
Vehicle Type Specific Waypoint Generation

Yunpeng Liu1,2 Jonathan Wilder Lavington1,2 Adam Ścibior1,2 Frank Wood1,2,3

Abstract— We develop a generic mechanism for generating
vehicle-type specific sequences of waypoints from a probabilistic
foundation model of driving behavior. Many foundation behav-
ior models are trained on data that does not include vehicle
information, which limits their utility in downstream applica-
tions such as planning. Our novel methodology conditionally
specializes such a behavior predictive model to a vehicle-type
by utilizing byproducts of the reinforcement learning algorithms
used to produce vehicle specific controllers. We show how
to compose a vehicle specific value function estimate with a
generic probabilistic behavior model to generate vehicle-type
specific waypoint sequences that are more likely to be physically
plausible then their vehicle-agnostic counterparts.

I. INTRODUCTION

Behavior models [1] are useful for planning [2] and control
[3]. One use of such models is to do route planning in the
presence of other stochastic agents whose types and goals may
not be known [4]. Another is to, for instance, conditionally
propose a sequence of waypoints to be followed by a
controlled ego vehicle which can be used to evaluate the safety
or performance of another egocentric controller [5]. In all
cases the sequence of generated waypoints is generally handed
to a lower-level policy that actuates the physical controls of
the vehicle to “achieve” or “follow” these waypoints [6]. In
this work we address the discrepancy in performance which
can be observed when a “generic” behavior model, trained to
conditionally propose a sequence of waypoints to be followed
for the purpose of model evaluation and testing, is applied
to a vehicle-type specific lower-level controller.

In this setting, our generic behavior model is defined with
a probabilistic conditional model of multi-agent trajectories
trained on data that does not include labelling of vehicle
specific parameters [7]. Realistically such labeled data can’t
be collected in the real world as it would require having direct
access to labeled measurements of vehicle parameters for
every vehicle encountered. For this reason, behavior models
are usually trained on overhead bird-view data [8] or ego-
centric bounding box data [9]. Here, only basic information of
each vehicle is known, and nothing about the vehicles’ masses,
torque curves, or other parameters is directly observable.

Such behavior models can be framed as multi-agent
policies, and are defined as a mapping from a history of
observations to an action that determines the next state.
Typically in this setting, state includes all agent positions and
orientations and a map in some representation. In some cases,
such policies are even explicitly factorized as the product of
individual agents interacting in a shared, deterministic world
[8], [10]. When the agents that comprise these models cannot

1Inverted AI, 2University of British Columbia, 3Mila

directly observe aspects of true world state, they are referred
to as partially observing agents. Generic foundation behavior
models are partially observing in that they are often blind
to vehicle specific dynamics, and as a result, must form an
internal “belief" over what the state of the system is, including
the types of all vehicles, given the observations they can make.
The internal uncertainty of such models can additionally stem
from the multi-agent setting itself, where the policy must
infer driver intent [11], style, and more [12]. Such partially
observing behavior models become particularly problematic
when they are used to provide waypoints for a lower-level
controller of a particular vehicle-type to follow. Consider
the following example: in self-driving car simulations, it
is desirable for all non-ego agents to behave in highly
realistic ways to avoid sim-to-real issues in training and
validation [13]. This means both that the vehicles must behave
realistically with respect to physical behavior (accelerations,
steering alignments, and wheel rotations all being physically
realistic), while also being behaviorally realistic (with the
patterns and distribution of behaviors matching human-like
behaviors). A generic behavior model can generally produce
realistically distributed behaviors in aggregate, but often
times cannot produce physically realistic driving between
those waypoints. To ensure its distribution over waypoints is
physically tractable, such a model must be coupled to a lower-
level controller that has been trained to follow sequences
of waypoints through interaction with a realistic version of
vehicle dynamics and road conditions [6].

The problem we address in this work arises at this
intersection: we show how to condition a behavioral model
so as to generate sequences of waypoints that are more likely
to be achievable by specific vehicle types. For instance, if
we know that the vehicle to be controlled is a heavy truck
with a weak engine, we would like to automatically produce
behaviorally diverse and realistic waypoint sequences that are
dynamically achievable by this heavy truck using a lower-
level controller trained to drive such a vehicle.

To achieve this, we first generate a dataset of achievable
waypoints for several vehicle types by manually driving each
vehicle in simulation. This manual driving is done such that
we explore a wide envelope of dynamics for each vehicle type.
From these examples, we construct a “waypoint following”
reinforcement learning environment in which we train a
vehicle specific policy and value function that learns how to
apply steering and acceleration controls. More specifically,
this vehicle learns to take actions so as to match reference
trajectories at all points in both space and time, given both
the current state, and a sub-sequence of goal waypoints ahead.
We then show how to use the learned value function for a

ar
X

iv
:2

20
8.

04
98

7v
1 

 [
cs

.A
I]

  9
 A

ug
 2

02
2



Fig. 1: Top row Importance sampled, feasible trajectories are marked in blue for the waypoint following agent of four
different vehicle types (Tesla, Jeep, shipping truck, fire truck) in the CARLA simulator. Trajectories marked in red represent
trajectories with weights that are close to zero, and thus are unlikely to be feasible. Bottom Row Manually collected expert
trajectories marked in blue to cover the agent’s full action space inside the waypoint following environment. RL agent rollouts
for each scenario are marked in red. Scenarios are similar across vehicle types.

particular vehicle type to condition a behavioral model to
produce waypoint sequences that are achievable trajectories
for the associated vehicle type. We integrate our work into
the CARLA [14] open source driving simulator.

II. METHODS

Our methodology couples solutions to three sub-problems:
defining an environment for training low-level vehicle con-
trollers, using RL to train low-level waypoint following agents
within this environment, and using artifacts from those train-
ing processes within a Bayesian procedure for conditioning
a foundation behavioral model to produce vehicle specific
waypoints. We start by defining the waypoint following
environment in which we train our vehicle-type specific, low-
level controllers. We then describe the reinforcement learning
(RL) approach we use, in particular defining the reward, the
Markov decision process (MDP), the value function, and the
choice of RL algorithm. We then review the approximate
inference perspective on RL and explain our final, novel step.
In this step we combine a vehicle-type specific value function
with a foundation behavior model to form an approximate
posterior distribution over trajectories that are achievable by
a particular vehicle-type and its associated controller.

A. Waypoint Following Environment

In this paper we define a target trajectory as sequence of
waypoints k1:T , where each waypoint is a tuple of target
coordinates, speed, and orientation kt = (xkt , y

k
t , v

k
t , ψ

k
t ) for

t ∈ 1, . . . , T . The waypoint following task is to produce a
sequence of actions at, t = 1, . . . , T , consisting of vehicle
controls. These controls consist of steering, throttle, and brake,
and must produce a sequence of realized vehicle positions
{xst , yst }Tt=0 which resemble the target trajectory as closely as
possible. Our notion of success in following a target trajectory
is that the vehicle stays within a distance ε away from its
reference trajectory at all time-steps t. That is, we say that a
vehicle successfully followed a target trajectory if for all t,

dt :=
√

(xst−xkt )2 + (yst−ykt )2 ≤ ε, (1)

where the superscript s indicates the positions generated
through interaction with the simulator, and k defines the
desired positions in the reference trajectory. If there exists a
sequence of actions that results in a vehicle successfully
following a trajectory from its initial state, we say that
this trajectory is feasible for the particular vehicle from
that specific initial state. A waypoint following environment
consists of one or more waypoint following tasks which we
also refer to as scenarios. We construct waypoint following
environments for each vehicle type we consider where
target trajectories are generated by manual driving. These
manually driven trajectories are picked to maximize state-
space coverage to ensure proper generalization of the policy.

Certain target trajectories may not be feasible due to the
dynamics and kinematic characteristics of a particular vehicle
type. For example, maximum torque or minimum turning
radius vary between most vehicle-types and these among
other things heavily influence feasibility of trajectories. Which
trajectories are feasible therefore depends on which vehicle
is trying to follow them. We assume a setting where we have
access to a generic probabilistic model of target trajectories
learned by observing the motion of multiple vehicle-types,
and our goal is to produce a model of target trajectories that
can be followed by a specific vehicle-type e. In order to do
that, we first describe the RL algorithm and MDP used to
learn a vehicle-specific waypoint following policy. We then
show that the artifacts obtained in this process can be used
to construct vehicle-specific target trajectory models without
further interaction with the simulator.

B. Reinforcement Learning for Waypoint Following

First we construct a waypoint following policy π(at|st),
which creates controls based on the vehicle’s state and the
target trajectory. In order to use RL to construct a waypoint
following policy, we need to frame the waypoint following



problem as an MDP. Here actions are defined to be the
vehicle controls, i.e. steering angle and single combined pedal
acceleration/braking control (where negative values indicate
braking and positive values indicate acceleration). The reward
is then defined as the negated distance to the target trajectory

rt =

(
ε−
√

(xst−xkt )2 + (yst−ykt )2
)
. (2)

The full MDP state contains the vehicle’s absolute position,
orientation, velocity, the target trajectory, and any internal
vehicle state, in particular that of the engine, which may influ-
ence its future dynamics. To simplify the state representation,
and ensure that the state can be applied to arbitrary vehicle
types, we consider six primary features: the longitudinal
and lateral velocity of the vehicle, its gear, and the relative
longitudinal and lateral position and orientation of the next
target waypoint in the reference frame attached to the vehicle.
Additionally, to allow the policy to better anticipate future
position and heading requirements, we additionally provide
it with a window of H target waypoints into the future. We
denote this state-space of size 3(H + 1) as

st =
[
vslon,t, v

s
lat,t, gt,∆x

s
t:t+H ,∆y

s
t:t+H ,∆ψ

s
t:t+H

]
, (3)[

∆xst+j
∆yst+j

]
=

[
(xkt+j+1 − xst )
(ykt+j+1 − yst )

]>[
cos(ψst ) − sin(ψst )
sin(ψst ) cos(ψst )

]
, (4)

for each time index displacement j < H , with ∆ψst+j =
(ψkt+j+1−ψst ). We also assume a fixed distribution over initial
states, defined by the initial velocity, position, orientation,
and gear of the vehicle. Finally, we assume that the transition
dynamics are defined by a deterministic external driving
simulator (e.g. CARLA [14] or NVIDIA Drive Sim [15]).
For convenience we also define τt := {at, st, rt}, τ = τ1:T ,
and the distribution over fixed time-horizon trajectories

qθ(τ) = p(s0)
∏T

t=0
p(st+1|st, at)πθ(at|st), (5)

for a particular parametric policy πθ. In this paper we
incorporate an additional termination condition defined by
Equation 1, as well as a maximum time-limit for interaction.

For a fixed horizon MDP, the optimal policy is one which
maximizes the expected reward ahead. When conditioned on
state, this expectation defines the value function or critic

V πθ (st) = E
τt:T∼qπθ (τt:T |st)

[
T∑
t′=t

rt′(a
′
t, s
′
t)

]
. (6)

As is typical in RL, we learn a parametric approximation
to this value function using a neural network V φ(st) with
parameter φ, which takes the same inputs as the policy.
Generally the value function is trained jointly with the
policy, and in this work we specifically use Proximal Policy
Optimization [16]. Training separately for each vehicle type
e, we obtain the approximately optimal waypoint following
policy πθe and the associated value function V φe . Figure
2b shows that policies obtained in this fashion successfully
follow target trajectories known to be feasible.

C. Reinforcement Learning as Inference

We will briefly discuss the RL as inference (RLAI)
framework [17], [18] and define the mathematical tools
used in later subsections. In this setting, RL is posed as
an approximate posterior inference problem over the set
of trajectories conditioned on how well the agent should
perform. This creates an inference problem defined by a set
of latent random variables (the trajectories), and a set of
observed random variables describing performance which
are conditionally dependent on the state-action pair at time
t. These observed random variables are called “optimality"
variables Ot, and are assumed to be Bernoulli distributed.
When Ot = 1 we say that the associated state-action was
optimal, while if Ot = 0 we say the state-action was sub-
optimal. The parameters of these Bernoulli distributions are

p(Ot = 1|at, st) =
1

Z0
exp r(at, st), (7)

where the normalizing constant Z0 is dependent on the
range of values the reward can take on. With optimality
defined, we can consider the probability that a given trajectory,
the sequence of state action pairs sampled from a policy
interacting with the environment τ , is itself optimal. For
finite horizon problems, this joint distribution over both latent
and observed random variables, p(τ,O1:T−1), is defined

p(s1)

T−1∏
t=1

[
p(st+1|st, at)π0(at|st)p(Ot|τt)

]
, (8)

where π0(at|st) denotes the ‘default’ policy or prior over
actions given states. In general, using this joint distribution
to derive an exact posterior is intractable, therefore we rely
on variational inference or Monte-Carlo methods.

D. Evaluating Feasibility

We are interested in the distribution of trajectories reachable
by a particular vehicle type e. We define a posterior over
feasible trajectories, conditioned on optimality, initial condi-
tions, and the vehicle type e. Here the optimality variables
depend on how well the agent was able to reproduce the
reference policy through the definition of the reward. The
initial conditions c = (c−U , . . . , c0) consist of a ‘burn-in’
sequence of states of length U + 1 where each element is
similar in nature to part of st combined with a waypoint kjt
from some empirical distribution over burn-in waypoints

ct = [vslon,t, v
s
lat,t, gt, x

j
t , y

j
t , v

j
t , ψ

j
t ]. (9)

Which means the posterior is defined according to

pe(k1:T |O1:T , c) =
pe(O1:T |k1:T , c)p(k1:T |c)

pe(O1:T |c)
. (10)

In order to characterize this distribution, we start with an
estimate of the likelihood term pe(O1:T |c, k1:T ), which we



arrive at via the the probabilistic value function [19], [18]

pe(O1:T |k1:T , c) =

∫
pe(O1:T , τ |k1:T , c)dτ

=

∫ T−1∏
t=0

exp (r(st, at))

Z0
πθe(at|st)p(st+1|st, at)1[dt≤ε]dτ

=
1

Z
E

τ |s0∼qπθe

[
exp

[
T−1∑
t=0

rt(at, st)

]]
,

where Z =
∏T−1
t=0 Z0. As a reminder, note that the reference

trajectory k1:T is consumed by both r(st, at) and dt. Here
we include an indicator function 1[dt≤ε] to denote that the
posterior only includes support over trajectories which are
feasible. We then take the log of both sides, to give a
expectation that is more familiar

log pe(O1:T |k1:T , c) = log pe(O1:T |s0)

= log

[
E

τ |s0∼qπθe

[
exp

[
T−1∑
t=0

rt(at, st)

]]]
− log(Z). (11)

Using Jensen’s inequality we recover an upper bound to the
artifact that classical RL algorithms train

log pe(O1:T |s0) ≥ E
τ |s0∼qπθe

[
T−1∑
t=0

rt

]
− log(Z) (12)

= V πθe (s0)− log(Z) (13)

Using this value function, we produce a surrogate likelihood
function along with its associated normalizing constant,

pe(O1:T |c) = E
pe(k1:T |c)

[exp(V πθe (s0)]− log(Z). (14)

Because both p(O1:T |c) and p(O1:T |s0) are now easy to
estimate and p(s0|c) can be sampled from directly, we use
importance sampling to gather examples which are close to
the desired posterior distribution

pe(k1:T |O1:T , c) ≈
exp(V πθe (s0))pe(s0|c)

Epe(k1:T |c) [exp(V πθe (s0)]
. (15)

Using the right hand side of (15) to score, we apply
importance weighting on top of the vehicle planner proposals
to increase the percentage of feasible trajectories generated
for a particular vehicle type, as shown in Algorithm 1.

III. EXPERIMENTS

A. Performance of waypoint follower

To obtain the value function for each vehicle type, we
train four waypoint following agents which include: a fire
truck, a small shipping truck, a Tesla Model 3 and a Jeep
Wrangler. Each of these vehicles is provided by CARLA [14],
a high fidelity simulator for autonomous driving. It provides a
variety of vehicle blueprints with different dynamics. To train
a vehicle specific waypoint following agent, we collect vehicle
specific waypoints inside CARLA by driving manually as
shown in Figure 1. We collect four different scenarios which
were designed to cover the agent’s full action space for each

Algorithm 1 Planner Refinement Via Re-sampling

1: Input: Planner p(k1:T ), Value function Vπθe (st), Number
of Importance Samples L

2: for ` = 0, 1, 2... do
3: Sample rollout k`1:T from p(k1:T |c)
4: Evaluate un-normalized w using equation 15, store.
5: end for
6: Select a rollout ki

`

1:T by sampling an index with proba-
bility proportional to the weights

il∼ Discrete
(

w1∑L
`=1 w

l ,
w2∑L
`=1 w

` , · · · , wL∑L
`=1 w

`

)
(16)

7: Output: Deploy agent using ITRA trajectory ki
`

1:T .

vehicle type. The scenarios include left-turn, right-turn, fully-
stopping and an S-shaped trajectory. We record the following
attributes for each vehicle type: position, yaw, velocity and
action (steering angle and throttle) at each frame given by
the simulator. Each record consists of 120 to 180 waypoints.

We train each vehicle to match manually gathered trajecto-
ries using proximal policy optimization (PPO) [16]. As stated
in section II, we include in the state-space H = 30 future
goals for both training and evaluation. These future goals
are pre-processed by a multilayer perceptron(MLP) layer
before passing into the value function and policy network to
stabilize the training. Figure 2b shows the average percentage
of waypoints hit for the 4 scenarios used in training by the
RL agents of the 4 vehicles. We note that the fire truck
waypoint following agent only solves 3 out of 4 scenarios.
We assume this follows from the fire truck being the least
controllable vehicle, due to its longer braking distance, larger
turning radius and slower acceleration compared to the other
vehicle types. We note also that the accuracy of predicted
values, given in the value loss in Figure 2a, often provides a
clear indication of how well that value function will score
the feasibility of proposed trajectories.

B. Performance of planner refinement

1) Datasets: For each vehicle type, we record four different
initial trajectories generated by executing CARLA autopilot
over a fixed time interval, from a fixed location. Using these
trajectories, we warm-start our behavioral model by executing
the waypoint-following policy to the initial condition of
interest, described in II. From this position, and using the
previous data along that trajectory, we then produce an
observed sequence of positions and velocities using our
behavioral model. The examples are generated in a non-trivial
setting, where the agent must complete exiting a roundabout
or turn at an intersection. This experiment is executed for
four auto-pilot trajectories and applied to four vehicles.
We generate nine second trajectories given one second of
observations at ten frames per second from ITRA following
the kinematic parameter and evaluate what percentage of this
route can be completed by the pretrained controller.

2) Evaluation Details: Following the initial burn in period
described above, we sample 100 trajectories from the prior



(a) (b)

Vehicle Type ε Distribution IC 1 IC 2 IC 3 IC 4

Truck
1.0 Prior 0.9 1.0 0.8 0.9
1.0 Posterior 1.0 1.0 1.0 1.0

Model3
1.0 Prior 1.0 1.0 0.9 0.9
1.0 Posterior 1.0 1.0 1.0 1.0

Jeep
1.0 Prior 1.0 1.0 0.8 1.0
1.0 Posterior 1.0 1.0 1.0 1.0

Fire Truck
1.5 Prior 0.7 0.7 0.6 0.6
1.5 Posterior 0.9 0.8 0.7 0.8

(c)

Fig. 2: Figure 2a displays the value function MSE loss for 4 different vehicle types. The value loss for the Jeep waypoint
following agent fluctuates more than the other agents but eventually converges as it is sensitive to control inputs. Figure
2b displays average percentage of waypoints solved across 4 different scenarios for all vehicle specific waypoint following
agents. The waypoint following agent for the fire truck reaches all waypoints for 3 of 4 training scenarios but only reaches
half of the waypoints for the sharp-braking scenario. Table 2c shows mean percentage of waypoints hit for the posterior
pe(k1:T |O1:T , c) compared to the prior p(k1:T |c) for different vehicle types e, and end conditions defined by Equation 1
given the distance ε. Note that the Fire Truck end conditions are loosened to improve the interpretability of our results.
Initial conditions(IC) 1 and 2 are exiting a roundabout and IC 3 and 4 are completing a turn. The Truck is able to follow
posterior trajectories versus trajectories generated by the underlying behavior model prior across all initial conditions. The
Fire Truck is able to follow more waypoints of the posterior than the prior even though its RL agent only solves 3 out of 4
training scenarios. We find that the Jeep and Tesla agents were already able to reach almost all waypoints generated from the
prior for IC 1 and 2, thus the posterior only marginally improves the percentage of waypoints hit with a difference below
significant digit level, though for IC 3 and 4, we observe the performance difference between the posteriors and prior.

behavioral model ITRA for each vehicle type at 10Hz. We
then execute the waypoint follower on these trajectories to
get the percentage of the route completed for each of vehicle
type. Rejection sampling is applied to the prior to avoid any
off-road examples at evaluation time. The average percentage
of waypoints hit for this baseline is shown this “prior" row of
Table 2c. To evaluate how effectively the value function would
have avoided infeasible routes, we calculate the importance
weighted expected value given in Table 2c.

IV. RELATED WORK

Behavioral models predict future motion of vehicles at
different levels of abstraction, ranging from discrete, high-
level commands [20] to specific vehicle positions at each time
step [21], [8], [22]. As these models are typically learned from
external observations of vehicles with unknown attributes,
they tend to disregard an explicit notion of feasibility, though
some models [10], [8] incorporate constraints [23]. As shown
in this work, simple constraints are not sufficient to guarantee
feasibility of predicted trajectories for varying vehicle types.
This is typically not a concern, since such models are usually
deployed to predict the behavior of other agents in order
to facilitate planning [24], but it becomes an issue when a
behavioral model is used as a planner.

Vehicles operating in the real world typically feature a
specialized planner which needs to be extremely reliable,
so learned behavior models are generally not suitable for
this purpose. Nonetheless, when generating high-fidelity
simulation, it makes sense to use behavioral models as
planners for non-playable characters. However, for predicted
trajectories to be useful as plans, they must be feasible.

Incorporating explicit constraints into trajectory planning has
been extensively studied in the literature [25], [26] but it
typically makes assumptions on the vehicle dynamics, and
relies on knowing problem specific constants. In our approach
the constraints, and the dynamics which produce them, are
not explicitly known. Instead, we estimate them by observing
which trajectories a trained controller is able to follow.

Trajectory planning can be cast as a constrained optimiza-
tion problem [2], where the target trajectory which satisfies a
known dynamics model is selected to optimize a cost function.
This cost function defined to produce desired characteristics,
such as feasibility, comfort, achieving target, or minimizing
infractions. Our framework, which uses maximum aposteriori
estimates is equivalent to using a soft constraint instead of a
direct projection onto the constraint set. While inexact, our
method can easily maintain a set of diverse trajectories, which
is crucial in the generation of diverse sets of scenarios.

Value functions learned via inverse RL have been used to
produce rule-based planners with Bayesian optimization [25].
By contrast, our approach only requires solving a single RL
problem per vehicle, instead of a sequence of RL problems
as is the case in most IRL methods. Unlike [25], we target
feasibility of the trajectory, rather than human preferences.

Using learned behavioral models to create realistic simula-
tions is a relatively recent research area [8], [10]. Existing
work uses simple 2D simulators with easily solvable kinematic
models or performs 3D simulation by teleporting non-playable
characters to their target positions at each time step. To the
best of our knowledge, this is the first paper studying the task
of incorporating realistic vehicle dynamics into simulations
generated with learned behavioral models. Notably, hand-



crafted behavioral models with corresponding controllers have
been used for this purpose before [27], [28]. This includes
controllers, but not behavioral models, which were trained
using recorded human trajectories [29].

V. DISCUSSION

In this work, we identify and formalize a fundamental
problem at the intersection of foundational models of behavior
and low level control. This issue, described by the discrepancy
between a behavioral model and the physical constraints of a
real (or simulated) environment, can be solved using artifacts
already available from the byproducts of the reinforcement
learning algorithm used to train low-level vehicle controllers.
Our work illustrates that these byproducts implicitly target the
same likelihoods needed to score feasibility, and in practice
can be used to great effect.

There remain however, opportunities to improve upon
our work. These include investigating methods to improve
the bound in Equation 12, amortized characterization of
the posterior distribution of reachable waypoint trajectories
given by Equation 15, and meta-learning a single conditional
distribution p(k1T |O1:T , c, e) that automatically adapts to the
given vehicle type. We expect the approach we have proposed
will generalize to additional vehicle types but this could also
be verified by further study.

VI. ACKNOWLEDGEMENT

We acknowledge the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC),
the Canada CIFAR AI Chairs Program, and the Intel
Parallel Computing Centers program. Additional support
was provided by UBC’s Composites Research Network
(CRN), and Data Science Institute (DSI). This research
was enabled in part by technical support and computational
resources provided by WestGrid (www.westgrid.ca), Compute
Canada (www.computecanada.ca), and Advanced Research
Computing at the University of British Columbia (arc.ubc.ca).

REFERENCES

[1] Sajjad Mozaffari, Omar Y. Al-Jarrah, Mehrdad Dianati, Paul Jennings,
and Alexandros Mouzakitis. Deep learning-based vehicle behavior
prediction for autonomous driving applications: A review. 2022.

[2] Abbas Sadat, Mengye Ren, Andrei Pokrovsky, Yen-Chen Lin, Ersin
Yumer, and Raquel Urtasun. Jointly learnable behavior and trajectory
planning for self-driving vehicles. In IROS, 2019.

[3] Christopher Vo, Joseph F Harrison, and Jyh-Ming Lien. Behavior-
based motion planning for group control. In IEEE RSJ International
Conference on Intelligent Robots and Systems, 2009.

[4] Alexander Cui, Sergio Casas, Abbas Sadat, Renjie Liao, and Raquel
Urtasun. Lookout: Diverse multi-future prediction and planning for
self-driving. In ICCV, 2021.

[5] Tanmay Agarwal, Hitesh Arora, Tanvir Parhar, Shubhankar Deshpande,
and Jeff Schneider. Learning to drive using waypoints. In Machine
Learning for Autonomous Driving Workshop: NeurIPS, 2019.

[6] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl.
Learning by Cheating. In Conference on Robot Learning, pages 66–75.
PMLR, May 2020. ISSN: 2640-3498.

[7] Wei Zhan, Liting Sun, Di Wang, Haojie Shi, Aubrey Clausse, Maximil-
ian Naumann, Julius Kümmerle, Hendrik Königshof, Christoph Stiller,
Arnaud de La Fortelle, and Masayoshi Tomizuka. INTERACTION
Dataset: An INTERnational, Adversarial and Cooperative moTION
Dataset in Interactive Driving Scenarios with Semantic Maps. arXiv
preprint arXiv:1910.03088, 2019.

[8] Simon Suo, Sebastian Regalado, Sergio Casas, and Raquel Urtasun.
Trafficsim: Learning to simulate realistic multi-agent behaviors. In
CVPR, 2021.

[9] Yu Yao, Mingze Xu, Chiho Choi, David J Crandall, Ella M Atkins, and
Behzad Dariush. Egocentric vision-based future vehicle localization
for intelligent driving assistance systems. In ICRA, 2019.

[10] Adam Ścibior, Vasileios Lioutas, Daniele Reda, Peyman Bateni, and
Frank Wood. Imagining the road ahead: Multi-agent trajectory
prediction via differentiable simulation. In ITSC, 2021.

[11] Hang Zhao, Jiyang Gao, Tian Lan, Chen Sun, Benjamin Sapp,
Balakrishnan Varadarajan, Yue Shen, Yi Shen, Yuning Chai, Cordelia
Schmid, Congcong Li, and Dragomir Anguelov. Tnt: Target-driven
trajectory prediction. CoRR, 2019.

[12] M. Zhao, D. Kathner, M. Jipp, D. Soffker, and K. Lemmer. Modeling
driver behavior at roundabouts: Results from a field study. In IEEE
Intelligent Vehicles Symposium (IV), 2017.

[13] Xiaoyu Chen, Jiachen Hu, Chi Jin, Lihong Li, and Liwei Wang.
Understanding domain randomization for sim-to-real transfer. In ICLR,
2022.

[14] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez,
and Vladlen Koltun. Carla: An open urban driving simulator. In CoRL,
2017.

[15] Nvidia drive sim, 2021.
[16] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and

Oleg Klimov. Proximal policy optimization algorithms. 2017.
[17] Sergey Levine. Reinforcement learning and control as probabilistic

inference: Tutorial and review. arXiv preprint arXiv:1805.00909, 2018.
[18] Jonathan Wilder Lavington, Michael Teng, Mark Schmidt, and Frank

Wood. A closer look at gradient estimators with reinforcement learning
as inference. In Deep RL Workshop: NeurIPS, 2021.

[19] Alexandre Piché, Valentin Thomas, Cyril Ibrahim, Yoshua Bengio, and
Chris Pal. Probabilistic planning with sequential monte carlo methods.
In ICLR, 2018.

[20] Zlatan Ajanovic, Bakir Lacevic, Barys Shyrokau, Michael Stolz, and
Martin Horn. Search-based optimal motion planning for automated
driving. In IROS, 2018.

[21] Nicholas Rhinehart, Rowan McAllister, and Sergey Levine. Deep
imitative models for flexible inference, planning, and control. In ICLR,
2020.

[22] Hang Zhao, Jiyang Gao, Tian Lan, Chen Sun, Benjamin Sapp,
Balakrishnan Varadarajan, Yue Shen, Yi Shen, Yuning Chai, Cordelia
Schmid, Congcong Li, and Dragomir Anguelov. TNT: target-driven
trajectory prediction. CoRR, abs/2008.08294, 2020.

[23] Philip Polack, Florent Altché, Brigitte d’Andréa Novel, and Arnaud
de La Fortelle. The kinematic bicycle model: A consistent model
for planning feasible trajectories for autonomous vehicles? In IEEE
Intelligent Vehicles Symposium (IV), 2017.

[24] Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M Kitani,
Dariu M Gavrila, and Kai O Arras. Human motion trajectory prediction:
a survey. The International Journal of Robotics Research, 39(8):895–
935, July 2020. Publisher: SAGE Publications Ltd STM.

[25] Shu Jiang, Zikang Xiong, Weiman Lin, Yu Cao, Zhongpu Xia, Jinghao
Miao, and Qi Luo. An efficient framework for reliable and personalized
motion planner in autonomous driving. IEEE Robotics and Automation
Letters, page 8, 2022.

[26] Yu Wang, Shu Jiang, Weiman Lin, Yu Cao, Longtao Lin, Jiangtao
Hu, Jinghao Miao, and Qi Luo. A learning-based tune-free control
framework for large scale autonomous driving system deployment.
CoRR, abs/2011.04250, 2020.

[27] Qianwen Chao, Huikun Bi, Weizi Li, Tianlu Mao, Zhaoqi Wang,
Ming C Lin, and Zhigang Deng. A survey on visual traffic simulation:
Models, evaluations, and applications in autonomous driving. In
Computer Graphics Forum, volume 39, pages 287–308. Wiley Online
Library, 2020.

[28] Arne Kesting, Martin Treiber, and Dirk Helbing. Agents for traffic
simulation. Multi-agent systems: Simulation and applications, 5, 2009.

[29] Raunak Bhattacharyya, Soyeon Jung, Liam A. Kruse, Ransalu
Senanayake, and Mykel J. Kochenderfer. A hybrid rule-based and
data-driven approach to driver modeling through particle filtering. IEEE
Transactions on Intelligent Transportation Systems, pages 1–14, 2021.


	I INTRODUCTION
	II METHODS
	II-A Waypoint Following Environment
	II-B Reinforcement Learning for Waypoint Following
	II-C Reinforcement Learning as Inference
	II-D Evaluating Feasibility

	III EXPERIMENTS
	III-A Performance of waypoint follower
	III-B Performance of planner refinement
	III-B.1 Datasets
	III-B.2 Evaluation Details


	IV Related Work
	V DISCUSSION
	VI ACKNOWLEDGEMENT
	References

