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Abstract
We introduce interacting particle Markov chain
Monte Carlo (iPMCMC), a PMCMC method
based on an interacting pool of standard and con-
ditional sequential Monte Carlo samplers. Like
related methods, iPMCMC is a Markov chain
Monte Carlo sampler on an extended space. We
present empirical results that show significant im-
provements in mixing rates relative to both non-
interacting PMCMC samplers, and a single PM-
CMC sampler with an equivalent memory and
computational budget. An additional advantage
of the iPMCMC method is that it is suitable for
distributed and multi-core architectures.

1. Introduction
MCMC methods are a fundamental tool for generating sam-
ples from a posterior density in Bayesian data analysis
(see e.g., Robert & Casella (2013)). Particle Markov chain
Monte Carlo (PMCMC) methods, introduced by Andrieu
et al. (2010), make use of sequential Monte Carlo (SMC)
algorithms (Gordon et al., 1993; Doucet et al., 2001) to
construct efficient proposals for the MCMC sampler.

One particularly widely used PMCMC algorithm is particle
Gibbs (PG). The PG algorithm modifies the SMC step in
the PMCMC algorithm to sample the latent variables condi-
tioned on an existing particle trajectory, resulting in what is
called a conditional sequential Monte Carlo (CSMC) step.
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The PG method was first introduced as an efficient Gibbs
sampler for latent variable models with static parameters
(Andrieu et al., 2010). Since then, the PG algorithm and the
extension by Lindsten et al. (2014) have found numerous
applications in e.g. Bayesian non-parametrics (Valera et al.,
2015; Tripuraneni et al., 2015), probabilistic programming
(Wood et al., 2014; van de Meent et al., 2015) and graphical
models (Everitt, 2012; Naesseth et al., 2014; 2015).

A drawback of PG is that it can be particularly aversely
effected by path degeneracy in the CSMC step. The forced
survival of the conditional trajectory means that whenever
resampling of the trajectories results in a common ancestor,
this ancestor must correspond to the existing trajectory. Con-
sequently, the mixing of the Markov chain for the early steps
in the state sequence can become very slow, if insufficient
particles are used to prevent degeneracy.

In this paper we propose the interacting particle Markov
chain Monte Carlo (iPMCMC) sampler. In iPMCMC we
run a pool of CSMC and unconditional SMC algorithms
as parallel processes that we refer to as nodes. After each
run of this pool, we apply successive Gibbs updates to the
indexes of the CSMC nodes, such that the indices of the
CSMC nodes changes. Hence, the nodes from which re-
tained particles are sampled can change from one MCMC
iteration to the next. This lets us trade off exploration (SMC)
and exploitation (CSMC) to achieve improved mixing of the
Markov chains. Crucially, the pool provides numerous can-
didate indices at each Gibbs update, giving a significantly
higher probability that an entirely new retained particle will
be “switched in” than in non-interacting alternatives.

This interaction requires only minimal communication; each
node must report an estimate of the marginal likelihood and
receive a new role (SMC or CSMC) for the next sweep. This
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means that iPMCMC is embarrassingly parallel and can be
run in a distributed manner on multiple computers.

We prove that iPMCMC is a partially collapsed Gibbs sam-
pler on the extended space containing the particle sets for
all nodes. In the special case where iPMCMC uses only one
CSMC node, it can in fact be seen as a non-trivial and un-
studied instance of the α-SMC-based (Whiteley et al., 2016)
PMCMC method introduced by Huggins & Roy (2015).
However, with iPMCMC we extend this further to allow for
an arbitrary number of CSMC and standard SMC algorithms
with interaction. Our experimental evaluation shows that
iPMCMC outperforms both independent PG samplers as
well as a single PG sampler with the same number of parti-
cles run longer to give a matching computational budget.

An implementation of iPMCMC is provided in the proba-
bilistic programming system Anglican1 (Wood et al., 2014),
whilst illustrative MATLAB code, similar to that used for
the experiments, is also provided2.

2. Background
We start by briefly reviewing sequential Monte Carlo (Gor-
don et al., 1993; Doucet et al., 2001) and the particle Gibbs
algorithm (Andrieu et al., 2010). Let us consider a non-
Markovian latent variable model of the following form

xt|x1:t−1 ∼ ft(xt|x1:t−1), (1a)
yt|x1:t ∼ gt(yt|x1:t), (1b)

where xt ∈ X is the latent variable and yt ∈ Y the observa-
tion at time step t, respectively, with transition densities ft
and observation densities gt; x1 is drawn from some initial
distribution µ(·). The method we propose is not restricted
to the above model, it can in fact be applied to an arbitrary
sequence of targets.

We are interested in calculating expectation values with
respect to the posterior distribution p(x1:T |y1:T ) on latent
variables x1:T := (x1, . . . , xT ) conditioned on observations
y1:T := (y1, . . . , yT ), which is proportional to the joint
distribution p(x1:T , y1:T ),

p(x1:T |y1:T ) ∝ µ(x1)

T∏
t=2

ft(xt|x1:t−1)

T∏
t=1

gt(yt|x1:t).

In general, computing the posterior p(x1:T |y1:T ) is in-
tractable and we have to resort to approximations. We will
in this paper focus on, and extend, the family of particle
Markov chain Monte Carlo algorithms originally proposed
by Andrieu et al. (2010). The key idea in PMCMC is to use
SMC to construct efficient proposals of the latent variables
x1:T for an MCMC sampler.

1
http://www.robots.ox.ac.uk/˜fwood/anglican

2
https://bitbucket.org/twgr/ipmcmc

Algorithm 1 Sequential Monte Carlo (all for i = 1, . . . , N )

1: Input: data y1:T , number of particles N , proposals qt
2: xi1 ∼ q1(x1)

3: wi1 =
g1(y1|xi

1)µ(x
i
1)

q1(xi
1)

4: for t = 2 to T do
5: ait−1 ∼ Discrete

({
w̄`t−1

}N
`=1

)
6: xit ∼ qt(xt|x

ait−1

1:t−1)

7: Set xi1:t = (x
ait−1

1:t−1, x
i
t)

8: wit =
gt(yt|xi

1:t)ft(x
i
t|x

ai
t−1

1:t−1)

qt(xi
t|x

ai
t−1

1:t−1)

9: end for

2.1. Sequential Monte Carlo

The SMC method is a widely used technique for ap-
proximating a sequence of target distributions: in our
case p(x1:t|y1:t) = p(y1:t)

−1p(x1:t, y1:t), t = 1, . . . , T .
At each time step t we generate a particle system
{(xi1:t, wit)}Ni=1 which provides a weighted approximation
to p(x1:t|y1:t). Given such a weighted particle system at
time t − 1, this is propagated forward in time to t by first
drawing an ancestor variable ait−1 for each particle from its
corresponding distribution:

P(ait−1 = `) = w̄`t−1. ` = 1, . . . , N, (2)

where w̄`t−1 = w`t−1/
∑
i w

i
t−1. This is commonly known

as the resampling step in the literature. We introduce the
ancestor variables {ait−1}Ni=1 explicitly to simplify the ex-
position of the theoretical justification given in Section 3.1.

We continue by simulating from some given proposal den-

sity xit ∼ qt(xt|x
ait−1

1:t−1) and re-weight the system of parti-
cles as follows:

wit =
gt(yt|xi1:t)ft(xit|x

ait−1

1:t−1)

qt(xit|x
ait−1

1:t−1)
, (3)

where xi1:t = (x
ait−1

1:t−1, x
i
t). This results in a new particle

system {(xi1:t, wit)}Ni=1 that approximates p(x1:t|y1:t). A
summary is given in Algorithm 1.

2.2. Particle Gibbs

The PG algorithm (Andrieu et al., 2010) is a Gibbs sampler
on the extended space composed of all random variables
generated at one iteration, which still retains the original
target distribution as a marginal. Though PG allows for
inference over both latent variables and static parameters,
we will in this paper focus on sampling of the former. The
core idea of PG is to iteratively run conditional sequential
Monte Carlo (CSMC) sweeps as shown in Algorithm 2,

http://www.robots.ox.ac.uk/~fwood/anglican
https://bitbucket.org/twgr/ipmcmc
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Algorithm 2 Conditional sequential Monte Carlo

1: Input: data y1:T , number of particles N , proposals qt,
conditional trajectory x′1:T

2: xi1 ∼ q1(x1), i = 1, . . . , N − 1 and set xN1 = x′1
3: wi1 =

g1(y1|xi
1)µ(x

i
1)

q1(xi
1)

, i = 1, . . . , N

4: for t = 2 to T do
5: ait−1 ∼ Discrete

({
w̄`t−1

}N
`=1

)
, i = 1, . . . , N − 1

6: xit ∼ qt(xt|x
ait−1

1:t−1), i = 1, . . . , N − 1
7: Set aNt−1 = N and xNt = x′t

8: Set xi1:t = (x
ait−1

1:t−1, x
i
t), i = 1, . . . , N

9: wit =
gt(yt|xi

1:t)ft(x
i
t|x

ai
t−1

1:t−1)

qt(xi
t|x

ai
t−1

1:t−1)

, i = 1, . . . , N

10: end for

whereby each conditional trajectory is sampled from the
surviving trajectories of the previous sweep. This retained
particle index, b, is sampled with probability proportional
to the final particle weights w̄iT .

3. Interacting Particle Markov Chain Monte
Carlo

The main goal of iPMCMC is to increase the efficiency of
PMCMC, in particular particle Gibbs. The basic PG al-
gorithm is particularly susceptible to the path degeneracy
effect of SMC samplers, i.e. sample impoverishment due to
frequent resampling. Whenever the ancestral lineage col-
lapses at the early stages of the state sequence, the common
ancestor is, by construction, guaranteed to be equal to the
retained particle. This results in high correlation between
the samples, and poor mixing of the Markov chain. To coun-
teract this we might need a very high number of particles to
get good mixing for all latent variables x1:T , which can be
infeasible due to e.g. limited available memory. iPMCMC
can alleviate this issue by, from time to time, switching out a
CSMC particle system with a completely independent SMC
one, resulting in improved mixing.

iPMCMC, summarized in Algorithm 3, consists of M in-
teracting separate CSMC and SMC algorithms, exchang-
ing only very limited information at each iteration to draw
new MCMC samples. We will refer to these internal
CSMC and SMC algorithms as nodes, and assign an in-
dex m = 1, . . . ,M . At every iteration, we have P nodes
running local CSMC algorithms, with the remainingM −P
nodes running independent SMC. The CSMC nodes are
given an identifier cj ∈ {1, . . . ,M}, j = 1, . . . , P with
cj 6= ck, k 6= j and we write c1:P = {c1, . . . , cP }. Let
xim = xi1:T,m be the internal particle trajectories of node m.

Suppose we have access to P trajectories
x′1:P [0] = (x′1[0], . . . ,x′P [0]) corresponding to the

Algorithm 3 iPMCMC sampler

1: Input: number of nodes M , conditional nodes P and
MCMC steps R, initial x′1:P [0]

2: for r = 1 to R do
3: Workers 1 : M\c1:P run Algorithm 1 (SMC)
4: Workers c1:P run Algorithm 2 (CSMC), conditional

on x′1:P [r − 1] respectively.
5: for j = 1 to P do
6: Select a new conditional node by simulating cj

according to (5).
7: Set new MCMC sample x′j [r] = x

bj
cj by simulating

bj according to (7)
8: end for
9: end for

initial retained particles, where the index [·] denotes MCMC
iteration. At each iteration r, the nodes c1:P run CSMC
(Algorithm 2) with the previous MCMC sample x′j [r − 1]
as the retained particle. The remaining M − P nodes run
standard (unconditional) SMC, i.e. Algorithm 1. Each node
m returns an estimate of the marginal likelihood for the
internal particle system defined as

Ẑm =

T∏
t=1

1

N

N∑
i=1

wit,m. (4)

The new conditional nodes are then set using a single loop
j = 1 : P of Gibbs updates, sampling new indices cj where

P(cj = m|c1:P\j) = ζ̂jm (5)

and ζ̂jm =
Ẑm1m/∈c1:P\j∑M
n=1 Ẑn1n/∈c1:P\j

, (6)

defining c1:P\j = {c1, . . . , cj−1, cj+1, . . . , cP }. We thus
loop once through the conditional node indices and resample
them from the union of the current node index and the
unconditional node indices3, in proportion to their marginal
likelihood estimates. This is the key step that lets us switch
completely the nodes from which the retained particles are
drawn.

One MCMC iteration r is concluded by setting the new
samples x′1:P [r] by simulating from the corresponding con-
ditional node’s, cj , internal particle system

P(bj = i|cj) = w̄iT,cj ,

x′j [r] = xbjcj . (7)

The potential to pick from updated nodes cj , having run
independent SMC algorithms, decreases correlation and

3Unconditional node indices here refers to all m /∈ c1:P at that
point in the loop. It may thus include nodes who just ran a CSMC
sweep, but have been “switched out” earlier in the loop.
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improves mixing of the MCMC sampler. Furthermore, as
each Gibbs update corresponds to a one-to-many compar-
ison for maintaining the same conditional index, the prob-
ability of switching is much higher than in an analogous
non-interacting system.

The theoretical justification for iPMCMC is independent
of how the initial trajectories x′1:P [0] are generated. One
simple and effective method (that we use in our experiments)
is to run standard SMC sweeps for the “conditional” nodes
at the first iteration.

The iPMCMC samples x′1:P [r] can be used to estimate ex-
pectations for test functions f : XT 7→ R in the standard
Monte Carlo sense, with

E[f(x)] ≈ 1

RP

R∑
r=1

P∑
j=1

f(x′j [r]). (8)

However, we can improve upon this if we have access to all
particles generated by the algorithm, see Section 3.2.

We note that iPMCMC is suited to distributed and multi-core
architectures. In practise, the particle to be retained, should
the node be a conditional node at the next iteration, can be
sampled upfront and discarded if unused. Therefore, at each
iteration, only a single particle trajectory and normalisation
constant estimate need be communicated between the nodes,
whilst the time taken for calculation of the updates of c1:P
is negligible. Further, iPMCMC should be amenable to an
asynchronous adaptation under the assumption of a random
execution time, independent of x′j [r − 1] in Algorithm 3.
We leave this asynchronous variant to future work.

3.1. Theoretical Justification

In this section we will give some crucial results to jus-
tify the proposed iPMCMC sampler. This section is due
to space constraints fairly brief and it is helpful to be
familiar with the proof of PG in Andrieu et al. (2010).
We start by defining some additional notation. Let ξ :=
{xit}i=1:N

t=1:T

⋃
{ait} i=1:N

t=1:T−1
denote all generated particles and

ancestor variables of a (C)SMC sampler. We write ξm when
referring to the variables of the sampler local to node m.
Let the conditional particle trajectory and corresponding an-
cestor variables for node cj be denoted by {xbjcj ,bcj}, with

bcj = (b1,cj , . . . , bT,cj ), bT,cj = bj and bt,cj = a
bt+1,cj

t,cj .
Let the posterior distribution of the latent variables be de-
noted by πT (x) := p(x1:T |y1:T ) with normalisation con-
stant Z := p(y1:T ). Finally we note that the SMC and
CSMC algorithms induce the respective distributions over
the random variables generated by the procedures:

qSMC(ξ) =

N∏
i=1

q1(xi1) ·
T∏
t=2

N∏
i=1

[
w̄
ait−1

t−1 qt(x
i
t|x

ait−1

1:t−1)

]
,

qCSMC (ξ\{x′,b} | x′,b) =

N∏
i=1
i6=b1

q1(xi1) ·
T∏
t=2

N∏
i=1
i6=bt

[
w̄
ait−1

t−1 qt(x
i
t|x

ait−1

1:t−1)

]
.

Note that running Algorithm 2 corresponds to simulating
from qCSMC using a fixed choice for the index variables
b = (N . . . ,N). While these indices are used to facilitate
the proof of validity of the proposed method, they have no
practical relevance and can thus be set to arbitrary values,
as is done in Algorithm 2, in a practical implementation.

Now we are ready to state the main theoretical result.

Theorem 1. The interacting particle Markov chain Monte
Carlo sampler of Algorithm 3 is a partially collapsed Gibbs
sampler (Van Dyk & Park, 2008) for the target distribution

π̃(ξ1:M , c1:P , b1:P ) =

1

NPT
(
M
P

) M∏
m=1
m/∈c1:P

qSMC (ξm) ·
P∏
j=1

πT

(
xbjcj

)
1cj /∈c1:j−1

·
P∏
j=1

qCSMC

(
ξcj\{xbjcj ,bcj} | x

bj
cj ,bcj

)
. (9)

Proof. See Appendix A at the end of the paper.

Remark 1. The marginal distribution of (xb1:Pc1:P , c1:P , b1:P ),
with xb1:Pc1:P = (xb1c1 , . . . ,x

bP
cP ), under (9) is given by

π̃
(
xb1:Pc1:P , c1:P , b1:P

)
=

∏P
j=1 πT

(
x
bj
cj

)
1cj /∈c1:j−1

NPT
(
M
P

) . (10)

This means that each trajectory x
bj
cj is marginally distributed

according to the posterior distribution of interest, πT . In-
deed, the P retained trajectories of iPMCMC will in the
limit R→∞ be independent draws from πT .

Note that adding a backward or ancestor simulation step
can drastically increase mixing when sampling the condi-
tional trajectories x′j [r] (Lindsten & Schön, 2013). In the
iPMCMC sampler we can replace simulating from the final
weights on line 7 by a backward simulation step. Another
option for the CSMC nodes is to replace this step by internal
ancestor sampling (Lindsten et al., 2014) steps and simulate
from the final weights as normal.

3.2. Using All Particles

At each MCMC iteration r, we generate MN full particle
trajectories. Using only P of these as in (8) might seem a
bit wasteful. We can however make use of all particles to
estimate expectations of interest by, for each Gibbs update j,
averaging over the possible new values for the conditional
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node index cj and corresponding particle index bj . We can
do this by replacing f(x′j [r]) in (8) by

Ecj |c1:P\j
[
Eb1:P

[
f(x′j [r])

]]
=

M∑
m=1

ζ̂jm

N∑
i=1

w̄iT,mf(xim).

This procedure is referred to as a Rao-Blackwellization of
a statistical estimator and is (in terms of variance) never
worse than the original one. We highlight that each ζ̂jm, as
defined in (6), depends on which indices are sampled earlier
in the index reassignment loop. Further details, along with
a derivation, are provided in the supplementary material.

3.3. Choosing P

Before jumping into the full details of our experimentation,
we quickly consider the choice of P . Intuitively we can
think of the independent SMC’s as particularly useful if they
are selected as the next conditional node. The probability of
the event that at least one conditional node switches with an
unconditional, is given by

P({switch}) = 1− E
[ P∏
j=1

Ẑcj

Ẑcj +
∑M
m/∈c1:P Ẑm

]
. (11)

There exist theoretical and experimental results (Pitt et al.,
2012; Bérard et al., 2014; Doucet et al., 2015) that show
that the distributions of the normalisation constants are well-
approximated by their log-Normal limiting distributions.
Now, with σ2 (∝ 1

N ) being the variance of the (C)SMC

estimate, it means we have log
(
Z−1Ẑcj

)
∼ N (σ

2

2 , σ
2)

and log
(
Z−1Ẑm

)
∼ N (−σ

2

2 , σ
2), m /∈ c1:P at stationar-

ity, where Z is the true normalization constant. Under this
assumption, we can accurately estimate the probability (11)
for different choices of P an example of which is shown in
Figure 1a along with additional analysis in the supplemen-
tary material. These provide strong empirical evidence that
the switching probability is maximised for P = M/2.

In practice we also see that best results are achieved when
P makes up roughly half of the nodes, see Figure 1b for
performance on the state space model introduced in (12).
Note also that the accuracy seems to be fairly robust with
respect to the choice of P . Based on these results, we set
the value of P = M

2 for the rest of our experiments.

4. Experiments
To demonstrate the empirical performance of iPMCMC we
report experiments on two state space models. Although
both the models considered are Markovian, we emphasise
that iPMCMC goes far beyond this and can be applied to
arbitrary graphical models. We will focus our comparison
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Figure 1. a) Estimation of switching probability for different
choices of P and M assuming the log-Normal limiting distribution
for Ẑm with σ = 3. b) Median error in mean estimate for different
choices of P and M over 10 different synthetic datasets of the
linear Gaussian state space model given in (12) after 1000 MCMC
iterations. Here errors are normalized by the error of a multi-start
PG sampler which is a special case of iPMCMC for which P =M
(see Section 4).

on the trivially distributed alternatives, whereby M inde-
pendent PMCMC samplers are run in parallel–these are
PG, particle independent Metropolis-Hastings (PIMH) (An-
drieu et al., 2010) and the alternate move PG sampler (APG)
(Holenstein, 2009). Comparisons to other alternatives, in-
cluding independent SMC, serialized implementations of
PG and PIMH, and running a mixture of independent PG and
PIMH samplers, are provided in the supplementary mate-
rial. None outperformed the methods considered here, with
the exception of running a serialized PG implementation
with an increased number of particles, requiring significant
additional memory (O(MN) as opposed to O(M +N)).

In PIMH a new particle set is proposed at each MCMC
step using an independent SMC sweep, which is then ei-
ther accepted or rejected using the standard Metropolis-
Hastings acceptance ratio. APG interleaves PG steps with
PIMH steps in an attempt to overcome the issues caused by
path degeneracy in PG. We refer to the trivially distributed
versions of these algorithms as multi-start PG, PIMH and
APG respectively (mPG, mPIMH and mAPG). We use Rao-
Blackwellization, as described in 3.2, to average over all
the generated particles for all methods, weighting the in-
dependent Markov chains equally for mPG, mPIMH and
mAPG. We note that mPG is a special case of iPMCMC for
which P = M . For simplicity, multinomial resampling was
used in the experiments, with the prior transition distribu-
tion of the latent variables taken for the proposal. M = 32
nodes and N = 100 particles were used unless otherwise
stated. Initialization of the retained particles for iPMCMC
and mPG was done by using standard SMC sweeps.

4.1. Linear Gaussian State Space Model

We first consider a linear Gaussian state space model
(LGSSM) with 3 dimensional latent states x1:T , 20 dimen-
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Figure 2. Mean squared error averaged over all dimensions and steps in the state sequence as a function of MCMC iterations (left) and
mean squared error after 104 iterations averaged over dimensions as function of position in the state sequence (right) for (12) with 50 time
sequences. The solid line shows the median error across the 10 tested synthetic datasets, while the shading shows the upper and lower
quartiles. Ground truth was calculated using the Rauch–Tung–Striebel smoother algorithm (Rauch et al., 1965).

sional observations y1:T and dynamics given by

x1 ∼ N (µ, V ) (12a)
xt = αxt−1 + δt−1 δt−1 ∼ N (0,Ω) (12b)
yt = βxt + εt εt ∼ N (0,Σ) . (12c)

We set µ = [0, 1, 1]T , V = 0.1 I, Ω = I and Σ = 0.1 I
where I represents the identity matrix. The constant tran-
sition matrix, α, corresponds to successively applying ro-
tations of 7π

10 , 3π
10 and π

20 about the first, second and third
dimensions of xt−1 respectively followed by a scaling of
0.99 to ensure that the dynamics remain stable. A total of
10 different synthetic datasets of length T = 50 were gener-
ated by simulating from (12a)–(12c), each with a different
emission matrix β generated by sampling each column in-
dependently from a symmetric Dirichlet distribution with
concentration parameter 0.2.

Figure 2a shows convergence in the estimate of the latent
variable means to the ground-truth solution for iPMCMC
and the benchmark algorithms as a function of MCMC it-
erations. It shows that iPMCMC comfortably outperforms
the alternatives from around 200 iterations onwards, with
only iPMCMC and mAPG demonstrating behaviour consis-
tent with the Monte Carlo convergence rate, suggesting that
mPG and mPIMH are still far from the ergodic regime. Fig-
ure 2b shows the same errors after 104 MCMC iterations as
a function of position in state sequence. This demonstrates
that iPMCMC outperformed all the other algorithms for the
early stages of the state sequence, for which mPG performed
particularly poorly. Toward the end of state sequence, iPM-
CMC, mPG and mAPG all gave similar performance, whilst
that of mPIMH was significantly worse.

4.2. Nonlinear State Space Model

We next consider the one dimensional nonlinear state space
model (NLSSM) considered by, among others, Gordon et al.

(1993); Andrieu et al. (2010)

x1 ∼ N
(
µ, v2

)
(13a)

xt =
xt−1

2
+ 25

xt−1
1 + x2t−1

+ 8 cos (1.2t) δt−1 (13b)

yt =
xt

2

20
+ εt (13c)

where δt−1 ∼ N
(
0, ω2

)
and εt ∼ N

(
0, σ2

)
. We set the

parameters as µ = 0, v =
√

5, ω =
√

10 and σ =
√

10.
Unlike the LGSSM, this model does not have an analytic
solution and therefore one must resort to approximate infer-
ence methods. Further, the multi-modal nature of the latent
space makes full posterior inference over x1:T challenging
for long state sequences.

To examine the relative mixing of iPMCMC we calculate
an effective sample size (ESS) for different steps in the
state sequence. In order to calculate the ESS, we condensed
identical samples as done in for example (van de Meent
et al., 2015). Let

ukt ∈ {xit,m[r]}i=1:N,r=1:R
m=1:M , ∀k ∈ 1 . . .K, t ∈ 1 . . . T

denote the unique samples of xt generated by all the nodes
and sweeps of particular algorithm after R iterations, where
K is the total number of unique samples generated. The
weight assigned to these unique samples, vkt , is given by
the combined weights of all particles for which xt takes the
value ukt :

vkt =

R∑
r=1

M∑
m=1

N∑
i=1

w̄i,rt,mη
r
mδxi

t,m[r](u
k
t ) (14)

where δxi
t,m[r](u

k
t ) is the Kronecker delta function and ηrm

is a node weight. For iPMCMC the node weight is given
by as per the Rao-Blackwellized estimator described in
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Figure 3. Normalized effective sample size (NESS) for LGSSM (left) and NLSSM (right).

Section 3.2. For mPG and mPIMH, ηrm is simply 1
RM , as

samples from the different nodes are weighted equally in
the absence of interaction. Finally we define the effective

sample size as ESSt =
(∑K

k=1

(
vkt
)2)−1

.

Figure 3 shows the ESS for the LGSSM and NLSSM as a
function of position in the state sequence. For this, we omit
the samples generated by the initialization step as this SMC
sweep is common to all the tested algorithms. We further
normalize by the number of MCMC iterations so as to give
an idea of the rate at which unique samples are generated.
These show that for both models the ESS of iPMCMC, mPG
and mAPG is similar towards the end of the space sequence,
but that iPMCMC outperforms all the other methods at the
early stages. The ESS of mPG was particularly poor at early
iterations. PIMH performed poorly throughout, reflecting
the very low observed acceptance ratio of around 7.3% on
average.

It should be noted that the ESS is not a direct measure
of performance for these models. For example, the equal
weighting of nodes is likely to make the ESS artificially high
for mPG, mPIMH and mAPG, when compared with meth-
ods such as iPMCMC that assign a weighting to the nodes at
each iteration. To acknowledge this, we also plot histograms
for the marginal distributions of a number of different po-
sition in the state sequence as shown in Figure 4. These
confirm that iPMCMC and mPG have similar performance
at the latter state sequence steps, whilst iPMCMC is superior
at the earlier stages, with mPG producing almost no more
new samples than those from the initialization sweep due to
the degeneracy. The performance of PIMH was consistently
worse than iPMCMC throughout the state sequence, with
even the final step exhibiting noticeable noise.

5. Discussion and Future Work
The iPMCMC sampler overcomes degeneracy issues in PG
by allowing the newly sampled particles from SMC nodes

to replace the retained particles in CSMC nodes. Our exper-
imental results demonstrate that, for the models considered,
this switching in rate is far higher than the rate at which PG
generates fully independent samples. Moreover, the results
in Figure 1b suggest that the degree of improvement over an
mPG sampler with the same total number of nodes increases
with the total number of nodes in the pool.

The mAPG sampler performs an accept reject step that com-
pares the marginal likelihood estimate of a single CSMC
sweep to that of a single SMC sweep. In the iPMCMC
sampler the CSMC estimate of the marginal likelihood is
compared to a population sample of SMC estimates, result-
ing in a higher probability that at least one of the SMC nodes
will become a CSMC node.

Since the original PMCMC paper in 2010 there have been
several papers studying (Chopin & Singh, 2015; Lindsten
et al., 2015) and improving upon the basic PG algorithm.
Key contributions to combat the path degeneracy effect are
backward simulation (Whiteley et al., 2010; Lindsten &
Schön, 2013) and ancestor sampling (Lindsten et al., 2014).
These can also be used to improve the iPMCMC method
ever further.

A. Proof of Theorem 1
The proof follows similar ideas as Andrieu et al. (2010).
We prove that the interacting particle Markov chain Monte
Carlo sampler is in fact a standard partially collapsed Gibbs
sampler (Van Dyk & Park, 2008) on an extended space
Υ := X⊗MTN × [N ]⊗M(T−1)N × [M ]⊗P × [N ]⊗P .

Proof. Assume the setup of Section 3. With π̃(·) with as per
(9), we will show that the Gibbs sampler on the extended
space, Υ, defined as follows

ξ1:M\{xb1:Pc1:P ,bc1:P }
∼ π̃( · |xb1:Pc1:P ,bc1:P , c1:P , b1:P ), (15a)
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Figure 4. Histograms of generated samples at t = 1, 100, and 200 for a single dataset generated from (13) with T = 200. Dashed red
line shows an approximate estimate of the ground truth, found by running a kernel density estimator on the combined samples from a
small number of independent SMC sweeps, each with 107 particles.

cj ∼ π̃( · |ξ1:M , c1:P\j), j = 1, . . . , P, (15b)
bj ∼ π̃( · |ξ1:M , c1:P ), j = 1, . . . , P, (15c)

is equivivalent to the iPMCMC method in Algorithm 3.

First, the initial step (15a) corresponds to sampling from

π̃(ξ1:M\{xb1:Pc1:P ,bc1:P }|x
b1:P
c1:P ,bc1:P , c1:P , b1:P ) =

M∏
m=1
m/∈c1:P

qSMC (ξm)×

P∏
j=1

qCSMC

(
ξcj\{xbjcj ,bcj} | x

bj
cj ,bcj , cj , bj

)
.

This, excluding the conditional trajectories, just corresponds
to steps 3–4 in Algorithm 3, i.e. running P CSMC and
M − P SMC algorithms independently.

We continue with a reformulation of (9) which will be use-
fuly to prove correctness for the other two steps

π̃(ξ1:M , c1:P , b1:P ) =
1(
M
P

) M∏
m=1

qSMC (ξm)

×
P∏
j=1

[
1cj /∈c1:j−1

w̄
bj
T,cj

πT

(
xbjcj

)

×
qCSMC

(
ξcj\{x

bj
cj ,bcj} | x

bj
cj ,bcj , cj , bj

)
NT w̄

bj
T,cj

qSMC
(
ξcj
)


=

1(
M
P

) M∏
m=1

qSMC (ξm)

P∏
j=1

Ẑcj
Z

1cj /∈c1:j−1
w̄
bj
T,cj

. (16)

Furthermore, we note that by marginalising (collapsing) the
above reformulation, i.e. (16), over b1:P we get

π̃(ξ1:M , c1:P ) =
1(
M
P

) M∏
m=1

qSMC (ξm)

P∏
j=1

Ẑcj
Z

1cj /∈c1:j−1
.

From this it is easy to see that π̃(cj |ξ1:M , c1:P\j) = ζ̂jcj ,
which corresponds to sampling the conditional node indices,
i.e. step 6 in Algorithm 3. Finally, from (16) we can see that
simulating b1:P can be done independently as follows

π̃(b1:P |ξ1:M , c1:P ) =
π̃(b1:P , ξ1:M , c1:P )

π̃(ξ1:M , c1:P )
=

P∏
j=1

w̄
bj
T,cj

.

This corresponds to step 7 in the iPMCMC sampler, Al-
gorithm 3. So the procedure defined by (15) is a partially
collapsed Gibbs sampler, derived from (9), and we have
shown that it is exactly equal to the iPMCMC sampler de-
scribed in Algorithm 3.
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