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Abstract
Forward inference techniques such as sequential
Monte Carlo and particle Markov chain Monte
Carlo for probabilistic programming can be im-
plemented in any programming language by cre-
ative use of standardized operating system func-
tionality including processes, forking, mutexes,
and shared memory. Exploiting this we have de-
fined, developed, and tested a probabilistic pro-
gramming language intermediate representation
language we call probabilistic C, which itself can
be compiled to machine code by standard com-
pilers and linked to operating system libraries
yielding an efficient, scalable, portable proba-
bilistic programming compilation target. This
opens up a new hardware and systems research
path for optimizing probabilistic programming
systems.

1. Introduction
Compilation is source to source transformation. We use the
phrase intermediate representation to refer to a target lan-
guage for a compiler. This paper introduces a C-language
library that makes possible a C-language intermediate rep-
resentation for probabilistic programming languages that
can itself be compiled to executable machine code. We
call this intermediate language probabilistic C. Probabilis-
tic C can be compiled normally and uses only macros and
posix operating system libraries (Open Group, 2004a) to
implement general-purpose, scalable, parallel probabilistic
programming inference. Note that in this paper we do not
show how to compile any existing probabilistic program-
ming languages (i.e. IBAL (Pfeffer, 2001), BLOG (Milch
et al., 2007), Church (Goodman et al., 2008), Figaro (Pfef-
fer, 2009), Venture (Mansinghka et al., 2013), or Anglican
(Wood et al., 2014)) to this intermediate representation; in-
stead we leave this to future work noting that there is a
wealth of readily available resources on language to lan-
guage compilation that could be leveraged to do this. We
instead characterize the performance of the intermediate
representation itself by writing programs directly in proba-
bilistic C and then testing them on computer architectures

and programs that illustrate the capacities and trade-offs of
both the forward inference strategies probabilistic C em-
ploys and the operating system functionality on which it
depends.

Probabilistic C programs compile to machine executable
meta-programs that perform inference over the original
program via forward methods such as sequential Monte
Carlo (Doucet et al., 2001) and particle MCMC variants
(Andrieu et al., 2010). Such inference methods can be im-
plemented in a sufficiently general way so as to support in-
ference over the space of probabilistic program execution
traces using just posix operating system primitives.

1.1. Related work

The characterization of probabilistic programming infer-
ence we consider here is the process of sampling from the
a posteriori distribution of execution traces arising from
stochastic programs constrained to reflect observed data.
This is the view taken by the Church (Goodman et al.,
2008), Venture (Mansinghka et al., 2013), and Anglican
(Wood et al., 2014) programming languages among oth-
ers. In such languages, models for observed data can be
described purely in terms of a forward generative process.

Markov chain Monte Carlo (MCMC) is used by these sys-
tems to sample from the posterior distribution of program
execution traces. Single-site Metropolis Hastings (MH)
(Goodman et al., 2008) and particle MCMC (PMCMC)
(Wood et al., 2014) are two such approaches. In the lat-
ter it was noted that a fork-like operation is a fundamental
requirement of forward inference methods for probabilistic
programming, where fork is the standard posix operating
system primitive (Open Group, 2004b). Kiselyov & Shan
(2009) also noted that delimited continuations, a user-level
generalization of fork could be used for inference, albeit
in a restricted family of models.

2. Probabilistic Programming
Any program that makes a random choice over the course
of its execution implicitly defines a prior distribution over
its random variables; running the program can be inter-
preted as drawing a sample from the prior. Inference in
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#include "probabilistic.h"

int main(int argc, char **argv) {

double var = 2;
double mu = normal_rng(1, 5);

observe(normal_lnp(9, mu, var));
observe(normal_lnp(8, mu, var));

p r e d i c t f("mu,%f\n", mu);

return 0;
}

Figure 1. Two data points, distributed according to a Gaussian
with unknown mean µ. We place a N (1, 5) prior on µ, and ob-
serve two data points drawn fromN (µ, 2).

probabilistic programs involves conditioning on observed
data, and characterizing the posterior distribution of the
random variables given data. We introduce probabilistic
programming capabilities into C by providing a library
with two functions: observe which conditions the pro-
gram execution trace given the log-likelihood of a data
point, and predict which marks expressions for which
we want posterior samples. Any random number genera-
tor and sampling library can be used for making random
choices in the program, any numeric log likelihood value
can be passed to an observe, and any C expression which
can be printed can be reported using predict. The library
includes a single macro which renames main and wraps it
in another function that runs the original in an inner loop in
the forward inference algorithms to be described.

Figure 1 shows a simple probabilistic C program for esti-
mating the posterior distribution for the mean of a Gaus-
sian, conditioned on two observed data points y1, y2, cor-
responding to the model

µ ∼ N (1, 5), y1, y2
iid∼ N (µ, 2). (1)

We observe the data y1, y2 and predict the poste-
rior distribution of µ. The functions normal rng and
normal lnp in Figure 1 return (respectively) a normally-
distributed random variate and the log probability density
of a particular value, with mean and variance parameters
mu and var. The observe statement requires only the log-
probability of the data points 8 and 9 conditioned on the
current program state; no other information about the like-
lihood function or the generative process. In this program
we predict the posterior distribution of a single value mu.

Although C is a comparatively low-level language, it can
nonetheless represent many well-known generative mod-
els concisely and transparently. A hidden Markov model
example is shown in Figure 2, in which N observed data
points y1:N are drawn from an underlying Markov chain
with K latent states, each with Gaussian emission distribu-
tions with mean µk, and a (known) K ×K state transition

#include "probabilistic.h"
#define K 3
#define N 11

/* Markov transition matrix */
static double T[K][K] = { { 0.1, 0.5, 0.4 },

{ 0.2, 0.2, 0.6 },
{ 0.15, 0.15, 0.7 } };

/* Observed data */
static double data[N] = { NAN, .9, .8, .7, 0, -.025,

-5, -2, -.1, 0, 0.13 };

/* Prior distribution on initial state */
static double initial_state[K] = { 1.0/3, 1.0/3, 1.0/3 };

/* Per-state mean of Gaussian emission distribution */
static double state_mean[K] = { -1, 1, 0 };

/* Generative program for a HMM */
int main(int argc, char **argv) {

int states[N];
for (int n=0; n<N; i++) {

states[n] = (n==0) ? discrete_rng(initial_state, K)
: discrete_rng(T[states[n-1]], K);

if (n > 0) {
observe(normal_lnp(data[n], state_mean[states[n]], 1));

}
p r e d i c t f("state[%d],%d\n", n, states[n]);

}

return 0;
}

Figure 2. A hidden Markov model (HMM) with 3 underlying
states and Gaussian emissions, observed at 10 discrete time-
points. We observe 10 data points and predict the marginal distri-
bution over latent state at each time point. The predictf
directive is a predict which formats output using standard
printf semantics.

matrix T , such that

z0 ∼ Discrete([1/K, . . . , 1/K]) (2)
zn|zn−1 ∼ Discrete(Tzn−1

) (3)

yn|zn ∼ N (µzn , σ
2). (4)

Bayesian nonparametric models can also be represented
concisely; in Figure 3 we show a generative model for an
infinite mixture of Gaussians, using a Chinese restaurant
process (CRP) to sample non-negative integer partition as-
signments φn for each data point y1, . . . , yN . For each par-
tition, mean and variance parameters µφn

, σ2
φn

are drawn
from a Normal-Gamma prior; the data points yn them-
selves are drawn from a normal distribution with param-
eters φn, with the full generative model

φn ∼ CRP(α) (5)

1/σ2
φn
∼ Gamma(1, 1) (6)

µφn |σ2
φn
∼ N (0, σ2

φn
) (7)

yn|φn, µφn , σ
2
φn
∼ N (µφn , σ

2
φn

). (8)

2.1. Operating system primitives

Inference proceeds by drawing posterior samples from the
space of program execution traces. We define an execution
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#include "probabilistic.h"
#define N 10

// Observed data
static double data[N] = { 1.0, 1.1, 1.2,

-1.0, -1.5, -2.0,
0.001, 0.01, 0.005, 0.0 };

// Struct holding mean and variance for each cluster
typedef struct theta {

double mu;
double var;

} theta;

// Draws a sample of theta from a normal-gamma prior
theta draw_theta() {

double variance = 1.0 / gamma_rng(1, 1);
return (theta) { normal_rng(0, variance), variance };

}

int main(int argc, char **argv) {

polya_urn_state urn;
double alpha = 1.0;
polya_urn_new(&urn, alpha);

theta params[N];
bool known_theta[N] = { false };

for (int n=0; n<N; n++) {
int class = polya_urn_draw(&urn);
if (!known_theta[class]) {

params[class] = draw_theta();
known_theta[class] = true;

}
observe(normal_lnp(data[n], params[class].mu,

params[class].var));
}

// Predict number of classes
p r e d i c t f("num_classes,%2d\n", urn.len_buckets);

// Release memory; exit
polya_urn_free(&urn);
return 0;

}

Figure 3. A infinite mixture of Gaussians on the real line. Class id
variables for each of theN = 10 data points are drawn, following
a Blackwell-MacQueen urn scheme to sequentially sample from
a Dirichlet process; for each class id, parameters θ of a normal
likelihood function are drawn from a normal-gamma prior. The
urn scheme of polya urn draw and its associated data struc-
ture polya urn state are implemented in a separate file.

trace as the sequence of memory states (stack frames and
allocated memory contents) that arises during the sequen-
tial step execution of machine instructions.

The algorithms we propose for inference in probabilistic
programs map directly onto standard computer operating
system constructs, exposed in POSIX-compliant operating
systems including Linux, BSD, and Mac OS X. The cor-
nerstone of our approach is POSIX fork (Open Group,
2004b). When a process forks, it clones itself, creating a
new process with an identical copy of the execution state
of the original process, and identical source code; both
processes then continue with normal program execution
completely independently from the point where fork was
called. While copying program execution state may naı̈vely
sound like a costly operation, this actually can be rather
efficient: when fork is called, a lazy copy-on-write pro-
cedure is used to avoid deep copying the entire program

memory. Instead, initially only the pagetable is copied to
the new process; when an existing variable is modified in
the new program copy, then and only then are memory con-
tents duplicated. The overall cost of forking a program is
proportional to the fraction of memory which is rewritten
by the child process (Smith & Maguire, 1988).

Using forkwe can branch a single program execution state
and explore many possible downstream execution paths.
Each of these paths runs as its own process, and will run
in parallel with other processes. In general, multiple pro-
cesses run in their own memory address space, and do not
communicate or share state. We handle inter-process com-
munication via a small shared memory segment; the details
of what global data must be stored are provided later.

Synchronization between processes is handled via mutual
exclusion locks (mutex objects). Mutexes become partic-
ularly useful for us when used in conjunction with a syn-
chronized counter to create a barrier, a high-level blocking
construct which prevents any process proceeding in exe-
cution state beyond the barrier until some fixed number of
processes have arrived.

3. Inference
3.1. Probability of a program execution trace

To notate the probability of a program execution trace,
we enumerate all N observe statements, and the asso-
ciated observed data points y1, . . . , yN . During a single
run of the program, some total number N ′ random choices
x′1, . . . ,x

′
N ′ are made. While N ′ may vary between indi-

vidual executions of the program, we require is that N is
constant. That is, valid probabilistic models correspond to
probabilistic C program with the same number of observe
directive calls on every program execution. As it is left
to the programmer (or potentially the compiler; see Sec-
tion 5 for a brief discussion of this point) it is quite easy to
write models in probabilistic C that are statistically difficult
to reason about. This is the primary reason for proposing
probabilistic C as a compilation target. In many probabilis-
tic programming languages, for instance Anglican (Wood
et al., 2014) and Venture (Mansinghka et al., 2013), such
constraints are explicitly imposed by the language itself.

The observations yn can appear at any point in the program
source code and define a partition of the random choices
x′1:N ′ into N subsequences x1:N , where each xn contains
all random choices made up to observing yn but excluding
any random choices prior to observation yn−1. We can then
define the probability of any single program execution trace
as

p(y1:N ,x1:N ) =

N∏
n=1

g(yn|x1:n)f(xn|x1:n−1) (9)
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In this manner, any model with a generative process that
can be described in arbitrary C code can be represented
in this sequential form in the space of program execution
traces.

Each observe statement takes as its argument
ln g(yn|x1:n). Each quantity of interest in a predict

statement corresponds to some deterministic function h(·)
of all random choices x1:N made during the execution of
the program. Given a set of S posterior samples {x(s)

1:N},
we can approximate the posterior distribution of the
predict value as

h(x1:N ) ≈ 1

S

S∑
s=1

h(x
(s)
1:N ). (10)

3.2. Sequential Monte Carlo

Forward simulation-based algorithms are a natural fit for
probabilistic programs: run the program and report execu-
tions that match the data. Sequential Monte Carlo (SMC,
sequential importance resampling) forms the basic building
block of other, more complex particle-based methods, and
can itself be used as a simple approach to probabilistic pro-
gramming inference. SMC approximates a target density
p(x1:N |y1:N ) as a weighted set of L realized trajectories
x`1:N such that

p(x1:N |y1:N ) ≈
L∑
`=1

w`Nδx`
1:N

(x1:N ). (11)

For most probabilistic programs of interest, it will be in-
tractable to sample from p(x1:N |y1:N ) directly. Instead,
noting that (for n > 1) we have the recursive identity

p(x1:n|y1:n) (12)
= p(x1:n−1|y1:n−1)g(yn|x1:n)f(xn|x1:n−1),

we sample from p(x1:N |y1:N ) by iteratively sampling from
each p(x1:n|y1:n), in turn, from 1 through N . At each
n, we construct an importance sampling distribution by
proposing from some distribution q(xn|x1:n−1, y1:n); in
probabilistic programs we find it convenient to propose
directly from the executions of the program, i.e. each se-
quence of random variates xn is jointly sampled from the
program execution state dynamics

x`n ∼ f(xn|x
a`n−1

1:n−1) (13)

where a`n−1 is an “ancestor index,” the particle index
1, . . . , L of the parent (at time n−1) of x`n. The unnormal-
ized particle importance weights at each observation yn are
simply the observe data likelihood

w̃`n = g(y1:n,x
`
1:n) (14)

Algorithm 1 Parallel SMC program execution
Assume: N observations, L particles

launch L copies of the program (parallel)
for n = 1 . . . N do

wait until all L reach observe yn (barrier)
update unnormalized weights w̃1:L

n (serial)
if ESS < τ then

sample number of offspring O1:L
n (serial)

set weight w̃1:L
n = 1 (serial)

for ` = 1 . . . L do
fork or exit (parallel)

end for
else

set all number of offspring O`n = 1 (serial)
end if
continue program execution (parallel)

end for
wait until L program traces terminate (barrier)
predict from L samples from p̂(x1:L

1:N |y1:N ) (serial)

which can be normalized as

w`n =
w̃`n∑L
`=1 w̃

`
n

. (15)

After each step n, we now have a weighted set of execu-
tion traces which approximate p(x1:n|y1:n). As the pro-
gram continues, traces which do not correspond well with
the data will have weights which become negligibly small,
leading in the worst case to all weight concentrated on a
single execution trace. To counteract this deficiency, we
resample from our current set of L execution traces after
each observation yn, according to their weights w`n. This is
achieved by sampling a count O`n for the number of “off-
spring” of a given execution trace ` to be included at time
n + 1; any sampling scheme must ensure E[O`n] = w`n.
Sampling offspring counts O`n is equivalent to sampling
ancestor indices a`n. Program execution traces with no off-
spring are killed; program execution traces with more than
one offspring are forked multiple times. After resampling,
all weights w`n = 1.

We only resample if the effective sample size

ESS ≈ 1∑
`(w

`
n)

2
(16)

is less than some threshold value τ ; we choose τ = L/2.

In probabilistic C, each observe statement forms a bar-
rier: parallel execution cannot continue until all particles
have arrived at the observe and have reported their cur-
rent unnormalized weight. As execution traces arrive at the
observe barrier, they take the number of particles which
have already reached the current observe as a (temporary)
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unique identifier. Program execution is then blocked as the
effective sample size is computed and the number of off-
spring are sampled. The number of offspring are stored in
a shared memory block; when the number of offspring are
computed, each particle uses the identifier assigned when
reaching the observe barrier to retrieve (asynchronously)
from shared memory the number of children to fork. Par-
ticles with no offspring wait for any child processes to com-
plete execution, and terminate; particles with only one off-
spring do not fork any children but continue execution as
normal.

The SMC algorithm is outlined in Algorithm 1, with anno-
tations for which steps are executed in parallel, serially, or
form a barrier. After a single SMC sweep is complete, we
sample values for each predict, and then (if desired) re-
peat the process, running a new independent particle filter,
to draw an additional batch of samples.

3.3. Particle Metropolis-Hastings

Particle Markov chain Monte Carlo, introduced in Andrieu
et al. (2010), uses sequential Monte Carlo to generate high-
dimensional proposal distributions for MCMC. The most
simple formulation is the particle independent Metropolis-
Hastings algorithm. After running a single particle filter
sweep, we compute an estimate of the marginal likelihood,

Ẑ ≡ p(y1:N ) ≈
N∏
n=1

[
1

L

L∑
`=1

w`n

]
. (17)

We then run another iteration of sequential Monte Carlo
which we use as a MH proposal; we estimate the marginal
likelihood Ẑ ′ of the new proposed particle set, and then
with probability min(1, Ẑ ′/Ẑ) we accept the new particle
set and output a new set of predict samples, otherwise
outputting the same predict samples as in the previous
iteration.

The inner loop of Algorithm 2 is otherwise substantially
similar to SMC.

3.4. Particle Gibbs

Particle Gibbs is a particle MCMC technique that has SMC
at its core as well. It has better theoretical statistical con-
vergence properties than PIMH, but may suffer due to de-
generacy concerns in some models, and requires additional
computational overhead. We initialize particle Gibbs by
running a single sequential Monte Carlo sweep, and then
alternate between

1. sampling a single execution trace x̂1:M from the set of
L weighted particles, and

2. running a “conditional” SMC sweep, in which we

Algorithm 2 Parallel PIMH program execution
Assume: M iterations, N observations, L particles

for m = 1 . . .M do
launch L copies of the program (parallel)
for n = 1 . . . N do

wait until all L reach an observe (barrier)
update unnormalized weights w̃1:L (serial)
if ESS < τ then

update proposal evidence estimate Ẑ ′ (serial)
sample number of offspring O1:L

n (serial)
set weight w̃1:L

n = 1 (serial)
for ` = 1 . . . L do

fork or exit (parallel)
end for

else
set all number of offspring O`n = 1 (serial)

end if
continue program execution (parallel)

end for
wait until L program traces terminate (barrier)
accept or reject new particle set (serial)
predict from L samples from p̂(x1:L

1:N |y1:N ) (serial)
store current particle set x and evidence Ẑ (serial)
continue to next iteration (parallel)

end for

generate L−1 new particles in addition to the retained
x̂1:M .

The implementation based on operating system primitives
is described in algorithms 3 and 4. The challenge here is
that we must “retain” an execution trace, which we can later
revisit to resume and branch arbitrarily many times. This
is achieved by spawning off a “control” process at every
observation point, which from then on manages the future
of that particular execution state.

As before, processes arrive at an observe barrier, and
when all particles have reached the observe we compute
weights, and sample offspring counts O`n. Particles with
O`n = 0 terminate, but new child processes are no longer
spawned right away. Instead, all remaining particles fork
a new process whose execution path immediately diverges
from the main codebase and enters the retain and branch
loop in Algorithm 4. This new process takes responsibility
for actually spawning the O`n new children. The spawned
child processes (and the original process which arrived at
the observe barrier) wait (albeit briefly) at a new barrier
marking the end of observe n, not continuing execution
until all new child processes have been launched.

Program execution continues to the next observe, during
which the retain / branch process waits until a full particle
set reaches the end of the program. Once final weights w̃1:L

N
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Algorithm 3 Parallel Particle Gibbs program execution
Assume: M iterations, N observations, L particles

for m = 1 . . .M do
L′ ← L if m = 1, otherwise L− 1
launch S′ copies of the program (parallel)
for n = 1 . . . N do

wait until all L′ reach an observe (barrier)
compute weights for all particles (serial)
if m > 1 then

signal num offspring to retained trace (serial)
end if
for ` = 1 . . . L′ do

spawn retain / branch process [Algo. 4] (parallel)
end for
wait until L particles finish branching (barrier)
continue program execution (parallel)

end for
wait until L program traces terminate (barrier)
predict from L samples from p̂(x1:L

1:N |y1:N ) (serial)
select and signal particle to retain (serial)
wait until N processes are ready to branch (barrier)
continue to next iteration (parallel)

end for

are computed, we sample (according to weight) from the
final particle set to select a single particle to retain during
the next SMC iteration. When the particle is selected, a
signal is broadcast to all retain / branch loops indicating
which process ids correspond to the retained particle; all
except the retained trace exit.

The retain / branch loop now goes into waiting again (this
time for a branch signal), and we begin SMC from the top
of the program. As we arrive at each observe n, we only
sample L− 1 new offspring to consider: we guarantee that
at least one offspring is spawned from the retained particle
at n (namely, the retained execution state at n + 1). How-
ever, depending on the weights, often sampling offspring
will cause us to want more than a single child from the
retained particle. So, we signal to the retained particle ex-
ecution state at time n the number of children to spawn;
the retain / branch loop returns to its entry point and re-
sumes waiting, to see if the previously retained execution
state will be retained yet again.

Note that in particle Gibbs, we must resample (select off-
spring and reset weights w`n = 1) after every observation
in order to be able to properly align the retained particle on
the next iteration through the program.

4. Experiments
We now turn to benchmarking probabilistic C against ex-
isting probabilistic programming engines, and evaluate the

Algorithm 4 Retain and Branch inner loop
Assume: input initial C > 0 children to spawn
is retained← false

while true do
if C = 0 and not is retained then

discard this execution trace, exit
else {C ≥ 0}

spawn C new children
end if
wait for signal which resets is retained

if is retained then
wait for signal which resets C

else
discard this execution trace, exit

end if
end while

relative strengths of the three inference algorithms in Sec-
tion 3. We find that compilation improves performance by
100 times or more over interpreted versions of the same in-
ference algorithm. We also find evidence that suggests that
optimising operating systems to support probabilistic pro-
gramming usage could yield significant performance im-
provements as well.

The programs/models we use in our experiments are cho-
sen to be sufficiently simplistic that we can compute the
exact posterior distribution of interest analytically. Given
the true posterior distribution p, we measure sampler per-
formance by the KL-divergence KL(p̂||p), where p̂ is our
Monte Carlo estimate. The first benchmark program we
consider is a hidden Markov model (HMM) very similar
to that of Figure 2, where we predict the marginal distri-
butions of each latent state. The HMM used in our exper-
iments here is larger; it has the same model structure, but
with K = 10 states and 50 sequential observations, and
each state k = 1, . . . , 10 has a Gaussian emission distribu-
tion with µk = k−1 and σ2 = 4. The second benchmark is
the CRP mixture of Gaussians program in Figure 3, where
we predict the number of different classes.

4.1. Comparative performance of inference engines

We begin by benchmarking against two existing probabilis-
tic programming engines: Anglican, as described in (Wood
et al., 2014), which also implements particle Gibbs, but
is an interpreted language based on Scheme, implemented
in Clojure, and running on the JVM; and probabilistic-js1,
a compiled system implementing the inference approach
in (Wingate et al., 2011), which runs Metropolis-Hastings
over each individual random choice in the program execu-
tion trace. The interpreted particle Gibbs engine is mul-

1https://github.com/dritchie/probabilistic-js
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Figure 4. Performance plots for (left) HMM and (right) CRP models, run in an 8 core computing environment on Amazon EC2. In both
models we see that compiling particle Gibbs, compared to running within an interpreter, leads to a large (approx. 100×) constant-factor
speed increase. The Metropolis-Hastings sampler converges at a similar rate as particle Gibbs with 100 particles in the HMM, but
appears to mix slower asymptotically for the CRP. In both models, increasing to 1000 particles in particle Gibbs yields somewhat faster
convergence at the expense of a longer waiting time until the first sample set arrives.
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Figure 5. Comparison of SMC, PIMH, and PG for 100 and 1000 particles in (top) the CRP, and (bottom) the HMM. In the CRP, the
(cheaper) SMC and PIMH algorithms converge quickly; in the HMM, both SMC and PIMH converge poorly when only 100 particles
are used. Particle Gibbs also benefits from a larger particle count. Colors are the same across plots.

tithreaded, and we run it with 100 particles and 8 simul-
taneous threads; the Metropolis-Hastings engine only runs
on a single core. In Figure 4 we compare inference per-
formance in both of these existing engines to our particle
Gibbs backend, running with 100 and 1000 particles, in an
8 core cloud computing environment on Amazon EC2, run-
ning on Intel Xeon E5-2680 v2 processors. Our compiled
probabilistic C implementation of particle Gibbs runs over
100 times faster that the existing interpreted engine, gener-
ating good sample sets in on the order of tens of seconds.

The probabilistic C inference engine implements particle
Gibbs, SMC, and PIMH sampling, which we compare in
Figure 5 using both 100 and 1000 particles.

Figures 4 and 5 plot wall clock time against KL-divergence.
We use all generated samples as our empirical posterior dis-
tribution in order to produce as fair a comparison as possi-
ble. In all engines, results are reasonably stable across runs;
shaded regions denote minimum and maximum values over

multiple runs, with the median marked as a dark line. A
sampler which is correctly drawing samples from the target
density will show an approximately linear decrease in KL-
divergence on such log-log plots. The methods based on
sequential Monte Carlo do not provide any estimate of the
posterior distribution until completing a single initial par-
ticle filter sweep; for large numbers of particles this may
be a non-trivial amount of time. In contrast, the MH sam-
pler begins drawing samples effectively immediately, al-
though it may take a large number of individual steps be-
fore converging to the correct stationary distribution; indi-
vidual Metropolis-Hastings samples are likely to be more
autocorrelated, but producing each one is faster.

4.2. Performance characteristics across multiple cores

As the probabilistic C inference engine offloads much of
the computation to underlying operating system calls, we
characterize the limitations of the OS implementation by
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Figure 6. Effect of system architecture on runtime performance.
Here we run the HMM code on EC2 instances with identical pro-
cessors (horizontal axis) with varying number of particles (indi-
vidual bars) and report runtime to produce 10,000 samples. De-
spite adding more cores, after 16 cores performance begins to de-
grade. Similarly, adding more particles eventually degrades per-
formance for any fixed number of cores. In combination these
suggest the availability of operating system optimizations that
could improve overall performance.

comparing time to completion as we vary the number of
cores. Tests for the hidden Markov model across core count
(all on EC2, all with identical Intel Xeon E5-2680 v2 pro-
cessors) are shown in Figure 6.

5. Discussion
Probabilistic C is a method for performing inference in
probabilistic programs. Methodologically it derives from
the forward methods for performing inference in statisti-
cal models based on sequential Monte Carlo and particle
Markov chain Monte Carlo. We have shown that it is pos-
sible to efficiently and scalably implement this particular
kind of inference strategy using existing, standard compil-
ers and posix compliant operating system primitives.

What most distinguishes Probabilistic C from prior art is
that it is highly compatible with modern computer archi-
tectures, all the way from operating systems to central
processing units (in particular their virtual memory oper-
ations), and, further, that it delineates a future research
program for scaling the performance of probabilistic pro-
gramming systems to large scale problems by investigat-
ing systems optimizations of existing computer architec-
tures. Note that this is distinct but compatible with ap-
proaches to optimizing probabilistic programming systems
by compilation optimizations, stochastic hardware, and de-
pendency tracking with efficient updating of local execu-
tion trace subgraphs. It may, in the future, be possible
to delineate model complexity and hardware architecture
regimes in which each approach is optimal; we assert that,
for now, it is unclear what those regimes are or will be. This
paper is but one step towards such a delineation.

Several interesting research questions remain: (1) Is it more
sensible to write custom memory management and use
threads than fork and processes as we have done? The
main contribution of this paper is to establish a probabilistic
programming system implementation against a standard-
ized, portable abstraction layer. It might be possible to eke
out greater performance by capitalizing on the fact mod-
ern architectures are optimised for parallel threads more
so than parallel processes; however, exploiting this would
entail implementing memory management de facto equiv-
alent in action to fork which may lead to lower portabil-
ity. (2) Would shifting architectures to small page sizes
help? There is a bias towards large page size support in
modern computer architectures. It may be that the system
use characteristics of probabilistic programming systems
might provide a counterargument to that bias or inspire
the creation of tuned end-to-end systems. Forking itself is
lightweight until variable assignment which usually require
manipulations of entire page tables. Large pages require
large amounts of amortisation in order to absorb the cost
of copying upon stochastic variable assignment. Smaller
pages could potentially yield higher efficiencies. (3) What
characteristics of process synchronisation can be improved
specifically for probabilistic programming systems? This is
both a systems and machine learning question. From a ma-
chine learning perspective we believe it may be possible to
construct efficient sequential Monte Carlo algorithms that
do not synchronize individual threads at observe barriers
and instead synchronize in a queue. On a systems level it
begs questions about what page replacement strategies to
consider; perhaps entirely changing the page replacement
schedule to reflect rapid process rather than thread multi-
plexing across cores.

It is the case that probabilistic C on its own allows pro-
grammers to easily write models that are very difficult to
reason about statistically. For this reason we are not, in
this paper, making a claim about a new probabilistic pro-
gramming language – rather, in a programming languages
sense, we at most claiming an intermediate representation
compilation target that implements a particular style of in-
ference that is natively parallel and possible to optimise
by system architecture choice. It is possible (as helpfully
pointed out by Vikash Mansinghka) that compiler optimi-
sation techniques such as checking to see whether or not
the program is natively in “static single assignment” form
(Appel, 1998) can help avoid statistically ambiguous pro-
grams being allowed (at compilation). This we leave as
future work. Further (as helpfully pointed out by Noah
Goodman), programming languages constructs such as de-
limited continuations (Felleisen, 1988) can be thought of
as user level abstractions of fork, and as such might pro-
vide, in the context of statistically safer languages, similar
functionality at the user rather than system level.
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