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Abstract

We introduce the thermodynamic variational objective (TVO) for learning in both
continuous and discrete deep generative models. The TVO arises from a key
connection between variational inference and thermodynamic integration that
results in a tighter lower bound to the log marginal likelihood than the standard
variational evidence lower bound (ELBO) while remaining as broadly applicable.
We provide a computationally efficient gradient estimator for the TVO that applies
to continuous, discrete, and non-reparameterizable distributions and show that the
objective functions used in variational inference, variational autoencoders, wake
sleep, and inference compilation are all special cases of the TVO. We use the
TVO to learn both discrete and continuous deep generative models and empirically
demonstrate state of the art model and inference network learning.

1 Introduction

Unsupervised learning in richly structured deep latent variable models [1, 2] remains challenging.
Fundamental research directions include low-variance gradient estimation for discrete and continuous
latent variable models [3–7], tightening variational bounds in order to obtain better model learning [8–
11], and alleviation of the associated detrimental effects on learning of inference networks [12].

We present the thermodynamic variational objective (TVO), which is based on a key connection we
establish between thermodynamic integration (TI) and amortized variational inference (VI), namely
that by forming a geometric path between the model and inference network, the “instantaneous
ELBO” [13] that appears in VI is equivalent to the first derivative of the potential function that appears
in TI [14, 15]. This allows us to formulate the log evidence as a 1D integration of the instantaneous
ELBO in a unit interval, which we then approximate to form the TVO.

We demonstrate that optimizing the TVO leads to improved learning of both discrete and continuous
latent-variable deep generative models. The gradient estimator we derive for optimizing the TVO has
empirically lower variance than the REINFORCE [16] estimator, and unlike the reparameterization
trick (which is only applicable to a limited family of continuous latent variables), applies to both
continuous and discrete latent variables models.

The TVO is a lower bound to the log evidence which can be made arbitrarily tight. We empirically
show that optimizing the TVO results in better inference networks than optimizing the importance
weighted autoencoder (IWAE) objective [8] for which tightening of the bound is known to make
inference network learning worse [12]. While this problem can be ameliorated by reducing the
variance of the gradient estimator in the case of reparameterizable latent variables [17], resolving it
in the case of non-reparameterizable latent variables currently involves alternating optimization of
model and inference networks [18–20].
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Figure 1: The thermodynamic variational objective (TVO) (center) is a finite sum numerical approxi-
mation to log pθ(x), defined by the thermodynamic variational identity (TVI) (right). The ELBO (left)
is a single partition approximation of the same integral. πβ is given in (7)

2 The Thermodynamic Variational Objective

The evidence lower bound (ELBO), used in learning variational autoencoders (VAEs), lower bounds
the log evidence of a generative model pθ(x, z) parameterized by θ of a latent variable z and data x.
It can be written as the log evidence minus a Kullback-Leibler (KL) divergence

ELBO(θ, φ,x) := log pθ(x)− KL (qφ(z|x)||pθ(z|x)) , (1)

where qφ(z|x) is an inference network parameterized by φ. As illustrated in Figure 1, the TVO

1

K

[
ELBO(θ, φ,x) +

K−1∑
k=1

Eπβk

[
log

pθ(x, z)

qφ(z |x)

]]
︸ ︷︷ ︸

TVO(θ,φ,x)

≤
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0

Eπβ
[
log

pθ(x, z)

qφ(z |x)

]
dβ = log pθ(x)︸ ︷︷ ︸

THERMODYNAMIC VARIATIONAL IDENTITY

(2)

lower bounds the log evidence by using a Riemann sum approximation to the TVI, a one-dimensional
integral over a scalar β in a unit interval which evaluates to the log model evidence log pθ(x).

The integrand, which is a function of β, is an expectation of the so-called “instantaneous ELBO” [13]
under πβ(z), a geometric combination of pθ(x, z) and qφ(z|x) which we formally define in §3.
Remarkably, at β = 0, the integrand equals the ELBO. This therefore allows us to view the ELBO
as a single-term left Riemann sum of the TVI. At β = 1, the integrand equals to the evidence upper
bound (EUBO). This sheds a new unifying perspective on the VAE and wake-sleep objectives, which
we explore in detail in §5 and Appendix G.

3 Connecting Thermodynamic Integration and Variational Inference

Suppose there are two unnormalized densities π̃i(z) (i = 0, 1) and corresponding normalizing
constants Zi :=

∫
π̃i(z) dz, which together define the normalized densities πi(z) := π̃i(z)/Zi. We

can typically evaluate the unnormalized densities but cannot evaluate the normalizing constants.

While calculating the normalizing constants individually is usually intractable, thermodynamic
integration [14, 15] allows us to compute the log of the ratio of the normalizing constants, logZ1/Z0.
To do so, we first form a family of unnormalized densities (or a “path”) parameterized by β ∈ [0, 1]
between the two distributions of interest

π̃β(z) := π̃1(z)β π̃0(z)1−β (3)

with the corresponding normalizing constants and normalized densities

Zβ :=

∫
π̃β(z) dz, and πβ(z) := π̃β(z)/Zβ . (4)

Following Neal [15], we will find it useful to define a potential energy function Uβ(z) := log π̃β(z)

along with its first derivative U ′β(z) =
dUβ(z)
dβ . We can then estimate the log of the ratio of the

normalizing constants via the identity central to TI, derived in Appendix A,

logZ1 − logZ0 =

∫ 1

0

Eπβ
[
U ′β(z)

]
dβ. (5)
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Our key insight connecting TI and VI is the following. If we set

π̃0(z) := qφ(z |x) Z0 =

∫
qφ(z |x) dz = 1

π̃1(z) := pθ(x, z) Z1 =

∫
pθ(x, z) dz = pθ(x)

(6)

this results in a geometric path between the variational distribution qφ(z|x) and the model pθ(x, z)

π̃β(z) := pθ(x, z)βqφ(z|x)1−β and πβ(z) :=
π̃β(z)

Zβ
, (7)

where the first derivative of the potential is equal to the “instantaneous ELBO” [13]

U ′β(z) = log
pθ(x, z)

qφ(z|x)
. (8)

Substituting (8) and Z0 = 1 and Z1 = pθ(x) into (5) results in the thermodynamic variational
identity

log pθ(x) =

∫ 1

0

Eπβ
[
log

pθ(x, z)

qφ(z |x)

]
dβ. (9)

This means that log pθ(x) can be expressed as a one-dimensional integral of an expectation of the
instantaneous ELBO under πβ from β = 0 to β = 1 (see Figure 1 (right)).

To obtain the thermodynamic variational objective (TVO) defined in (2), we lower bound the integral
in (9) using a left Riemann sum. That this is in fact a lower bound follows from observation that the
integrand is monotonically increasing, as shown in Appendix B. This is a result of our choice of path
in (7), which allows us to show the derivative of the integrand is equal to the variance of U ′β(z) under
πβ(z) and is therefore non-negative. For equal spacing of the partitions, where βk = k/K, we arrive
at the TVO in (2), illustrated in Figure 1 (middle). We present a generalized variant with non-equal
spacing in Appendix C.

Maximizing the ELBO(θ, φ,x) can be seen as a special case of the TVO, since for β = 0, πβ(z) =

qφ(z|x), and so the integrand in (9) becomes Eqφ(z|x)
[
log pθ(x,z)

qφ(z |x)

]
, which is equivalent to the

definition of ELBO in (1). Because the integrand is increasing, we have

ELBO(θ, φ,x) ≤ TVO(θ, φ,x) ≤ log pθ(x), (10)

which means that the TVO is an alternative to IWAE for tightening the variational bounds. In
Appendix D we show maximizing the TVO is equivalent to minimizing a divergence between the
variational distribution and the true posterior pθ(z |x).

The integrand in (9) is typically estimated by long running Markov chain Monte Carlo chains
computed at different values of πβ(z) [21, 22]. Instead, we propose a simple importance sampling
mechanism that allows us to reuse samples across an arbitrary number of discretizations and which is
compatible with gradient-based learning.

4 Optimizing the TVO

We now provide a novel score-function based gradient estimator for the TVO which does not require
the reparameterization trick.

Gradients To use the TVO as a variational objective we must be able to differentiate through terms
of the form ∇λ Eπλ,β [fλ(z)], where both πλ,β(z) and fλ(z) are parameterized by λ, and πλ,β(z)
contains an intractable normalizing constant. In the TVO, fλ(z) is the instantaneous ELBO and
λ := {θ, φ}, but our method is applicable for generic fλ(z) : RM 7→ R.

We can compute such terms using the covariance gradient estimator (derived in Appendix E)

∇λ Eπλ,β [fλ(z)] = Eπλ,β [∇λfλ(z)] + Covπλ,β [∇λ log π̃λ,β(z), fλ(z)] (11)

3



We emphasize that, like REINFORCE, our estimator relies on the log-derivative trick, but crucially un-
like REINFORCE, doesn’t require differentiating through the normalizing constant Zβ =

∫
π̃λ,β(z) dz.

We clarify the relationship between our estimator and REINFORCE in Appendix F.

The covariance in (11) has the same dimensionality as λ ∈ RD because it is between
∇λ log π̃λ,β(z) ∈ RD and fλ(z) ∈ R and is defined as

Covπλ,β (a, b) := Eπλ,β
[
(a− Eπλ,β [a])(b− Eπλ,β [b])

]
. (12)

To estimate this, we first estimate the inner expectations which are then used in estimating the outer
expectation. Thus, estimating the gradient in (11) requires estimating expectations under πβ .

Expectations By using qφ(z|x) as the proposal distribution in S-sample importance sampling,
we can estimate an expectation of a general function f(z) under any πβ(z) by simply raising each
unnormalized importance weight to the power β and normalizing:

Eπβ [f(z)] ≈
S∑
s=1

wβs f(zs), (13)

where zs ∼ qφ(z|x), wβs := wβs /
∑S
s′=1 w

β
s′ and ws := pθ(x,zs)

qφ(zs|x) . This follows because each
unnormalized importance weight can be expressed as

π̃β(x, zs)

qφ(zs|x)
=
pθ(x, zs)

βqφ(zs|x)1−β

qφ(zs|x)
=
pθ(x, zs)

β

qφ(zs|x)β
=

(
pθ(x, zs)

qφ(zs|x)

)β
= wβs . (14)

Instead of sampling SK times, we can reuse S samples zs ∼ qφ(z|x) across an arbitrary number

of terms, since evaluating the normalized weight wβks only requires raising each weight to different
powers of βk before normalizing. Reusing samples in this way is a use of the method known as
“common random numbers” and we include experimental results showing it reduces the variance of
the covariance estimator in Appendix F [23].

The covariance estimator does not require z to be reparameterizable, which means it can be used
in the cases of both non-reparameterizable continuous latent variables and discrete latent variables
(without modifying the model using continuous relaxations [24, 25]).

5 Generalizing Variational Objectives

As previously observed, the left single Riemann approximation of the TVI equals the ELBO, while the
right endpoint (β = 1) is equal to the EUBO. The EUBO is analogous to the ELBO but under the true
posterior and is defined

EUBO(θ, φ,x) := Epθ(z |x)
[
log

pθ(x, z)

qφ(z |x)

]
. (15)

We also have the following identity

EUBO(x, θ, φ) = log pθ(x) + KL (pθ(z|x)||qφ(z|x)) (16)

which should be contrasted against (1). We define an upper-bound variant of the TVO using the right
(rather than left) Riemann sum. Setting βk = k/K

TVOU
K(θ, φ,x) :=

1

K

[
EUBO(θ, φ,x) +

K−1∑
k=1

Eπβk

[
log

pθ(x, z)

qφ(z |x)

]]
≥ log p(x). (17)

The wake-sleep (WS) [18] and reweighted wake-sleep (RWS) [19] algorithms have traditionally
been viewed as using different objectives during the wake and sleep phase. The endpoints of the
TVI, which the TVO approximates, correspond to the two objectives used in wake-sleep. We can
therefore view WS as alternating between between TVOL

1 and TVOU
1 , i.e. a left and right single term

Riemann approximation to the TVI. We show this algebraically in Appendix G and additionally, show
how the objectives used in variational inference [26], variational autoencoders [1, 2], and inference
compilation [27] are all special cases of TVOL

1 and TVOU
1 . We refer the reader to [20] for a further

discussion of the wake-sleep algorithm.
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Figure 2: Investigation of how number of particles S, number of partitions K, and β1 affect learning
of the generative model. In the first three plots (a-c), we vary S and K for different values of β1 and
observe that while S should be as high as possible, there is an optimal value for K, beyond which
performance begins to degrade. Assuming β1 is well-chosen, we see that as few as K = 2 partitions
can result in good model learning, as seen in the last plot (d).

6 Related Work

Thermodynamic integration was originally developed in physics to calculate the difference in
free energy of two molecular systems [28]. Neal [15] and Gelman and Meng [14] then intro-
duced TI into the statistics community to calculate the ratios of normalizing constants of gen-
eral probability models. TI is now commonly used in phylogenetics to calculate the Bayes
factor B = p(x|M1)/p(x|M0), where M0,M1 are two models specifying (for instance) tree
topologies and branch lengths [22, 29, 30]. We took inspiration from Fan et al. [31] who re-
placed the “power posterior” p(θ|x,M, β) = p(x|θ,M)βp(θ,M)/Zβ of Xie et al. [29] with
p(θ|x,M, β) = [p(x |θ,M)p(θ|M)]β [p0(θ|M)]1−β/Zβ , where p0(θ|M) is a tractable reference
distribution chosen to facilitate sampling. That the integrand in (9) is strictly increasing was observed
by Lartillot and Philippe [22].

We refer the reader to Titsias and Ruiz [32] for a summary of the numerous advances in variational
methods over recent years. The method most similar to our own was proposed by Bornschein et al.
[33], who introduced another way of improving deep generative modeling through geometrically
interpolating between distributions and using importance sampling to estimate gradients. Unlike
the TVO, they define a lower bound on the marginal likelihood of a modified model defined as
(pθ(x, z)qφ(z|x)q(x))1/2/Z where q(x) is an auxiliary distribution.

Grosse et al. [34] studied annealed importance sampling (AIS), a related technique that estimates
partition functions using a sequence of intermediate distributions to form a product of ratios of
importance weights. They observe the geometric path taken in AIS is equivalent to minimizing a
weighted sum of KL divergences, and use this insight to motivate an alternative path. To the best of
our knowledge, our work is the first to explicitly connect TI and VI.

7 Experiments

7.1 Discrete Deep Generative Models

We use the TVO to learn the parameters of a deep generative model with discrete latent variables.1
We use the binarized MNIST dataset with the standard train/validation/test split of 50k/10k/10k [35].
We train a sigmoid belief network, described in detail in Appendix I, using the TVO with the Adam
optimizer. In the first set of experiments we investigate the effect of the discretization β0:K , number
of partitions K and number of particles S. We then compare against variational inference for Monte
Carlo objectives (VIMCO) and RWS (with the wake-φ objective) state-of-the-art IWAE-based methods
for learning discrete latent variable models [20]. All figures have been smoothed for clarity.

The effect of S, K, and β locations We expect that increasing the number of partitions K makes the
Riemann sum approximate the integral over β more tightly. However, with each addition term, we
add noise due to the use of importance sampling to estimate the expectation Eπβ [log p/q]. Importance
sampling estimates of points on the curve further to the right are likely to be more biased because πβ
gets further from q as we increase β. We found the combination of these two effects means that there

1Code to reproduce all experiments is available at: https://github.com/vmasrani/tvo.
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Figure 3: Comparisons with baselines on a held out test set. (Left) Learning curves for different
methods. For TVO outperforms other methods both in terms of speed of convergence and the learned
model for S < 50. At S = 50 VIMCO achieves a higher test log evidence but takes longer to converge
than the TVO. (Right) KL divergence between current q and p (which measures how well q “tracks”
p) is lowest for TVO.

is a “sweet spot,” or an optimal number of partitions beyond which adding more partitions becomes
detrimental to performance.

We have empirically observed that the curve in Figure 1 is often rising sharply from β = 0 until a
point of maximum curvature β∗, after which it is almost flat until β = 1, as seen in Figure 4. We
hypothesized that if β1 is located far before β∗ (the point of maximum curvature), a large number
of additional partitions would be needed to capture additional area, while if β1 is located after β∗,
additional partitions would simply incur a high cost of bias without significantly tightening the
bound. To investigate this, we choose small (10−10), medium (0.1) and large (0.9) values of β1, and
logarithmically space the remaining β2:K between β1 and 1. For each value of β1 we train the discrete
generative model for K ∈ {2, 5, 10, . . . , 50} and S ∈ {2, 5, 10, 50}, and show the test log evidence
at the last iteration of each trial, approximated by evaluating the IWAE loss with 5000 samples.

β 10

Eπβ

h

log pθ(x;z)
qφ(zjx)

i

β∗

tvo(θ;φ;x)

Figure 4: The location of
β∗, the point of maximum
curvature.

Our hypothesis is corroborated in Figure 2, where we observe in Fig-
ure 2a that for β1 = 10−10 a large number of partitions are needed
to approximate the integral. In Figure 2b we increase β1 to 10−1 and
observe only a few partitions are needed to improve performance, af-
ter which adding additional partitions becomes detrimental to model
learning.

From Figure 2c we can see that if β1 is chosen to be well beyond β∗,
the Riemann sum cannot recover the “lost” area even if the number of
partitions is increased. That the performance does not degrade in this
case is due to the fact that for sufficiently high βk, the curve in Figure 1
is flat and therefore πβk ≈ πβk+1 ≈ pθ(z |x). We also observe that in-
creasing number of samples S—which decreases importance sampling
bias per partition—improves performance in all cases.

In our second experiment, shown in the Figure 2d, we fix K = 2 and
investigate the quality of the learned generative model for different β1, This plot clearly shows β∗ is
somewhere near 0.3, as model learning improves as β1 approaches this point then begins to degrade.

Given these results, we recommend using as many particles S as possible and performing a hyper-
parameter search over β1 (with K = 2) when using the TVO objective. We leave finding the optimal
placement of discretization points to future work.

Performance In Figure 3 (left), we compare the TVO against VIMCO and RWS with the wake-φ
objective, the state-of-the-art IWAE-based methods for learning discrete latent variable models [20].
For S < 50, the TVO outperforms both methods in terms of speed of convergence and the final test
log evidence log pθ(x), estimated using 5000 IWAE particles as before. At S = 50 VIMCO achieves a
higher test log evidence but converges more slowly.
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Figure 5: Computational and gradient estimator efficiency. (Left) Time and memory efficiency of the
TVO with increasing number of partitions vs baselines, measured for 100 iterations of optimization.
Increasing the number of partitions is much cheaper than increasing the number of particles. (Right)
Standard deviation of the gradient estimator for each objective. TVO is lowest variance, VIMCO is
highest variance, RWS is in the middle.

We also investigate the quality of the learned inference network by plotting the KL divergence
(averaged over the test set) between the current q and current p as training progresses (Figure 3
(right)). This indicates how well q “tracks” p. This is estimated as log evidence minus ELBO where
the former is estimated as before and the latter is estimated using 5000 Monte Carlo samples. The KL
is lowest for TVO.

Somewhat surprisingly, for all methods, increasing number of particles makes the KL worse. We
speculate that this is due to the “tighter bounds” effect of Rainforth et al. [12], who showed that
increasing the number of samples can positively affect model learning but adversely affect inference
network learning, thereby increasing the KL between the two.

Efficiency Since we use K = 2 partitions for the same number of particles S, the time and memory
complexity of TVO is double that of other methods. While this is true, in both time and memory cases,
the constant factor for increasing S is much higher than for increasing K. As shown in Figure 5 (left),
it is virtually free to increase number of partitions. This is because for each new particle, we must
additionally sample from the inference network and score the sample under both p and q to obtain
a weight. On the other hand, we can reuse the S samples and corresponding weights in estimating
values for the K + 1 terms in the Riemann sum. Thus, the region of the the computation graph that
is dependent on K is after the expensive sampling and scoring, and only involves performing basic
operations on additional matrices of size S ×K.

Variance In Figure 5 (right), we plot the standard deviation of the gradient estimator for each method,
where we compute the standard deviation for the dth element of the gradient estimated over 10
samples and take the average across all D.

The gradient estimator of the TVO has lower variance than both VIMCO, which uses REINFORCE
with a control variate as a gradient estimator and RWS which can calculate the gradient without
reparameterizing or using the log-derivative trick. At S = 5, RWS has lower gradient variance but its
performance is worse in terms of both model and inference learning.

7.2 Continuous Deep Generative Models

Using the binarized MNIST dataset and experimental design described above, we also evaluated our
method on a deep generative model with continuous latent variables. The model is described in detail
in Appendix I. For each S ∈ {5, 10, 50} we sweep over K ∈ {2, ..., 6} and 20 β1 values linearly
spaced between 10−2 and 0.9. We optimize the objectives using the Adam optimizer with default
parameters.

Performance In Figure 6 (left), we train the model using the TVO and compare against the same
model trained using the single sample VAE objective and multisample IWAE objective. The TVO
outperforms the VAE and performs competitively with IWAE at 50 samples, despite not using the
reparameterization trick. IWAE is the top performing objective in all cases. As in the discrete case,
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Figure 6: Learning curves for learning continuous deep generative models using different objectives.
(Left) Despite not using the reparameterization trick, TVO outperforms VAEs and is competitive with
IWAE at 50 samples. For all S, IWAE > TVO > VAE. (Right) Standard deviation of the gradient
estimator for each objective. The TVO has lower variance than IWAE but higher than VAE.

increasing the number of particles S improves model learning for all methods, but the improvement
is most significant for the TVO. Interestingly VAE performance actually decreases when the number
of samples increases from 10 to 50. A similar effect was noticed by Burda et al. [8] on the omniglot
dataset.

Variance In Figure 6 (right), we plot the standard deviation of each method’s gradient estimator. The
standard deviation of the TVO estimator falls squarely between VAE (best) and IWAE (worst). The
variance of each method improves as the number of samples increases, and as in the discrete model,
the improvement is most significant in the case of TVO. Unlike in the discrete case, the variance
does not decrease as the optimization proceeds, but plateaus early and then gradually increases. In
Appendix F we include additional experiments to evaluate the properties of the covariance gradient
estimator when used on the ELBO.

For both IWAE and the TVO, increasing the number of samples leads to decreased gradient variance
and improved model learning. However, IWAE has the best performance but the highest variance
across the three models. These results lend support to the conclusions of Rainforth et al. [12] who
observe that the variance of a gradient estimator “is not always a good barometer for the effectiveness
of a gradient estimation scheme.”

8 Conclusions

The thermodynamic variational objective represents a new way to tighten evidence bounds and
is based on a tight connection between variational inference and thermodynamic integration. We
demonstrated that optimizing the TVO can have a positive impact on the learning of discrete deep
generative models and can perform as well as using the reparameterization trick to learn continuous
deep generative models.

The weakness of our method lies in choosing the discretization points. This does, however, point
out opportunities for future work wherein we adaptively select optimal positions of the β1:K points,
perhaps using techniques from the Bayesian numerical quadrature literature [36–38].

The approximate path integration perspective provided by our development of the TVO also sheds
light on the connection between otherwise disparate deep generative model learning techniques. In
particular, the TVO integration perspective points to ways to improve wake-sleep via tightening the
EUBO using similar integral upper-bounding techniques. Further experimentation is warranted to
explore how TVO insights can be applied to all special cases of the TVO including non-amortized
variational inference and to the use of the TVO as a compliment to annealing importance sampling for
final model evidence evaluation.
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A Thermodynamic Integration

Thermodynamic integration is a technique used in physics and phylogenetics to approximate in-
tractable normalized constants of high dimensional distributions [14, 15]. It is based on the observa-
tion that it is easier to calculate the ratio of two unknown normalizing constants than it is to calculate
the constants themselves. More formally, consider two densities over space Z

πi(z) =
π̃i(z)

Zi
, Zi =

∫
Z
π̃(z) dz, i ∈ {0, 1}. (18)

To apply TI, we form a continuous family (or “path”) between π0(z) and π1(z) via a scalar parameter
β ∈ [0, 1]

πβ(z) =
π̃β(z)

Zβ
=
π̃1(z)β π̃0(z)1−β

Zβ
, Zβ =

∫
Z
π̃β(z) dz, β ∈ [0, 1]. (19)

The central identity that allows us to compute the ratio log(Z1/Z0) is derived as follows. Assuming
we can exchange integration with differentiation,

∂ logZβ
∂β

=
1

Zβ

∂

∂β
Zβ

=
1

Zβ

∂

∂β

∫
π̃β(z) dz

=

∫
1

Zβ

∂

∂β
π̃β(z) dz

=

∫
π̃β(z)

Zβ

∂

∂β
log π̃β(z) dz,

which directly implies
∂ logZβ
∂β

= Eπβ
[
U ′β(z)

]
, (20)

where the quantity Uβ(z) = log π̃β(z) is referred to as the “potential” in statistical physics and
U ′β(z) := ∂

∂βUβ(z). The variable β can be interpreted as the inverse temperature parameter. Because
one can typically compute log π̃β(z), (20) allows us to exchange the first derivative of something we
cannot compute with an expectation over something we can compute. Then, to calculate the ratio
log(Z1/Z0) we integrate out β on both sides of (20)∫ 1

0

∂ logZβ
∂β

dβ =

∫ 1

0

Eπβ
[
U ′β(z)

]
dβ (21)

which via the fundamental theorem of calculus results in

log(Z1)− log(Z0) =

∫ 1

0

Eπβ
[
U ′β(z)

]
dβ. (22)

B The Increasing Integrand

B.1 Notation

log pθ(x) =

∫ 1

0

g(β)dβ (23)

g(β) = Eπβ(z) [U ′(z)] (24)

U ′(z) = log
pθ(x, z)

qφ(z |x)
(25)

Given our choice of geometric path πβ(z) = π̃β(z)/Zβ , π̃β(z) = p(x, z)βq(z |x)1−β , the potential
U ′(z) = ∂

∂β log π̃β(z) loses its dependency on β after differentiating. This allows us to show

∂

∂β
g(β) = Varπβ(z)[U

′(z)] (26)
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which means ∂
∂β g(β) ≥ 0,∀β ∈ [0, 1] and therefore that g(β) is monotonically non-decreasing.

Changes between lines are tracked in blue.

Proof of Equation (26).

∂

∂β
g(β) =

∂

∂β
Eπβ(z) [U ′(z)]

=
∂

∂β

[ ∫
πβ(z)U ′(z) dz]

]
=

∫
U ′(z)

∂

∂β
πβ(z) dz

=

∫
U ′(z)

∂

∂β

[
Z−1β π̃β(z)

]
dz

=

∫
U ′(z)

[
π̃β(z)

∂

∂β
Z−1β + Z−1β

∂

∂β
π̃β(z)

]
dz .

Now we use the “inverse log-derivative” trick ∂
∂x (f(x)−1) = − 1

f(x)
∂
∂x log f(x) on the first term,

and the log-derivative trick on the second

=

∫
U ′(z)

[
π̃β(z)

−1

Zβ

∂

∂β
logZβ +

1

Zβ
π̃β(z)

∂

∂β
log π̃β(z)

]
dz (27)

=

∫
U ′(z)

[
−πβ(z)

∂

∂β
logZβ + πβ(z)

∂

∂β
log π̃β(z)

]
dz, (28)

Then we use (20) on the first term, and the definition of U ′(z) in the second

=

∫
U ′(z)

[
− πβ(z)Eπβ(z)

[
U ′(z)

]
+ πβ(z)U ′(z)

]
dz (29)

= −
∫
πβ(z)U ′(z)Eπβ(z)

[
U ′(z)

]
dz +

∫
U ′(z)U ′(z)πβ(z)dz (30)

Finally we rearrange, noting that the expectation is a scalar and can therefore come out of the
integrand

= −
[
Eπβ(z)

[
U ′(z)

]][ ∫
πβ(z)U ′(z) dz

]
+

∫
U ′(z)U ′(z)πβ(z) dz (31)

= −
[
Eπβ(z)[U

′(z)]
]2

+ Eπβ(z)
[
U ′(z)2

]
(32)

= Varπβ(z)[U
′(z)]. (33)

Therefore,

∂

∂β
g(β) = Varπβ(z)[U

′(z)]. (34)

C The generalized TVO

The TVO presented in §2 is a lower bound to log pθ(x) using a left Riemann sum approximation
to the thermodynamic variational identity. Using the right Riemann sum results in an upper bound
which can be minimized (rather than maximized) during optimization (cf. §5). This loss is used in
the inference compilation and during the sleep-phase φ update in the Wake-Sleep algorithm. Below
we present both the upper-bound and lower-bound variants of the TVO, with non-equally spaced
partitions 0 = β0 < β1 < · · · < βK = 1, ∆βk = βk − βk−1, K > 1

12



TVOL
K(θ, φ,x) := ∆β1

ELBO(θ, φ,x) +

K∑
k=2

∆βk Eπβk−1

[
log

pθ(x, z)

qφ(z |x)

]
≤ log p(x) (35)

TVOU
K(θ, φ,x) := ∆βK EUBO(θ, φ,x) +

K−1∑
k=1

∆βk Eπβk

[
log

pθ(x, z)

qφ(z |x)

]
≥ log p(x), (36)

where

ELBO(θ, φ,x) := Eqφ(z |x)
[
pθ(x, z)

qφ(z |x)

]
, EUBO(θ, φ,x) := Epθ(z |x)

[
pθ(x, z)

qφ(z |x)

]
,

πβk(z) := pθ(x, z)βqφ(z |x)1−β/Zβ , Zβ :=

∫
pθ(x, z)βqφ(z |x)1−β dz .

D Maximizing the TVO minimizes a divergence between the variational
distribution and true posterior

We now show:

TVO(θ, φ,x) = log pθ(x)−D(qφ(z |x)||pθ(z |x)) (37)

Where D(qφ(z |x)||pθ(z |x)) is a divergence between the variational distribution qφ(z |x) and true
posterior pθ(z |x). We refer to the notation defined in Appendix B.1 and the definition of divergence
defined by Eguchi et al. [39].

Proof. The TVO is a left Riemann sum approximation of log pθ(x) =
∫ 1

0
g(β)dβ, where g(β) =

Eπβ(z) [U ′(z)] and g(β) is a differentiable monotonically non-decreasing function in β (cf. Equa-
tion (26)). The TVO is therefore a lower bound of log pθ(x) and can be written

TVO(θ, φ,x) ≤ log pθ(x)

TVO(θ, φ,x) = log pθ(x)− c(θ, φ,x), c(θ, φ,x) ≥ 0 (38)

We will show c(θ, φ,x) = D(qφ(z |x)||pθ(z |x)), which is equivalent to showing

1© c ≥ 0, ∀ pθ(z |x), qφ(z |x) ∈ Z

2© c = 0 ⇐⇒ pθ(z |x) = qφ(z |x)

1© is implied in the definition of c in 38. We now show 2©.

Forward direction
(
c = 0

)
⇒
(
pθ(z |x) = qφ(z |x)

)
If c = 0, the left Riemann sum must be an exact approximation to

∫ 1

0
g(β)dβ. Because is g(β) is

differentiable (and assuming it is finite), the Riemann approximation can only be exact when g(β) is
flat (i.e. ∂g(β)∂β = 0) in the region β ∈ [0, 1]. We first recall that by definition, π0(z) = qφ(z |x) and
π1(z) = pθ(z |x). Therefore ∫ 1

0

∂g(β)

∂β
dβ =

∫ 1

0

0 dβ (39)

g(1)− g(0) = 0 (40)
g(1) = g(0) (41)

Eπ1(z) [U ′(z)] = Eπ0(z) [U ′(z)] (42)

Epθ(z |x) [U ′(z)] = Eqφ(z |x) [U ′(z)] (43)

Which is only possible when pθ(z |x) = qφ(z |x).
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Reverse direction
(
pθ(z |x) = qφ(z |x)

)
⇒
(
c = 0

)
If pθ(z |x) = qφ(z |x), the TVO can be written as

TVO(θ, φ,x) =
1

K

K−1∑
k=0

Eπβk (z)
[
log

pθ(x, z)

pθ(z |x)

]
(44)

=
1

K

K−1∑
k=0

Eπβk (z) [log pθ(x)] (45)

= log pθ(x) (46)

Therefore c = 0.

E Derivation of the Covariance Gradient Estimator

We want to show that

∇λ Eπλ,β [f(z, λ)] = Eπλ,β [∇λf(z, λ)] + Covπλ,β [∇λ log π̃λ,β(z), f(z, λ)] . (47)

Our estimator holds under the common regularity conditions assumed for the score function estima-
tor L’Ecuyer [40]. We begin with a simple lemma.

Lemma 1.

∇λ logZλ,β(x) = Eπβ(z)[∇λ log π̃λ,β(z)] (48)

Proof of lemma 1.

∇λ logZλ,β(x) =
1

Zλ,β(x)
∇λZλ,β(x) (49)

=
1

Zλ,β(x)
∇λ
∫
π̃λ,β(z) dz (50)

=
1

Zλ,β(x)

∫
∇λπ̃λ,β(z) dz (51)

=

∫
π̃λ,β(z)

Zλ,β(x)
∇λ logπ̃λ,β(z) dz (52)

= Eπβ(z)[∇λ log π̃λ,β(z)] (53)

To prove (47), we use the product rule and rearrange

∇λ Eπβ(z)[f(z, λ)] = Eπβ(z)[∇λf(z, λ) + f(z, λ)∇λ log πλ,β(z |x)] (54)

= Eπβ(z)[∇λf(z, λ) + f(z, λ)
(
∇λ log π̃λ,β(z)−∇λ logZλ,β(x)

)
] (55)

= Eπβ(z)[∇λf(z, λ)] + Eπβ(z)[f(z, λ)∇λ log π̃λ,β(z)]

− Eπβ(z)[f(z, λ)∇λ logZλ,β(x)]. (56)

Now using lemma 1 on the third term

= Eπβ(z)[∇λf(z, λ)] + Eπβ(z)[f(z, λ)∇λ log π̃λ,β(z)]

− Eπβ(z)[f(z, λ)]Eπβ(z)[∇λ log π̃λ,β(z)] (57)

= Eπβ(z)[∇λf(z, λ)] + Covπλ,β(z |x)
[
∇λ log π̃λ,β(z), f(z, λ)

]
. (58)
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Table 1: The effect of Common Random Numbers (CRN) on TVO variance. We use the discrete
model of §7.1

Iterations 10 1e6 2e6 3e6 4e6

Gradient std w/o CRN 52.33 2.88 2.57 2.39 2.47

Gradient std w/ CRN 8.19 1.38 1.17 1.05 1.03

F Variance of the Covariance Gradient Estimator and its Relationship to
REINFORCE

In this section we clarify the difference between the covariance estimator (11) and the REINFORCE
estimator and empirically investigate its variance.

While both estimators use the log-derivative trick, the main difference between the two is the REIN-
FORCE estimator requires differentiating through log πβ(z) which contains the intractable normaliz-
ing constant, while the covariance estimator only requires differentiating through the unnormalized
distribution log π̃β(z).

We can state the difference as follows. Assuming πβ(z) = π̃β(z)/Zβ depends on parameters λ, to
compute ∇λ Eπβ(z) [f(z)], one can use the following gradient estimators:

REINFORCE: Eπβ(z) [f(z)∇λ log πβ(z)]

REINFORCE + BASELINE: Eπβ(z)
[(
f(z)− Eπβ(z) [f(z)]

)
∇λ log πβ(z)

]
COV. ESTIMATOR (ours): Eπβ(z)

[(
f(z)− Eπβ(z) [f(z)]

) (
∇λ log π̃β(z)− Eπβ(z) [∇λ log π̃β(z)]

)]
Unlike REINFORCE, where a baseline is typically added ad-hoc to reduce variance, the baseline
b = Eπβ(z) [f(z)] naturally appears as a result of differentiating through πβ(z) using the identity
∇λ logZλ,β(x) = Eπβ(z)[∇λ log π̃λ,β(z)] derived in appendix E. The baseline also partially explains
the low variance of our estimator, as it is equivalent to the “average baseline” often used reinforcement
learning [41, 42].

A second source of variance-reduction comes from reusing samples, a method known as “common
random numbers” [23]. The terms in the TVO are highly correlated, thus we expect reusing a single
batch of samples for each additional term will act to reduce variance according to equation 8.21
in Owen [23]. However, because the covariance term breaks into both positive and negative terms,
common random numbers could potentially increase variance. In Table 1 we show the average
gradient std at different iterations during the training procedure, using the S = 50 discrete model
described in §7.1 and in Figure 3 and Figure 5. It is evident reusing samples significantly reduces the
variance of the covariance gradient estimator, often by more than a factor of two.

In Figure 7 we compare the variance of our estimator to the reparameterization trick and REINFORCE
on the continuous model described in §7.2. To control for any possible effect on variance the
additional terms in the TVO could have, we use the ELBO (i.e the TVO with K = 1), and plot the
gradient standard deviation for the COV estimator (ours), the reparameterization trick and REINFORCE.
The COV estimator has higher variance than the reparameterization trick estimator, and outperforms
the REINFORCE estimator which is numerically unstable. Both the standard deviation of both the
COV estimator and the reparameterization trick improves as samples increase but the effect is more
prominent for the COV estimator.

G Special Cases of the TVO

In Table 2, we summarize the different ways the TVO generalizes existing variational objectives, and
in the following subsection we list the mathematical form of each objective. In the main text, we
mentioned that the lower bound variant of the TVO with K = 1 partition can be seen as the ELBO.
This connects the TVO to all methods that maximize the ELBO. The upper bound variant of the
TVO with K = 1 partition can be seen as EUBO. This therefore connects the TVO to all methods

15



0 5000epoch
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

gr
ad

 st
d

REINFORCE S=5 (4.68e+15)
REINFORCE S=10 (3.27e+15)
REINFORCE S=50 (1.47e+15)

REPARAM S=5 (5.51e-03)
REPARAM S=10 (4.02e-03)
REPARAM S=50 (1.89e-03)

COV S=5 (1.19e-02)
COV S=10 (8.59e-03)
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Figure 7: Comparing the standard deviation of gradient estimators on continuous VAEs trained on the
ELBO. The covariance estimator has higher variance than the reparameterization trick for all S but
much lower than REINFORCE, which is numerically unstable.

that minimize the reverse KL divergence KL (pθ(z|x)||qφ(z|x)), including WS, RWS and inference
compilation.

For K > 1, we have a novel objective which we can optimize with respect to θ, φ or both and
therefore apply to all the variational methods summarized in Table 2.

Table 2: The thermodynamic variational identity generalizes existing variational objectives.

Approximation Left Riemann sum
(lower bound—maximize)

Right Riemann sum
(upper bound—minimize)

Number of partitions 1 > 1 1 > 1

Optimize

θ wake in WS TVOL
K(θ,x) N/A N/A

φ VI TVOL
K(φ,x)

wake-φ in RWS,
sleep in WS,

inference compilation
TVOU

K(θ, φ,x)

θ, φ VAE TVOL
K(θ, φ,x) N/A N/A

G.1 Variational Objective Zoo

In the following we show how a number of commonly used variational objectives can be recovered
from the TVO using a single partition K = 1. Each method can be extended by setting K > 1.

We have three degrees of freedom: 1) Whether we optimize θ, φ, or both 2) whether we maximize
TVOL

1 (θ, φ,x) or minimize TVOU
1 (θ, φ,x), and 3) whether we use data sampled from the true data

distribution {xi}Ni=1
i.i.d∼ p(x) or from our generative model {xi}Ni=1

i.i.d∼ pθ(x), as in the case of
inference compilation and the sleep phase of the wake-sleep algorithm.
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Variational Inference Variational inference [26] can be recovered by learning φ, maximizing
TVOL

1 (φ,x), and using real data {xi}Ni=1 ∼ p(x):

φ∗ = arg max
φ

Ex∼p(x)
[
TVOL

1 (φ,x)
]

(59)

= arg max
φ

Ex∼p(x) [ELBO(φ,x)] (60)

Inference Compilation If we instead sample data from our generative model {xi}Ni=1 ∼ pθ(x)

and minimize TVOU
1 (φ,x) we recover the inference compilation objective [27]:

φ∗ = arg min
φ

Ex∼pθ(x)
[
TVOU

1 (φ,x)
]

(61)

= arg min
φ

∫
pθ(x)

[
Epθ(z |x)

[
log

p(x, z)

qφ(z |x)

]]
dx (62)

= arg min
φ

∫
pθ(x)

[∫
pθ(x, z)

pθ(x)

[
log

p(x, z)

qφ(z |x)

]]
dzdx (63)

= arg min
φ

∫ ∫
pθ(x, z)

[
log

p(x, z)

qφ(z |x)

]
dzdx (64)

= arg min
φ

Ep(x,z) [− log qφ(z |x)] (65)

Variational Autoencoders The loss for VAEs[1, 2] follows the same setting as in the variational
inference objective, above except now we learn both φ and θ.

φ∗ = arg max
φ,θ

Ex∼p(x)
[
TVOL

1 (θ, φ,x)
]

(66)

= arg max
φ,θ

Ex∼p(x) [ELBO(θ, φ,x)] (67)

Wake-sleep and reweighted wake sleep In the original wake-sleep algorithm [18], the authors
proposed the wake-phase θ update and sleep-phase φ updates to train the generative model and
inference network respectively. In Reweighted Wake-Sleep [19], two more objectives were proposed,
the reweighted wake-phase θ update2 and the wake-phase φ update. All except the reweighted
wake-phase θ3 are special cases of the TVO and are listed below.

• Wake-phase θ update In the wake phase θ update, we consider φ fixed and maximize
TVOL

1 (θ,x), using data {xi}Ni=1 ∼ p(x) sampled from the true distribution. This is similar
to the variational inference update except we’re learning θ instead of φ:

θ∗ = arg max
θ

Ex∼p(x)[TVOL
1 (θ,x)] (68)

= arg max
θ

Ex∼p(x) [ELBO(θ,x)] (69)

• Sleep-phase φ update In the sleep phase φ update, we consider θ fixed and minimize
TVOU

1 (φ,x) using simulated data {xi}Ni=1 ∼ pθ(x) and a single partition. This objective
is the same as the inference compilation objective.

• Wake-phase φ update In the wake phase φ update, we instead use real data {xi}Ni=1 ∼ p(x)

and again minimize TVOU
1 :

φ∗ = arg min
φ

Ex∼p(x)
[
TVOU

1 (φ,x)
]

(70)

= arg min
φ

Ex∼p(x)

[
Epθ(z |x)

[
log

pθ(x, z)

qφ(z |x)

]]
(71)

= arg min
φ

Ex∼p(x)
[
Epθ(z |x) [− log qφ(z |x)]

]
(72)

2This was not the authors’ original terminology and is used here to differentiate this objective from the
original wake-phase θ update.

3This objective is not a special case of the TVO and is therefore not included in Table 2
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This is the objective given in the wake-phase φ update in equation 6 of Le et al. [20]. The
gradient estimator for performing this update given in Le et al. [20] is equivalent to the
gradient estimator obtained via equations (11) and (13).

H Additional Illustrations of the Thermodynamic Variational Identity

In Figure 8, we provide illustrations of how the Eπβ [U ′(z)] curve relates to log pθ(x), KL (q||p),
KL (p||q), ELBO and EUBO for the cases of ELBO < 0 < EUBO and ELBO < EUBO < 0. In the
following, we provide derivations to justify the illustrations.

β

Eπβ

h

log pθ(z;x)
qφ(zjx)

i

elbo

eubo

0
1

A

B

C

log pθ(x) = B + C

eubo = A+B + C

elbo = C
kl(qjjp) = B

kl(pjjq) = A

β

Eπβ

h

log pθ(z;x)
qφ(zjx)

i

elbo

eubo

0
1
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A
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C
D
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kl(qjjp) = B +D
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log pθ(x) = −A−B

eubo = −A
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kl(qjjp) = C

kl(pjjq) = B

β

Eπβ

h

log pθ(z;x)
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0
1
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B

C

Figure 8: Different scenarios of the Eπβ [U ′(z)] curve where ELBO < 0. On the left, 0 < ELBO <
EUBO. In the middle, ELBO < 0 < EUBO. On the right ELBO < EUBO < 0.

Case ELBO < 0 < EUBO The top-most point of the curve is the EUBO by definition which means
that the area A + B is equal to the EUBO because of the unit length of the rectangle. In a similar
manner, the ELBO is the negative of the area of C + D. Now, due to the thermodynamic identity,
log pθ(x) =

∫ 1

β=0
Eπβ [U ′(z)] dβ, it is equal to B − C which is the area denoted by the definite

integral.

To obtain the expressions for the KL, we use the identities

log pθ(x) = ELBO(x, θ, φ) + KL (qφ(z|x)||pθ(z|x)) (73)
= EUBO(x, θ, φ)− KL (pθ(z|x)||qφ(z|x)) (74)

Case ELBO < EUBO < 0 The top-most point of the curve is the EUBO by definition which means
that −A is equal to the EUBO because of the unit length of the rectangle. In a similar manner, the
ELBO is −A− B − C. Due to the thermodynamic identity, log pθ(x) =

∫ 1

β=0
Eπβ [U ′(z)] dβ, it is

equal to −A−B which is the area denoted by the definite integral. We obtain expressions for the KL
similarly as before.

Similar line of reasoning gives rise to the relationships in Figure 8 (left).

I Details for Deep Generative Models

Discrete latent variables. Sigmoid belief networks are used to evaluate objectives, continuous
relaxations and control variate methods for learning discrete latent variable models [3–5, 19, 24, 25,
43]. The generative model is of the form p(z1:L,x) = p(zL)

∏L−1
`=1 p(z`|z`+1)p(x|z1) where each

conditional on z` is an independent Bernoulli whose parameters are a linear function of z`+1. The
likelihood p(x|z1) is also an independent Bernoulli whose parameters are a linear function of z1 and
we parameterize the prior p(zL).

pθ(zL) = Bernoulli(zL|bL),

pθ(z`|z`+1) = Bernoulli(z`|decoder`(2 z`+1−1)) ` = L− 1, . . . , 1,

pθ(x|z1) = Bernoulli(x|decoderx(2 z1−1) + x̃)

The inference network is factorized in the opposite way to the generative model, where q(z|x) =

q(z1|x)
∏L
`=2 q(z`|z`−1). Here, each conditional is an independent Bernoulli whose parameters are

linear functions of the condition.

qφ(z1|x) = Bernoulli

(
z1

∣∣∣∣encoder1

(
x−x̄ + 1

2

))
,

qφ(z`|z`−1) = Bernoulli(z`|encoder`(2 z`−1−1)) ` = 2, . . . , L,
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where x ∈ {0, 1}Dx and z` ∈ {0, 1}Dz . We set L = 2,Dx = 784 andDz = 200. We used Pytorch’s
default parameter initialization. The Bernoulli distributions are independent Bernoulli distributions
whose parameters are logits, i.e. they get passed through a sigmoid function to obtain the probability.
x̄ is the mean over training data set and x̃ = log (x̄− 1). In the linear case, the encoders and decoders
are linear functions of their inputs. In the non-linear case, they are a three-layer multilayer perceptrons
with tanh nonlinearities of the form input_dim Lin+tanh−−−−−−→ Dz

Lin+tanh−−−−−−→ Dz
Lin−−→ output_dim.

We used the Adam optimizer with the learning rate in {3 × 10−4, 10−3, 3 × 10−3} and the other
hyperparameters being set to the defaults. We picked the learning rate which performed best on the
validation set which was 3× 10−4 for all algorithms. We ran the optimization for 4 million iterations
with batch size 24.

Continuous latent variables. The model is of the form p(z)pθ(x|z) =
Normal(z|0, I)Bernoulli(x|decoderθ(z)), where z is 200-dimensional and decoderθ is a
three-layer multilayer perceptron with tanh activations and sigmoid output which parameterizes the
probabilities of the independent Bernoulli distribution.

p(z) = Normal(z|0, I),

pθ(x|z) = Bernoulli(x|decoderθ(z))

The inference network is of the form qφ(z|x) = Normal(z|encoderφ(x)), where the encoder is a
two-layer multilayer perceptron with tanh activations. The output is passed through two separate
linear layers which output the mean and the log standard deviations of the independent normal
distribution.

qφ(z|x) = Normal(z|encoderφ(x)),

where x ∈ {0, 1}Dx and z ∈ RDz for Dx = 784 and Dz = 200. The decoder is of the form
Dz

Lin+tanh−−−−−−→ Dz
Lin+tanh−−−−−−→ Dz

Lin−−→ Dx and its output is passed through a sigmoid to obtain
probabilities for the Bernoulli distribution. The encoder is of the form Dx

Lin+tanh−−−−−−→ Dz
Lin+tanh−−−−−−→

Dz . Its output is passed through two separate neural networks of the form Dz
Lin−−→ Dz which output

the means and log standard deviations of the independent Normal distribution.
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J Notation

Table 3: Table of Notation

{xi}Ni=1 := Data set consisting of N i.i.d samples xi ∈ RD

{zi}Ni=1 := Unobserved latent random variables zi ∈ RM

pθ(x, z) = pθ(x | z)pθ(z) := The joint model parameterized by θ, which factor-
izes into a likelihood pθ(x | z) and prior pθ(z)

pθ(z |x) = pθ(x, z)/pθ(x) := The true (often intractable) posterior

qφ(z |x) := The variational distribution parameterized by φ.
By assumption qφ(z |x) is correctly normalized.

π̃λ,β(z) = pθ(x, z)βqφ(z |x)1−β := The unnormalized path distributions. By construc-
tion, π̃λ,β=1(z) = pθ(x, z) and π̃λ,β=0(z |x) =
qφ(z |x)

πλ,β(z |x) = π̃λ,β(z)/Zλ,β(x) := The path distributions parameterized by
λ = { θ, φ } and scalar parameter β ∈ [0, 1].
By construction, πλ,β=1(z |x) = pθ(z |x) and
πλ,β=0(z |x) = qφ(z |x)

Zλ,β(x) =
∫
π̃λ,β(z) dz1:N := The normalizing constant for the path distribu-

tions. By construction Zλ,β=1(x) = pθ(x) and
Zλ,β=0(x) = 1 (because qφ(z |x) is assumed to
be correctly normalized).

Uλ,β(z) = log π̃λ,β(z) := The potential energy.

U ′λ,β(z) = ∂
∂βUλ,β(z) := The first derivative of the potential w.r.t β, the

inverse temperature.

K Acronyms

AIS Annealed Importance Sampling

ELBO Evidence Lower Bound

EUBO Evidence Upper Bound

IS Importance Sampling

IWAE Importance Weighted Autoencoder

KL Kullback Leibler

RWS Reweighted Wake Sleep

SGD Stochastic Gradient Descent

TI Thermodynamic Integration

TVI Thermodynamic Variational Identity

TVO Thermodynamic Variational Objective

VAE Variational Autoencoder

VI Variational Inference

VIMCO Variational Inference For Monte Carlo Objectives

WS Wake Sleep
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