
Semantics for probabilistic programming: higher-order
functions, continuous distributions, and soft constraints

Sam Staton Hongseok Yang
Frank Wood

University of Oxford
{sam.staton,hongseok.yang}@cs.ox.ac.uk

fwood@robots.ox.ac.uk

Chris Heunen
University of Edinburgh
chris.heunen@ed.ac.uk

Ohad Kammar
University of Cambridge

ohad.kammar@cl.cam.ac.uk

Abstract
We study the semantic foundation of expressive probabilistic pro-
gramming languages, that support higher-order functions, continu-
ous distributions, and soft constraints (such as Anglican, Church,
and Venture). We define a metalanguage (an idealised version of
Anglican) for probabilistic computation with the above features,
develop both operational and denotational semantics, and prove
soundness, adequacy, and termination. They involve measure the-
ory, stochastic labelled transition systems, and functor categories,
but admit intuitive computational readings, one of which views
sampled random variables as dynamically allocated read-only vari-
ables. We apply our semantics to validate nontrivial equations un-
derlying the correctness of certain compiler optimisations and in-
ference algorithms such as sequential Monte Carlo simulation. The
language enables defining probability distributions on higher-order
functions, and we study their properties.

1. Introduction
Probabilistic programming is the idea to use programs to specify
probabilistic models; probabilistic programming languages blend
programming constructs with probabilistic primitives. This helps
scientists express complicated models succinctly. Moreover, such
languages come with generic inference algorithms, relieving the
programmer of the nontrivial task of (algorithmically) answering
queries about her probabilistic models. This is useful in e.g. ma-
chine learning.

Several higher-order probabilistic programming languages have
recently attracted a substantial user base. Some languages (such
as Infer.net [21], PyMC [26], and Stan [33]) are less expressive
but provide powerful inference algorithms, while others (such as
Anglican [34], Church [12], and Venture [20]) have less efficient
inference algorithms but more expressive power. We consider the
more expressive languages, that support higher-order functions,
continuous distributions, and soft constraints. More precisely, we
consider a programming language (§3) with higher-order functions
(§6) as well as the following probabilistic primitives.

Sampling The command sample(t) draws a sample from a distri-
bution described by t, which may range over the real numbers.

Soft constraints The command score(t) puts a score t (a positive
real number) on the current execution trace. This is typically
used to record that some particular datum was observed as being
drawn from a particular distribution; the lower the score, the
more surprising the observation.

Normalisation The command norm(u) runs a simulation algo-
rithm over the program fragment u. This takes the scores into
account and returns a new, normalised probability distribution.

The argument to sample might be a primitive distribution, or
a distribution defined by normalizing another program. This is
called a nested query, by analogy with database programming.

Such languages currently lack formal exact semantics. The aim
of this paper is to provide just such a foundation as a basis for for-
mal reasoning, improving the unsatisfactory current situation. Most
expressive probabilistic programming languages are now explained
in terms of their Monte Carlo simulation algorithms. The simplest
such algorithm, using importance and rejection sampling, is the de
facto semantics against which other algorithms are ‘proved approx-
imately correct’. Such ‘semantics’ are hard to handle and extend.

We provide two styles of semantics, operational and denota-
tional. For first-order probabilistic programs, the denotational se-
mantics is straightforward: types are interpreted as measurable
spaces, and terms are interpreted as measurable functions (§4). Op-
erational semantics is more complicated. For discrete distributions,
an operational semantics might be a probabilistic transition system,
but for continuous distributions, it must be a stochastic relation (la-
belled Markov process). We resolve this by equipping the set of
configurations with the structure of a measurable space (§5).

The advantage to the operational semantics is that it is easily
extended to higher-order programs (§7). Denotational semantics
for higher-order programs poses a problem, because measurable
spaces do not support the usual β/η theory of functions: they do
not form a Cartesian closed category (indeed, RR does not exist
as a measurable space [3]). Earlier semantics deal with this by ei-
ther excluding higher-order functions or considering only discrete
distributions. We resolve this by moving from the category of mea-
surable spaces, where standard probability theory takes place, to a
functor category based on it (§8). The former embeds in the latter,
so we can still interpret first-order concepts. But the functor cate-
gory does have well-behaved function spaces, so we can also in-
terpret higher-order concepts. Moreover, by lifting the monad that
takes probability distributions [11] to the functor category, we can
also interpret continuous distributions. Finally, we can interpret ob-
servations by considering probability distributions with continuous
density, irrespective of the categorical machinery (§9).

The denotational semantics is sound and adequate with respect
to the operational semantics (§5.3,8.3), which means one can use
the denotational model to directly check program equations whilst
respecting computational issues. For example:

• we demonstrate a key program equation for sequential Monte
Carlo simulation (§4.1);
• we show that every term of first-order type is equal to one

without λ-abstractions or application, and hence is interpreted
as a measurable function (Proposition 8.3).

1 2016/1/18



2. Preliminaries
We recall basic definitions and facts of measure theory.

Definition 2.1. A σ-algebra on a set X is a family Σ of subsets
of X , called measurable (sub)sets, which contains X and is closed
under complements and countable unions. A measurable space is a
set with a σ-algebra.

A probability measure or probability distribution on a measur-
able space (X,Σ) is a function p : Σ → [0, 1] to the unit interval
satisfying p(X) = 1 and p(

⋃
i∈N Ui) =

∑
i∈N p(Ui) for each se-

quence U1, U2, . . . of disjoint measurable sets.

A first example is to make a set X into a measurable space by
taking the full powerset of X as Σ, yielding a discrete measurable
space. When X is countable, a probability distribution on (X,Σ)
is entirely determined by its values on singleton sets, that is, by
specifying a function p : X → [0, 1] such that

∑
x∈X p(x) = 1.

A second example is to combine a collection of measurable
spaces (Xi,Σi)i∈I by sum or product. The underlying sets in this
case are the disjoint union

∑
i∈I Xi and product

∏
i∈I Xi of sets.

The measurable sets in the sum are
∑
i∈I Ui for Ui ∈ Σi. The σ-

algebra of the product is the smallest one containing all the subsets∏
i∈I Ui where Ui ∈ Σi equals Xi but for a single index i.
For a third example, the real numbers form a measurable space

(R,ΣR) under the smallest σ-algebra that contains the open inter-
vals; the measurable sets are called Borel sets. Restricting to any
measurable subset gives a new measurable space, such as the space
R≥0 of nonnegative reals and the unit interval [0, 1].

A fourth example is to make the set P (X) of all probability
measures on a measurable space (X,ΣX) into a measurable space,
by letting ΣP (X) be the smallest σ-algebra containing the sets
{p ∈ P (X) | p(U) ∈ V } for all U ∈ ΣX and V ∈ Σ[0,1].

Definition 2.2. Let (X,ΣX), (Y,ΣY ) be measurable spaces. A
function f : X → Y is measurable if f -1(U) ∈ Σ for U ∈ ΣY .

We can push forward a measure along a measurable function:
if p : ΣX → [0, 1] is a probability measure on (X,ΣX) and
f : X → Y is a measurable function, then p(U) = p(f -1(U))
is a probability measure on (Y,ΣY ).

Definition 2.3. A stochastic relation between measurable spaces
(X,ΣX) and (Y,ΣY ) is a function r : X ×ΣY → [0, 1] such that
r(x,−) : ΣY → [0, 1] is a probability distribution for all x ∈ X ,
and r(−, V ) : X → [0, 1] is measurable for all V ∈ ΣY .

Giving a stochastic relation from (X,ΣX) to (Y,ΣY ) is equiva-
lent to giving a measurable function (X,ΣX) → (P (Y ),ΣP (Y )).
Stochastic relations r : X ×ΣY → [0, 1] and s : Y ×ΣZ → [0, 1]
compose associatively to (s◦r) : X×ΣZ → [0, 1] via the formula

(s ◦ r)(x,W ) =

∫
Y

s(y,W ) r(x,dy).

Finally, for a predicate ϕ, we use the indicator expression [ϕ] to
denote 1 if ϕ holds, and 0 otherwise.

3. A first-order language
This section presents a first-order language for expressing Bayesian
probabilistic models and study its properties. The language forms
a first-order core of a higher-order extension in Section 6, and pro-
vides a simpler setting to illustrate key ideas. For example, the lan-
guage includes infinitary type and term constructors, constant terms
for all measurable functions between measurable spaces, and con-
structs for specifying Bayesian probabilistic models, namely, oper-
ations for sampling distributions, scoring samples, and normalizing
distributions based on scores. This highly permissive and slightly
unusual syntax is not meant to be a useful programming language

itself. Rather, its purpose is to serve as a semantic metalanguage to
which a practical programming language compiles, and to provide
a common mathematical setting for studying high-level constructs
for probabilistic computation.

Types The language has types

A,B ::= R | P(A) | 1 | A× B |
∑
i∈I

Ai

where I ranges over countable sets. A type A stands for a mea-
surable space JAK. For example, R denotes the measurable space
of reals, P(A) is the space of probability measures on A, and 1
is the (discrete) measurable space on the singleton set. The other
type constructors correspond to products and sums of measurable
spaces. Notice that countable sums are allowed, enabling us to ex-
press usual ground types in programming languages via standard
encoding. For instance, the type for booleans is 1 + 1, and that for
natural numbers

∑
i∈N 1.

Terms We distinguish typing judgements: Γ d̀ t : A for deter-
ministic terms, and Γ p̀ t : A for probabilistic terms (see also
e.g. [19, 25, 29]). In both, A is a type, and Γ is a list of variable/type
pairs. Variables stand for deterministic terms, making the following
substitution rule derivable:

Γ, x : A z̀ u : B Γ d̀ t : A
Γ z̀ u[t/x] : B

(z ∈ {d, p})

Intuitively, probabilistic terms Γ p̀ t : A express computations
with effects from two different sources: during evaluation, t may
sample a value from a probability distribution, or it may update
a variable storing the current score, a nonnegative real number
expressing to what extent sampled values (from a prior distribution)
are compatible with observed data. Evaluating deterministic terms
Γ d̀ t : A, on the other hand, does not generate such effects.

Formally, a context Γ = (x1 : A1, . . . , xn : An) means a mea-
surable space JΓK def

=
∏n
i=1JAiK. Both deterministic terms Γ d̀

t : A and probabilistic terms Γ p̀ t
′ : A denote measurable func-

tions from JΓK, but they have different codomains. The former has
codomain JAK, whereas the latter has codomain P (R≥0 × JAK).
Elements of P (R≥0 × JAK) are probability distributions on pairs
(r, a) ∈ R≥0× JAK, where a is the value obtained through various
probabilistic choices, and r the corresponding score.

Sums and products The language includes variables, and con-
structors and destructors for sum and product types.

Γ, x : A,Γ′ d̀ x : A
Γ d̀ t : Ai

Γ d̀ (i, t) :
∑
i∈I Ai

Γ d̀ t :
∑
i∈I Ai (Γ, x : Ai z̀ ui : B)i∈I

Γ z̀ case t of {(i, x)⇒ ui}i∈I : B
(z ∈ {d, p})

Γ d̀ ∗ : 1

Γ d̀ tj : Aj for all j ∈ {0, 1}
Γ d̀ (t0, t1) : A0 × A1

Γ d̀ t : A0 × A1

Γ d̀ πj(t) : Aj
In the rules for sums, I may be infinite. In the last rule, j is 0 or 1.
We use some standard syntactic sugar, such as false and true for the
injections in the type bool = 1 + 1, and if for case in that instance.

Sequencing We include the standard constructs (e.g. [19, 22]).

Γ d̀ t : A
Γ p̀ return(t) : A

Γ p̀ t : A Γ, x : A p̀ u : B
Γ p̀ let x = t in u : B

Language-specific constructs The language has constant terms
for all measurable functions.

Γ d̀ t : A
Γ d̀ f(t) : B

(f : JAK→ JBK measurable) (1)

2 2016/1/18



In particular, all the usual distributions are in the language, in-
cluding the Dirac distribution dirac(x) concentrated on outcome
x, the Gaussian distribution gauss(µ, σ) with mean µ and stan-
dard deviation σ, the Bernoulli distribution bern(p) with success
probability p, the exponential distribution exp(r) with rate r, and
the Beta distribution beta(α, β) with parameters α, β.1 For exam-
ple, from the measurable functions 42.0: 1 → R, e(−) : R → R,
gauss : R× R→ P (R) and < : R× R→ 1 + 1 we can derive:

Γ d̀ 42.0: R
Γ d̀ t : R
Γ d̀ e

t : R
Γ d̀ µ : R Γ d̀ σ : R

Γ d̀ gauss(µ, σ) : P(R)

Γ d̀ t : R Γ d̀ u : R
Γ d̀ t < u : bool

The following terms form the core of our language.

Γ d̀ t : P(A)

Γ p̀ sample(t) : A
Γ d̀ t : R

Γ p̀ score(t) : 1

The first term samples a value from a distribution t, and the second
updates the score variable v using t: if t is nonnegative, the term
computes the multiplication t·v and stores the result in the variable;
if t is negative, it stores 0.0 instead. Since both of these terms
express effects, they are typed under p̀ instead of d̀. The argument
t in score(t) is usually the density of a probability distribution at
an observed data point. For instance, in the example

score(density gauss(2.0, (µ, σ)))

the observed datum is 2.0, the term computes the density of the
normal distribution at this datum, and multiplies it to the score
variable. The result of this multiplication grows as µ approaches
2.0. Thus the term scores an evaluation up to the term itself higher
when the probabilistic choices of evaluation make σ closer to 2.0.

Normalization Two representative tasks of Bayesian inference
are to calculate the so-called posterior distribution and model evi-
dence. Let us illustrate these tasks.

let x = sample(bern(0.25)) in

let y = if x then score(5.0) else score(2.0) in

return(x)

Evaluation of this term generates two samples: (5.0, true) and
(2.0, false), with probabilities 0.25 and 0.75. Calculating the pos-
terior distribution means normalizing the distribution of these sam-
pled booleans according to their scores, giving a new distribution
on bool that assigns (0.25 ·5.0)/(0.25 ·5.0+0.75 ·2.0) ≈ 0.45 to
true and (0.75 · 2.0)/(0.25 · 5.0 + 0.75 · 2.0) ≈ 0.55 to false. Cal-
culating the model evidence just averages scores according to the
original probabilities: (0.25 · 5.0 + 0.75 · 2.0) = 2.75. Intuitively,
scores express that the sample x = true matches an observation
better, and change the probability of x = true from 0.25 to 0.45.

The language includes a term norm(t) denoting the results of
these posterior and model evidence calculations. This term converts
a probabilistic term t into a deterministic value, which is its normal-
ized distribution together with the model evidence. The conversion
might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by raising an appropriate error.

Γ p̀ t : A
Γ d̀ norm(t) : R× P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

1 The normal distribution is defined for positive standard deviations, but our
typing rule also uses the case σ ≤ 0. We make the ad-hoc yet safe choice
gauss(µ, σ) = gauss(0.0, 1.0), and assume such extensions throughout.

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts Γ are
interpreted as measurable spaces JAK and JΓK, whereas for terms:

• Deterministic terms Γ d̀ t : A are interpreted as measurable
functions JtK : JΓK→ JAK, providing a result for each valuation
of the context.
• Probabilistic terms Γ p̀ t : A are interpreted as measurable

functions JtK : JΓK → P (R≥0 × JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, JΓ, x : A,Γ′ d̀ x : AK(γ, a, γ′) def

= a,
and JΓ d̀ f(t) : AK(γ)

def
= f(JtK(γ)) for measurable f : JAK→ JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions JΓK→ JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(γ)(U)
def
= [(1, JtK(γ)) ∈ U ],

and Jletx = t inuK(γ)(V ) is∫
R≥0×JAK

(
JuK(γ, x)

({
(s, b)

∣∣ (rs, b) ∈ V })) JtK(γ)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R≥0 × (−)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K

The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs We use the monad:

Jsample(t)K(γ)(U)
def
= JtK(γ)({a | (1, a) ∈ U})

Jscore(t)K(γ)(U)
def
= [(JtK(γ), ∗) ∈ U ]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gauss(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bern(0.5))K

s
letx = sample(gauss(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

ιX : P (R≥0 ×X)→ (R× P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ιX(p) is

(1, ∗) if e = 0

(2, ∗) if e =∞(
0,
(
e, λU. 1

e

∫
R≥0×X

r · [x∈U ] p(d(r, x))
))

otherwise

where e def
=
∫
R≥0×X

r p(d(r, x)), and Jnorm(t)K(γ)
def
= ι(JtK(γ)).

Here are some examples:

Jnorm(score(0.0))K = (1, ∗)

3 2016/1/18



Jnorm(score(42.0); return(7.0))K =
(
0, (42.0, dirac(7.0))

)
u

ww
v

norm
(
letx = sample(bern(0.5))
in
(
if x then score(7.0)

else score(3.0));
return(x)

)
}

��
~=

(
0, (5.0, bern(0.7))

)
s
norm

(
letx = sample(exp(1.0))
in score(ex)

) {
= (2, ∗)

s
norm

(
letx = sample(beta(1, 3))
in score(x); return(x)

) {
=

u

v
norm

(
score(1/(1 + 3));
sample(beta(2, 3))

)
}

~

In the third equation, a score of either 7.0 or 3.0 is assigned de-
pending on the outcome of a fair coin toss. The model evidence
is 5.0 = (0.5 · 7.0) + (0.5 · 3.0), and the normalised distribu-
tion, taking the scores into account, is bern( 0.5·7.0

5.0
). The fourth

equation shows how infinite model evidence errors can arise when
working with infinite distributions. In the last equation, the parame-
ter x of score(x) represents the probability of true under bern(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return arise from the fact
that P

(
R≥0 × (−)

)
is a commutative monad on the category of

measurable spaces and measurable functions (see also [6, §2.3.1]).
Recall that a commutative monad (T, η, µ, σ) in general comprises
an endofunctor T together with natural transformations ηX : X →
T (X), µX : T (T (X))→ T (X), σX,Y : T (X)×Y → T (X×Y )
satisfying some laws [16]. Using this structure we interpret return
and let, for Γ p̀ t : A, following Moggi [22]:

JΓ p̀ return(t) : AK(γ)
def
= ηJAK

(
JtK(γ)

)
JΓ p̀ letx = t inu : BK(γ)

def
=µJBK

(
T (JuK)

(
σJΓK,JAK(γ, JtK(γ))

))
Concretely, we make P (R≥0 × (−)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R≥0, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

Jnorm(letx = t in (score(u); v))K
= Jnorm(case (norm(letx = t in score(u))) of 1

(0, (e, d))⇒ score(e); letx = sample(d) in v 2
| (1, ∗)⇒ score(0); return(w) 3
| (2, ∗)⇒ score(∞); return(w))K 4

Let us explain the right hand side. Line 1 renormalises the program
after the score, and in non-exceptional execution returns the model
evidence e and a new normalised distribution d. Line 2 immediately
records the evidence e as a score, and then resamples d, using the
resampled value in the continuation v. Lines 3 and 4 propagate the
errors of 0 or ∞ evidence: w is a deterministic term of the right
type, and score(∞) is a term that causes an infinite evidence error
when normalised; which terms are chosen does not matter.

5. Operational semantics
This section develops operational semantics for the first-order lan-
guage. There are several reasons to consider this, even though the
denotational semantics is arguably straightforward. First, extension
to higher-order functions is easier in operational semantics than
in denotational semantics. Second, operational semantics conveys
computational intuitions that are obscured in the denotational se-
mantics. We expect these computational intuitions to play an im-
portant role in studying approximate techniques for performing
posterior inference, such as sequential Monte Carlo, in the future.

Sampling probability distributions complicates operational se-
mantics. Sampling from a discrete distribution can immediately af-
fect control flow. For example, in the term

letx= sample(bern(0.5)) in if x then return(1.1) else return(8.0)

the conditional depends on the result of sampling the Bernoulli
distribution. The result is 1.1 with probability 0.5 (cf. [5, §2.3]).

Sampling a distribution on R cannot affect control flow, but does
introduce another complication. Informally, there is a transition

sample(gauss(0.0, 1.0)) −→ return(r)

for every real r, but any single transition has zero probability. We
can assign non-zero probabilities to sets of transitions; informally:

Pr
(
sample(gauss(0.0, 1.0)) −→ {return(r) | r ≤ 0}

)
= 0.5.

To make this precise we need a σ-algebra on the set of terms, which
can be done using configurations rather than individual terms. A
configuration is a closure (cf. [13, §3]): a pair 〈t, γ〉 of a term t
with free variables and a context γ giving values for those variables
as elements of a measurable space.

Sampling a distribution p on R+R exhibits both complications:

letx = sample(p) in casex of (0, r)⇒ return(r + 1.0)

|(1, r)⇒ return(r − 1.0)
(3)

The control flow in the case distinction depends on which sum-
mand is sampled, but there is potentially a continuous distribution
over the return values. We handle this by instantiating the choice of
summand in the syntax, but keeping the value of the summand in
the closure, so that expression (3) can make a step to the closure

〈 let x = return(0, y) in
casex of (0, r)⇒ return(r + 1.0)

|(1, r)⇒ return(r − 1.0)

, y 7→ 42.0〉.

A type is indecomposable if it has the form R or P(A), and a
context Γ is canonical if it only involves indecomposable types.

Configurations Let z ∈ {d, p}. A z-configuration of type A is a
triple 〈Γ, t, γ〉 comprising a canonical context Γ, a derivable term
Γ z̀ t : A, and an element γ of the measurable space JΓK. We
identify contexts that merely rename variables, such as

〈(x : R, y : P(R)), f(x, y), (x 7→ 42.0, y 7→ gauss(0.0, 1.0))〉
≈〈(u : R, v : P(R)), f(u, v), (u 7→ 42.0, v 7→ gauss(0.0, 1.0))〉.

We call d-configurations deterministic configurations, and p-config-
urations probabilistic configurations; they differ only in typing. We
will abbreviate configurations to 〈t, γ〉 when the context Γ is ob-
vious. Each configuration has a unique type, because the language
does not include any structural typing rules.

Values v in a canonical context Γ are well-typed deterministic
terms of the form

v, w ::= xi | ∗ | (v, w) | (i, v) (4)

where xi is a variable in Γ. Similarly, a probabilistic term t in
context Γ is called probabilistic value or p-value if t ≡ return(v0)

4 2016/1/18



for some value v0. Remember from Section 3 that the denotational
semantics of values is simple and straightforward.

Write Cond(A) and Conp(A) for the sets of deterministic and
probabilistic configurations of type A, and make them into measur-
able spaces by declaring U ⊆ Conz(A) to be measurable if the set
{γ ∈ JΓK | 〈t, γ〉 ∈ U} is measurable for all judgements Γ z̀ t : A.

Conz(A) =
∑
(Γ,t)

Γ canonical,
Γ z̀ t : A

JΓK (5)

Further partition Conz(A) into ConVz(A) and ConNz(A)
based on whether a term in a configuration is a value or not:

ConVd(A) = {〈Γ, t, γ〉 ∈ Cond(A) | t is a value}
ConNd(A) = {〈Γ, t, γ〉 ∈ Cond(A) | t is not a value}
ConVp(A) = {〈Γ, t, γ〉 ∈ Conp(A) | t is a p-value}
ConNp(A) = {〈Γ, t, γ〉 ∈ Conp(A) | t is not a p-value}

Particularly well-behaved values are the ordered values Γ d̀ v : A,
whose variables appear exactly once, in the same order as in Γ.

Lemma 5.1. Consider a canonical context Γ, a type A, an ordered
value Γ d̀ v : A, and the induced measurable function

JvK : JΓK→ JAK.

The collection of all such functions for given A is countable, and
forms a coproduct diagram.

Proof. By induction on the structure of types. The key fact is that
every type is a sum of products of indecomposable ones, because
the category of measurable spaces is distributive, i.e. the canonical
map

∑
i∈I(A× Bi)→ A×

∑
i∈I Bi is an isomorphism.

For example, A = (R× bool) + (R× R) has 3 ordered values,
first (x : R d̀ (0, (x, true)) : A), second (x : R d̀ (0, (x, false)) : A),
and third (x : R, y : R d̀ (1, (x, y)) : A), inducing a canonical mea-
surable isomorphism R + R + R× R ∼= JAK.

Evaluation contexts We distinguish three kinds of evaluation
contexts: C[−] is a context for a deterministic term with a hole for
deterministic terms; D[−] and E [−] are contexts for probabilistic
terms, the former with a hole for probabilistic terms, the latter with
a hole for probabilistic terms.

C[−] ::= (−) | πj C[−] | (C[−], t) | (v, C[−]) | (i, C[−])

| case C[−] of {(i, x)⇒ ti}i∈I | f(C[−])

D[−] ::= (−) | let x = D[−] in t

E [−] ::= D[return[−]] | D[sample[−]] | D[score[−]]

| case D[−] of {(i, x)⇒ ti}i∈I

(6)

where t, ti are general terms and v is a value.

5.1 Reduction
Using the tools developed so far, we will define a measurable
function for describing the reduction of d-configurations, and a
stochastic relation for describing that of p-configurations:

−→ : ConNd(A)→ Cond(A),

−→ : ConNp(A)× ΣR≥0×Conp(A) → [0, 1],

parameterised by a family of measurable functions

νA : Conp(A)→
(
R≥0 × P (JAK)

)
+ 1 + 1 (7)

indexed by types A.

Reduction of deterministic terms Define a type-indexed family
of relations −→ ⊆ ConNd(A) × Cond(A) as the least one that is
closed under the following rules.

〈Γ, πj(v0, v1), γ〉 −→ 〈Γ, vj , γ〉

〈Γ, case (i′, v) of {(i, x)⇒ ti}i∈I , γ〉 −→ 〈Γ, ti′ [v/x], γ〉

〈Γ, f(w), γ〉 −→ 〈(Γ,Γ′), v, (γ, γ′)〉
(w a value ∧ Γ′ d̀ v : A an ordered value ∧ f(JwK(γ)) = JvK(γ′))

〈Γ, norm(t), γ〉 −→ 〈(Γ, x:R, y:P(B)), (0, (x, y)), γ[x 7→r, y 7→p]〉
(A=P(B) ∧ νB(〈Γ, t, γ〉) = (0, (r, p)) ∧ x, y 6∈ dom(Γ))

〈Γ, norm(t), γ〉 −→ 〈Γ, (i, ∗), γ〉
(A=P(B) ∧ νB(〈Γ, t, γ〉) = (i, ∗), i ∈ {1, 2})

〈Γ, t, γ〉 −→ 〈Γ′, t′, γ′〉
〈Γ, C[t], γ〉 −→ 〈Γ′, C[t′], γ′〉

(C[−] is not (−))

The rule for f(w) keeps the original context Γ and the closure γ
because they might be used in the continuation, even though they
are not used in v. The rules obey the following invariant.

Lemma 5.2. If 〈Γ, t, γ〉 −→ 〈Γ′, t′, γ′〉, then Γ′ = (Γ,Γ′′) and
γ′ = (γ, γ′′) for some Γ′′ and γ′′ ∈ JΓK′′.

Proof. By induction on the structure of derivations.

This lemma allows us to confirm that our specification of a relation
−→ ⊆ ConNd(A) × Cond(A) is well-formed (‘type preserva-
tion’).

Proposition 5.3. The induced relation is a measurable function.

Proof. There are three things to show: that the relation is entire
(‘progress’); that the relation is single-valued (‘determinacy’); and
that the induced function is measurable. All three are shown by
induction on the structure of terms. The case of application of
measurable functions crucially uses Lemma 5.1.

Reduction of probabilistic terms Next, we define the stochastic
relation −→ for probabilistic terms, combining two standard ap-
proaches: for indecomposable types, which are uncountable, use
labelled Markov processes, i.e. give a distribution on the measur-
able set of resulting configurations; for decomposable types (sums,
products etc.), probabilistic branching is discrete and so a transition
system labelled by probabilities suffices.

Proposition 5.4. Let (Xi)i∈I be an indexed family of measurable
spaces. Suppose we are given:

• a function q : I → [0, 1] such that
∑
i∈I q(i) = 1 that is only

nonzero on a countable subset I0 ⊆ I;
• a probability measure qi on Xi for each i ∈ I0.

This determines a probability measure p on
∑
i∈I Xi by

p(U) =
∑
i∈I q(i) qi({a | (i, a) ∈ U})

for U a measurable subset of
∑
i∈I Xi,

We will use three other entities to define the desired stochastic
relation −→ : ConNp(A)× ΣR≥0×Conp(A) → [0, 1].

1. A countably supported probability distribution on the set
{(Γ, t) | Γ p̀ t : A} for each C ∈ ConNp(A). We write
Pr(C −→ (Γ, t)) for the probability of (Γ, t).

2. A probability measure on the space JΓK for eachC ∈ ConNp(A)
and (Γ, t) with Pr(C −→ (Γ, t)) 6= 0. Write Pr(C −→Γ,t U)
for the probability of a measurable subset U ⊆ JΓK.

5 2016/1/18



Pr(〈Γ, E [t], γ〉 −→ (Γ′, E [t′]))
def
=
[
〈Γ, t, γ〉 −→ 〈Γ′, t′, γ′〉

]
Pr(〈Γ,D[t], γ〉 −→ (Γ′,D[t′]))

def
= Pr(〈Γ, t, γ〉 −→ (Γ′, t′))

Pr(〈Γ, letx = return(v) in t, γ〉 −→ (Γ, t[v/x]))
def
= 1

Pr(〈Γ, case (j, v) of {(i, x)⇒ ti}i∈I , γ〉 −→ (Γ, tj [v/x]))
def
= 1

Pr(〈Γ, score(v), γ〉 −→ (Γ, return(∗))) def
= 1

Pr(〈Γ, sample(v), γ〉 −→ ((Γ,Γ′), return(v′)))

def
=

{
JvK(γ)({Jv′K(γ′) | γ′ ∈ JΓ′K}) if Γ′ d̀ v

′ : A ordered

0 otherwise

Pr(〈Γ, E [t], γ〉 −→(Γ′,E[t′]) U)
def
= [〈Γ, t, γ〉 −→ 〈Γ′, t′, γ′〉 ∧ γ′ ∈U ]

Pr(〈Γ,D[t], γ〉 −→(Γ′,D[t′]) U)
def
= Pr(〈Γ, t, γ〉 −→(Γ′,t′) U)

Pr(〈Γ, letx = return(v) in t, γ〉 −→(Γ,t[v/x]) U)
def
= [γ ∈ U ]

Pr(〈Γ, case (j, v) of {(i, x)⇒ ti}i∈I , γ〉−→Γ,tj [v/x]U)
def
= [γ ∈U ]

Pr(〈Γ, score(v), γ〉 −→(Γ,return(∗)) U)
def
= [γ ∈ U ]

Pr(〈Γ, sample(v), γ〉 −→((Γ,Γ′),return(v′)) U)

def
=

JvK(γ)({Jv′K(γ′) | γ′ ∈ JΓ′K ∧ (γ, γ′) ∈ U})
JvK(γ)({Jv′K(γ′) | γ′ ∈ JΓ′K})

Sc(〈Γ, E [t], γ〉) def
= 1 Sc(〈Γ,D[t], γ〉) def

= Sc(〈Γ, t, γ〉)

Sc(〈Γ, score(v), γ〉) def
= JvK(γ) Sc(〈Γ, sample(v), γ〉) def

= 1

Sc(〈Γ, letx = return(v) in t, γ〉) def
= 1

Sc(〈Γ, case (j, v) of {(i, x)⇒ ti}i∈I , γ〉)
def
= 1

Figure 1. Entities used to define reduction of probabilistic terms

3. A measurable function Sc: ConNp(A) → R≥0, representing
the score of the one-step transition relation. (For one-step tran-
sitions, the score is actually deterministic. We did not include it
in 2 above for simplicity.)

These three entities are defined by induction on the structure of
syntax of A-typed p-configurations in Figure 5.1.

Proposition 5.5. The map ConNp(A) × ΣR≥0×Conp(A) → [0, 1]

that sends (C,U) to Pr(C −→ U), defined as∑
(Γ,t)

Pr
(
C −→ (Γ, t)

)
Pr
(
C −→Γ,t {γ | (Sc(C), 〈Γ, t, γ〉)∈U}

)
,

is a stochastic relation.

Proof. For each p-configuration C = 〈 , t, 〉, use induction on t
to see that the probability distribution Pr

(
C −→ (−)

)
on pairs

(Γ′, t′) and the distribution Pr(C −→(−) (−)) indexed by such
pairs satisfy the conditions in Proposition 5.4. It follows that the
partial evaluation Pr(C −→ (−)) of the function in the statement
is a probability measure, so it suffices to establish measurability of
the other partial evaluation Pr((−) −→ U). Recall that ConNp(A)
is defined in terms of the sum of measurable spaces, and that all
p-configurations in each summand have the same term. Finally,
use induction on the term shared by all p-configurations in the

summand to see that the restriction of Pr((−) −→ U) to each
summand is measurable.

5.2 Termination
To see that the reduction process terminates, we first define the
transitive closure. This is subtle, as sampling can introduce count-
ably infinite branching; although each branch will terminate, the
required number of steps might not be bounded across all branches.

Use the deterministic transition relation to define an evalua-
tion relation ⇓ ⊆ Cond(A) × ConVd(A), by setting C ⇓ D if
∃n.C ⇓n D, where

C ⇓0 C
(C ∈ ConVd(A))

C −→ D D ⇓n E
C ⇓n+1 E

To define evaluation for probabilistic configurations, we need sub-
stochastic relations: functions f : X × ΣY → [0, 1] that are
measurable in X , satisfy f(x, Y ) ≤ 1 for every x ∈ X , and
are countably additive in Y , i.e. f(x,

⋃
i∈N Ui) =

∑
i∈N f(Ui)

for a sequence U1, U2, . . . of disjoint measurable sets. Thus a
stochastic relation (as in Definition 2.3) is a sub-stochastic relation
with f(x, Y ) = 1. Define a sub-stochastic relation

Pr(− ⇓ −) : Conp(A)× ΣR≥0×ConVp(A) → [0, 1]

by Pr(C ⇓ U)
def
=
∑
n Pr(C ⇓n U), where Pr(C ⇓0 U) is given

by [(1, C) ∈ U ], and Pr(C ⇓n+1 U) is∫
(r,D)

Pr(D ⇓n {(s, E) | (r · s, E) ∈ U}) Pr(C −→ d(r,D)).

Proposition 5.6 (Termination). Evaluation of deterministic terms
is a function: ∀C.∃D.C ⇓ D. Evaluation of probabilistic terms is
a stochastic relation: ∀C.Pr(C ⇓ (R≥0 × ConVp(A))) = 1.

Proof. By induction on the structure of terms.

Termination is hardly surprising because we do not have any re-
cursive constructions. Probabilistic recursion is interesting, e.g. the
program (while (sample(bern(0.5))) do skip) almost surely termi-
nates. But we omit recursive constructs for now, because our se-
mantic model does not yet handle higher-order recursion, and prob-
abilistic while-languages are already well-understood (e.g. [17]).
(See also the discussion about domain theory in §8.)

5.3 Soundness
For soundness, extend the denotational semantics to configurations:

• define sd : Cond(A)→ JAK by 〈Γ, t, γ〉 7→ JtK(γ);
• define sp : Conp(A) × ΣR≥0×JAK → [0, 1] similarly by

(〈Γ, t, γ〉, U) 7→ JtK(γ)(U). We may also use this stochastic re-
lation as a measurable function sp : Conp(A)→P (R≥0× JAK);
• define sV p : ConVp(A)→ JAK by 〈Γ, return(v), γ〉 7→ JvK(γ).

Note that in this first-order language, sV p is a surjection which
equates two value configurations iff they are related by weak-
ening, contraction or exchange of variables.

Assumption 5.7. Throughout this section we assume that the nor-
malisation function ν on configurations (7) is perfect, i.e. it corre-
sponds to ι, the semantic normalisation function (2):

νA(〈Γ, t, γ〉) = ιJAK(sp(〈Γ, t, γ〉)).

Lemma 5.8 (Context extension). Let z ∈ {d, p}. Suppose that
〈Γ, t, γ〉 and 〈(Γ,Γ′), t, (γ, γ′)〉 are configurations in Cond(A).
Then sz(〈Γ, t, γ〉) = sz〈(Γ,Γ′), t, (γ, γ′)〉.

6 2016/1/18



Proposition 5.9 (Soundness). The following diagrams commute in
the category of measurable spaces and stochastic relations.

ConNd(A) sd
**

reduction
��

JAK

Cond(A)
sd

44

ConNp(A)
sp //

reduction
��

R≥0 × JAK

R≥0 × Conp(A)
id×sp
// R≥0 × R≥0 × JAK

multiplication

OO

Proof. By induction on the structure of syntax. The inductive steps
with evaluation contexts use the extension Lemma 5.8, which ap-
plies by the invariant Lemma 5.2.

Adequacy The denotational semantics is adequate, in the sense:

JtK(∗) = P (R≥0 × sV p)
(
Pr(〈∅, t, ∗〉 ⇓ (−))

)
for all p̀ t : A.

That is, the denotation JtK(∗) is nothing but pushing forward the
probability measure Pr(〈∅, t, ∗〉 ⇓ (−)) from the operational se-
mantics along the function sV p. This adequacy condition holds be-
cause Proposition 5.9 ensures that(∑
k≤n

Pr(〈∅, t, ∗〉 ⇓k {(r, C) | (r, sV p(C)) ∈ U})
)
≤ JtK(∗)(U)

for all n and U , and Proposition 5.6 then guarantees that the left-
hand side of this inequality converges to the right-hand side as n
tends to infinity.

6. A higher-order language
This short section extends the first-order language with functions
and thunks [18], allowing variables to stand for program fragments.
In other words, ‘programs are first-class citizens’.

Types Extend the grammar for types with two new constructors.

A,B ::= R | P(A) | 1 | A× B |
∑
i∈I

Ai | A⇒ B | T(A)

Informally, A ⇒ B contains deterministic functions, and T(A)
contains thunked (i.e. suspended) probabilistic programs, so that
A ⇒ T(B) contains probabilistic functions. A type is measurable
if it does not involve⇒ or T, i.e. if it is in the grammar of Section 3.

Terms Extend the term language with the following rules. First,
the usual abstraction and application of deterministic functions:

Γ, x : A d̀ t : B
Γ d̀ λx. t : A⇒ B

Γ d̀ t : A⇒ B Γ d̀ u : A
Γ d̀ t u : B

Second, we have syntax for thunking and forcing (e.g. [18, 22, 25]).

Γ p̀ t : A
Γ d̀ thunk(t) : T(A)

Γ d̀ t : T(A)

Γ p̀ force(t) : A
All the rules from Section 3 are also still in force, except that for
rule (1) to still make sense, we restrict it to only include constant
terms for measurable functions f : JAK → JBK between measur-
able types A and B.

Examples One reason for higher types is to support code struc-
turing. The separate function types and thunk types allow us to be
flexible about calling conventions. For example, sampling can be
reified as the ground term

d̀ λx. thunk(sample(x)) : P(A)⇒ T(A),

which takes a probability measure and returns a suspended program
that will sample from it. On the other hand, to reify the normaliza-
tion construction, we use a different calling convention.

d̀ λx. norm(force(x)) : T(A)⇒ R× P(A) + 1 + 1

This function takes a suspended probabilistic program and returns
the result of normalizing it.

Example: higher-order expectation Higher types also allow us
to consider probability distributions over programs. For an exam-
ple, consider this term.

Eh
def
= λ(d, f) : T(A)× (A⇒ R).

case (norm(let a = force(d) in score(f(a)))) of
(0, (e, y))⇒ e
| (1, ∗)⇒ 0.0 | (2, ∗)⇒ 0.0

It has type T(A) × (A ⇒ R) ⇒ R. Intuitively, given a thunked
probabilistic term t and a function f that is nonnegative, Eh treats
t as a probability distribution on A, and computes the expectation
of f on this distribution. Notice that A can be a higher type, so
Eh generalises the usual notion of expectation, which has not been
defined for higher types because the category of measurable spaces
is not Cartesian closed.

7. Higher-order operational semantics
This section considers operational semantics for the higher-order
extension of the language. In an operational intuition, force(t)
forces a suspended computation t to run. For example,

d̀ thunk(sample(gauss(0.0, 1.0))) : T(R)

is a suspended computation that, when forced, will sample the
normal distribution.

Assumption 7.1. From the operational perspective it is unclear
how to deal with sampling from a distribution over functions. For
this reason, in this section, we only allow the type P(A) when A is a
measurable type. We still allow probabilistic terms to have higher-
order types, and we still allow T(A) where A is higher-order.

7.1 Reduction
We now extend the operational semantics from Section 5 with
higher types. Values (4) are extended as follows.

v ::= . . . | λx.t | thunk(t)

Evaluation contexts (6) are extended as follows.

C[−] ::= . . . | C[−] t | v C[−] E [−] ::= . . . | D[force[−]]

There are two additional redexes: (λx.t) v and force(thunk(t)).
The deterministic transition relation is extended with this β-rule:

〈Γ, (λx.t) v, γ〉 −→ 〈Γ, t[v/x], γ〉.
Extend the probabilistic transition relation with the following rules.

Pr
(
〈Γ, force(thunk(t)), γ〉 −→ (Γ, t)

)
= 1

Pr
(
〈Γ, force(thunk(t)), γ〉 −→(Γ,t) U

)
= [γ ∈ U ]

Sc(〈Γ, force(thunk(t)), γ〉) = 1

7.2 Termination
The evaluation relations for deterministic and probabilistic con-
figurations of the higher-order language are defined as in Sub-
section 5.2. The resulting rewriting system still terminates, even
though configurations may now include higher-order terms.

Proposition 7.2 (Termination). Evaluation of deterministic terms
is a function: ∀C.∃D.C ⇓ D. Evaluation of probabilistic terms is
a stochastic relation: ∀C.Pr(C ⇓ (R≥0 × ConVp(A))) = 1.

Proof. We sketch an invariant of higher-order terms that implies the
termination property, formulated as unary logical relations via sets

R(Γ z̀ A) ⊆ {t | Γ z̀ t : A},
Rv(Γ z̀ A) ⊆ {t | Γ z̀ t : A ∧ t a z-value},

7 2016/1/18



for each canonical context Γ, type A, and z ∈ {d, p}, defined by:

R(Γ d̀ A) = {t | ∀γ. 〈Γ, t, γ〉 ⇓ 〈Γ′, t′, γ′〉 ∧ t′ ∈ Rv(Γ′ d̀ A)}
R(Γ p̀ A) = {t | ∀γ.Pr(〈Γ, t, γ〉 ⇓

(R≥0 ×
∑

Γ′Rv(Γ′ p̀ A)× JΓ′K)) = 1}

Rv(Γ p̀ A) = {return(v) | v ∈ Rv(Γ d̀ A)}
Rv(Γ d̀ A) = {x | (x : A) ∈ Γ} for A indecomposable
Rv(Γ d̀ 1) = {∗}

Rv(Γ d̀ A1 × A2) = {(v1, v2) | ∀j. vj ∈ Rv(Γ d̀ Aj)}

Rv(Γ d̀

∑
Ai) = {(i, v) | v ∈ Rv(Γ d̀ Ai)}

Rv(Γ d̀ T (A)) = {thunk(t) | t ∈ R(Γ p̀ A)}
Rv(Γ d̀ A⇒ B) = {λx.t | ∀Γ′ ⊇ Γ, u ∈ Rv(Γ′ d̀ A).

t[u/x] ∈ R(Γ′ d̀ B)}
Induction on the structure of a term Γ, x1 : A1, . . . xn : An z̀ t : B
for z ∈ {d, p} now proves that vi ∈ Rv(Γ d̀ Ai) for i = 1, . . . , n
implies t[~v/~x] ∈ R(Γ z̀ B).

8. Higher-order denotational semantics
This section gives denotational semantics for the higher-order lan-
guage, without using Assumption 7.1. We are to interpret the new
constructs T(A), thunk, and force. We will interpret probabilis-
tic judgements as Kleisli morphisms JΓK → T (JAK) for a certain
monad T , and set JT(A)K def

=T (JAK), so thunk and force embody
the correspondence of maps JΓK→ T (JAK) and JΓK→ JT(A)K.

On which category can the monad T live? Interpreting λ-
abstraction and application needs a natural ‘currying’ bijection be-
tween morphisms JΓK×R→ R and morphisms JΓK→ JR⇒ RK.
But measurable functions cannot do this: it is known that no mea-
surable space JR⇒ RK can support such a bijection [3].

We resolve the problem of function spaces by embedding the
category of measurable spaces in a larger one, where currying
is possible, and that still has the structure to interpret the first
order language as before. As the larger category we will take a
category of functors Measop → Set from a category Meas
of measurable spaces and measurable functions to the category
Set of sets and functions. This idea arises from two traditions.
First, we can think of a variable of type R as a read-only memory
cell, as in the operational semantics, and functor categories have
long been used to model local memory (e.g. [23]). Second, the
standard construction for building a Cartesian closed category out
of a distributive one is based on functor categories (e.g. [28]).

Other models of higher-order programs Semantics of higher-
order languages with discrete probability are understood well. For
terminating programs, there are set-theoretic models based on a
distributions monad, and for full recursion one can use probabilis-
tic powerdomains [14] or coherence spaces [9]. It is also plausible
one could model continuous distributions in domain theory, since
it supports computable real analysis (e.g. [8]); this could be inter-
esting because computability is subtle for probabilistic program-
ming (e.g. [1]). Nonetheless, we contend it is often helpful to ab-
stract away computability issues when studying probabilistic pro-
gramming languages, to have access to standard theorems of prob-
ability theory to justify program transformations.

8.1 Semantic model
Fix a category Meas of measurable spaces and measurable func-
tions that is essentially small but large enough for the purposes of
Section 4. For example, Meas could be the category of standard
Borel spaces [4, 32]: one can show that JAK is standard Borel by in-

duction on A, and the class of all standard Borel spaces is countable
up to measurable isomorphism.

In Section 4 we interpreted first-order types A as measur-
able spaces JAK. We will interpret higher-order types A as func-
tors LAM : Measop → Set. Informally, when A is a first-order
type and Γ is a first-order context, we will have LAM(JΓK) ∼=
Meas(JΓK, JAK) ≈ {t | Γ d̀ t : A}. For a second order type
(A⇒ B), we will have

LA⇒ BM(JΓK) ∼= Meas(JΓK×JAK, JBK) ≈ {t | Γ, x : A d̀ t : B}
so that β/η equality is built in. To put it another way, LAM(Rn) mod-
els terms of type A having n read-only real-valued memory cells.

Lemma 8.1. For a small category C with countable sums, con-
sider the category C of countable-product-preserving functors
Cop → Set, and natural transformations between them.

• C has all colimits;
• C is Cartesian closed if C has products that distribute over

sums;
• There is a full and faithful embedding y : C → C, given by
y(c)

def
=C(−, c), which preserves limits and countable sums.

Proof. See e.g. [28, §7], or [15, Theorems 5.56 and 6.25]. The
embedding y is called the Yoneda embedding.

For a simple example, consider the category CSet of countable
sets and functions. It has countable sums and finite products, but is
not Cartesian closed. Because every countable set is a countable
sum of singletons, the category CSet is equivalent to Set.

Our semantics for the higher-order language will take place in
the category Meas. Note that products in Meas are pointwise,
e.g. (F ×G)(X) = F (X)×G(X) for all F,G ∈Meas and all
X ∈ Meas, but sums are not pointwise, e.g. (1 + 1) ∈ Meas
is the functor that assigns a measurable space X to the set of its
measurable subsets. This is essential for y to preserve sums.

Distribution types We have to interpret distribution types P(A)
in our functor category Meas. How can we interpret a probability
distribution on the type R⇒ R? We can answer this pragmatically,
without putting σ-algebra structure on the set of all functions. If
JR ⇒ RK were a measurable space, a random variable valued
in JR ⇒ RK would be given by a measurable space (X,ΣX),
a probability distribution on it, and a measurable function X →
JR⇒ RK. Despite there being no such measurable space JR⇒ RK,
we can speak of uncurried measurable functionsX×R→ R. Thus
we might define a probability distribution on JR⇒ RK to be a triple(

(X,ΣX), p : ΣX → [0, 1], f : X × R→ R
)

of a measurable space (X,ΣX) of ‘codes’ with a probability dis-
tribution p, and a measurable function f where we think of f(x, r)
as ‘the function coded x evaluated at r’. These triples should be
considered modulo renaming the codes. This is exactly the notion
of probability distribution that arises in our functor category.

Lemma 8.2. For a small category C with countable sums:

• any functor F : C → C extends to a functor F : C → C
satisfying F ◦ y ∼= y ◦ F , given by

F (G)(b) =
(∑

a
G(a)×C

(
b, F (a)

))
/∼

where the equivalence relation ∼ is the least one satisfying
(a′, x, Fg ◦ f) ∼ (a,Gg(x), f);
• similarly, any functor F : C × C → C in two arguments

extends to a functor F : C×C→ C, with F ◦(y×y) ∼= y◦F :

F (G,H)(c) =
(∑

a,b
G(a)×H(b)×C

(
c, F (a, b)

))
/∼

8 2016/1/18



• any natural transformation α : F → G between functors
F,G : C → C lifts to a natural transformation α : F → G,
and similarly for functors C×C→ C;
• and this is functorial, i.e. G ◦ F ∼= G ◦ F and β ◦ α = β ◦ α.

Proof. F (G) is the left Kan extension of G along F , see e.g. [15].
Direct calculation shows F (G) preserves products if G does.

Thus the commutative monads P and T = P (R≥0 × (−)) on
Meas lift to commutative monads P and T ∼= P (yR≥0 × (−))
on Meas. The latter monad captures the informal importance-
sampling semantics advocated by the designers of Anglican [34].

8.2 Conservativity
We interpret the types of the higher order language as objects in
Meas using its categorical structure.

L
∑
i∈I AiM

def
=
∑
i∈ILAiM LRM def

=yR LP(A)M def
=P (LAM)

LA× BM def
= LAM× LBM L1M def

= 1 LT(A)M def
=T (LAM)

LA⇒ BM def
= LAM⇒ LBM

All first-order types A have a natural isomorphism LAM ∼= yJAK.
We extend this interpretation to contexts.

Lx1 : A1, . . . , xn : AnM def
=

n∏
i=1

LAiM

Deterministic terms Γ d̀ t : A are interpreted as natural transfor-
mations LΓM→ LAM in Meas, and probabilistic terms Γ p̀ t : A as
natural transformations LΓM → T LAM, by induction on the struc-
ture of terms as in Section 4. Application and λ-abstraction are
interpreted as usual in Cartesian closed categories [27]. Thunk and
force are trivial from the perspective of the denotational semantics,
because LTAM = T LAM. To interpret norm(t), use Lemma 8.2 to
extend the normalisation functions T (X)→ R≥0×P (X)+1+1
between measurable spaces (2) to natural transformations T (F )→
y(R≥0) × P (F ) + 1 + 1. This interpretation conserves the first-
order semantics of Section 4.

Proposition 8.3. For z ∈ {d, p}, and first-order Γ and A:

• JtK = JuK if and only if LtM = LuM for first-order Γ z̀ t, u : A;
• every term Γ z̀ t : A has LtM = LuM for a first-order Γ z̀ u : A.

Proof. We treat z = d; the other case is similar. By induction on the
structure of terms, LtM = yJtK : LΓM→ LAM. The first point follows
from faithfulness of y; the second from fullness and (1).

One interesting corollary is that the interpretation of a term of
first-order type is always a measurable function, even if the term in-
volves thunking, λ-abstraction and application. This corollary gives
a partial answer to a question by Park et. al. on the measurability
of all λ-definable ground-type terms in probabilistic programs [25]
(partial because our language does not include recursion).

8.3 Soundness
The same recipe as in Section 5.3 will show that the higher-order
denotational semantics is sound and adequate with respect to the
higher-order operational semantics. This needs Assumption 7.1.

A subtle point is that configuration spaces (5) involve uncount-
able sums: the set of terms of a given type is uncountable, but y
only preserves countable sums. This is not really a problem because
only countably many terms are reachable from a given program.

Definition 8.4. For a type A, the binary reachability relation  ∗d
on {(Γ, t) | Γ d̀ t : A∧Γ canonical} is the least reflexive and tran-
sitive relation with (Γ, t)  ∗d (Γ′, u) if 〈Γ, t, γ〉 −→ 〈Γ′, u, γ′〉

for γ ∈ JΓK, γ′ ∈ JΓ′K. Similarly,  ∗p is the least reflexive
and transitive relation on {(Γ, t) | Γ p̀ t : A ∧ Γ canonical} with
(Γ, t) ∗p (Γ′, u) if Pr

(
〈Γ, t, γ〉 −→ (Γ′, u)

)
6= 0 for γ ∈ JΓK.

Proposition 8.5. Let z ∈ {d, p}. For any closed term z̀ t : A, the
set of reachable terms {(Γ, u) | (∅, t) ∗z (Γ, u)} is countable.

Proof. One-step reachability is countable by induction on terms.
Since all programs terminate by Proposition 7.2, the reachable
terms form a countably branching well-founded tree.

We may thus restrict to the configurations built from a countable
set U of terms that is closed under subterms and reachability.
Extend the denotational semantics in Meas to configurations by
defining sd : y(Cond(A))→ LAM, sp : y(Conp(A))→ T LAM, and
sV p : y(ConVp(A))→ T LAM; use the isomorphisms

y(Conz(A)) ∼=
∑

(Γ z̀ t:A)∈U

LΓM

to define sd, sp, sV p by copairing the interpretation morphisms
LΓ d̀ t : AM : LΓM→ LAM and LΓ p̀ u : AM : LΓM→ T (LAM).

Proposition 8.6 (Soundness). The following diagrams commute.

y(ConNd(A))
sd
++

y(reduction)
��

LAM

y(Cond(A))
sd

33

y(ConNp(A)) sp
++

y(reduction)
��

T LAM

T (Conp(A)) µ·T (sp)

33

Adequacy It follows that the higher denotational semantics re-
mains adequate, in the sense that for all probabilistic terms p̀ t : A,

LtM1(∗) = (T (sV p))1

(
Pr(〈∅, t, ∗〉 ⇓ (−))

)
.

Adequacy is usually only stated for first-order types. At first-order
types A the function sV p does very little, since global elements
of LAM correspond bijectively with value configurations modulo
weakening, contraction and exchange in the context. At higher
types, the corollary still holds, but sV p is not so trivial because we
do not reduce under thunk or λ.

9. Continuous densities
Several higher-order probabilistic programming languages (such as
Anglican) provide constructs to build probability distributions with
continuous densities. The probability densities are given with re-
spect to well-understood base measures, such as Lebesgue measure
for R and counting measures on countable sets.2 Our language eas-
ily extends to accommodate such distributions. Just add a collection
density types to the syntax.

D ::= R | bool | N | 1 | D× D A ::= · · · | D(D)

The D in this grammar denotes a measurable space that: (i) carries
a separable metrisable topology that generates the σ-algebra; and
that (ii) comes with a chosen σ-finite measure µ. An example is R
with its usual Euclidean topology and the Lebesgue measure.

The type D(D) denotes a measurable space JD(D)K of continu-
ous functions f : JDK→ R≥0 with

∫
X
f dµ = 1, where continuity

and integration are taken with respect to the topology and the base

2 A measure on a measurable space (X,Σ) is a function µ : Σ → R≥0 ∪
{∞} such that µ(

⋃
i∈N Ui) =

∑
i∈N µ(Ui) for a disjoint sequence

U1, U2, . . . of measurable sets. It is σ-finite when X =
⋃
i∈N Ui with

Ui ∈ Σ and µ(Ui) < ∞. The Lebesgue measure µL maps an interval
to its size. The counting measure µC maps finite measurable sets to their
cardinality, and infinite sets to∞. A density for µ is a measurable function
f : X → R satisfying µ(U) =

∫
U fdµ.

9 2016/1/18



measure µ of JDK. The σ-algebra of JD(D)K is the least one making
{f | f(x) ≤ r} measurable for all (x, r) ∈ JDK× R≥0.

Insisting on continuity in the definition of D(D) ensures that

ev : JD(D)K× JDK→ R≥0 ev(f, x) = f(x)

is a measurable function. This would have been impossible if
we had included noncontinuous densities, regardless of the σ-
algebra [3]. Because of the measurability of ev , a common way
to impose a soft constraint in probabilistic programming languages
(such as Anglican) can be encoded in our first-order language as

score(ev(f, x)),

where the datum x is observed with a probability distribution with
density f . Thus the categorical machinery used to interpret higher-
order functions is not needed for such soft constraints.

There is a limit to this use of continuity: probability measures
produced by norm(t) need not have continuous density. For exam-
ple, norm(return(42.0)) produces a discontinuous Dirac measure.

Density types can be incorporated into the higher order lan-
guage straightforwardly. The only subtlety is that denotational se-
mantics now needs the base category to contain JD(D)K.

Probability densities are often used by importance samplers. Let
distD be the function that converts continuous densities f on JDK
to probability measures:

distD(f)(U)
def
=

∫
U

fdµ,

where µ is the base measure of δ. This function is measurable, so
it is a constant term in our language. The importance sampler gen-
erates samples of f ∈ JD(R)K by first sampling from a proposal
distribution g where sampling is easy, and then normalizing those
samples x from g according to their importance weight f(x)/g(x).
The following equivalence in our semantics expresses the correct-
ness of this sampling strategy where we use the standard normal
distribution as a proposal distribution.

Jnorm(sample(distR(f)))K

=

s
norm(letx = sample(gauss(0.0, 1.0)) in

score
(
f(x)/density gauss(x, (0.0, 1.0))

)
; return(x))

{

10. Conclusion and future work
We have defined a metalanguage for higher-order probabilistic pro-
grams with continuous distributions and soft constraints, and pre-
sented operational and denotational semantics, together with use-
ful program equations justified by the semantics. One interest-
ing next step is to use these tools to study other old or new lan-
guage features and concepts (such as recursion, function memoi-
sation [30], measure-zero conditioning [5], disintegration [2, 31],
and exchangeability [10, 20, 34]) that have been experimented
with in the context of probabilistic programming. In particular,
our tools may reveal new insights into how these features interact
with higher-order functions. Another future direction is to formu-
late and prove the correctness of inference algorithms, especially
those based on Monte Carlo simulation. In particular, it would be
interesting to see whether our semantic techniques can enable some
insights from [13] to be extended to higher-order languages.

References
[1] N. L. Ackerman, C. E. Freer, and D. M. Roy. Noncomputable condi-

tional distributions. In LiCS, 2011.

[2] N. L. Ackerman, C. E. Freer, and D. M. Roy. On computability and
disintegration, 2015. URL http://arxiv.org/abs/1509.02992.

[3] R. J. Aumann. Borel structures for function spaces. Illinois Journal of
Mathematics, 5:614–630, 1961.

[4] S. K. Berberian. Borel spaces. World Scientific, 1988.
[5] J. Borgström, A. D. Gordon, M. Greenberg, J. Margetson, and J. van

Gael. Measure transformer semantics for Bayesian machine learning.
LMCS, 9(3):11, 2013.

[6] E.-E. Doberkat. Stochastic Relations: Foundations for Markov Tran-
sition Systems. Chapman & Hall, 2007.

[7] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo
Methods in Practice. Springer, 2001.

[8] A. Edalat and M. H. Escardó. Integration in Real PCF. Inf. Comput. ,
160:128–166, 2000.

[9] T. Ehrhard, C. Tasson, and M. Pagani. Probabilistic coherence spaces
are fully abstract for probabilistic PCF. In POPL, 2014.

[10] C. E. Freer and D. M. Roy. Computable de Finetti measures. Ann.
Pure Appl. Logic, 163(5):530–546, 2012.

[11] M. Giry. A categorical approach to probability theory. Categorical
Aspects of Topology and Analysis, 915:68–85, 1982.

[12] N. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz, and J. B.
Tenenbaum. Church: a language for generative models. In UAI, 2008.

[13] C. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel. A provably correct
sampler for probabilistic programs. In FSTTCS, 2015.

[14] C. Jones and G. D. Plotkin. A probabilistic powerdomain of evalua-
tions. In LiCS, 1989.

[15] G. M. Kelly. Basic concepts of enriched category theory. CUP, 1982.
[16] A. Kock. Monads on symmetric monoidal closed categories. Archiv

der Mathematik, XXI:1–10, 1970.
[17] D. Kozen. Semantics of probablistic programs. Journal of Computer

and System Sciences, 22:328–350, 1981.
[18] P. B. Levy. Call-by-push-value: A subsuming paradigm. In TLCA’02.
[19] P. B. Levy, J. Power, and H. Thielecke. Modelling environments in

call-by-value programming languages. Inf. Comput., 185(2), 2003.
[20] V. K. Mansinghka, D. Selsam, and Y. N. Perov. Venture: a higher-order

probabilistic programming platform with programmable inference.
2014. URL http://arxiv.org/abs/1404.0099.

[21] T. Minka, J. Winn, J. Guiver, and D. Knowles. Infer.NET 2.4, Mi-
crosoft Research Cambridge, 2010.

[22] E. Moggi. Notions of computation and monads. Inf. Comput., 93(1):
55–92, 1991.

[23] F. J. Oles. Type algebras, functor categories and block structure. In
Algebraic methods in semantics. CUP, 1984.

[24] B. Paige and F. Wood. A compilation target for probabilistic program-
ming languages. In ICML, 2014.

[25] S. Park, F. Pfenning, and S. Thrun. A probabilistic language based on
sampling functions. ACM TOPLAS, 31(1):171–182, 2008.

[26] A. Patil, D. Huard, and C. J. Fonnesbeck. PyMC: Bayesian stochastic
modelling in Python. Journal of Statistical Software, 35, 2010.

[27] A. M. Pitts. Categorical logic. In Handbook of Logic in Computer
Science, volume 5. OUP, 2000.

[28] J. Power. Generic models for computational effects. TCS, 364(2):
254–269, 2006.

[29] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of
probability distributions. In POPL, 2002.

[30] D. M. Roy, V. Mansinghka, N. Goodman, and J. Tenenbaum. A
stochastic programming perspective on nonparametric Bayes. In
ICML Workshop on Nonparametric Bayesian, 2008.

[31] C.-C. Shan and N. Ramsey. Symbolic Bayesian inference by lazy
partial evaluation, 2016.

[32] S. M. Srivastava. A course on Borel sets. Springer, 1998.
[33] Stan Development Team. Stan: A C++ library for probability and

sampling, version 2.5.0, 2014. URL http://mc-stan.org/.
[34] F. Wood, J. W. van de Meent, and V. Mansinghka. A new approach to

probabilistic programming inference. In AISTATS, 2014.
[35] H. Yang. Program transformation for probabilistic programs, 2015.

Presentation at DALI.

10 2016/1/18


