
Gaussian Process Bandit Optimization of the
Thermodynamic Variational Objective

Vu Nguyen
University of Oxford
vu@robots.ox.ac.uk

Vaden Masrani
University of British Columbia

vadmas@cs.ubc.ca

Rob Brekelmans
USC Information Sciences Institute

brekelma@usc.edu

Michael A. Osborne
University of Oxford

mosb@robots.ox.ac.uk

Frank Wood
University of British Columbia

fwood@cs.ubc.ca

Abstract

Achieving the full promise of the Thermodynamic Variational Objective (TVO),
a recently proposed variational lower bound on the log evidence involving a one-
dimensional Riemann integral approximation, requires choosing a “schedule” of
sorted discretization points. This paper introduces a bespoke Gaussian process
bandit optimization method for automatically choosing these points. Our ap-
proach not only automates their one-time selection, but also dynamically adapts
their positions over the course of optimization, leading to improved model learn-
ing and inference. We provide theoretical guarantees that our bandit optimization
converges to the regret-minimizing choice of integration points. Empirical valida-
tion of our algorithm is provided in terms of improved learning and inference in
Variational Autoencoders and Sigmoid Belief Networks.

1 Introduction

The Variational Autoencoder (VAE) framework has formed the basis for a number of recent advances
in unsupervised representation learning [18, 36, 42]. Assuming a generative model involving latent
variables, VAEs perform maximum likelihood parameter estimation by optimizing the tractable Evi-
dence Lower Bound (ELBO) on the logarithm of the model evidence. In doing so, the VAE framework
introduces an inference network, which seeks to approximate the true posterior over latent variables.
While the ELBO is a common choice of variational inference objective, recent work has sought to
improve the model learning [7, 39, 31, 26] or inference aspects [35, 19, 8, 13] of this task.

In this work, we build upon the recent Thermodynamic Variational Objective (TVO), which frames
log-likelihood estimation as a one-dimensional integral over the unit interval [27]. The integral is
estimated using a Riemann sum approximation, as visualized in Figure 1, yielding a natural family
of variational inference objectives which generalize and tighten the ELBO.

The choice of a d-dimensional vector of points β = [β0, β1, ..., βd−1]T at which to construct this
numerical approximation is an important hyperparameter for the TVO, which we refer to as an “in-
tegration schedule” throughout this work. Previous work [27] uses a static integration schedule, and
requires grid search over the choice of initial β1. However, since the shape of the integrand reflects
the quality of the inference network (§2), recent work [6] suggests that this scheduling procedure
may be improved by dynamically choosing β over the course of training. Our proposed approach
also allows the TVO to be adapted to different model architectures and schedule dimensionality
without the need for grid search.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

ar
X

iv
:2

01
0.

15
75

0v
3

 [
cs

.L
G

]
 2

0
N

ov
 2

02
0

1
<latexit sha1_base64="f/ucaHSqP+D9Bp31BanY7u7K7A0=">AAACS3icbVDLTgJBEJxFUcQX6NHLRmLiiewqRo9ELx4hkUcCGzI7NDgyu7OZ6VXIhi/wqp/lB/gd3owHh8fBBSvppFLVne4uPxJco+N8WpmNzezWdm4nv7u3f3BYKB41tYwVgwaTQqq2TzUIHkIDOQpoRwpo4Ato+aO7md96BqW5DB9wEoEX0GHIB5xRNFLd7RVKTtmZw14n7pKUyBK1XtGqdPuSxQGEyATVuuM6EXoJVciZgGm+G2uIKBvRIXQMDWkA2kvml07tM6P07YFUpkK05+rfiYQGWk8C33QGFB/1qjcT//M6MQ5uvISHUYwQssWiQSxslPbsbbvPFTAUE0MoU9zcarNHqihDE05qSxAL5Eq+TNMqHQEDIdKqL+UIqa/TX8M4kmoWSf8p1ujL8TSfNzm7q6muk+ZF2b0sX9UrpertMvEcOSGn5Jy45JpUyT2pkQZhBMgreSPv1of1ZX1bP4vWjLWcOSYpZLK/K6y0Og==</latexit>0

<latexit sha1_base64="+bcvVsgReT4e+AN7PozBeVeZPe8=">AAACS3icbVDLTgJBEJxFUcQX6NHLRmLiiewqRo9ELx4hkUcCGzI7NDgyu7OZ6VXIhi/wqp/lB/gd3owHh8fBBSvppFLVne4uPxJco+N8WpmNzezWdm4nv7u3f3BYKB41tYwVgwaTQqq2TzUIHkIDOQpoRwpo4Ato+aO7md96BqW5DB9wEoEX0GHIB5xRNFLd6RVKTtmZw14n7pKUyBK1XtGqdPuSxQGEyATVuuM6EXoJVciZgGm+G2uIKBvRIXQMDWkA2kvml07tM6P07YFUpkK05+rfiYQGWk8C33QGFB/1qjcT//M6MQ5uvISHUYwQssWiQSxslPbsbbvPFTAUE0MoU9zcarNHqihDE05qSxAL5Eq+TNMqHQEDIdKqL+UIqa/TX8M4kmoWSf8p1ujL8TSfNzm7q6muk+ZF2b0sX9UrpertMvEcOSGn5Jy45JpUyT2pkQZhBMgreSPv1of1ZX1bP4vWjLWcOSYpZLK/KcW0OQ==</latexit>

log p✓(x)
<latexit sha1_base64="EuQLouLJNOc/j7x87FGJ1WRCcbg=">AAACZXicbVBNb9NAEN0YWkr6lQJCQhxYNUIql8imreAYwYVjkEhbKY6i2c042WbttXbHbSLL4tdwhd/DL+BvsE5zwC1PGunpvRnNzBO5Vo7C8HcrePR4a/vJztP27t7+wWHn6NmFM4WVOJRGG3slwKFWGQ5Jkcar3CKkQuOlWHyu/csbtE6Z7ButchynMMtUoiSQlyadV7E2M55PYpojwUmcAs1FUi6rd5NON+yFa/CHJNqQLttgMDlqncVTI4sUM5IanBtFYU7jEiwpqbFqx4XDHOQCZjjyNIMU3bhc/1Dxt16Z8sRYXxnxtfrvRAmpc6tU+M76Rnffq8X/eaOCko/jUmV5QZjJu0VJoTkZXgfCp8qiJL3yBKRV/lYu52BBko+tsSUtNClrbqumCguUqHVTFcYsCIRrfo3L3Ng6kul14UiYZdVu+5yj+6k+JBfve9Fp7/zrWbf/aZP4DnvNjtkJi9gH1mdf2IANmWTf2Q/2k/1q/Qn2gxfBy7vWoLWZec4aCN78BQtnu7s=</latexit>

2H#Q(✓,�,x)
<latexit sha1_base64="YA9/3VggtBVRB7Ddblx9ChCZX2k=">AAACc3icbVBNT9tAEN245aPho6E9clkRqoIEkV2oyhG1lx6p1ABSHEWzmzFZsvZau2NIZPkn8Gt6bX9If0jvXYccauiTdvX03oxm5olcK0dh+LsVvHi5srq2/qq9sbm1/bqz8+bSmcJK7Eujjb0W4FCrDPukSON1bhFSofFKTL/U/tUdWqdM9p3mOQ5TuMlUoiSQl0ad9zHhjJwsUQtTHcQ0QYIjHucT5f8UaCKSclYdjjrdsBcuwJ+TaEm6bImL0U7rNB4bWaSYkdTg3CAKcxqWYElJjVU7LhzmIKdwgwNPM0jRDcvFRRV/55UxT4z1LyO+UP/tKCF1bp4KX1nv6J56tfg/b1BQcjYsVZYXhJl8HJQUmpPhdTx8rCxK0nNPQFrld+VyAhYk+RAbU9JCk7LmvmqqMEWJWjdVYcyUQLjm1TjLja0jGd8WjoSZVe22zzl6mupzcvmhF530Pn477Z5/Xia+znbZHjtgEfvEztlXdsH6TLIH9oP9ZL9af4LdYC/YfywNWsuet6yB4PgvuanBgA==</latexit>

hoPL(✓,�,x)
<latexit sha1_base64="xphD6EiyjCYRWS8CbnGhtEVK3cc=">AAACdHicbVBNb9NAEN24QEP4SuAIhxVRpSKhyKatyrEqFw5IFKlJKyVRNLsZN9usvdbuuE1k+S/wa7i2/4M/wpl1mgNOeNKu3ryZ0cw8kWnlKAx/N4KdR4+f7Daftp49f/HyVbvzeuBMbiX2pdHGXgpwqFWKfVKk8TKzCInQeCHmX6r8xQ1ap0x6TssMxwlcpSpWEshLk/b+iHBBThbng+/l5JsPZ0jwkY+ymfJ/AjQTcbEoP0za3bAXrsC3SbQmXbbG2aTTOBxNjcwTTElqcG4YhRmNC7CkpMayNcodZiDncIVDT1NI0I2L1Ukl3/PKlMfG+pcSX6n/dhSQOLdMhK+sdnSbuUr8X26YU/x5XKg0ywlT+TAozjUnwyt/+FRZlKSXnoC0yu/K5QwsSPIu1qYkuSZlzW1ZV2GOErWuq8KYOYFw9atxkRlbWTK9zh0JsyhbLe9ztOnqNhl86kUHvaMfh92T07XjTfaWvWf7LGLH7IR9ZWeszyT7yX6xO3bf+BO8C7rB3kNp0Fj3vGE1BL2/6AbBjA==</latexit>

�1

<latexit sha1_base64="IPPimOeoNIu1qnbhzwPMBzSgA/8=">AAACUXicbVBNSyNBEK0Zv2L8Xo9eBoPgKcxIQI+iF49Z2BghCaG6U9F2eqaH7ho1hPwIr7s/a0/7U7xtJ+bgqA8KHu9VUVVPFFo5juN/Qbiyura+Udusb23v7O7tH/y4daa0kjrSaGPvBDrSKqcOK9Z0V1jCTGjqivR67nefyDpl8l88KWiQ4X2uxkoie6nbF8Q4TIb7jbgZLxB9JcmSNGCJ9vAgaPVHRpYZ5Sw1OtdL4oIHU7SspKZZvV86KlCmeE89T3PMyA2mi3tn0YlXRtHYWF85Rwv148QUM+cmmfCdGfKD++zNxe+8Xsnji8FU5UXJlMv3ReNSR2yi+fPRSFmSrCeeoLTK3xrJB7Qo2UdU2ZKVmpU1z7OqiilJ0rqqCmNSRuGqX9NLYew8ktFj6ViYl1m97nNOPqf6ldyeNZNWs/Wz1bi8WiZegyM4hlNI4Bwu4Qba0AEJKbzCb/gT/A3eQgjD99YwWM4cQgXh1n9Dq7TP</latexit>

�2

<latexit sha1_base64="MCOu5VyeyW1R9PBQAXGx7bnt6Hs=">AAACUXicbVBNSyNBEK2Z/VCTddX16GXYIHgKMxLQo+jFowvGBJIQqjsVbadneuiuUUPIj/CqP8vT/pS9bSfm4CQ+KHi8V0VVPVFo5TiO/wbhl6/fvm9sbtXqP7Z/7uzu/bpxprSS2tJoY7sCHWmVU5sVa+oWljATmjoivZj7nQeyTpn8micFDTK8zdVYSWQvdfqCGIfHw91G3IwXiNZJsiQNWOJquBe0+iMjy4xylhqd6yVxwYMpWlZS06zWLx0VKFO8pZ6nOWbkBtPFvbPo0CujaGysr5yjhfpxYoqZc5NM+M4M+c6tenPxM69X8vh0MFV5UTLl8n3RuNQRm2j+fDRSliTriScorfK3RvIOLUr2EVW2ZKVmZc3jrKpiSpK0rqrCmJRRuOrX9FQYO49kdF86FuZpVqv5nJPVVNfJzXEzaTVbf1qNs/Nl4ptwAL/hCBI4gTO4hCtog4QUnuEFXoO34F8IYfjeGgbLmX2oIKz/B0WStNA=</latexit>

E⇡�
[log

p✓(x, z)

q�(z|x)
]

<latexit sha1_base64="2gwDVx1FkoExCqGSX0IfpeQ76OY=">AAACsHicbZFdixMxFIbT8WutH9vVS2+CReiClJmloJeLIni5gt0tdIYhyWTabDOTmJzR1pg/6D/wX3irV2bayjq7Hgi8POcN5+QN1VJYiOMfvejW7Tt37x3c7z94+Ojx4eDoyblVjWF8ypRUZkaJ5VLUfAoCJJ9pw0lFJb+gq7dt/+IzN1ao+iNsNM8qsqhFKRiBgPJBkVYElpS6dz53qRZ5SjkQP0+lWuC0NIQ5naewDHC0s5Zu7V/iv/qrx8fefcpTvRSjK/jtynvss3wwjMfxtvBNkezFEO3rLD/qTdJCsabiNTBJrJ0nsYbMEQOCSe77aWO5JmxFFnweZE0qbjO3jcPjF4EUuFQmnBrwlv57w5HK2k1Fg7Pd0l7vtfB/vXkD5evMiVo3wGu2G1Q2EoPCbba4EIYzkJsgCDMi7IrZkoQMIfxAZ0rVSBBGffFdSlaccSm7lCq1AkJt99V8rZVpIykuGwtUrX2/H3JOrqd6U5yfjJPJePJhMjx9s0/8AD1Dz9EIJegVOkXv0RmaIoa+o5/oF/odnUSzKI/Izhr19neeok5Fl38AGajbmA==</latexit>

�j

<latexit sha1_base64="BnOLj3SGTHxGpIWQCNZ9bh3eJJA=">AAACUXicbVBNT9tAEB0bSiFpIdAjF4uoUk+RXUUCbqhcOKZSQ5CSKJrdTGDx2mvtjluiKD+CK/wsTvwUbt18HOrQJ4309N6MZuaJQivHcfwahFvbH3Y+7u7V6p8+7x80Do+unSmtpK402tgbgY60yqnLijXdFJYwE5p6Ir1c+L3fZJ0y+S+eFjTM8DZXEyWRvdQbCGIc3Y8azbgVLxG9J8maNGGNzugwaA/GRpYZ5Sw1OtdP4oKHM7SspKZ5bVA6KlCmeEt9T3PMyA1ny3vn0VevjKOJsb5yjpbqvxMzzJybZsJ3Zsh3btNbiP/z+iVPzoYzlRclUy5XiyaljthEi+ejsbIkWU89QWmVvzWSd2hRso+osiUrNStr/syrKqYkSeuqKoxJGYWrfk0PhbGLSMb3pWNhHua1ms852Uz1Pbn+3krarfOf7ebFj3Xiu3AMJ/ANEjiFC7iCDnRBQgqP8ATPwUvwFkIYrlrDYD3zBSoI638BsbS1DQ==</latexit>

E⇡�


log

p✓(x, z)

q�(z|x)

�

<latexit sha1_base64="QH/zXBxYwJYi5Iqr+nZPBRpxCOg=">AAAHq3ichVXbbhs3EGUujdz0Eid57AtRw4BjqIaVOEiCvBi5oC3aomkbJ0a8isDlzq4Ic7kUl5IlMftx+Yx+QV/bP+hwJUXSUm4X0Gp2zpkLZzhkrKUo7eHhn1euXrv+2Y3W1uc3v/jyq69vbd++86YshobDCS9kYU5jVoIUCk6ssBJOtQGWxxLexufPPf52BKYUhXptJxq6OcuUSAVnFlW97bMoZ7Yfx+5l1XORFviKwbKqimKRZWc0kkVGo9Qw7jRitu/BvWg0btNoNL1XuYE36wuvm35A/b2K0tq2S3vbO4cHh/VDQ6EzF3aOt0j9vOrdvvE4Sgo+zEFZLllZnt0/0rYNKsNK9LuOGSu4hOpmNCxBM37OMjhDUbEcyq6rq1HRXdQkNC0M/pSltXbVwrG8LCd5jEy/9rKJeeUnbHctlE0fd51QemhB8VmkdCipLaivLU2EAW7lBAXGjcBkKe8zrJ3FDqwl/brTdT4772YNkNgX1VkJspZdzGKQ1VpSTo+9oxKJCaS4C+r1umHJewaSyv3+/bPKdR4+aj84aj98gCwFF7zIc6YS3+rKvzKhHAwUM4ZNKjpXMCkyhR4aJuBNAKUFTuuvpXkQQqkgyP7/R6mtLo+zHwQajSvnZrs5peOmw9HFCnoRoJMVdBKg0xV0GqDpCpo20XOJ6Iue++nnqgklwBFbThX1Y/WhnqpmNZRnLiaNLketwctAhR7ng9qgSpmE1ICl/cr13iYHerxmv9F84GO4wQLcrdeQsEvp05VVbgwqBsj4seddnj59F9Zp8KkVswNtEBR9lK10KwuqwjyKpxeeewxPHWgSzJJgNhLqauiaxAydF6c5EinocpkGJsUMaoQsVJAvSKmNyMHTUX6Pxak/g3YIDSb3LC02YAsXWlzqQRUCz028cRaZcSaxiHuzdINaJznzOyDpefI48CZEUoo6n8JfP2AdanCivdJzXwAe8AZ+wTi/YubMFmbfRcxktVv8j9pe+i+iUAsiSnjXdJo3Syi8uX/QOTp48tvRzvGz2aVDtsg35FuyRzrkETkmP5BX5IRw8pH8Rf4m/7S+a/3ReteKZtSrV+Y2d8na04J/ARXC2SE=</latexit>

Figure 1: The TVO objective frames log likelihood estimation as a Riemann sum approximation to a
1-d integral, with the ELBO as a special case for a single β0 = 0. The TVO (area in blue) bounds the
integral more tightly than the ELBO (area within dotted lines).

Our primary contribution is to automate the choice of integration schedules using a Gaussian process
bandit optimization. We first demonstrate that maximizing the TVO objective as a function of β is
equivalent to a regret-minimization problem, where the black-box reward function reflects improve-
ment in the objective for a given choice of schedule. We model this reward function over the course
of training epochs using a time-varying Gaussian process (GP). Our entire procedure amounts to
1) choosing β to maximize an acquisition function in our surrogate GP model, 2) observing the
reward function as the improvement in the TVO objective over one or more epochs of training with
the chosen schedule, and 3) using these observations to update the GP model and select a new β.
Our bandit algorithm is optimal in the sense of converging to a global regret-minimizing solution,
as in the time-varying GP bandit optimization approach [5]. By choosing β to maximize an acqui-
sition function that balances exploration and performance, our algorithm achieves global guarantees
despite the non-convexity of the reward function. Further, our approach is directly aligned with the
goal of improved model learning and inference, as the bandit reward function tracks the variational
objective over the course of training.

We review the TVO framework in §2, before presenting our bandit optimization approach in §3. We
provide details of our time-varying Gaussian process model and discuss its convergence properties
in §4. Finally, we demonstrate that our method can improve both model learning and inference in
Variational Autoencoders and Sigmoid Belief Networks, in §5.

2 The Thermodynamic Variational Objective (TVO)

Assuming a generative model pθ(x, z), we are interested in maximizing the log-likelihood
log pθ(x) = log

∫
pθ(x, z)d z over parameters θ, given the empirical data x. However, this is in-

tractable due to the integral over the latent variables z. Variational inference methods [4] often seek
to maximize the tractable ELBO instead, obtained by introducing an approximate posterior qφ(z |x)
and optimizing the objective

ELBO(θ, φ,x) = log pθ(x)−DKL[qφ(z |x) || pθ(z |x)] = Eqφ(z |x)
[
log

pθ(x, z)

qφ(z |x)

]
. (1)

Thermodynamic Integration (TI) [33, 10, 11] is a common technique for estimating (ratios of) parti-
tion functions in statistical physics, which instead frames estimating log pθ(x) as a one-dimensional
integral over a geometric mixture curve parameterized by β.1 In particular, for the TVO, this curve
interpolates between the approximate posterior qφ(z |x) and true posterior pθ(z |x). Following [6]

1Here β is a scalar to be consistent with notation in [27] In the remainder of the paper, we let β hold the
sorted vector of discretization points β = [β0, β1, ..., βd−1]

T , so that each βj specifies a πβj (z |x) in (2).

2

this mixture curve can be interpreted as an exponential family of distributions over z given x

πβ(z |x) = qφ(z |x) exp{β · log
pθ(x, z)

qφ(z |x)
− logZβ(x)} (2)

where Zβ(x) =

∫
qφ(z |x)1−βpθ(x, z)βd z .

Noting that logZ0(x) = 0 and logZ1(x) = log pθ(x), TI now applies the fundamental theorem of
calculus to write the model evidence as an integral

log pθ(x)− 0 =

∫ 1

0

∂

∂β
logZβ(x)dβ =

∫ 1

0

Eπβ
[
log

pθ(x, z)

qφ(z |x)

]
dβ, (3)

where we have used the known property of exponential families [44] that the derivative of logZβ(x)
with respect to β matches the expected sufficient statistics [27, 6]. Masrani et al. [27] use self-
normalized importance sampling (SNIS) to estimate each term in the integrand, with S importance
samples and qφ(z |x) as the proposal for each β

Eπβ [·] ≈
S∑

`=1

wβ`∑
` w

β
`

[·], w` =
pθ(x, z`)

qφ(z` |x)
, z` ∼ qφ(z |x). (4)

Since logZβ(x) is convex [44], we know that the integrand in (3) is an increasing function of β.
Thus, we can obtain lower and upper bounds using left- and right-Riemann sums, respectively, over
a discrete partition β of the unit interval. The left-Riemann sum then defines the TVO lower bound

TVO(θ, φ,β,x) :=

d−1∑

j=0

(βj+1 − βj)Eπβj
[
log

pθ(x, z)

qφ(z |x)

]
, (5)

where β = [βj]
d−1
j=0 with β0 = 0 and βj < βj+1. Note that the single-term left-Riemann sum

with β = β0 = 0 matches the ELBO in (1), since π0(z |x) = qφ(z |x). However, how to choose
intermediate βj for d > 1 remains an interesting question, which we proceed to frame as a bandit
problem.

3 From Evidence Maximization to Regret Minimization

We view the vector β ∈ [0, 1]d as an arm [1] to be pulled in a continuous space, given a fixed
resource of T training epochs. After each round, we receive an estimate of the log evidence L, from
which we will construct a reward function. An important feature of our problem is that the integrand
in Figure 1 changes between rounds as training progresses. Thus, our multi-armed bandit problem
is said to be time-varying, in that the optimal arm and reward function depend on round t.

More formally, we define the time-varying reward function ft : [0, 1]d → R which takes an input
βt and produces reward ft(βt). At each round we get access to a noisy reward yt = ft(βt) + εt
where we assume Gaussian noise εt ∼ N (0, σ2

f). We aim to maximize the cumulative reward
∑T/w
t=1 ft(βt) across T/w rounds, where w is a divisor of T and will later control the ratio of bandit

rounds t to training epochs i.

Maximizing the cumulative reward is equivalent to minimizing the cumulative regret

RT/w :=

T/w∑

t=1

ft(β
∗
t)− ft(βt), (6)

where rt := ft(β
∗
t) − ft(βt) is the instantaneous regret defined by the difference between the

received reward ft(βt) and maximum reward attainable ft(β∗t) at round t. The regret, which is
non-negative and monotonic, is more convenient to work with than the cumulative reward and will
allow us to derive upper bounds in §4.3.

In order to translate the problem of maximizing the log evidence as a function of β into the bandits
framework, we define a time-varying reward function ft(βt). We construct this reward in such a way

3

Algorithm 1 GP-bandit for TVO (high level)

Input: schedule dimension d, reward function ft(βt) where βt ∈ [0, 1]d , update frequency w
1: for t = 1....T do
2: Train θ, φ for one epoch using TVO and previously βt−1, evaluate Lt from Eq. (5)
3: if mod(t, w) = 0 : time to update βt then
4: Estimate the utility yt = Lt−Lt−w and augment (βt−1, t, yt) into training dataDt

5: Fit a time-varying, permutation invariant GP to Dt

6: Estimate GP predictive mean µt(β) and uncertainty σt(β) from Eqs. (15,16)
7: Select βt = arg maxµt(β) +

√
κtσt(β) where κt is from Theorem 1

8: end if
9: end for

that minimizing the cumulative regret is equivalent to maximizing the final log evidence estimate
LT := log pθT (x), i.e., such that minRT/w = maxLT .

Such a reward function can be defined by partitioning the T training epochs into windows of equal
length w, and defining the reward for each window t ∈ {0, 1, ..., T/w − 1}

ft(βt) := Lw(t+1) − Lwt (7)

as the difference between the TVO log evidence estimate one window-length in the future Lw(t+1)

and the present estimate Lwt. Then, the cumulative reward is given by a telescoping sum over
windows

T/w − 1∑

t=0

ft(βt) =
(
Lw − L0

)
+
(
L2w − Lw

)
+ ...+

(
L(T/w)w − L(T/w − 1)w

)
(8)

= LT − L0, (9)

where L0 is the initial (i.e. untrained) loss. Recalling the definition of cumulative regret in Eq. (6),

minRT/w = min



T/w − 1∑

t=0

ft(β
∗
t)


−



T/w − 1∑

t=0

ft(βt)


 (10)

= min

(
(L∗T − L0)− (LT − L0)

)
(11)

= min (const− LT) (12)
= maxLT . (13)

Therefore minimizing the cumulative regret for the reward function defined by Eq. (7) is equivalent
to maximizing the log evidence on the final epoch. Next, we describe how to design an optimal
decision mechanism to minimize the cumulative regret RT/w using Gaussian processes.

4 Minimizing Regret with Gaussian Processes

There are two unresolved problems with the reward function defined in Eq. (7) which still must be
addressed. The first is that it is not in fact computable, due to its use of future observations. The
second is that it ignores the ordering constraint required for β to be a valid Riemann partition.

We can handle both by problems by using a permutation-invariant Gaussian process to form a surro-
gate for the reward function ft(βt). The surrogate model will be updated by past rewards, and used
in place of ft(βt) to select the next schedule at the current round, as described in Algorithm 1.

In §4.1 we formally define how to use (time-varying) Gaussian processes in bandit optimization,
before describing how our permutation-invariant kernel can be used to solve the problem of order-
ing constraints on β in §4.2. Finally in §4.3 we provide a theoretical guarantee that our bandit
optimization will converge to the regret-minimizing choice of β.

4

4.1 Time-varying Gaussian processes for Bandit Optimization

A popular design in handling time-varying functions [21, 41, 20, 32] such as ft(βt) is to jointly
model the spatial and temporal dimensions using a product of covariance functions k = kβ ⊗ kT ,
where kβ : [0, 1]d × [0, 1]d → R is a spatial covariance function over actions, kT : N× N→ R is a
temporal covariance function, and k : Rd+1

+ × Rd+1
+ → R.

Under this joint modeling framework, the GP is defined as follows. At round t we have the history
of rewards yt = [y0, ..., yt]

T and sample points Xt = {x0, ...,xt}, where we define xt ∈ Rd+1 to
be the concatenation of βt and timestep t, i.e xt := [βt, t]

T . Then the time-varying reward function
is GP-distributed according to

ft ∼ GP
(
0, k(x,x′)

)
where k(x,x′) := kβ(β,β′)× kT (t, t′), (14)

where we have assumed zero prior mean for simplicity. For theoretical convenience we follow [5]

and choose kT (t, t′) = (1− ω)
|t−t′|

2 , where ω is a “forgetting-remembering” trade-off parameter
learned from data. We describe kβ(β,β′) in §4.2.

Using standard Gaussian identities [3, 34], the posterior predictive is also GP distributed, with mean
and variance given by

µt(β∗) = kt(β∗)
T
(
Kt + σ2

fI
)−1

yt (15)

σ2
t (β∗) = kt(β∗,β∗)− kt(β∗)T

(
Kt + σ2

fI
)−1

kt(β∗) (16)

where kt(β) = [k(x0,x), ..., k(xt,x)]T and Kt = [k(x,x′)]x,x′∈Xt . Using this permutation-
invariant, time-varying GP we can select βt+1 by maximizing a linear combination of the GP pos-
terior mean and variance w.r.t βt

βt+1 = arg max
βt

µt(βt) +
√
κtσt(βt), (17)

where Eq. (17) is referred to as an acquisition function and κt is its exploration-exploitation trade-off
parameter. We note that there are other acquisition functions available [16, 14, 15]. Our acquisi-
tion function, Eq. (17), is the time-varying version of GP-UCB [40, 5], which allows us to obtain
convergence results in §4.3 and set κt in Theorem 1.

4.2 Ordering Constraints and Permutation Invariance

Recall that the vector β = [β0, ..., βd−1]
T holds the locations of the left Riemann integral approxi-

mation in Eq. (5). In order for the left Riemann approximation to the TVO to be sensible, there must
be an ordering constraint imposed on β such that 0 < β1 < ... < βd−1 < 1. We model this in our
GP using a projection operator Φ which imposes the constraint by sorting the vector β. Applying Φ
within the spatial kernel, we obtain

kβ
(
β,β′

)
:= kS

(
Φ(β),Φ(β′)

)
. (18)

This projection does not change the value of our acquisition function, and maintains the positive
definite for any covariance function for the spatial kS , e.g., Matern, Polynomial. We then optimize
the acquisition function via a projected-gradient approach. If a βt iterate leaves the feasible set
after taking a gradient step, we project it back into the feasible set using Φ and continue. We note
that existing work in the GP literature has considered such projection operations in various contexts
[38, 43].

4.3 Convergence Analysis

In Eq. (10), we showed that maximizing the TVO objective function LT as a function of βt is
equivalent to minimizing the cumulative regret RT/w by sequential optimization within the bandit
framework. Here, the subscript T/w refers to the number of bandit updates given the maximum
epochs T and the update frequency w where w � T .

We now derive an upper bound on the cumulative regret, and show that it asymptotically goes to
zero as T increases, i.e., limT→∞

RT/w
T = 0. Thus, our bandit will converge to choosing βT which

yields the optimal value of the TVO objective L∗T for model parameters at step T .

5

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2

3

4

St
an

da
rd

ize
d

f(
)

Time-Varying Reward Function t=[1-2k]
GP mean
GP var
t=1000

t=1200
t=1400
t=1600

t=1800
t=2000

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2

3

4

St
an

da
rd

ize
d

f(
)

Time-Varying Reward Function t=[2-3k]
GP mean
GP var
t=2000

t=2200
t=2400
t=2600

t=2800
t=3000

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2

3

4

St
an

da
rd

ize
d

f(
)

Time-Varying Reward Function t=[9-10k]
GP mean
GP var
t=9000

t=9200
t=9400

t=9600
t=9800

Figure 2: Time-varying reward function ft(βt) after 2k, 3k, and 10k training epochs, with bandit
choices of a single intermediate β1 (i.e. β = [0, β1]) colored by timestep. Scattered β1 in neigh-
boring epochs indicate ‘exploration’, while similarly colored values of β1 in regions where the GP
mean, or predicted reward, is high indicate ‘exploitation’.

We present the main theoretical result in Theorem 1. Our TVO framework mirrors the standard time-
varying GP bandit optimization, and thus inherits convergence guarantees from Bogunovic et al. [5].
However, as discussed in Appendix §C, we provide a tighter bound on the mutual information gain
γT/w which may be of wider interest.

Theorem 1. Let the domain D ⊂ [0, 1]d be compact and convex. Let Lt ≥ 0 be the Lipschitz
constant for the reward function at time t. Assume that the covariance function k is almost surely
continuously differentiable, with f ∼ GP (0, k). Further, for t ≤ T and j ≤ d, we assume

Pr
(

sup
∣∣∣∂ft(βt)/∂β(j)

t

∣∣∣ ≥ Lt
)
≤ ae−(Lt/b)2

for appropriate choice of a and b corresponding to Lt.

For δ ∈ (0, 1), we write κT/w = 2 log π2T 2

2δw2 + 2d log dbT
2

w2

√
log daπ2T 2

2δw2 and C1 = 8/ log(1 + σ2
f).

Then, after T/w time steps, our algorithm satisfies

RT/w =

T/w∑

t=1

ft(β
∗
t)− ft(βt) ≤

√
γT/w · C1 · κT/w · T/w + 2

with probability at least 1 − δ, where γT/w is the maximum information gain for the time-varying
covariance function (see below).

In the above theorem, the quantity γT/w measures the maximum information gain obtained about
the reward function after pulling T/w arms [40, 5]. In the Appendix §C, we show that γT/w ≤(

1 + T/
[
wÑ

])(
γβ
Ñ

+ σ−2f Ñ5/2ω
)

, where Ñ ∈ {1, ..., T/w} denotes a time-varying block

length, and γβ
Ñ

is defined with respect to the covariance kernel for β. For our particular choice

of exponentiated-quadratic kernel, the maximum information gain scales as γβ
Ñ
≤ O(log Ñd+1)

[40]. Compared with [5], our proof tightens the upper bound on γT/w from O(Ñ3) to O(Ñ5/2).

Combining these terms, we can then write the bound as RT/w .

O(

√([
log Ñd+1 + σ−2f Ñ5/2ω

]
T/w

)
, which is sublinear in T when the function f be-

comes time-invariant, i.e., ω → 0. In contrast, the sublinear guarantee does not hold when the
time-varying function is non-correlated, i.e., ω = 1, in which case the time covariance matrix
becomes identity matrix. The bound is tighter for lower schedule dimension d.

5 Experiments

We demonstrate the effectiveness of our method for training VAEs [18] on MNIST and Fashion
MNIST, and a Sigmoid Belief Network [28] on binarized MNIST and binarized Omniglot, using the
TVO objective. In Appendix D, we explore learning and inference in a discrete probabilistic context-
free grammar [24], showing that the TVO objective and our bandit optimization can translate to other

6

learning settings. In addition, we run ablation studies using random choices of β and a GP without
permutation invariance, and compare the runtime and performance of our method with grid search.
Our code is available at http://github.com/ntienvu/tvo_gp_bandit.

0 2000 4000 6000 8000 10000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0
Selecting t by GP Bandit

1<latexit sha1_base64="f/ucaHSqP+D9Bp31BanY7u7K7A0=">AAACS3icbVDLTgJBEJxFUcQX6NHLRmLiiewqRo9ELx4hkUcCGzI7NDgyu7OZ6VXIhi/wqp/lB/gd3owHh8fBBSvppFLVne4uPxJco+N8WpmNzezWdm4nv7u3f3BYKB41tYwVgwaTQqq2TzUIHkIDOQpoRwpo4Ato+aO7md96BqW5DB9wEoEX0GHIB5xRNFLd7RVKTtmZw14n7pKUyBK1XtGqdPuSxQGEyATVuuM6EXoJVciZgGm+G2uIKBvRIXQMDWkA2kvml07tM6P07YFUpkK05+rfiYQGWk8C33QGFB/1qjcT//M6MQ5uvISHUYwQssWiQSxslPbsbbvPFTAUE0MoU9zcarNHqihDE05qSxAL5Eq+TNMqHQEDIdKqL+UIqa/TX8M4kmoWSf8p1ujL8TSfNzm7q6muk+ZF2b0sX9UrpertMvEcOSGn5Jy45JpUyT2pkQZhBMgreSPv1of1ZX1bP4vWjLWcOSYpZLK/K6y0Og==</latexit>0
<latexit sha1_base64="+bcvVsgReT4e+AN7PozBeVeZPe8=">AAACS3icbVDLTgJBEJxFUcQX6NHLRmLiiewqRo9ELx4hkUcCGzI7NDgyu7OZ6VXIhi/wqp/lB/gd3owHh8fBBSvppFLVne4uPxJco+N8WpmNzezWdm4nv7u3f3BYKB41tYwVgwaTQqq2TzUIHkIDOQpoRwpo4Ato+aO7md96BqW5DB9wEoEX0GHIB5xRNFLd6RVKTtmZw14n7pKUyBK1XtGqdPuSxQGEyATVuuM6EXoJVciZgGm+G2uIKBvRIXQMDWkA2kvml07tM6P07YFUpkK05+rfiYQGWk8C33QGFB/1qjcT//M6MQ5uvISHUYwQssWiQSxslPbsbbvPFTAUE0MoU9zcarNHqihDE05qSxAL5Eq+TNMqHQEDIdKqL+UIqa/TX8M4kmoWSf8p1ujL8TSfNzm7q6muk+ZF2b0sX9UrpertMvEcOSGn5Jy45JpUyT2pkQZhBMgreSPv1of1ZX1bP4vWjLWcOSYpZLK/KcW0OQ==</latexit> 1<latexit sha1_base64="f/ucaHSqP+D9Bp31BanY7u7K7A0=">AAACS3icbVDLTgJBEJxFUcQX6NHLRmLiiewqRo9ELx4hkUcCGzI7NDgyu7OZ6VXIhi/wqp/lB/gd3owHh8fBBSvppFLVne4uPxJco+N8WpmNzezWdm4nv7u3f3BYKB41tYwVgwaTQqq2TzUIHkIDOQpoRwpo4Ato+aO7md96BqW5DB9wEoEX0GHIB5xRNFLd7RVKTtmZw14n7pKUyBK1XtGqdPuSxQGEyATVuuM6EXoJVciZgGm+G2uIKBvRIXQMDWkA2kvml07tM6P07YFUpkK05+rfiYQGWk8C33QGFB/1qjcT//M6MQ5uvISHUYwQssWiQSxslPbsbbvPFTAUE0MoU9zcarNHqihDE05qSxAL5Eq+TNMqHQEDIdKqL+UIqa/TX8M4kmoWSf8p1ujL8TSfNzm7q6muk+ZF2b0sX9UrpertMvEcOSGn5Jy45JpUyT2pkQZhBMgreSPv1of1ZX1bP4vWjLWcOSYpZLK/K6y0Og==</latexit>

0
<latexit sha1_base64="+bcvVsgReT4e+AN7PozBeVeZPe8=">AAACS3icbVDLTgJBEJxFUcQX6NHLRmLiiewqRo9ELx4hkUcCGzI7NDgyu7OZ6VXIhi/wqp/lB/gd3owHh8fBBSvppFLVne4uPxJco+N8WpmNzezWdm4nv7u3f3BYKB41tYwVgwaTQqq2TzUIHkIDOQpoRwpo4Ato+aO7md96BqW5DB9wEoEX0GHIB5xRNFLd6RVKTtmZw14n7pKUyBK1XtGqdPuSxQGEyATVuuM6EXoJVciZgGm+G2uIKBvRIXQMDWkA2kvml07tM6P07YFUpkK05+rfiYQGWk8C33QGFB/1qjcT//M6MQ5uvISHUYwQssWiQSxslPbsbbvPFTAUE0MoU9zcarNHqihDE05qSxAL5Eq+TNMqHQEDIdKqL+UIqa/TX8M4kmoWSf8p1ujL8TSfNzm7q6muk+ZF2b0sX9UrpertMvEcOSGn5Jy45JpUyT2pkQZhBMgreSPv1of1ZX1bP4vWjLWcOSYpZLK/KcW0OQ==</latexit>

E⇡�
[·]

<latexit sha1_base64="tTJPeHdmduE7mFmZ2r5wwU1BpfQ=">AAAHb3ichVXbbhMxEDW3ptxbeOABCVZUlUoVVU0vahEvFRcBAsRF9CKaEHm9sxurXq/jddqkZh/5Gl7hY/gM/oDxpqFJnIKlbGbnnJk5Hq/tUAmem+XlX+fOX7h4aaoyffnK1WvXb9ycmb21k2cdzWCbZSLTeyHNQXAJ24YbAXtKA01DAbvhwVOH7x6CznkmP5megkZKE8ljzqhBV3Pmfj2lphWG9nnRtHXF8RGCoUWxX2dRZhrNmbnlpeVyBL5ROzHmtqZJOd43Z6c261HGOilIwwTN8/2VNWWqIBOcTathqTacCSiu1Ds5KMoOaAL7aEqaQt6w5YyKYB49URBnGn/SBKV3OMLSNM97aYhMpz8fx5zzLzY/UsrEmw3LpeoYkKxfKe6IwGSB608QcQ3MiB4alGmOYgPWopoyg10cEf2p1rBOnUszAgjsrawNFRlRF9IQRDEiyqquS5QjMYIYV7Kcr+3krKkhKuzHF08KW1vfqK6uVddXkSXhiGVpSmXklqtwj4RLC21Jtaa9IjhxUMETiRnGQsCFAFoDPCjfTsO9ElJ6RRb/X6WMOrvOolfosFtY2/8i46A7nvDwaAg98tDeENrz0OMh9NhD4yE0HkcPBKLPmvb1m2IcioAhpnDXmJbbNsECzuErVnvodUM6ZtttshYvecfI63q8BKSfsRpMSilE5FM9lnIzVwuTEqjuSPzE8LarYdsDcL6cQ0TPpB8PzXJiUd5GxqumS7n3+LPfp/bfpegfSm2v6YfJ0GolXleoQ0OeBGjiqQPjBH1K0BMJZTdUSaI6OGnO+JaIQeWnMlAU1ejhIpOeXhBCaZ6Co6P9BZtTvnrLwRXo1LEUn4ANUih+ZgaZcTw38dYYKGNUYBMX+nK9XkcpdV9A1HTkrpeN8yjnpZ7MXSFgLHpwRzun4z4DPOA1vMU671A5NZletHWqkzIt/terzvoXkcsBES28a2rjN4tv7Kws1daWHn1Ym9t60r90yDS5Sx6QBVIjG2SLvCTvyTZh5Bv5Tn6Qn1O/K3cq9ypBn3r+3EnMbTIyKg//ALs2wYo=</latexit>

�j

<latexit sha1_base64="6rw73jSUGkY1BBMam5J8+ICCs6I=">AAAHVXichVXbbhMxEHVLSUu5lMsjLyuqSqWKqqYtooiXqhQBAsRFvYkmRF7v7MbU63W8TpvU7EfwCh+G+BgkxtuGJnEKKyWZnXNm5ngmtkMleG5WVn5NTF6ZulqZnrk2e/3GzVtzt+/c3cuzjmawyzKR6YOQ5iC4hF3DjYADpYGmoYD98OiZw/ePQec8kzump6CR0kTymDNq0LVfD8HQ5pfm7fmV5ZXyCXyjdm7Mb86Q8nnfvFPZqEcZ66QgDRM0zw9X15WpgkxQc6thqTacCShm650cFGVHNIFDNCVNIW/YUncRLKAnCuJM40eaoPQORlia5nkvDZGZUtPKRzHn/IstDJUy8UbDcqk6BiQ7qxR3RGCywHUhiLgGZkQPDco0R7EBa1FNmcFeDYneqTWsU+fSDAECOyhrA0WG1IU0BFEMibKq6xLlSIwgxnmV67WdnDU1RIX9+GKrsLVHj6tr69VHa8iScMKyNKUysjinwn0lXFpoS6o17RXBuYMKnkjMMBICLgTQ6uNB+XYR7pWQ0iuy9P8qZdTldZa8Qsfdwtq6m1oYB93RhMcnA+iJh/YG0J6Hng6gpx4aD6DxKHokEN1u2tdvilEoAoaYatq6aeF+KYJFXMNXrPbQ64Z0zDYyVYuXvFPkdT1eAtLPWA3GpRQi8qkeS7mVq8VxCVR3KH5seNvVsO0+uFCuIaKX0k8HVjm2KG8j41XTpTx4+snvU/vvKEL7vHA8b1rJwLQSryvUoSFPAjTx1IFRgr4g6LGEshuqJFEdnDdndEvEoPILGSiKavRwkUlPLwihNE/B0dH+jM0pX71xcAU6dSzFx2D9FIpfmkFmHM9NvBv6yhgV2MTFM7ler6OUun9A1HTkrpeN8yjnpZ7MXRRgLHpwRzun424DHvAa3mKdd6icmkwv2TrVSZkWf+tVZ/2LyGWfiBbeNbXRm8U39laXa+vLTz6sz29unV06ZIbcJw/IIqmRx2STvCTvyS5h5Ih8I9/Jj8rPyu/pqenKGXVy4jzmHhl6puf+AMIMt4k=</latexit>

�j

<latexit sha1_base64="6rw73jSUGkY1BBMam5J8+ICCs6I=">AAAHVXichVXbbhMxEHVLSUu5lMsjLyuqSqWKqqYtooiXqhQBAsRFvYkmRF7v7MbU63W8TpvU7EfwCh+G+BgkxtuGJnEKKyWZnXNm5ngmtkMleG5WVn5NTF6ZulqZnrk2e/3GzVtzt+/c3cuzjmawyzKR6YOQ5iC4hF3DjYADpYGmoYD98OiZw/ePQec8kzump6CR0kTymDNq0LVfD8HQ5pfm7fmV5ZXyCXyjdm7Mb86Q8nnfvFPZqEcZ66QgDRM0zw9X15WpgkxQc6thqTacCShm650cFGVHNIFDNCVNIW/YUncRLKAnCuJM40eaoPQORlia5nkvDZGZUtPKRzHn/IstDJUy8UbDcqk6BiQ7qxR3RGCywHUhiLgGZkQPDco0R7EBa1FNmcFeDYneqTWsU+fSDAECOyhrA0WG1IU0BFEMibKq6xLlSIwgxnmV67WdnDU1RIX9+GKrsLVHj6tr69VHa8iScMKyNKUysjinwn0lXFpoS6o17RXBuYMKnkjMMBICLgTQ6uNB+XYR7pWQ0iuy9P8qZdTldZa8Qsfdwtq6m1oYB93RhMcnA+iJh/YG0J6Hng6gpx4aD6DxKHokEN1u2tdvilEoAoaYatq6aeF+KYJFXMNXrPbQ64Z0zDYyVYuXvFPkdT1eAtLPWA3GpRQi8qkeS7mVq8VxCVR3KH5seNvVsO0+uFCuIaKX0k8HVjm2KG8j41XTpTx4+snvU/vvKEL7vHA8b1rJwLQSryvUoSFPAjTx1IFRgr4g6LGEshuqJFEdnDdndEvEoPILGSiKavRwkUlPLwihNE/B0dH+jM0pX71xcAU6dSzFx2D9FIpfmkFmHM9NvBv6yhgV2MTFM7ler6OUun9A1HTkrpeN8yjnpZ7MXRRgLHpwRzun424DHvAa3mKdd6icmkwv2TrVSZkWf+tVZ/2LyGWfiBbeNbXRm8U39laXa+vLTz6sz29unV06ZIbcJw/IIqmRx2STvCTvyS5h5Ih8I9/Jj8rPyu/pqenKGXVy4jzmHhl6puf+AMIMt4k=</latexit>

Figure 3: Bandit-chosen β over time on MNIST
using d = 5. We can interpret the β selection
process in 3 phases: (blue) random selection in
initial epochs; (orange) focusing on small values
βi < 0.5 as training progresses; (green) moving
toward βi = 1 as learning approaches conver-
gence. The bottom panel illustrates a hypotheti-
cal integrand curve and β selections at interme-
diate (left) and later (right) epochs.

Experimental Setup: We evaluate our GP-
bandit for S ∈ {10, 50} and d ∈ {2, 5, 10, 15}
and, for each configuration, train until conver-
gence using 5 random seeds. Note that, for each
setting of d, we implicitly include β0 = 0 and
append 1 to the vector β to perform the integra-
tion in Eq. (5).

For each S, d configuration, we compare against
three baseline integration schedules: log-
uniform spacing in the interval [β1, 1], linear-
uniform spacing in the interval [0, 1], and the
moments schedule of [6, 12], which corre-
sponds to uniform spacing along the y-axis. For
log/linear-uniform spacing, we set β1 = 0.025
for all experiments, reflecting the results of grid
search in [27]. We use a fixed model architec-
ture for all experiments, which we describe in
Appendix A.

To obtain the bandit feedback in Eq. (7), we
use a fixed, linear schedule with d = 50 for
calculating Lt with Eq. (5). This yields a
tighter log pθ(x) bound, decouples reward func-
tion evaluation from model training and sched-
ule selection in each round, and is still efficient
using SNIS in Eq. (4). We limit the value of d
for TVO training following observations of dete-
riorating performance in [27].

GP Implementation: For GP modeling, we
use an exponentiated quadratic covariance function for kβ and estimate hyperparameters via type
II maximum likelihood estimation [34]. We use multi-start BFGS [9] to optimize the acquisition
function in Eq. (17). We set the update frequency w = 6 initially and increment w by one after
every 10 bandit iterations to account for smaller objective changes later in training, and update early
if Lt ≤ −0.05. We found that selecting βj too close to either 0 or 1 could negatively affect per-
formance, and thus restrict β ∈ [0.05, 0.95]d in all experiments. We follow a common practice to
standardize with the running average the utility score y ∼ N (0, 1) for robustness.

5.1 Scheduling Behaviour

We first investigate the behaviour of our time-varying reward function and bandit scheduling. These
experiments highlight the adaptive nature of our algorithm, as we inspect the choice of integration
schedule across training epochs for both d = 2 and d = 5.

Time-varying Reward Function: In Figure 2, we visualize the mean and variance of our time-
varying estimate of the utility function yt = ft(βt) + εt after 2000, 3000, and 10, 000 epochs,
respectively. We illustrate the choice of β for d = 2, so that β0 = 0 is fixed and we can write the
reward as ft(β1). Colored dots indicate values of β1 selected by our bandit algorithm in each round,
with the vertical axis reflecting the observed reward ft(β1) as the change in model evidence L.

In the first two panels, we observe instances where our bandit prioritizes exploitation, choosing
similar, high-reward β1 values in neighboring rounds with the same color. However, note that these
β1 may not match the highest GP predictive mean for ft(β), since the blue line is shown at the final
training epoch in a window. In the final panel, we observe that our time-varying reward function has
adapted to have very low variance, since the TVO objective changes only slightly near convergence
and the choice of β1 has little impact.

7

http://github.com/ntienvu/tvo_gp_bandit

2 5 10 15
Number of Partitions

92

91

90

89

88

87

te
st

 lo
gp

(x
)

S=10

gp_bandit (best: -88.51±0.06)
log (best: -88.58±0.10)
linear (best: -89.11±0.11)
moments (best: -88.65±0.09)

2 5 10 15
Number of Partitions

S=50

gp_bandit (best: -87.49±0.11)
log (best: -87.52±0.06)
linear (best: -88.43±0.04)
moments (best: -87.51±0.09)

MNIST

2 5 10 15
Number of Partitions

235

234

233

232

te
st

 lo
gp

(x
)

S=10

gp_bandit (best: -232.34±0.12)
log (best: -232.40±0.18)
linear (best: -232.74±0.16)
moments (best: -232.52±0.23)

2 5 10 15
Number of Partitions

S=50

gp_bandit (best: -231.60±0.07)
log (best: -231.64±0.08)
linear (best: -232.07±0.09)
moments (best: -231.60±0.05)

Fashion MNIST

2 5 10 15
Number of Partitions

3

4

5

6

7

8

9

10

KL
[q

||p
]

4.9

6.2
6.8 6.9

4.1

6.5
7.1 7.4

5.2

6.4
7.1

7.6

S: 10
gp_bandit
log
moments

2 5 10 15
Number of Partitions

KL
[q

||p
]

5.0

7.1

8.4
8.8

3.8

7.8

8.7 9.0

5.6

7.9

8.9 9.0

S: 50
gp_bandit
log
moments

MNIST

2 5 10 15
Number of Partitions

1

2

3

4

5

6

7

KL
[q

||p
]

2.7

3.5

4.2
4.5

2.0

4.0
4.6

5.0

2.8

3.9

4.6
5.0

S: 10
gp_bandit
log
moments

2 5 10 15
Number of Partitions

KL
[q

||p
]

2.7

3.7

5.4
6.0

1.9

4.7

5.9
6.2

2.9

4.7

5.5
6.0

S: 50
gp_bandit
log
moments

Fashion MNIST

Figure 4: Performance comparison for continuous VAE on MNIST and Fashion MNIST. Top: we
compare model learning performance using test likelihood (higher is better). Bottom: We compare
posterior inference as measured by the test KL divergence (lower is better) against the log and
moments baselines. Although, in general, we find that models with worse log p(x) tend to have
lower DKL, our GP-bandit schedule provides improvements in both learning and inference.

2 5 10 15
Number of Partitions

124

122

120

118

te
st

 lo
gp

(x
)

S=10

gp_bandit (best: -118.88±0.41)
log (best: -118.94±0.39)
linear (best: -119.82±0.56)
moments (best: -118.85±0.33)

2 5 10 15
Number of Partitions

S=50

gp_bandit (best: -117.80±0.27)
log (best: -117.76±0.15)
linear (best: -119.41±0.56)
moments (best: -117.64±0.12)

Binarized MNIST

2 5 10 15
Number of Partitions

2

4

6

8

10

12
KL

[q
||p

]

4.2

5.5
6.0 6.1

3.5

6.0 6.3 6.2

4.8
5.9 6.2 6.2

S: 10
gp_bandit
log
moments

2 5 10 15
Number of Partitions

KL
[q

||p
]

5.2

7.6

9.7 9.4

3.5

9.0
10.0

9.5

5.6

10.2

11.5 11.9

S: 50
gp_bandit
log
moments

Binarized MNIST

Figure 5: Performance comparison in discrete latent variable model using a Sigmoid Belief Network
on the binarized MNIST dataset. Our GP-bandit achieves comparable results to the log and moments
schedule in terms model learning (higher log p(x)), with better posterior inference (lower DKL).

β Across Training: In Figure 3, we visualize bandit choices of β with d = 5. In initial epochs
(blue), the GP-bandit algorithm prioritizes exploration before focusing on βj < 0.5 in the second
phase (orange). As the VAE converges, our algorithm begins to explore βj further from zero (green).

Beyond avoiding the need for an expensive grid search, a primary motivation for our bandit approach
is a lack of knowledge about the shape of the integrand. Using the intuition that βj choices should be
concentrated in regions where the integrand is changing quickly in order to obtain accurate Riemann
approximations, we can still translate the observed bandit choices of β into example integrands in
the middle (orange) and late (green) stages of training in the bottom panel of Fig. 3. An integrand
that rises steeply away from β = 0 indicates that qφ(z |x) is mismatched to pθ(z |x), and the TVO
might be improved by choosing small βj . As the curve begins to smooth later in training, with a
higher proportion of importance samples yielding high likelihood under the generative model, our
bandit begins to explore βj closer to 1.

5.2 Model Learning and Inference

Continuous VAE: We present results of training a continuous VAE on the MNIST and Fashion
MNIST dataset in Figure 4. We measure model learning performance using the test log evidence,
as estimated by the IWAE bound [7] with 5000 samples per data point. We also compare inference
performance using DKL[qφ(z |x) ||pθ(z |x)], which we calculate by subtracting the test ELBO from
our estimate of log pθ(x).

For most scenarios in Figure 4, our GP bandit optimization outperforms baselines with respect to
both model learning and inference. In general, we observe that models with lower model evidence
attain lower test KL divergence. Thus, in comparing inference performance in the bottom panel of
Figure 4, we compare against the log and moment schedules, baselines with comparable test log

8

likelihoods. It is notable that our approach often achieves better results for both learning (higher
log pθ(x)) and inference (lower DKL). We obtain the highest log evidence with d = 10 for MNIST
and d = 15 for Fashion MNIST.

Sigmoid Belief Network: We present similar results for learning discrete latent variable mod-
els using a Sigmoid Belief Network [28]. We show results on binarized MNIST in Figure 5, with
binarized Omniglot in Figure 7 in Appendix D.2. Our GP bandit optimization achieves competi-
tive model learning performance with the log-uniform and moment schedules and better posterior
inference across models with comparable log p(x), indicating our GP-bandit schedule can flexibly
optimize the TVO for various model types.

6 Conclusion

We have presented a new approach for automated selection of the integration schedule for the Ther-
modynamic Variational Objective. Our bandit framework optimizes a reward function that is directly
linked to improvements in the generative model evidence over the course of training the model pa-
rameters. We show theoretically that this procedure asymptotically minimizes the regret as a func-
tion of the choice of schedule. Finally, we demonstrated that the proposed approach empirically
outperforms existing schedules in both model learning and inference for discrete and continuous
generative models.

Our GP bandit optimization offers a general solution to choosing the integration schedule in the
TVO. However, our algorithm, as well as all other existing schedules, still rely on the number of
partitions d as a hyperparameter which is fixed over the course of the training. Incorporating the
adaptive selection of d into our bandit optimization remains an interesting direction for future work.

7 Broader Impact

Our research can be widely applied for variational inference in deep generative models, including
variational autoencoders with autoregressive decoders and normalizing flows. Variational inference,
and Bayesian methods more generally, have broad applications spanning science and engineering,
from epidemiology [45] to particle physics [2]. Our methodological contributions for variational in-
ference may find broader impact through improved modelling in these disparate domains. However,
our method is general in nature, so domain-specific applications should further consider implications
for deployment in the real-world.

8 Acknowledgements

VM acknowledges the support of the Natural Sciences and Engineering Research Council of Canada
(NSERC) under award number PGSD3-535575-2019 and the British Columbia Graduate Scholar-
ship, award number 6768. VM/FW acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), the Canada CIFAR AI Chairs Program, and the
Intel Parallel Computing Centers program. RB acknowledges support from the Defense Advanced
Research Projects Agency (DARPA) under award FA8750-17-C-0106.

This material is based upon work supported by the United States Air Force Research Laboratory
(AFRL) under the Defense Advanced Research Projects Agency (DARPA) Data Driven Discovery
Models (D3M) program (Contract No. FA8750-19-2-0222) and Learning with Less Labels (LwLL)
program (Contract No.FA875019C0515). Additional support was provided by UBC’s Composites
Research Network (CRN), Data Science Institute (DSI) and Support for Teams to Advance Interdis-
ciplinary Research (STAIR) Grants. This research was enabled in part by technical support and com-
putational resources provided by WestGrid (https://www.westgrid.ca/) and Compute Canada
(www.computecanada.ca).

References
[1] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic

multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

9

https://www.westgrid.ca/
www.computecanada.ca

[2] Atilim Gunes Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Saeid Naderiparizi, Andreas
Munk, Jialin Liu, Bradley Gram-Hansen, Gilles Louppe, Lawrence Meadows, et al. Efficient
probabilistic inference in the quest for physics beyond the standard model. In Advances in
Neural Information Processing Systems, pages 5460–5473, 2019.

[3] Christopher M Bishop. Pattern recognition and machine learning. springer New York, 2006.

[4] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877, 2017.

[5] Ilija Bogunovic, Jonathan Scarlett, and Volkan Cevher. Time-varying Gaussian process bandit
optimization. In Artificial Intelligence and Statistics, pages 314–323, 2016.

[6] Rob Brekelmans, Vaden Masrani, Frank Wood, Greg Ver Steeg, and Aram Galstyan. All in the
exponential family: Bregman duality in thermodynamic variational inference. In International
Conference on Machine Learning, 2020.

[7] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. In
International Conference on Representation Learning, 2016.

[8] Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational au-
toencoders. In International Conference on Machine Learning, pages 1078–1086, 2018.

[9] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[10] Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to
applications, volume 1. Elsevier, 2001.

[11] Andrew Gelman and Xiao-Li Meng. Simulating normalizing constants: From importance
sampling to bridge sampling to path sampling. Statistical science, pages 163–185, 1998.

[12] Roger B Grosse, Chris J Maddison, and Russ R Salakhutdinov. Annealing between distribu-
tions by averaging moments. In Advances in Neural Information Processing Systems, pages
2769–2777, 2013.

[13] Junxian He, Daniel Spokoyny, Graham Neubig, and Taylor Berg-Kirkpatrick. Lagging infer-
ence networks and posterior collapse in variational autoencoders. In International Conference
on Representation Learning, 2019.

[14] Philipp Hennig and Christian J Schuler. Entropy search for information-efficient global opti-
mization. Journal of Machine Learning Research, 13:1809–1837, 2012.

[15] José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive
entropy search for efficient global optimization of black-box functions. In Advances in Neural
Information Processing Systems, pages 918–926, 2014.

[16] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2014.

[18] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations, 2014.

[19] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. In Advances in Neural Infor-
mation Processing Systems, pages 4743–4751, 2016.

[20] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast Bayesian
optimization of machine learning hyperparameters on large datasets. In Artificial Intelligence
and Statistics, pages 528–536, 2017.

[21] Andreas Krause and Cheng S Ong. Contextual Gaussian process bandit optimization. In
Advances in Neural Information Processing Systems, pages 2447–2455, 2011.

10

[22] Brenden M Lake, Russ R Salakhutdinov, and Josh Tenenbaum. One-shot learning by inverting
a compositional causal process. In Advances in Neural Information Processing Systems, pages
2526–2534, 2013.

[23] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[24] Tuan Anh Le, Adam R Kosiorek, N Siddharth, Yee Whye Teh, and Frank Wood. Revisiting
reweighted wake-sleep for models with stochastic control flow. In Uncertainty in Artificial
Intelligence, pages 1039–1049. PMLR, 2020.

[25] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[26] Yucen Luo, Alex Beatson, Mohammad Norouzi, Jun Zhu, David Duvenaud, Ryan P Adams,
and Ricky TQ Chen. Sumo: Unbiased estimation of log marginal probability for latent variable
models. arXiv preprint arXiv:2004.00353, 2020.

[27] Vaden Masrani, Tuan Anh Le, and Frank Wood. The thermodynamic variational objective. In
Advances in Neural Information Processing Systems, pages 11521–11530, 2019.

[28] Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks.
In International Conference on Machine Learning, pages 1791–1799, 2014.

[29] Andriy Mnih and Danilo J Rezende. Variational inference for monte carlo objectives. In
International Conference on Machine Learning, pages 2188–2196, 2016.

[30] Vu Nguyen, Sebastian Schulze, and Michael A Osborne. Bayesian optimization for iterative
learning. In Advances in Neural Information Processing Systems, 2020.

[31] Sebastian Nowozin. Debiasing evidence approximations: On importance-weighted autoen-
coders and jackknife variational inference. International Conference on Learning Representa-
tions, 2018.

[32] Favour Mandanji Nyikosa. Adaptive Bayesian optimization for dynamic problems. PhD thesis,
University of Oxford, 2018.

[33] Yosihiko Ogata. A monte carlo method for high dimensional integration. Numerische Mathe-
matik, 55(2):137–157, 1989.

[34] Carl Edward Rasmussen. Gaussian processes for machine learning. 2006.

[35] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Inter-
national Conference on Machine Learning, pages 1530–1538, 2015.

[36] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International Conference on Machine
Learning, pages 1278–1286, 2014.

[37] Ruslan Salakhutdinov and Iain Murray. On the quantitative analysis of deep belief networks.
In International Conference on Machine Learning, pages 872–879, 2008.

[38] Jasper Snoek, Kevin Swersky, Rich Zemel, and Ryan Adams. Input warping for Bayesian
optimization of non-stationary functions. In International Conference on Machine Learning,
pages 1674–1682, 2014.

[39] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther.
Ladder variational autoencoders. In Advances in Neural Information Processing Systems 29,
pages 3738–3746. 2016.

[40] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process
optimization in the bandit setting: No regret and experimental design. In International Con-
ference on Machine Learning, pages 1015–1022, 2010.

11

[41] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task Bayesian optimization. In
Advances in Neural Information Processing Systems, pages 2004–2012, 2013.

[42] Michael Tschannen, Olivier Bachem, and Mario Lucic. Recent advances in autoencoder-based
representation learning. arXiv preprint arXiv:1812.05069, 2018.

[43] Mark van der Wilk, Matthias Bauer, ST John, and James Hensman. Learning invariances
using the marginal likelihood. In Advances in Neural Information Processing Systems, pages
9938–9948, 2018.

[44] Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and vari-
ational inference. Foundations and Trends® in Machine Learning, 1(1-2):1–305, 2008.

[45] Frank Wood, Andrew Warrington, Saeid Naderiparizi, Christian Weilbach, Vaden Masrani,
William Harvey, Adam Scibior, Boyan Beronov, and Ali Nasseri. Planning as inference in
epidemiological models. arXiv preprint arXiv:2003.13221, 2020.

[46] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

12

A Experimental Setup

Dataset Description The discrete and continuous VAE literature use slightly different training
procedures. For continuous VAEs, we follow the sampling procedure described in footnote 2, page
6 of Burda et al. [7], and sample binary-valued pixels with expectation equal to the original gray
scale 28×28 image. We split MNIST [25] and Fashion MNIST [46] into 60k training examples and
10k testing examples across 10 classes.

For Sigmoid Belief Networks, we follow the procedure described by Mnih and Rezende [29] and
use 50k training examples and 10k testing examples (the remaining 10k validation examples are not
used) with the binarized MNIST [37] dataset.

Training Procedure All models are written in PyTorch and trained on GPUs. For each sched-
uler, we train for 10, 000 epochs using the Adam optimizer [17] with a learning rate of 10−3, and
minibatch size of 1000. All weights are initialized with PyTorch’s default initializer. For the neural
network architecture, we use two hidden layers of [100, 25] nodes.

Reward Evaluation To obtain the bandit feedback in Eq. (7), we use a fixed, linear schedule
with d = 50 for calculating Lt with Eq. (5). This yields a tighter log pθ(x) bound, decouples
reward function evaluation from model training and schedule selection in each round, and is still
efficient using SNIS in Eq. (4). We limit the value of d for TVO training following observations of
deteriorating performance in [27].

B GP kernels and treatment of GP hyperparameters

We present the GP kernels and treatment of GP hyperparameters for the black-box function f .

We use the exponentiated quadratic (or squared exponential) covariance function for input hyper-

parameter kβ(β,β′) = exp
(
− ||β−β

′||2
2σ2
β

)
and a time kernel kT (t, t′) = (1 − ω)

|t−t′|
2 where the

observation β and t are normalized to [0, 1]d and the outcome y is standardized y ∼ N (0, 1) for
robustness. As a result, our product kernel becomes

k ([β, t], [β′, t′]) = k(β,β′)× k(t, t′) = exp

(
−||β − β

′||2
2σ2

β

)
(1− ω)

|t−t′|
2 .

The length-scales σβ is estimated from the data indicating the variability of the function with regards
to the hyperparameter input x and number of training iterations t. Estimating appropriate values
for them is critical as this represents the GP’s prior regarding the sensitivity of performance w.r.t.
changes in the number of training iterations and hyperparameters. We note that previous works have
also utilized the above product of spatial and temporal covariance functions for different settings
[21, 5, 30].

We fit the GP hyperparameters by maximizing their posterior probability (MAP),
p (σl, ω | β, t,y) ∝ p (σl, ω,β, t,y), which, thanks to the Gaussian likelihood, is available
in closed form as [34]

ln p (y,β, t, σl, ω) =
1

2
yT
(
K + σ2IN

)−1
y − 1

2
ln
∣∣K + σ2IN

∣∣+ ln phyp (σx, ω) + const (19)

where IN is the identity matrix in dimension N (the number of points in the training set), and
phyp(σl, ω) is the prior over hyperparameters, described in the following.

We maximize the marginal likelihood in Eq. (19) to select the suitable lengthscale parameter σl,
remembering-forgetting trade-off ω, and noise variance σ2

f .

Optimizing Eq. (19) involves taking the derivative w.r.t. each variable, such as ∂ ln p(y,β,t,σl,ω)
∂ω =

∂ ln p(y,β,t,σl,ω)
∂K × ∂K

∂k(t,t′) ×
∂k(t,t′)
∂ω . While the derivatives of σl and σ2

f are standard and can be
found in [34], we present the derivative w.r.t. ω as follows

∂k(t, t′)

∂ω
= −v (1− ω)

v−1 where v = |t− t′|/2. (20)

13

We optimize Eq. (19) with a gradient-based optimizer, providing the analytical gradient to the algo-
rithm. We start the optimization from the previous hyperparameter values θprev . If the optimization
fails due to numerical issues, we keep the previous value of the hyperparameters.

C Proof of Theorem 1

Our use of the TVGP within the TVO setting requires no problem specific modifications compared
to the general formulation in Bogunovic. As such, the proof of Theorem 1 closely follows the proof

of Theorem 4.3 in Bogunovic et al. [5] App. C. with time kernel kT (i, j) = (1− ω)
|i−j|

2 . At a
high level, their proof proceeds by partitioning the T random functions into blocks of length Ñ , and
bounding each using Mirsky’s theorem. Referring to Table 1 for notation, this results in a bound on
the maximum mutual information

γ̃Ñ ≤
(
T

Ñ
+ 1

)(
γÑ + Ñ3ω

)
, (21)

which leads directly to their bound on the cumulative regret (cf. App C.2 in [5]). Our contribution is
to recognize we can achieve a tighter bound on the maximum mutual information with an application
Cauchy Schwarz and Jensen’s inequality.

Proof. Beginning from Bogunovic et al. [5] Eq. (58), we have

γ̃Ñ ≤ γÑ +

Ñ∑

i=1

log (1 + ∆i) (22)

γ̃Ñ ≤ γÑ + Ñ log


1 +

1

Ñ

Ñ∑

i=1

∆i


 Jensen’s inequality (23)

γ̃Ñ ≤ γÑ + Ñ log


1 +

1√
Ñ

√√√√
Ñ∑

i=1

∆2
i


 Cauchy-Schwartz (24)

γ̃Ñ ≤ γÑ + Ñ log
(

1 + Ñ3/2ω
) Ñ∑

i=1

∆2
i ≤ Ñ4ω2 (25)

γ̃Ñ ≤ γÑ + Ñ5/2ω log(1 + x) ≤ x (26)

This bound is tighter than [5] Eq. (60) (Ñ5/2 ≤ Ñ3), where the latter was achieved via a simple
constrained optimization argument. Using (26), Theorem 1 follows using identical arguments as in
[5].

D Additional Experiments and Ablation Studies

We present additional experiments on a Probabilistic Context Free Grammar (PCFG) model and
Sigmoid Belief Networks in §D.1 and §D.2, a wall-clock time benchmark in §D.3, ablation studies
in §D.4, and additional training curves in §D.5.

D.1 Training Probabilistic Context Free Grammar

In order to evaluate our method outside of the Variational Autoencoder framework, we consider
model learning and amortized inference in the probabilistic context-free grammar setting described
in Section 4.1 of Le et al. [24]. Here pθ(x, z) = p(x | z)pθ(z), where pθ(z) is a prior over parse
trees z, p(x | z) is a soft relaxation of the {0, 1} likelihood which indicates if sentence x matches
the set of terminals (i.e the sentence) produced by z, and θ is the set of probabilities associated
with each production rule in the grammar. The inference network φ is a recurrent neural network
which outputs qφ(z |x), the conditional distribution of a parse tree given an input sentence. We use

14

Table 1: Supporting notations in regret analysis. We use notation to similar to Appendix C of
Bogunovic et al. [5] when possible.

Parameter Domain Meaning

ω scalar, (0, 1) Remembering-forgetting trade-off parameter (ε in [5])
fT vector, RT Vector of T function evaluations from f , fT := [f(x1), ..., f(xT)]T .

f̃T vector, RT (time-varying case) Vector of T function evaluations from f1:T ,
f̃T := [f1(x1), ..., fT (xT)]T

I(yT ; fT) scalar, R+ The mutual information in fT after revealing yT = fT + ε.
For a GP with covariance functionKT , I(yT ; fT) = 1

2 log |I + σ−2KT |
Ĩ(yT ; f̃T) scalar, R+ (time-varying case) Mutual information Ĩ(yT ; f̃T) = 1

2 log |I + σ−2K̃T |,
where K̃T is a covariance function that incorporates time kernel kT(i, j)

γT scalar, R+ The maximum information gain γT := max
x1,...,xT

I(yT ; fT) after T rounds

γ̃T scalar, R+ (time-varying case) The analogous time-varying maximum information
gain γ̃T := max

x1,...,xT
Ĩ(yT ; f̃T)

Ñ scalar, R+ An artifact of the proof technique used by [5]. The T time steps
are partitioned into blocks of length Ñ

the Astronomers PCFG considered by Le et al. [24], and therefore have access to the ground truth
production probabilities θtrue, which we will use to evaluate the quality of our learned model θ.

We compare the TVO with GP-bandit and log schedules against REINFORCE, WAKE-WAKE, and
WAKE-SLEEP, where WAKE-WAKE and WAKE-SLEEP use data from the true model x ∼ pθtrue(x)
and learned model x ∼ pθ(x) respectively. For each run, we use a batch size of 2 and train for 2000
epochs with Adam using default parameters. For all KL divergences (see caption in Figure 6), we
compute the median over 20 seeds and then plot the average over the last 100 epochs.

As observed by Le et al. [24], sleep-φ updates avoid the deleterious effects of the SNIS bias and
is therefore preferable to wake-φ updates in this context. Therefore for all runs we use the TVO to
update θ, and use sleep-φ to update φ. Sleep-φ is a special case of the TVO (cf. Masrani et al. [27]
Appendix G.1).

In Figure 6 we see that both GP-bandits and log schedules have comparable performance in this
setting, with TVO-log, S = 20 achieving the lowest KL[pθ||pθtrue] and KL[qφ(z |x)||pθtrue(z |x)]
across all trials. KL[qφ||pθtrue] is a preferable metric to KL[qφ||pθ] because the former does not
depend on the quality of the learned model. We also note that GP-bandits appears to be less sensitive
to the number of partitions than the log schedule.

D.2 Training Sigmoid Belief Network on Binarized Omniglot

We train the Sigmoid Belief Network described in §5.2 on the binarized Omniglot dataset. Omniglot
[22] has 1623 handwritten characters across 50 alphabets. We manually binarize the omniglot[23]
dataset by sampling once according to procedure described in [7], and split the binarized omniglot
dataset into 23, 000 training and 8, 070 test examples. Results are shown in Figure 7. At S = 50,
GP-bandit achieves similar model learning but better inference compared to log scheduling.

D.3 Wall-clock time Comparison

We benchmark the wall-clock time of our GP-bandit schedule against the cumulative wall-clock
time of the grid-search log schedule. For both schedules we train a VAE on the Omniglot dataset
for S = 10 and 5000 epochs. For the log schedule, we run the sweep ran by Masrani et al. [27]
(cf. section 7.2), i.e. 20 β1 linearly spaced between [10−2, 0.9] for d = 2, ..., 6, for a total of 100
runs. For a fair comparison against the log schedule, we loop over d = 2, ..., 6 for our GP bandits
because d is unlearned, for a total of five runs. We note that each run of the GP bandits schedule

15

2 5 10 15

0.02

0.04

0.06

0.08

0.10

0.12

KL
[

|
tr

ue
]

S=2

tvo (log) (0.078)
tvo (gp_bandits) (0.091)
wake-sleep (0.102)
wake-wake (0.112)
reinforce (0.072)

2 5 10 15

S=5

tvo (log) (0.103)
tvo (gp_bandits) (0.097)
wake-sleep (0.102)
wake-wake (0.146)
reinforce (0.082)

2 5 10 15

S=10

tvo (log) (0.065)
tvo (gp_bandits) (0.076)
wake-sleep (0.074)
wake-wake (0.139)
reinforce (0.084)

2 5 10 15

S=20

tvo (log) (0.059)
tvo (gp_bandits) (0.064)
wake-sleep (0.072)
wake-wake (0.106)
reinforce (0.09)

PCFG

2 5 10 15
12

14

16

18

20

22

24

KL
[

|
tr

ue
]

tvo (log) (20.651)
tvo (gp_bandits) (20.707)
wake-sleep (21.602)
wake-wake (36.737)
reinforce (28.341)

2 5 10 15

tvo (log) (20.261)
tvo (gp_bandits) (20.038)
wake-sleep (20.01)
wake-wake (30.627)
reinforce (25.779)

2 5 10 15

tvo (log) (17.969)
tvo (gp_bandits) (18.704)
wake-sleep (18.302)
wake-wake (27.85)
reinforce (36.469)

2 5 10 15

tvo (log) (17.021)
tvo (gp_bandits) (17.383)
wake-sleep (17.641)
wake-wake (25.727)
reinforce (33.281)

2 5 10 15
Number of Partitions

4

6

8

10

12

14

KL
[

|
]

tvo (log) (10.465)
tvo (gp_bandits) (11.117)
wake-sleep (11.364)
wake-wake (12.711)
reinforce (10.92)

2 5 10 15
Number of Partitions

tvo (log) (10.286)
tvo (gp_bandits) (10.639)
wake-sleep (11.103)
wake-wake (13.184)
reinforce (9.288)

2 5 10 15
Number of Partitions

tvo (log) (10.41)
tvo (gp_bandits) (10.381)
wake-sleep (10.74)
wake-wake (11.744)
reinforce (13.099)

2 5 10 15
Number of Partitions

tvo (log) (9.625)
tvo (gp_bandits) (9.827)
wake-sleep (10.288)
wake-wake (12.637)
reinforce (11.466)

Figure 6: Evaluation of model learning in a PCFG, where θ is the set of probabilities associated with
each production rule in the grammar, and φ is an RNN which generates the conditional probability
of a parse tree given a sentence. GP-bandits (ours) is comparable to the baseline log schedule and
less sensitive to number of partitions, as evaluated by the KL divergence between learned and true
model parameters (top row). Inference network learning is evaluated by the KL divergence between
qφ(z |x) and pθtrue(z |x) (middle row) and pθ(z |x) (bottom row). We compare against REINFORCE,
WAKE-WAKE, and WAKE-SLEEP, where some baselines aren’t shown due to being out of range.
At S = 20, TVO with log and GP-bandits schedule outperforms REINFORCE, WAKE-WAKE, and
WAKE-SLEEP both in terms of the quality of the generative model (top row, right) and inference
network (middle row, right) for all S ∈ {2, 5, 10, 20}.

2 5 10 15
Number of Partitions

133

132

131

te
st

 lo
gp

(x
)

S=10

gp_bandit (best: -131.50±0.13)
log (best: -131.49±0.16)
linear (best: -131.64±0.10)
moments (best: -131.55±0.15)

2 5 10 15
Number of Partitions

S=50

gp_bandit (best: -131.31±0.12)
log (best: -131.24±0.10)
linear (best: -131.51±0.16)
moments (best: -131.19±0.05)

Binarized Omniglot

2 5 10 15
Number of Partitions

0
1
2
3
4
5
6
7
8

KL
[q

||p
]

1.9
2.4

2.8 2.9

1.4

2.7
3.1 3.2

2.0
2.8 2.9 3.0

S: 10
gp_bandit
log
moments

2 5 10 15
Number of Partitions

KL
[q

||p
]

2.1

3.1

4.2
4.6

1.5

3.3

5.1 5.1

2.2

3.7

4.6

5.5

S: 50
gp_bandit
log
moments

Binarized Omniglot

Figure 7: Performance of the Sigmoid Belief Network described in §5.2 on the binarized omniglot
dataset. The GP-bandit schedule at d = 15, S = 50 outperforms all baselines in terms of model and
inference network learning.

includes learning the GP hyperparameters as described in Appendix B. For both schedules, we take
the best log p(x) and corresponding KL divergence, and plot the cumulative run time across all
runs. The results in Table 2 show that the GP-bandits schedule does comparable to the grid searched
log schedule (log likelihood: −110.72 vs −110.99) while requiring significantly less cumulative
wall-clock time (10 hrs vs 178 hrs).

16

2 5 10 15
d

90.5

90.0

89.5

89.0

88.5

88.0

87.5

87.0

te
st

 lo
gp

(x
)

S: 10

rand (best: -89.053)
gp-bandit (best: -88.504)

2 5 10 15
d

te
st

 lo
gp

(x
)

S: 50

rand (best: -88.244)
gp-bandit (best: -87.579)

mnist

2 5 10 15
d

234.0

233.5

233.0

232.5

232.0

231.5

te
st

 lo
gp

(x
)

S: 10

rand (best: -232.462)
gp-bandit (best: -232.014)

2 5 10 15
d

te
st

 lo
gp

(x
)

S: 50

rand (best: -231.961)
gp-bandit (best: -231.643)

fashion_mnist

Figure 8: We compare the performance between our GP-bandit against the Random search (Rand)
baseline which uniformly generates the integration schedules βt. The GP-bandit schedule outper-
forms the random counterpart by using information obtained from previous choices, as described in
Algorithm 1.

Table 2: Wallclock time of the GP-bandit schedule compared to the grid-search of [27] for the log
schedule. GP-bandit approach achieves a competitive test log likelihood and lower KL divergence
compared with the grid-searched log schedule, but requires significantly lower cumulative run-time.

best log p(x) best kl number of runs cumulative run time (hrs)

GP bandit (ours) -110.995 7.655 5 10.99
grid-searched log -110.722 8.389 100 177.01

D.4 Ablation studies

Ablation study between GP-bandit and random search. To demonstrate that our model can
leverage useful information from past data, we compare against the Random Search picks the inte-
gration schedule uniformly at random.

We present the results in Figure 8 using MNIST (left) and Fashion MNIST (right). We observe that
our GP-bandit clearly outperforms the Random baseline. The gap is generally increasing with larger
dimension d, e.g., d = 15 as the search space grows exponentially with the dimension.

Ablation study between permutation invariant GPs. We compare our GP-bandit model using
two versions of (1) non-permutation invariant GP and (2) permutation invariant GP in Table 3.

Our permutation invariant GP does not need to add all permuted observations into the model, but is
still capable of generalizing. The result in Table 3 confirms that if we have more samples to learn
the GP, such as using larger epochs budget T , the two versions will result in the same performance.
On the other hand, if we have limited number of training budgets, e.g., using lower number of
epochs, the permutation invariant GP will be more favorable and outperforms the non-permutation
invariant. In addition, the result suggests that for higher dimension d = 15 (number of partitions)
our permutation invariant GP performs consistently better than the counterpart.

D.5 Training Curves

We show example training curves for S = 10, d ∈ {5, 15} obtained using the linear, log, moment,
and GP-bandit schedules in Figure 9. We can see sudden drops in the GP-bandit training curves
indicating our model is exploring alternate schedules during training (cf. Section 4.1).

17

Table 3: Comparison between permutation invariant and non-permutation invariant in MNIST
dataset using S=10 (top) and S=50 (bottom). The best scores are in bold. Given T used epochs,
the number of bandit update and thus the number of sample for GP is T/w where w = 10 is the
frequency update. The permutation invariant will be more favorable when we have less samples for
fitting the GP, as indicated in less number of used epochs T = 1000, 2000. The performance is
comparable when we collect sufficiently large number of samples, e.g., when T/w = 1000.

S=10 Used Epoch T / Bandit Iteration 1000/100 2000/200 5000/500 10000/1000

d=5
Perm Invariant −91.488 −90.129 −89.130 −88.651

Non Perm Invariant −91.554 −90.206 −89.262 −88.552

d=10
Perm Invariant −91.430 −90.219 −89.159 −88.603

Non Perm Invariant −91.553 −90.249 −89.110 −88.466

d=15
Perm Invariant −91.386 −90.059 −88.957 −88.504

Non Perm Invariant −91.550 −90.224 −89.215 −88.564

S=50 Used Epoch T / Bandit Iteration 1000/100 2000/200 5000/500 10000/1000

d=5
Permutation Invariant −90.071 −89.068 −88.163 −87.979

Non Permutation Invariant −90.119 −89.142 −88.215 −87.860

d=10
Perm Invariant −90.125 −89.115 −88.187 −87.859

Non Permutation Invariant −90.212 −89.225 −88.231 −87.702

d=15
Permutation Invariant −90.029 −89.082 −88.102 −87.579

Non Permutation Invariant −90.157 −89.247 −88.173 −87.631

18

0 2000 4000 6000 8000 10000
epoch

94

93

92

91

90

89

tra
in

 lo
gp

(x
)

mnist (d=5)

gp_bandit
log
linear
moments

0 2000 4000 6000 8000 10000
epoch

94

93

92

91

90

89

tra
in

 lo
gp

(x
)

mnist (d=15)

gp_bandit
log
linear
moments

0 2000 4000 6000 8000 10000
epoch

234.0

233.5

233.0

232.5

232.0

231.5

231.0

230.5

230.0

tra
in

 lo
gp

(x
)

fashion mnist (d=5)

gp_bandit
log
linear
moments

0 2000 4000 6000 8000 10000
epoch

234.0

233.5

233.0

232.5

232.0

231.5

231.0

230.5

230.0

tra
in

 lo
gp

(x
)

fashion mnist (d=15)

gp_bandit
log
linear
moments

0 2000 4000 6000 8000 10000
epoch

134.0

133.5

133.0

132.5

132.0

131.5

131.0

130.5

130.0

tra
in

 lo
gp

(x
)

binarized omniglot (d=5)

gp_bandit
log
linear
moments

0 2000 4000 6000 8000 10000
epoch

134.0

133.5

133.0

132.5

132.0

131.5

131.0

130.5

130.0

tra
in

 lo
gp

(x
)

binarized omniglot (d=15)

gp_bandit
log
linear
moments

0 2000 4000 6000 8000 10000
epoch

125

124

123

122

121

120

119

118

tra
in

 lo
gp

(x
)

binarized mnist (d=5)

gp_bandit
log
linear
moments

0 2000 4000 6000 8000 10000
epoch

125

124

123

122

121

120

119

118

tra
in

 lo
gp

(x
)

binarized mnist (d=15)

gp_bandit
log
linear
moments

Figure 9: We plot log p(x) on the training set throughout S = 10, d ∈ {5, 15} for each dataset using
the experimental setup described in Appendix A. The final training log likelihoods are consistent
with the test log likelihoods. Small drops in the GP-bandit training curves indicate the algorithm
exploring the reward landscape (see Section 4.1).

19

	Introduction
	The Thermodynamic Variational Objective (TVO)
	From Evidence Maximization to Regret Minimization
	Minimizing Regret with Gaussian Processes
	Time-varying Gaussian processes for Bandit Optimization
	Ordering Constraints and Permutation Invariance
	Convergence Analysis

	Experiments
	Scheduling Behaviour
	Model Learning and Inference

	Conclusion
	Broader Impact
	Acknowledgements
	Experimental Setup
	GP kernels and treatment of GP hyperparameters
	Proof of Theorem 1
	Additional Experiments and Ablation Studies
	Training Probabilistic Context Free Grammar
	Training Sigmoid Belief Network on Binarized Omniglot
	Wall-clock time Comparison
	Ablation studies
	Training Curves

