individual models that
are that important, but our experience suggests that the amount of
time one might spend on an optimized inference algorithm will typically
be more than the total time accumulated from writing a probabilistic
program once, right away, a simply letting a potentially slower inference
algorithm proceed towards convergence.

Of course there also will be generations and iterations of proba-
bilistic programming language designs with technical debt in terms of
programs written accruing along with each successive iterate. What
we have highlighted is the inherent tension between flexible language
design, the phase transition in model parameter count, and the difficulty
of the associated underlying inference problem. We have, as individual
researchers, generally striven to make probabilistic programming work
even with richly expressive modeling languages (i.e. “regular” program-
ming languages) for two reasons. One, the accrued technical debt of
simulators written in traditional programming languages should be ele-
gantly repurposable as generative models. The other is simply aesthetic.
There is much to be said for avoiding the complications that come along
with such a decision and this presents an interesting language design
challenge: how to make the biggest, finite-variable cardinality language
that allows natural model denotation, efficient forward calculation, and
minimizes surprises about what will “compile” and what will not. And
if modeling language flexibility is desired, our thinking has been, why
not use as much existing language design and infrastructure as possible?

Our focus throughout this text has mostly been on automating

204

inference in known and fixed models, and reporting state of the art
techniques for such one-shot inference, however we believe that the
challenge of model learning and rapid, approximate, repeated inference
are both of paramount importance, particularly for artificial intelligence
applications. Our belief is that probabilistic programming techniques,
and really more the practice of paying close attention to how language
design choices impact both what the end user can do easily and what
the evaluator can compute easily, should be considered throughout the
evolution of the next toolchain for artificial intelligence operations.

References

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G.
Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X.
Zheng (2015), ‘TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems’.

Abelson, H., G. J. Sussman, and J. Sussman (1996), Structure and interpreta-
tion of computer programs. Justin Kelly.

Alberti, M., G. Cota, F. Riguzzi, and R. Zese (2016), ‘Probabilistic logical
inference on the web’. In: AI* IA 2016 Advances in Artificial Intelligence.
Springer, pp. 351–363.

Andrieu, C., A. Doucet, and R. Holenstein (2010), ‘Particle Markov chain
Monte Carlo methods’. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 72(3), 269–342.

Appel, A. W. (2006), Compiling with Continuations. Cambridge University
Press.

Aumann, R. J. (1961), ‘Borel structures for function spaces’. Illinois Journal
of Mathematics 5, 614–630.

Baydin, A. G., L. Heinrich, W. Bhimji, B. Gram-Hansen, G. Louppe, L.
Shao, K. Cranmer, F. Wood, et al. (2018), ‘Efficient Probabilistic Inference
in the Quest for Physics Beyond the Standard Model’. arXiv preprint
arXiv:1807.07706.

205

References 206

Baydin, A. G., B. A. Pearlmutter, A. A. Radul, and J. M. Siskind (2015),
‘Automatic Differentiation in Machine Learning: A Survey’. arXiv preprint
arXiv:1502.05767.

Bishop, C. M. (2006), Pattern recognition and machine learning. Springer.
Borgström, J., A. D. Gordon, M. Greenberg, J. Margetson, and J. V. Gael
(2013), ‘Measure Transformer Semantics for Bayesian Machine Learning’.
Logical Methods in Computer Science 9(3).

Burda, Y., R. Grosse, and R. Salakhutdinov (2016), ‘Importance Weighted
Autoencoders’. In: ICLR.

Bursztein, E., J. Aigrain, A. Moscicki, and J. C. Mitchell (2014), ‘The End is
Nigh: Generic Solving of Text-based CAPTCHAs.’. In: WOOT.

Casado, M. L. (2017), ‘Compiled Inference with Probabilistic Programming
for Large-Scale Scientific Simulations’. Master’s thesis, University of Oxford.

Chen, T., M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang (2016), ‘MXNet: A Flexible and Efficient Machine Learning
Library for Heterogeneous Distributed Systems’. In Neural Information
Processing Systems, Workshop on Machine Learning Systems.

Cornebise, J., É. Moulines, and J. Olsson (2008), ‘Adaptive methods for
sequential importance sampling with application to state space models’.
Statistics and Computing 18, 461–480.

Cornebise, J., É. Moulines, and J. Olsson (2014), ‘Adaptive sequential Monte
Carlo by means of mixture of experts’. Statistics and Computing 24, 317–337.

Davidson-Pilon, C. (2015), Bayesian methods for hackers: probabilistic pro-
gramming and Bayesian inference. Addison-Wesley Professional.

Dayan, P., G. E. Hinton, R. M. Neal, and R. S. Zemel (1995), ‘The Helmholtz
machine’. Neural Computation 7(5), 889–904.

Del Moral, P. and L. M. Murray (2015), ‘Sequential Monte Carlo with highly
informative observations’. SIAM/ASA Journal on Uncertainty Quantification
3(1), 969–997.

Dillon, J. V., I. Langmore, D. Tran, E. Brevdo, S. Vasudevan, D. Moore, B.
Patton, A. Alemi, M. Hoffman, and R. A. Saurous (2017), ‘TensorFlow
Distributions’. arXiv preprint arXiv:1711.10604.

Doucet, A., S. Godsill, and C. Andrieu (2000), ‘On sequential Monte Carlo
sampling methods for Bayesian filtering’. Statistics and computing 10(3),
197–208.

References 207

Duchi, J., E. Hazan, and Y. Singer (2011), ‘Adaptive subgradient methods for
online learning and stochastic optimization’. Journal of Machine Learning
Research 12(Jul), 2121–2159.

Friedman, D. P. and M. Wand (2008), Essentials of programming languages.
MIT press.

Ge, H., K. Xu, and Z. Ghahramani (2018), ‘Turing: A Language for Flexible
Probabilistic Inference’. In: A. Storkey and F. Perez-Cruz (eds.): Proceedings
of the Twenty-First International Conference on Artificial Intelligence and
Statistics, Vol. 84 of Proceedings of Machine Learning Research. Playa
Blanca, Lanzarote, Canary Islands, pp. 1682–1690, PMLR.

Gehr, T., S. Misailovic, and M. Vechev (2016), ‘PSI: Exact symbolic inference
for probabilistic programs’. In: International Conference on Computer Aided
Verification. pp. 62–83.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B.
Rubin (2013), ‘Bayesian data analysis, 3rd edition’.

Geman, S. and D. Geman (1984), ‘Stochastic Relaxation, Gibbs Distributions,
and the Bayesian Restoration of Images’. IEEE Transactions on Pattern
Analysis and Machine Intelligence 6, 721–741.

Gershman, S. J. and N. D. Goodman (2014), ‘Amortized Inference in Proba-
bilistic Reasoning’. In: Proceedings of the Thirty-Sixth Annual Conference
of the Cognitive Science Society.

Ghahramani, Z. (2015), ‘Probabilistic machine learning and artificial intelli-
gence’. Nature 521(7553), 452–459.

Goodfellow, I., Y. Bengio, and A. Courville (2016), Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Goodman, N., V. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum
(2008), ‘Church: a language for generative models’. In: Proc. 24th Conf.
Uncertainty in Artificial Intelligence (UAI). pp. 220–229.

Goodman, N. D. and A. Stuhlmüller (2014), ‘The Design and Implementation
of Probabilistic Programming Languages’. http://dippl.org. Accessed:
2017-8-22.

Google (2018), ‘Protocol Buffers’. [Online; accessed 15-Aug-2018].
Gordon, A. D., T. A. Henzinger, A. V. Nori, and S. K. Rajamani (2014),
‘Probabilistic programming’. In: Proceedings of the on Future of Software
Engineering. pp. 167–181.

http://www.deeplearningbook.org
http://dippl.org

References 208

Gram-Hansen, B., Y. Zhou, T. Kohn, H. Yang, and F. Wood (2018), ‘Dis-
continuous Hamiltonian Monte Carlo for Probabilistic Programs’. arXiv
preprint arXiv:1804.03523.

Griewank, A. and A. Walther (2008), Evaluating derivatives: principles and
techniques of algorithmic differentiation. SIAM.

Gulwani, S., O. Polozov, R. Singh, et al. (2017), ‘Program synthesis’. Founda-
tions and Trends R© in Programming Languages 4(1-2), 1–119.

Haario, H., E. Saksman, and J. Tamminen (2001), ‘An adaptive Metropolis
algorithm’. Bernoulli pp. 223–242.

Herbrich, R., T. Minka, and T. Graepel (2007), ‘TrueSkillTM: A Bayesian Skill
Rating System’. In: Advances in Neural Information Processing Systems. pp.
569–576.

Heunen, C., O. Kammar, S. Staton, and H. Yang (2017), ‘A convenient category
for higher-order probability theory’. In: 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23,
2017. pp. 1–12.

Hickey, R. (2008), ‘The Clojure Programming Language’. In: Proceedings of the
2008 Symposium on Dynamic Languages. New York, NY, USA, pp. 1:1–1:1,
ACM.

Hwang, I., A. Stuhlmüller, and N. D. Goodman (2011), ‘Inducing probabilistic
programs by Bayesian program merging’.

Johnson, M., T. L. Griffiths, and S. Goldwater (2007), ‘Adaptor grammars: A
framework for specifying compositional nonparametric Bayesian models’. In:
Advances in neural information processing systems. pp. 641–648.

Johnson, M. J., D. Duvenaud, A. Wiltschko, S. Datta, and R. Adams (2016),
‘Structured VAEs: Composing probabilistic graphical models and variational
autoencoders’. NIPS 2016.

Kimmig, A. and L. De Raedt (2017), ‘Probabilistic logic programs: Unifying
program trace and possible world semantics’.

Kimmig, A., B. Demoen, L. De Raedt, V. S. Costa, and R. Rocha (2011),
‘On the implementation of the probabilistic logic programming language
ProbLog’. Theory and Practice of Logic Programming 11(2-3), 235–262.

Kingma, D. and J. Ba (2015), ‘Adam: A method for stochastic optimization’.
In: Proceedings of the International Conference on Learning Representations
(ICLR).

References 209

Kingma, D. P. and M. Welling (2014), ‘Auto-encoding variational Bayes’. In:
Proceedings of the International Conference on Learning Representations
(ICLR).

Koller, D. and N. Friedman (2009), ‘Probabilistic graphical models: principles
and techniques’.

Koller, D., D. McAllester, and A. Pfeffer (1997), ‘Effective Bayesian inference
for stochastic programs’. AAAI pp. 740–747.

Kulkarni, T. D., P. Kohli, J. B. Tenenbaum, and V. K. Mansinghka (2015a),
‘Picture: a probabilistic programming language for scene perception’. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition.

Kulkarni, T. D., W. F. Whitney, P. Kohli, and J. Tenenbaum (2015b), ‘Deep
convolutional inverse graphics network’. In: Advances in Neural Information
Processing Systems. pp. 2539–2547.

Łatuszyński, K., G. O. Roberts, J. S. Rosenthal, et al. (2013), ‘Adaptive Gibbs
samplers and related MCMC methods’. The Annals of Applied Probability
23(1), 66–98.

Le, T. A., A. G. Baydin, and F. Wood (2017a), ‘Inference Compilation and
Universal Probabilistic Programming’. In: 20th International Conference on
Artificial Intelligence and Statistics, April 20–22, 2017, Fort Lauderdale,
FL, USA.

Le, T. A., A. G. Baydin, R. Zinkov, and F. Wood (2017b), ‘Using synthetic
data to train neural networks is model-based reasoning’. 2017 International
Joint Conference on Neural Networks (IJCNN) pp. 3514–3521.

Le, T. A., M. Igl, T. Jin, T. Rainforth, and F. Wood (2017c), ‘Auto-Encoding
Sequential Monte Carlo’. arXiv preprint arXiv:1705.10306.

LeCun, Y., Y. Bengio, and G. Hinton (2015), ‘Deep learning’. Nature 521(7553),
436–444.

Levine, S. (2018), ‘Reinforcement Learning and Control as Probabilistic Infer-
ence: Tutorial and Review’. arXiv preprint arXiv:1805.00909.

Liang, P., M. I. Jordan, and D. Klein (2010), ‘Learning programs: A hierarchical
Bayesian approach’. pp. 639–646.

Maddison, C. J., D. Lawson, G. Tucker, N. Heess, M. Norouzi, A. Mnih, A.
Doucet, and Y. W. Teh (2017), ‘Filtering Variational Objectives’. arXiv
preprint arXiv:1705.09279.

References 210

Mansinghka, V., T. D. Kulkarni, Y. N. Perov, and J. Tenenbaum (2013),
‘Approximate Bayesian image interpretation using generative probabilistic
graphics programs’. In: Advances in Neural Information Processing Systems.
pp. 1520–1528.

Mansinghka, V., D. Selsam, and Y. Perov (2014), ‘Venture: a higher-order
probabilistic programming platform with programmable inference’. arXiv
p. 78.

Mansinghka, V., R. Tibbetts, J. Baxter, P. Shafto, and B. Eaves (2015),
‘BayesDB: A Probabilistic Programming System for Querying the Probable
Implications of Data’. arXiv preprint arXiv:1512.05006.

McCallum, a., K. Schultz, and S. Singh (2009), ‘Factorie: Probabilistic pro-
gramming via imperatively defined factor graphs’. In: Advances in Neural
Information Processing Systems, Vol. 22. pp. 1249–1257.

McLachlan, G. and D. Peel (2004), Finite mixture models. John Wiley & Sons.
Milch, B., B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov (2005),
‘BLOG : Probabilistic Models with Unknown Objects’. In: IJCAI.

Minka, T. and J. Winn (2009), ‘Gates’. In: Advances in Neural Information
Processing Systems. pp. 1073–1080.

Minka, T., J. Winn, J. Guiver, and D. Knowles (2010a), ‘Infer .NET 2.4,
Microsoft Research Cambridge’.

Minka, T., J. Winn, J. Guiver, and D. Knowles (2010b), ‘Infer.NET 2.4, 2010.
Microsoft Research Cambridge’.

Murphy, K. P. (2012), ‘Machine learning: a probabilistic perspective’.
Murray, I., Z. Ghahramani, and D. MacKay (2012), ‘MCMC for doubly-

intractable distributions’. arXiv preprint arXiv:1206.6848.
Murray, L., D. Lundën, J. Kudlicka, D. Broman, and T. B. Schön (2018),
‘Delayed Sampling and Automatic Rao-Blackwellization of Probabilistic Pro-
grams’. In: International Conference on Artificial Intelligence and Statistics,
AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands,
Spain. pp. 1037–1046.

Murray, L. M. (2013), ‘Bayesian state-space modelling on high-performance
hardware using LibBi’. arXiv preprint arXiv:1306.3277.

Naesseth, C., F. Lindsten, and T. Schon (2015), ‘Nested sequential Monte
Carlo methods’. In: International Conference on Machine Learning. pp.
1292–1301.

Naesseth, C. A., S. W. Linderman, R. Ranganath, and D. M. Blei (2017),
‘Variational Sequential Monte Carlo’. arXiv preprint arXiv:1705.11140.

References 211

Narayanan, P., J. Carette, W. Romano, C. Shan, and R. Zinkov (2016), ‘Proba-
bilistic inference by program transformation in Hakaru (system description)’.
In: International Symposium on Functional and Logic Programming - 13th
International Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016,
Proceedings. pp. 62–79.

Neal, R. M. (1993), ‘Probabilistic inference using Markov chain Monte Carlo
methods’.

Nori, A. V., C.-K. Hur, S. K. Rajamani, and S. Samuel (2014), ‘R2: An Efficient
MCMC Sampler for Probabilistic Programs.’. In: AAAI. pp. 2476–2482.

Norvig, P. (2010), ‘(How to Write a (Lisp) Interpreter (in Python))’. [Online;
accessed 14-Aug-2018].

Okasaki, C. (1999), Purely functional data structures. Cambridge University
Press.

OpenBugs (2009), ‘Pumps: conjugate gamma-Poisson hierarchical model’.
Available online at http://www.openbugs.net/Examples/Pumps.html.

Paige, B. and F. Wood (2014), ‘A compilation target for probabilistic pro-
gramming languages’. In: Proceedings of the 31st international conference
on Machine learning, Vol. 32 of JMLR: W&CP. pp. 1935–1943.

Paige, B. and F. Wood (2016), ‘Inference Networks for Sequential Monte Carlo
in Graphical Models’. In: Proceedings of the 33rd International Conference
on Machine Learning, Vol. 48 of JMLR: W&CP. pp. 3040–3049.

Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.
Desmaison, L. Antiga, and A. Lerer (2017), ‘Automatic Differentiation in
PyTorch’.

Perov, Y. and F. Wood (2016), ‘Automatic Sampler Discovery via Probabilis-
tic Programming and Approximate Bayesian Computation’. In: Artificial
General Intelligence. pp. 262–273.

Pfeffer, A. (2001), ‘IBAL: A probabilistic rational programming language’.
IJCAI International Joint Conference on Artificial Intelligence pp. 733–740.

Pfeffer, A. (2009), ‘Figaro: An object-oriented probabilistic programming
language’. Technical report.

Pfeffer, A. (2016), Practical probabilistic programming. Manning Publications
Co.

Plummer, M. (2003), ‘JAGS: A Program for Analysis of Bayesian Graphi-
cal Models Using Gibbs Sampling’. Proceedings of the 3rd International
Workshop on Distributed Statistical Computing (DSC 2003). March pp.
20–22.

http://www.openbugs.net/Examples/Pumps.html

References 212

Powell, H. (2015), ‘A quick and dirty introduction to ZeroMQ’. [Online; accessed
15-Aug-2018].

Rabiner, L. R. (1989), ‘A tutorial on hidden Markov models and selected
applications in speech recognition’. Proceedings of the IEEE 77(2), 257–286.

Rainforth, T. (2018), ‘Nesting Probabilistic Programs’. arXiv preprint
arXiv:1803.06328.

Rainforth, T., R. Cornish, H. Yang, and A. Warrington (2018), ‘On nesting
Monte Carlo estimators’. In: International Conference on Machine Learning.
pp. 4264–4273.

Ranganath, R., S. Gerrish, and D. M. Blei (2014), ‘Black box variational
inference’. International Conference on Machine Learning.

Rasmussen, C. E. and Z. Ghahramani (2001), ‘Occam’s razor’. In: Advances in
neural information processing systems. pp. 294–300.

Rezende, D. J., S. Mohamed, and D. Wierstra (2014), ‘Stochastic Backpropaga-
tion and Approximate Inference in Deep Generative Models’. In: Proceedings
of the 31th International Conference on Machine Learning, ICML 2014,
Beijing, China, 21-26 June 2014. pp. 1278–1286.

Ritchie, D., B. Mildenhall, N. D. Goodman, and P. Hanrahan (2015), ‘Control-
ling procedural modeling programs with stochastically-ordered sequential
Monte Carlo’. ACM Transactions on Graphics (TOG) 34(4), 105.

Ritchie, D., A. Stuhlmüller, and N. Goodman (2016a), ‘C3: Lightweight In-
crementalized MCMC for Probabilistic Programs using Continuations and
Callsite Caching’. In: Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics. pp. 28–37.

Ritchie, D., A. Thomas, P. Hanrahan, and N. Goodman (2016b), ‘Neurally-
Guided Procedural Models: Amortized Inference for Procedural Graphics
Programs using Neural Networks’. In: Advances In Neural Information
Processing Systems. pp. 622–630.

Salvatier, J., T. V. Wiecki, and C. Fonnesbeck (2016), ‘Probabilistic program-
ming in Python using PyMC3’. PeerJ Computer Science 2, e55.

Sato, T. and Y. Kameya (1997), ‘PRISM: A language for symbolic-statistical
modeling’. IJCAI International Joint Conference on Artificial Intelligence
2, 1330–1335.

Schulman, J., N. Heess, T. Weber, and P. Abbeel (2015), ‘Gradient estimation
using stochastic computation graphs’. In: Advances in Neural Information
Processing Systems. pp. 3528–3536.

References 213

Scibior, A., O. Kammar, M. Vákár, S. Staton, H. Yang, Y. Cai, K. Ostermann,
S. K. Moss, C. Heunen, and Z. Ghahramani (2018), ‘Denotational validation
of higher-order Bayesian inference’. PACMPL 2(POPL), 60:1–60:29.

Seide, F. and A. Agarwal (2016), ‘CNTK: Microsoft’s Open-Source Deep-
Learning Toolkit’. In: Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. New York, NY, USA,
pp. 2135–2135, ACM.

Siddharth, N., B. Paige, J.-W. van de Meent, A. Desmaison, N. Goodman, P.
Kohli, F. Wood, and P. Torr (2017), ‘Learning Disentangled Representations
with Semi-Supervised Deep Generative Models’. In: Advances in Neural
Information Processing Systems. pp. 5925–5935.

Spiegelhalter, D. J., A. Thomas, N. G. Best, and W. R. Gilks (1995), ‘BUGS:
Bayesian inference using Gibbs sampling, Version 0.50’.

Stan Development Team (2014), ‘Stan: A C++ Library for Probability and
Sampling, Version 2.4’.

Staton, S. (2017), ‘Commutative Semantics for Probabilistic Programming’.
In: Programming Languages and Systems - 26th European Symposium on
Programming, ESOP 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Proceedings. pp. 855–879.

Staton, S., H. Yang, F. Wood, C. Heunen, and O. Kammar (2016), ‘Semantics
for probabilistic programming: higher-order functions, continuous distribu-
tions, and soft constraints’. In: Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA,
July 5-8, 2016. pp. 525–534.

Stuhlmüller, A. (2014). [Online; accessed 15-Aug-2018].
Stuhlmüller, A. and N. D. Goodman (2014), ‘Reasoning about reasoning by

nested conditioning: Modeling theory of mind with probabilistic programs’.
Cognitive Systems Research 28, 80–99.

Stuhlmüller, A., J. Taylor, and N. Goodman (2013), ‘Learning Stochastic
Inverses’. In: Advances in Neural Information Processing Systems 26. pp.
3048–3056.

Tenenbaum, J. B., C. Kemp, T. L. Griffiths, and N. D. Goodman (2011), ‘How
to grow a mind: Statistics, structure, and abstraction’. science 331(6022),
1279–1285.

References 214

Thrun, S. (2000), ‘Towards programming tools for robots that integrate prob-
abilistic computation and learning’. Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No.00CH37065) 1(April).

Todeschini, A., F. Caron, M. Fuentes, P. Legrand, and P. Del Moral (2014),
‘Biips: Software for Bayesian Inference with Interacting Particle Systems’.
arXiv preprint arXiv:1412.3779.

Tolpin, D., J. W. van de Meent, H. Yang, and F. Wood (2016), ‘Design and
implementation of probabilistic programming language Anglican’. arXiv
preprint arXiv:1608.05263.

Tran, D., M. D. Hoffman, R. A. Saurous, E. Brevdo, K. Murphy, and D. M. Blei
(2017), ‘Deep probabilistic programming’. arXiv preprint arXiv:1701.03757.

Tran, D., A. Kucukelbir, A. B. Dieng, M. Rudolph, D. Liang, and D. M.
Blei (2016), ‘Edward: A library for probabilistic modeling, inference, and
criticism’. arXiv preprint arXiv:1610.09787.

Tristan, J.-B., D. Huang, J. Tassarotti, A. C. Pocock, S. Green, and G. L. Steele
(2014), ‘Augur: Data-Parallel Probabilistic Modeling’. In: Z. Ghahramani, M.
Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (eds.): Advances
in Neural Information Processing Systems 27. Curran Associates, Inc., pp.
2600–2608.

Uber (2018), ‘Pyro’. [Online; accessed 15-Aug-2018].
van de Meent, J. W., B. Paige, D. Tolpin, and F. Wood (2016), ‘Black-box policy

search with probabilistic programs’. In: Proceedings of the 19th International
conference on Artificial Intelligence and Statistics, Vol. 41 of JMLR: W&CP.
pp. 1195–1204.

Van Der Merwe, R., A. Doucet, N. De Freitas, and E. Wan (2000), ‘The
unscented particle filter’. In: Advances in Neural Information Processing
Systems. pp. 584–590.

Webb, S., A. Golinski, R. Zinkov, N. Siddharth, T. Rainforth, Y. W. Teh,
and F. Wood (2017), ‘Faithful Inversion of Generative Models for Effective
Amortized Inference’. arXiv preprint arXiv:1712.00287.

Whiteley, N., A. Lee, K. Heine, et al. (2016), ‘On the role of interaction in
sequential Monte Carlo algorithms’. Bernoulli 22(1), 494–529.

Wikipedia contributors (2018), ‘Pattern Matching’. [Online; accessed 14-Aug-
2018].

References 215

Wingate, D., A. Stuhlmueller, and N. D. Goodman (2011), ‘Lightweight im-
plementations of probabilistic programming languages via transformational
compilation’. In: Proceedings of the 14th international conference on Artificial
Intelligence and Statistics. p. 131.

Wingate, D. and T. Weber (2013), ‘Automated variational inference in proba-
bilistic programming’. arXiv preprint arXiv:1301.1299.

Wood, F., J. van de Meent, and V. Mansinghka (2014a), ‘A new approach to
probabilistic programming inference’. In: Artificial Intelligence and Statistics.
pp. 1024–1032.

Wood, F., J. van de Meent, and V. Mansinghka (2015), ‘A new approach to
probabilistic programming inference’. arXiv preprint arXiv:1507.00996.

Wood, F., J. W. van de Meent, and V. Mansinghka (2014b), ‘A New Ap-
proach to Probabilistic Programming Inference’. In: Proceedings of the 17th
International conference on Artificial Intelligence and Statistics.

Yang, L., P. Hanrahan, and N. D. Goodman (2014), ‘Generating Efficient
MCMC Kernels from Probabilistic Programs’. In: Proceedings of the Seven-
teenth International Conference on Artificial Intelligence and Statistics. pp.
1068–1076.

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Model-based Reasoning
	1.2 Probabilistic Programming
	1.3 Example Applications
	1.4 A First Probabilistic Program

	2 A Probabilistic Programming Language Without Recursion
	2.1 Syntax
	2.2 Syntactic Sugar
	2.3 Examples
	2.4 A Simple Purely Deterministic Language

	3 Graph-Based Inference
	3.1 Compilation to a Graphical Model
	3.2 Evaluating the Density
	3.3 Gibbs Sampling
	3.4 Hamiltonian Monte Carlo
	3.5 Compilation to a Factor Graph
	3.6 Expectation Propagation

	4 Evaluation-Based Inference I
	4.1 Likelihood Weighting
	4.2 Metropolis-Hastings
	4.3 Sequential Monte Carlo
	4.4 Black Box Variational Inference

	5 A Probabilistic Programming Language With Recursion
	5.1 Syntax
	5.2 Syntactic sugar
	5.3 Examples

	6 Evaluation-Based Inference II
	6.1 Explicit separation of model and inference code
	6.2 Addressing Transformation
	6.3 Continuation-Passing-Style Transformation
	6.4 Message Interface Implementation
	6.5 Likelihood Weighting
	6.6 Metropolis-Hastings
	6.7 Sequential Monte Carlo

	7 Advanced Topics
	7.1 Inference Compilation
	7.2 Model Learning
	7.3 Hamiltonian Monte Carlo and Variational Inference
	7.4 Nesting
	7.5 Formal Semantics

	8 Conclusion
	References

