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Abstract. We describe an approach to automatic discovery of samplers in the
form of human interpretable probabilistic programs. Specifically, we learn the
procedure code of samplers for one-dimensional distributions. We formulate a
Bayesian approach to this problem by specifying an adaptor grammar prior over
probabilistic program code, and use approximate Bayesian computation to learn
a program whose execution generates samples that match observed data or ana-
lytical characteristics of a distribution of interest. In our experiments we leverage
the probabilistic programming system Anglican to perform Markov chain Monte
Carlo sampling over the space of programs. Our results are competive relative to
state-of-the-art genetic programming methods and demonstrate that we can learn
approximate and even exact samplers.
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1 Introduction

In this paper we present an approach to automatic sampler discovery in the framework
of probabilistic programming. Our aim is to induce program code that, when executed
repeatedly, returns values whose distribution matches that of observed data. Ultimately,
the artificial general intelligence machinery can use such approach to synthesise and
update the model of the world in the form of probabilistic programs. As a starting point,
we consider the induction of programs that sample from parametrised one-dimensional
distributions.

Probabilistic programming is relevant to this problem for several reasons. Programs
in Turing-complete languages can represent a wide range of generative probabilistic
models. Samples from these models can be generated efficiently by simply executing
the program code. Finally, in higher-order languages like Anglican, that is languages
where procedures may act on other procedures, it is possible to write a generative model
for program code that is itself a probabilistic program. This enables us to perform in-
ference by specifying an adaptor grammar prior over program code and to use general-
purpose Markov chain Monte Carlo algorithms implemented by the inference engine to
sample over the space of programs.

To assess whether the distribution of samples generated by a program candidate
matches the distribution of interest, we use approximate Bayesian computation meth-
ods that specify an approximate likelihood in terms of the similarity between a summary
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statistic of the generated samples and that of the observed values. While this approach
is inherently approximate, it still can be used to find exact sampler code. This argument
is supported by the fact that we were able to successfully learn an exact sampler for the
Bernoulli distribution family given only the adaptor grammar prior learnt from a cor-
pus of sampler code not including Bernoulli. We also successfully found approximate
samplers for other common one-dimensional distributions and for real-world data. Fi-
nally, our approach holds its own in comparison to state-of-the-art genetic programming
methods.

2 Related Work
Our approach to learning probabilistic programs relates to both program induction
[11,20,15,22,4,17] and statistical generalisation from sampled observations [23,9]. The
former is usually treated as search in the space of program text where the objective is to
find a deterministic function that exactly matches outputs given parameters. The latter,
generalising from data, is usually referred to as either density estimation or learning,
and also includes automatic modelling [10,7].

3 Approach
Our approach can be described in terms of a Markov Chain Monte Carlo (MCMC)
approximate Bayesian computation (ABC) [19] targeting

π(X|X̂ )p(X̂ |T )p(T ), (1)

where at a high level π(X|X̂ ) is a compatibility function between summary statis-
tics computed between observed data X and data, X̂ , generated by interpreting latent
sampler program text T . The higher π(X|X̂ ), the more similar distributions X and X̂ .

Consider a parametric distributionF with parameter vector θ. LetX = {xi}Ii=1, xi ∼
F (·|θ) be a set of samples from F . Consider the task of learning program text T
that when repeatedly interpreted returns samples whose distribution is close to F . Let
X̂ = {x̂j}Jj=1, x̂j ∼ T (·) be a set of samples generated by repeatedly interpreting T J
times.

Let s be a summary function of a set of samples and let d(s(X ), s(X̂ )) = π(X|X̂ )
be an unnormalised distribution function that returns high probability when s(X ) ≈
s(X̂ ). We refer to d as a compatibility function, or penalty interchangeably.

We use probabilistic programming to write and perform inference in such a model,
i.e. to generate samples of T from the marginal of (1) and generalisations to come of
the same. Refer to the probabilistic program code in Figure 1 where the first line es-
tablishes a correspondence between T and the variable program-text then samples
it from p(T ) where grammar is an adaptor-grammar-like [14] prior on program text
that is described in Section 3.1. In this particular example θ is implicitly specified since
the learning goal here is to find a sampler for the standard normal distribution. Also X̂
corresponds to the program variable samples and here J = 100. Here s and d are com-
puted on the last four lines of the program with s being implicitly defined as returning a
four dimensional vector consisting of the estimated mean, variance, skewness, and kur-
tosis of the set of samples drawn from T . The penalty function d is also defined to be a
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(defquery lpp-normal
(let

[n 0.001
prog (grammar ‘() ‘real)
prog-c (extract-compound prog)
samples (apply-n-times prog-c 100 ’())]
(observe (normal (mean samples) n) 0.0)
(observe (normal (std samples) n) 1.0)
(observe (normal (skew samples) n) 0.0)
(observe (normal (kurt samples) n) 0.0)
(predict (extract-text prog))))

Fig. 1. Probabilistic program to infer program text for a Normal(0, 1) sampler. Variable n is a
noise level. Procedure grammar samples a probabilistic program from the adaptor grammar.
This procedure returns a tuple: a generated program candidate in the form of nested compound
procedures and the same program candidate in the form of program text.

(defquery lpp-bernoulli
(let

[prog (grammar ‘(real) ‘int)
proc-c (extract-compound prog)
J 100]
(let

[samples-1 (apply-n-times prog-c J ’(0.5))]
(observe (flip (G-test-p-value samples-1

‘Bernoulli (list 0.5))) true))
... ;; So on for samples-2, etc; until N.
(predict (extract-text prog))
(predict (apply-n-times prog-c J ’(0.3)))))

Fig. 2. Probabilistic program to infer program text for a Bernoulli(θ) sampler and generate J
samples from the resulting procedure at a novel input argument value, 0.3.

multivariate normal with mean [0.0, 1.0, 0.0, 0.0]T and diagonal covariance σ2I. Note
that this means that we are seeking the sampler source code whose output distribution
has mean 0, variance 1, skew 0, and kurtosis 0 and that we penalise deviations from that
by a squared exponential loss function with bandwidth σ2, named noise in the code.

The more moments we match, the better the approximation will be achieved, but
inevitably this will require more samples J .

This example highlights an important generalisation of the original description of
our approach. For the standard normal example we chose a form of s such that we
can compute the summary statistic of s(X ) analytically. There are at least three kinds
of scenarios in which d can be computed in different ways. The first occurs when we
search for efficient code for sampling from known distributions. In many such cases,
as in the standard normal case just described, the summary statistics of F can be com-
puted analytically. The second is the fixed dataset cardinality setting and corresponds to
the setting of learning program text generative model for arbitrary observed data. The
third, similar to the previous one, happens when we can only sample from F . This corre-
sponds to a situations when, for instance, there is a running, computationally expensive
MCMC sampler that can be asked to produce additional samples.
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(def box-muller-normal
(fn [mean std]
(+ mean (* std
(* (cos (* 2 (* 3.14159
(uniform-cont 0.0 1.0))))

(sqrt (* -2
(log (uniform-cont

0.0 1.0)))))))))

(def poisson (fn [rate]
(let
[L (exp (* -1 rate))
inner-loop (fn inner-loop [k p]

(if (< p L) (dec k)
(inner-loop (inc k)
(* p (uniform-cont 0 1)))))]

(inner-loop 1 (uniform-cont0 1)))))

Fig. 3. Human-written sampling procedure program text for, left, Normal(µ, σ) [3] and, right,
Poisson(λ) [16]. Counts of the constants, procedures, and expression expansions in these pro-
grams (and that of several other univariate samplers) are fed into our hierarchical generative prior
over sampler program text.

Figure 2 illustrates the another important generalisation of the formulation in (1).
When learning a standard normal sampler we did not have to take into account param-
eter values. Interesting sampler program text is endowed with arguments, allowing it
to generate samples from an entire family of parameterised distributions. Consider the
well known Box-Muller algorithm shown in Figure 3. It is parameterised by mean and
standard deviation parameters. For this reason we will refer to it and others like it as
a conditional distribution samplers. Learning conditional distribution sampler program
text requires recasting our MCMC-ABC target slightly to include the parameter θ of the
distribution F :

π(X|X̂ , θ)p(X̂ |T , θ)p(T |θ)p(θ). (2)

Here in order to proceed we must begin to make approximating assumptions. This is
because in our case we need p(θ) to be truly improper as our learned sampler program
text should work for all possible input arguments and not simply a just a high prior
probability subset of values. Assuming that program text that works for a few settings
of input parameters is fairly likely to generalise well to other parameter settings we
approximately marginalise our MCMC-ABC target (2) by choosing a small finite N of
θn parameters yielding our approximate marginalised MCMC-ABC target:

1

N

N∑

n=1

π(Xn|X̂n, θn)p(X̂n|T , θn)p(T |θn) ≈
∫
π(X|X̂ , θ)p(X̂ |T , θ)p(T |θ)p(θ)dθ. (3)

The probabilistic program for learning conditional sampler program text for Bernoulli(θ)
in Figure 2 shows an example of this kind of approximation. It samples from T N times,
accumulating summary statistic penalties for each invocation. In this case each individ-
ual summary penalty computation involves computing both a G-test statistic

Gn = 2
∑

i∈0,1
#[X̂n = i]ln

(
#[X̂n = i]

θin(1− θn)(1−i) · |X̂n|

)
,

where #[X̂n = i] is the number of samples in X̂n that take value i and its corre-
sponding p-value under the null hypothesis that X̂n are samples from Bernoulli(θn).
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Fig. 4. Blue log-scaled histograms illustrate distributions over program codes’ log likelihoods
given production rules P (T ), which facilitate search of random variate generators for Bernoulli,
Gamma, Normal, Poisson and Standard Normal distributions. Red dashed lines show the program
codes’ log likelihoods of true samplers written by humans as in Figure 3.

Since the G-test statistic is approximately χ2 distributed, i.e. G ∼ χ2(1), we can con-
struct d in this case by computing the probability of falsely rejecting the null hypothesis
H0 : X̂n ∼ Bernoulli(θn). Falsely rejecting a null hypothesis is equivalent to flipping a
coin with probability given by the p-value of the test and having it turn up heads. These
are the summary statistic penalties accumulated in the observe lines in Figure 2.

As an aside, in the probabilistic programming compilation context θ could be all of
the observe’d data in the original program. By this parameterising compilation links
our approach to that of [13].

3.1 Grammar and Production Rules

As we have the expressive power of a higher-order probabilistic programming language
at our disposal, our prior over conditional distribution sampler program text is quite ex-
pressive. At a high level it is similar to the adaptor grammar [14] prior used in [17] but
diverges in details, particularly those having to do with creation of local environments
and the conditioning of subexpression choices on type signatures. To generate a proba-
bilistic program we apply these production rules starting with exprtype, where type is
the output signature of the inducing program.

The set of types we used for our experiments was {real, bool, int}. To
avoid numerical errors while interpreting generated programs we replace functions like
log(a) with safe-log(a), which returns 0 if a < 0, and uniform-continuous

with safe-uc(a, b) which swaps arguments if a > b and returns a if a = b. The gen-
eral set of procedures in the global environment included +, −, *, safe-div,
safe-uc, cos, safe-sqrt, safe-log, exp, inc, dec. Schematically our
prior is provided below. Prior probabilities {pi} are learnt from a small corpus of prob-
abilistic programs in the way described in Section 3.2.

1. exprtype | env p1−→ v, a random variable v from the environment env specified by
type. An environment is a mapping of typed symbols to values, but these values are
not produced until the actual probabilistic program runs.

2. exprtype | env p2−→ c, a random constant c with the type type. Constants were drawn
from the predefined constants set (including 0.0, π, etc.)1.

1 For experiments described in Sections 4.4 constants were also sampled from Normal and Uni-
form continuous distributions.



VI

3. exprtype | env p3−→ (proceduretype exprarg 1 type ... exprarg N type), where procedure
is a primitive or compound, and deterministic or stochastic procedure chosen ran-
domly from the global environment with output type signature type.

4. exprtype | env p4−→ (let [new-symbol exprreal] exprtype | env ∪ new-symbol)),
where env ∪ new-symbol is an extended environment with a new variable named
new-symbol. Its value is defined by an expression, generated according to the same
production rules.

5. exprtype | env p5−→ (cptype exprarg 1 type ... exprarg N type), where cptype is a
compound procedure. Its body is generated using the same production rules given
an environment that incorporates argument input variable names and values.

6. exprtype | env p6−→ (if (exprbool) exprtype exprtype).
7. exprtype | env p7−→ (recur exprarg 1 type ... exprarg M type), i.e. recursive call to

the current compound procedure if we are inside, or to the main inducing procedure
otherwise.

3.2 Probabilities for Production Rules

While it is possible to manually specify production rule probabilities for the grammar
in Section 3.1 we took a hierarchical Bayesian approach instead, learning from human-
written sampler source code. To do this we translated existing implementations of com-
mon one-dimensional samplers [6] into Anglican source (see examples in Figure 3).
Conveniently all of them require only one stochastic procedure uniform-continuous
so we also only include that stochastic procedure in our grammar.

We compute held-out production rules prior probabilities from this corpus. When
we are inferring a probabilistic program to sample from F we update our priors using
counts from all other sampling code in the corpus, specifically excluding the sampler
we are attempting to learn. Our production rule probability estimates are smoothed by
Dirichlet priors. Note that in the following experiments (Sections 4.4) the production
rule priors were updated. True hierarchical coupling and joint inferences approaches
are straightforward from a probabilistic programming perspective [18], but result in
inference runs that take longer to compute.

4 Experiments
The experiments we perform illustrate uses cases outlined for automatically learning
probabilistic programs. We begin by illustrating the expressiveness of our prior over
sampler program text in Section 4.1. We then report results from experiments in which
we test our approach in all three scenarios for how we can compute the ABC penalty d.

The first set of experiments in Section 4.2 tests our ability to learn probabilistic pro-
grams that produce samples from known one-dimensional probability distributions. In
these experiments d either probabilistically conditions on p-values of one-sample statis-
tical hypothesis tests or on approximate moment matching. In Section 4.3 the evaluation
against genetic programming is presented. The second set of experiments in Section 4.4
addresses the cases where only a finite number of samples from an unknown real-world
source are provided.
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Fig. 5. Histograms of samples generated by repeatedly evaluating probabilistic procedures sam-
pled from our prior over probabilistic sampling procedure text. The prior is constrained to gen-
erate samplers with univariate output but is clearly otherwise flexible enough to represent a non-
trivial spectrum of distributions.
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Fig. 6. Representative histograms of samples (green solid lines) drawn by repeatedly interpreting
inferred sampler program text versus (blue dashed lines) histograms of exact samples drawn
from the corresponding true distribution. Top row left to right: Bernoulli(p), Normal(µ, σ),
Poisson(λ). Bottom row same: Gamma(a, 1.0), Normal(0, 1), Beta(a, 1.0). The parameters
used to produce these plots do not appear in the training data. In the case of Bernoulli(p) we
inferred programs that sample exactly from the true distribution (see Figure 7). Not all finite-
time inference converges to good approximate sampler code as illustrated by the Beta(a, 1.0)
and Normal(µ, σ) examples. With limited experimental time, a better sampler was found for
Normal(µ, σ) in comparison to Normal(0, 1). A possible explanation is that it is harder to find
a sampler with two parameters rather than a sampler without any parameters. Future experiments
should benefit from learning more complex probabilistic programs given already learnt simpler
ones, similarly to [12,5].

4.1 Samples from Sampled Probabilistic Programs

To illustrate the flexibility of our prior over probabilistic programs source code, we
show probabilistic programs sampled from it. In Figure 5 we show six histograms of
samples from six sampled probabilistic programs from our prior over probabilistic pro-
grams. Such randomly generated samplers constructively define considerably different
distributions. Note in particular the variability of the domain, variance, and even number
of modes.

4.2 Learning Sampler Code for Common One-Dimensional Distributions

Source code exists for efficiently sampling from many if not all common one-dimensional
distributions. We conducted experiments to test our ability to automatically discover
such sampling procedures and found encouraging results.

In particular we performed a set of leave-one-out experiments to infer sampler pro-
gram text for six common one-dimensional distributions: Bernoulli(p), Poisson(λ),
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(fn [p stack-id]
(if (< (sample

(uniform-cont
0.0 1.0)) p)

1.0 0.0)
)

(fn [p stack-id]
(if (< 1.0 (safe-sqrt (safe-div p

(safe-uc p (dec p))))) 1.0 0.0))
(fn [p stack-id]
(if (< 1.0 (safe-uc (safe-sqrt p)

(+ par (cos p)))) 1.0 0.0))

Fig. 7. (left) Human-written exact Bernoulli(p) sampler. (right, two instances) Inferred sampler
program text. The first is also an exact sampler for Bernoulli(p). The last is another sampler also
assigned non-zero posterior probability but it is not exact.

Gamma(a, 1.0), Beta(a, 1), Normal(0, 1), Normal(µ, σ). For each distribution we
performed MCMC-ABC inference with approximately marginalising over the param-
eter space using a small random set {θ1, . . . , θN} of parameters and conditioning on
statistical hypothesis tests or on moment matching as appropriate. Note that the pre-
training of the hierarchical program text prior was never given the text of the sampler
for the distribution being learned.

Representative histograms of samples from the best posterior program text sample
discovered in terms of summary statistics match are shown in Figure 6. A pleasing
result is the discovery of the exact Bernoulli(p) distribution sampler program, the text
of which is shown in Figure 7.

4.3 Evaluating our Approach versus Evolutionary Algorithms
The approach was evaluated against genetic programming, one of state-of-the-art meth-
ods to search in the space of programs. Genetic programming is an evolutionary based
metaheuristic optimisation algorithm to generate a program from a specification. The
same grammar we used before was reproduced in the evolutionary computation frame-
work DEAP [8]. The fitness function was selected to be the log probability presented in
the eq. 3 with omitted p

(
X̂ | T

)
part in accordance with the assumption that desired

probabilistic programs will repeatedly appear in results of search over programs. Note
that another possible way is to marginalise over X̂ during its fitness function evaluation,
however this requires more programs runs.

Figure 8 shows that PMCMC inference performance is similar to genetic program-
ming. In contrast to genetic programming, PMCMC is statistically valid estimator of
the target distribution. In addition, probabilistic programming system allows to reason
about the model over models and inferring models within the same framework, while
genetic programming is an external machinery which requires to consider optimising
probabilistic programs as a black box2.

4.4 Generalising Arbitrary Data Distributions
We also explored using our approach to learn generative models in the form of sampler
program text for real world data of unknown distribution. We arbitrarily chose three

2 An interesting work for future is to run experiments in the framework of probabilistic program-
ming with the inference engine that is itself based on evolutionary algorithms, in a similar way
to [2].
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Normal(µ, σ), and Geometric(p) correspondingly. X̂ is a samples set from a probabilistic pro-
gram T as described in Section 3. Navy lines show the true sampler’s penalty function value
(averaged by 30 trials), red lines correspondent to genetic programming, and green lines – to
PMCMC. Transparent filled intervals represent standard deviations within trials.
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continuous indicator features from a credit approval dataset [21,1] and inferred sampler
program text using two-sample Kolmogorov-Smirnov distribution equality tests (vs.
the empirical data distribution) analogously to the G-test described before. Histograms
of samples from the best inferred sampler program text versus the training empirical
distributions are shown in Figure 9. The data distribution representation, despite being
expressed in the form of sampler program text, matches salient characteristics of the
empirical distribution well.

5 Discussion
Our approach to program synthesis via probabilistic programming raises at least as
many questions as it answers. One key high level question this work invokes is, really,
what is the goal of program synthesis? By framing program synthesis as a probabilistic
inference problem we are implicitly naming our goal to be that of estimating a distribu-
tion over programs that obey some constraints rather than as a search for a single best
program that does the same. On one hand, the notion of regularising via a generative
model is natural as doing so predisposes inference towards discovery of programs that
preferentially possess characteristics of interest (length, readability, etc.). On the other
hand, exhaustive computational inversion of a generative model that includes evalua-
tion of program text will clearly remain intractable for the foreseeable future. For this
reason greedy and stochastic search inference strategies are basically the only options
available. We employ the latter, to explore the posterior distribution of programs whose
outputs match constraints knowing full-well that its actual effect in this problem do-
main, and, in particular finite time, is more-or-less that of stochastic search.

It is pleasantly surprising, however, that the Monte Carlo techniques we use were
able to find exemplar programs in the posterior distribution that actually do a good job



X

of generalising observed data in the experiments we report. It remains an open question
whether or not sole sampling procedures are the best stochastic search technique to use
for this problem in general however. Perhaps by using them in combination with one of
search we might do better, particularly if our goal is a single best program.
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