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Abstract

We develop a framework for incorporating structured graphical models in the
encoders of variational autoencoders (VAEs) that allows us to induce interpretable
representations through approximate variational inference. This allows us to
both perform reasoning (e.g. classification) under the structural constraints of
a given graphical model, and use deep generative models to deal with messy, high-
dimensional domains where it is often difficult to model all the variation. Learning
in this framework is carried out end-to-end with a variational objective, applying to
both unsupervised and semi-supervised schemes.

1 Introduction

Reasoning in complex perceptual domains such as vision often involves two facets: the ability to
effectively learn flexible representations of the complex high-dimensional data, and the ability to
interpret the representations in some structured form. The former is a measure of how well one
can capture the relevant information in the data, and the latter is a means of employing consistent
semantics to such, in an effort to help diagnosis, enable composition, and improve generality.

Probabilistic graphical models[8, 11] enable structured representations, but often in perceptual
domains such as vision, they require extensive specification and significant feature engineering to be
useful. Variational Autoencoders (VAEs) [6, 12], are a form of generative model, where the (typically)
manually specified feature extractors are replaced with (deep) neural networks. Here, parameters of
both the generative model and an approximation to the true posterior, called the recognition model,
are learned simultaneously. However, a particular feature of such approximations is that they exhibit
entangled, and non-interpretable, latent representations by virtue of the fact that the approximating
distributions are assumed to take a general, flexible form; typically multivariate normal.

Our contribution extends the combination of deep neural networks and graphical models to allow the
use of arbitrarily structured graphical models as variational approximations, which enforces latent
representations to conform to the types and structure of the provided graphical model. And where
the structure alone is insufficient to encourage disentangled representations, we further extend this
framework to perform semi-supervised learning, using a handful of labelled data to help disentangle
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the latent representation.1 Our framework employs a single variational objective in which parameters
of both the generative and recognition models are learned simultaneously.

We shares features, motivation, and goals with a variety of recent work. Kingma et al. [7] explores the
ability to perform semi-supervised learning in the VAE setting. This is accomplished by partitioning
the latent space into structured and unstructured random variables, and providing labels for the
structured variables. Kulkarni et al. [10] employ an particular interpretable model for their latent
space, where each component is independent of the others, providing weak supervision through
a customized training procedure rather than through explicit labels. We build on such work on
semi-supervised learning by extending to more general models and structures for the latent space.
Sohn et al. [14] perform fully-supervised learning in the particular case where both the (unstructured)
latents and labels can be taken to be conditioned on the data.

Closest in spirit and motivation is recent work by Johnson et al. [4], which also involves combining
graphical models with VAEs to do unsupervised learning. It is employed as a means to extend the
class of problems for which graphical model inference for can be performed effectively, involving the
relaxation of conjugacy constraints for likelihoods. Finally, Schulman et al. [13] provides a general
method for estimating gradients of stochastic computations, which has been applied to models with
structured latent spaces and discrete latent variables by Eslami et al. [3]. An additional contribution
of our work is a package for Torch [2] which permits simple simultaneous specification of deep
generative models with structured latent spaces, and of the their corresponding inference networks.

2 Formulation

Fundamentally, we wish to learn the parameters of a graphical model chosen to model the data. This
is typically a generative model over data xand latents z, denoted pθ(x, z). We would like to estimate
the posterior over the latents given the data, denoted pθ(z | x), in order to extract a representation.
When we wish to extract an interpretable representation, then this corresponds to constraining the
model we are learning to be one whose posterior distribution is then amenable to human inspection.

Although in the general case, computation of the exact posterior distribution pθ(z | x) is intractable,
recent advances in deep generative models enable the the use of the variational autoencoder to
learn a parametrised approximation qφ(z | x) to it. Here, the variational approximation is used
as a surrogate for the (intractable) exact posterior, constrained to match the true posterior through
DKL(qφ(z | x) ‖ pθ(z | x)). However, since one cannot actually evaluate the true posterior, the VAE
optimises an alternate objective

DKL(qφ(z | x) ‖ pθ(z | x)) = −L(θ, φ;x) + log pθ(x)

where L(θ, φ;x) = Eqφ(z|x)[pθ(x, z)− qφ(z | x)]

called the evidence lower bound (ELBO) that lower bounds the marginal likelihood log pθ(x). Here,
both the generative model parameters θ and recognition model (the approximation distribution)
parameters φ are characterised by (deep) neural networks, and are both learned simultaneously. The
ELBO objective can also be reformulated as

L(θ, φ;x) = Eqφ(z|x)[pθ(x | z)]−DKL(qφ(z | x) ‖ p(z))

to indicate that the approximating distribution is used, along with a prior over the latents, to regularise
the standard autoencoder objective of the expected log likelihood.

While recent approaches to deep generative modelling places constraints, on the structure of the
generative model pθ(x, z)[4], we incorporate them into the encoder model qφ(z | x). We do so for
two principal reasons. Firstly, a mean-field approximation in qφ(z | x), as is typically assumed, is
a poor fit for perceptual domains such as vision. Complex dependencies that arise in the posterior
due to intricacies of the rendering process, even when latent variables may be considered a priori
independent, means that such a mean-field assumption is often insufficient. Secondly, an unstructured
form (say, multivariate normal) for the variational approximation, means that the recognition model
produces latents that are also unstructured, and as is, not interpretable. Any attempts to imbue an

1 For the purposes of this manuscript, we refer to latent representations that are disentangled as structured
and latent representations that are entangled as unstructured. The notions of entangled and disentangled
representations relate to concise and well-defined human interpretability (visual gestalt) of the axes of variation.
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interpretation on such representations typically happens after the fact, by adding a discriminative
model on top of the learned representations. Adding structure to the encoder model ameliorates
both these concerns, by allowing a richer dependency structure in the recognition model, and also
inducing latent representations whose interpretability is governed by the given graphical model.
Our framework enables the specification of a wide variety of graphical models, in an embedded
domain-specific language (EDSL), expressed directly in the Torch[2] framework.

2.1 Model

Particularly, for the domains we are interested in here, the models we employ factorise into struc-
tured latents y and unstructured latents z, on top of the specific factorisation imposed for the
structured latent variables. The typical form of the generative model is given by pθ(x, z | y) =
pθ(x | z,y)pθ(z,y) where pθ(x | z,y) is typically a multivariate normal distribution and pθ(z,y)
is some appropriately structured latent(s). We use the unstructured latent variables as a means to
capture variation in the data not explicitly modelled, jointly learning a likelihood function partially
constrained by the structured latents, but crucially not enforcing that they totally explain the data.

The variational approximation to the true posterior, qφ(z | x), is nominally taken to be of the
same family as the prior distribution, as qφ(z,y | x), but can often include additional structure and
alternate factorisations as appropriate. One particular factorisation introduces a dependence between
the structured and unstructured latents in the approximation, conditioning the latter on the former
as qφ(z,y | x) = qφ(z | y,x)qφ(y | x). This removes the implicit “mean field” assumption in the
recognition network, and reflects the fact that the latent variables z and y typically exhibit conditional
dependence on x, even if the latent variables are a priori independent.

Models with such top-level factoring are useful for situations where interpretability is only required
or useful to model along certain axes of variation. It is useful when we wish to interpret the same
data from different viewpoints and contexts like when the choice and form of labels is fixed. And it is
useful for when we cannot conceivable capture all the variation in the data due to its complexity and
so settle for a particular restriction, as is the case with real world visual and language data.

2.2 Learning

Although we impose structure in the recognition network through the graphical models, it is not
necessarily certain that the nodes corresponding to particular variables actually encode the desired
“semantics” of that node. For example, in a graphical model that decomposes as described above,
where the structured latent y encodes digit identity (0-9), and the unstructured latent z captures the
style, there is no certainty that the decomposition alone is sufficient to learn disentangled representa-
tions Without the use of supervision, one has no guarantee that the structured and unstructured latents
fulfil their respective roles in such a scheme.

We build on the work by Kingma et al. [7] to construct a semi-supervised learning scheme where
a small amount of supervision is sufficient to break the inherent symmetry problem and learn
appropriate representation. In their framework, the objective has a term involving labelled data, that
treats both data x and label y as observed variables, and a term involving unlabelled data, that simply
marginalises out the label yover its support. They also add an explicit term to learn a classifier (in
the recognition model) on the supervised data points.

We too can employ the same objective, but we note that in such cases, there is often a cost to be paid
computationally. The marginalisation scales poorly with both shortage of labels and support size.
Alternately, we observe that for discrete random variables they are only used as input to the neural
network that parametrises the generative model, we can often simply plug-in the probability vector
of the discrete distribution instead of sampling from it, similar to the straight-through estimator [1].
This is of course, not applicable in general, but if the posterior over labels pθ(y | x) is close to a
Dirac-Delta function, as in the classifying-digits example, then it is a good approximation.

Other points of difference involve the use of richer approximations for the encoder and decoder
in the form of convolutional neural networks (CNNs) [9], and the introduction of a supervision
rate enabling repeated observation of a labelled data point, in different contexts, in order to reduce
estimator variance. CNNs helps avoid employing a stacked model [7], allowing a single, joint
objective with comparable performance. Supervision rates are motivated by the fact that observing
a labelled data point in the context of different unlabelled data points (in a mini-batched training
regime), can help moderate the variance in learning steps.
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MNIST

l Ours “M2” [7]

10 12.2 (± 1.38) 11.97 (± 1.71)
60 5.28 (± 0.76) 4.94 (± 0.13)

100 4.23 (± 0.68) 3.60 (± 0.56)
300 3.94 (± 0.77) 3.92 (± 0.63)

SVHN

l Ours “M1+M2” [7]

100 30.32 (± 2.74) 36.02 (± 0.10)
300 23.98 (± 1.83) -

(a) (b)

Figure 2: (a) Classification-error rates for different (per-class) labelled-set sizes (l) over different
runs. (b) Classification-error for the MNIST dataset over different labelled set (per class) sizes (l)
and supervision rates (r) = {0, 0.01, 0.05, 0.1, 0.5, 1.0}.

3 Experiments

x

n d

x

n d

Figure 1: (l) Generative and (r) recog-
nition models with digit d and style n.

We evaluate our framework on its ability to learn interpretable
latents through both an effective recognition model and an
effective generative model. The efficacy of the recognition
model is evaluated on a label-classification task, and the effi-
cacy the generative model is evaluated on the visual analogies
task. The evaluations are conducted on both the MNIST and
Google Street-View House Numbers (SVHN) datasets using
the generative and recognition models shown in Fig. 1.

Both the MNIST and SVHN datasets were employed with a training-test split of 60000/10000 for
MNIST and 73000/26000 for SVHN. For the MNIST dataset, we use a standard single-hidden-layer
MLP with 512 modes for both the encoder and decoder. For the SVHN dataset, we use a CNN
architecture with a convolutional encoder and a deconvolutional decoder, with two blocks of 32→ 64
filters in the encoder, and the reverse in the decoder. For learning, we used AdaM [5] with a learning
rate of 0.001 (0.0003 for SVHN) and momentum-correction terms set to their default values. The
minibatch sizes varied from 80-300 depending on the dataset used and the supervised-set size.

To evaluate the recognition model quantitatively, we compute the classification accuracy of the
label-prediction task with the model for both datasets. This allows us to measure the extent to which
the latent-space representations are disentangled, capturing the kinds of representations one would
expect a priori given the graphical model. The results, with comparison against Kingma et al. [7],
are reported in Fig. 2(a). For the MNIST dataset, we compare against their “M2” model, as we use
just the standard MLP for the experiments without performing a preliminary feature-learning step.
For the SVHN dataset, we compare against the stacked “M1+M2” model, since we employ a more
effective feature learner for visual data through the CNN. As can be seen from the results, we perform
comparably on the MNIST dataset, and comfortably beat the error rates on the SVHN dataset. Note
that these recognition networks employed the plug-in estimator discussed in Section 2.2.

A particular feature of our approach is the ability to learn disentangled representations with just a few
labelled data points. Combined with the ability to re-observe a particular labelled data point through
the use of the supervision rate, our framework can effectively disentangle the latent representations
in a semi-supervised learning regime involving only a handful of labelled data. Figure 2(b) shows
how the error rate varies with change in the supervision rate for different labelled set (per class) sizes.
Note the steep drop in error rate with just a handful of labels (e.g. 10) seen just a few times (e.g. 1%
of the time). The supervision rate here corresponds to sampling minibatches of 80 data points from a
total labelled set of 100 data points, with each label class equally represented in the labelled set.

Another means of measuring how well the latent space has been disentangled is by manipulation
of the generative model. Here, one can vary the values of particular variables, and observe if the
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(a) (b)

Figure 3: Exploring the disentangled latent space through the generative model. (a) Visual analogies,
where the style latent variable n is kept fixed and the label l varied. (b) Exploration in the style n
space for a 2D latent Gaussian random variable, keeping label l fixed.

generative model produces outputs that suitably reflect the changes effected. For the datasets and
models considered here, this is cast as the visual analogies task. Figure 3 demonstrates the effect of
manipulating the latent variables in the learnt generative model in different ways.

Figure 3(a) tests the changes observed in the generative model outputs when the style variable n
is held constant, and the digit label l is varied. For both the MNIST and SVHN datasets, it clearly
demonstrates that changing only the digit label has the expected effect of varying the class, but
maintaining style. Had the latent space not been sufficiently disentangled, this could not be the case.

Figure 3(b) tests the changes observed in the generative model outputs in the opposite case, when the
digit label l is held constant, and the style variable l is varied, for each of the digits in the MNIST
dataset. Note that we only evaluate this capability on the MNIST dataset as this particular exercise
needs the style variable to be 2-dimensional, which is just sufficient to capture the variations in
MNIST, but is not sufficient to capture variation in the more complex SVHN dataset. Again, we note
that digits maintain their identity in the outputs while systematically reflecting changes in style. This
also is something that would not be possible had the latents not been sufficiently disentangled.

In summary, we demonstrate the utility and efficacy of employing graphical models in the encoders
or recognition networks of variational autoencoders to induce interpretable latent representations with
semi-supervised learning. Results of experiments conducted with our framework demonstrate, both
qualitatively and quantitatively, the practical effectiveness of our framework in learning interpretable
and disentangled latent representations.
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