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Abstract— While various automated spike sorting tech-
niques have been developed, their impact on neural decoding
has not been investigated. In this paper we extend previous
Gaussian mixture models and Expectation Maximization (EM)
techniques for automatic spike sorting [1]. We suggest that good
initialization of EM is critical and can be achieved via spectral
clustering. To account for noise we extend the mixture model to
include a uniform outlier process. Automatically determining
the number of neurons recorded per electrode is a challenging
problem which we solve using a greedy optimization algorithm
that selects models with different numbers of neurons accord-
ing to their decoding accuracy. We focus on data recorded
from motor cortex and evaluate performance with respect to
the decoding of hand kinematics from firing rates. We found
that spike trains obtained by our automated technique result in
more accurate neural decoding than those obtained by human
experts.

Index Terms— Spike sorting, spectral clustering, expec-
tation maximization, mixture models, motor cortex, neural
decoding, neural prosthesis.

I. INTRODUCTION

Traditional neuroscience involves the study of small
populations of cells where neural activity is recorded and
manually processed for ‘off-line’ analysis. Neural prosthesis
applications may involve simultaneously recording from
hundreds of electrodes and decoding neural activity ‘on-line’
[2]–[5]. These constraints make hand sorting of neural data
impractical and highlight the need for automated methods.
Traditionally the goal of spike sorting is to identify the
activity of individual cells for later analysis. For neural
prostheses the goal is somewhat different and we seek an
automated method that optimizes decoding accuracy for
neural control tasks. We develop an automatic spike sorting
algorithm that produces decoding results that are as good or
better than those obtained by the best human spike sorter.
To evaluate decoding accuracy we use a Kalman filter to
infer hand motion from neural recordings made in the motor
cortex of a monkey performing a cursor control task [3].

Decoding algorithms typically exploit some function
relating the firing rate of a population of cells to kinematic
data such as hand position. Firing rates can be determined
by counting the number of spikes a neuron produces in
some time window (or bin), but detecting and assigning
spikes to neurons is difficult to do. This is especially true
when recording with the chronically implantable, relatively
low-impedance multi-electrode arrays [6] desirable for use
in neuroprosthetic applications. Given detected waveforms
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from such an array the problem of spike sorting involves de-
termining which waveforms were noise, how many neurons
were recorded, and which neuron each non-noise waveform
came from. It has been shown that knowledgeable domain
experts often disagree about not only what is and is not
a spike but also about the number of neurons present in
recordings for a given electrode [1], [7]. In this study we
found similar variability between experts. Note that here
we do not address spike detection as the waveforms we
sorted were captured after crossing experimentally deter-
mined thresholds.

A number of spike sorting techniques have previously
been investigated, see [1] for a review. These techniques
include template matching and k-means or Gaussian mixture
model clustering of waveform principle components. Neural
networks [8] and t-distribution mixture model clustering
[9] have also been developed. None of the methods above
adequately addressed either of the two problems that drove
our research, namely, automatically determining the number
of units recorded and identifying noise.

We propose an automatic spike sorting algorithm that
is an extension of the Gaussian mixture model Expectation
Maximization (EM) technique [1]. Our new algorithm ini-
tializes the mixture model distribution parameters by clus-
tering a subset of the data using spectral clustering [10]. Our
algorithm performs model selection by greedily optimizing
decoding error. For each channel of a recording, the algo-
rithm decodes using multiple models of varying numbers of
densities. The model that produces the best decoding results
is kept. We introduce decoding accuracy as a new objective
means of evaluating spike sorting performance, and with it
demonstrate that our algorithm performs as well as or better
than expert human sorters.

II. METHODS

We studied the effect of spike sorting on decoding
accuracy in the following manner. A single dataset was
recorded then sorted by 4 human volunteers, an automated
algorithm of our design, and two ‘control’ algorithms,
resulting in 7 different spike trains. We evaluated these
spike trains by decoding using the Kalman filter method
of [11]. The Kalman filter was trained on 3 minutes of
rate and kinematic data binned in 70ms time bins, and
average decoding results are given for 5 independent 1
minute data segments. The kinematics were encoded as a
6 attribute vector comprised of x, y hand position, velocity,
and acceleration. Our implementation differed from [11] in
that we found that a time lag of 0ms instead of 140ms was
optimal for our data.
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A. Recording
In a single monkey, following task training, a Bionic

Technologies LLC (BTL) 100-electrode silicon array [6] was
implanted in the arm area of primary motor cortex (MI). The
recording setup was similar to that used in [3]. where an
animal was trained to use a two-joint planar manipulandum
to control the motion of a feedback cursor on a computer
screen. The simultaneous recording of hand kinematics and
neural activity allowed the study of motor cortical encoding
of hand motion [12] and the training of decoding methods
[3], [11], [13]. A recording from this animal performing a
“pinball” tracking task [11] was used in this study.

The recording used for this study was a collection of 96
independent channels where the waveform capture threshold
for each channel was empirically determined at the time of
recording, and was set low enough to ensure that a majority
of the spiking activity was captured. The array was placed
in MI, but by virtue of array design and insertion technique
the location of each electrode with respect to individual
neurons was unknown. Correspondingly, every channel may
have had waveforms from multiple neurons. Additionally, on
each channel some number of non-spike, threshold-crossing
waveforms were recorded. We call these non-spike wave-
forms “noise”. A single contiguous 600 second segment of
data was extracted from a part of the recording featuring high
arm movement and neural firing rates. Unlike other studies
where decoding is done only on data recorded between start
and stop cues, we extracted a single continuous segment
where there were periods of no arm movement. Of this 600
second segment, different independent sub-segments were
used for greedy model selection, to train the Kalman filter,
and to test decoding accuracy.

B. Automatic Sorting
Without loss of generality, the exposition below de-

scribes sorting data on a single channel (electrode). The
same process applies to all channels. To automatically sort
each channel we first reduced the dimensionality of the
waveforms via principle component analysis (PCA) . We
then used expectation maximization (EM) [15] to fit a
mixture of Gaussians (mixture model) to the waveform PCA
coefficients. The mixture model cluster means, covariances,
and membership weights were initialized by applying a
spectral clustering algorithm to a subset of the data. A
uniform probability noise process was added to the EM
framework and was used to identify and eliminate noise.

Let C = [~ω1, . . . , ~ωN ] represent the N waveforms on a
single channel, where each waveform is a vector of n voltage
samples ~ωi = [ωi

1
, . . . , ωi

n]T ∈ R
n. In our experiments n =

40.
The ~ωi can be approximated by a linear combination

of PCA bases as ~ωi ≈
∑D

d=1
cdUd where we take D = 3

bases corresponding to approximately 70% of the variance
in the data, Ud is the dth PCA basis vector, and cd are the
linear coefficients. Let ~c i = [ci

1
. . . ci

D], then the probability
P (~ωi|j) can be approximated by P (~c i|j) [14].

Assume that all the waveforms in C were generated by
exactly M neurons. Then the probability, under our Gaussian
assumption, that ~c i was generated by neuron j, 1 < j < M
is given by:

P (~c i|j) =
1

(2π)
d

2

√

det(Σj)
exp(−

1

2
(~c i − µj)

T Σ−1

j (~c i − µj))

where µj and Σj are the mean and covariance of the PCA
coefficients of the waveforms generated by neuron j.

The probability of the channel according to the mixture
model is:

P (C) =
N
∏

i=1

M
∑

j=1

αjP (~c i|j)

where the αj > 0 are mixing coefficients and
∑M

j=1
αj = 1.

The EM algorithm was used to maximize P (C) by
varying distribution parameters and membership weights
(the set of which is usually represented by Θ). The EM
algorithm iteratively computes cluster membership weights
P (j|~c i). To account for noise we introduced a uniform
outlier model with a fixed likelihood ν = P (~c i|noise).
This outlier models is included in the membership weight
calculations in the following manner:

P (j|~c i) =
P (~c i|j)

∑M

l=i
P (~c i|l) + ν

.

When initializing EM there is always the issue of how
to initialize the mixture parameters Θ, given that different
values of Θ can produce remarkably different clusterings
due to local maxima in the log likelihood function. Further,
in the case of clustering spikes we found that simple k-
means or random initializations often led to solutions that
were non-intuitive. To combat this we initialized Θ using
spectral clustering [10]. The application of the algorithm to
this problem is straightforward with two exceptions. The
algorithm spectrally decomposes an ‘affinity matrix’, A,
defined by Aij = exp(−||~c i − ~cj ||2/2σ2) if i 6= j and
Aii = 0 to find groups of waveforms that are ‘closely
bunched’. The first exception is the free affinity parameter
σ which we set empirically. The second exception is the
fact the size of the affinity matrix grows as the square of
the number of waveforms. On most channels there were too
many waveforms to create an affinity matrix between all of
them, so a random subset of 1000 waveforms was selected
and used. The resulting cluster assignments were used to
initialize the mixture means, covariances, and membership
weights.

Model selection is an issue in mixture model clustering.
Model selection corresponds to determining the number of
clusters in the data, which means in this context determining
the number of units on a channel. To accomplish this
employed a greedy approach which is outlined in Algorithm
1. In Algorithm 1, the subroutine sort(C, j), runs our
extended EM mixture model fitting procedure on channel C
assuming j mixture components. It returns a labeled channel
where all of the waveforms have each been attributed to one
of the j clusters or noise. The algorithm iterates through all
the channels of a recording, sorting each one one potentially
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Algorithm 1 Greedy Sorter
1: for all channels C do
2: R[C]← sort(C, 1) // Assume only 1 neuron present.
3: end for
4: error← kalmanfilter(R) // Get the Kalman filter error.
5: for all channels C do
6: for j = 0, . . . , 5 do
7: Ctemp ← R[C]
8: R[C]← sort(C, j) // Assume j neurons present.
9: newerror← kalmanfilter(R)

10: if newerror < error then
11: error← newerror
12: else
13: R[C]← Ctemp

14: end if
15: end for
16: end for

many times, assuming a different model each time, and
finishes when the number of units that maximizes decoding
performance has been found. Note that the algorithm can
pick a zero unit model. This may exclude channels that do
not improve decoding.

C. Human and Control Sorting

In [7] we found that expert human sorters produced
different spike trains given the same recording, however we
did not study how this effected decoding results. By asking
volunteers to sort the same dataset we were able to both
ascertain how subjective variability in spike trains effects
decoding results and to establish a baseline against which to
judge our algorithm.

Four subjects, all graduate students or postdoctoral
researchers and all expert spike sorters, were given the
recording and asked to sort it using any tool at their disposal.
They were instructed to sort it in the way they thought would
maximize decoding performance. All subjects used Plexon’s
Offline sorter software [16] to sort the dataset. Units were
identified and spikes were assigned to them by manually
cluster cutting waveforms projected into a 2 dimensional
PCA space. The resulting spike trains were decoded and the
results are displayed as A,B,C, and D in Table I.

To better understand how both our volunteers and our
algorithm performed we also compared them to spike trains
produced by both randomly sorting or not sorting at all. No
sorting (‘None’ in Table I) means that all waveforms on
each channel were attributed to a single neuron. Randomly
sorting (‘Random’ in Table I) means that on each channel
three neurons were posited and waveforms were randomly
attributed to them with equal probability.

D. Rate Estimation

A common approach to neural decoding exploits a
relationship between the firing rates of individual neurons
and some stimulus or motor variable (hand kinematics in
our case). It is common to ‘bin’ spikes within fixed time
windows to produce an estimate of firing rate for use in
decoding.

We chose to examine decoding performance given two
different estimates of the firing rate. One is the usual
maximum likelihood clustering interpretation, the results for
which are given as ‘Auto Max’ in results Table I. The second,
‘Auto Weighted’ in the same table, attempts to account for
some of the spike train ambiguities in a probabilistically
sound way.

Let B =
∑C

i=1
Mi be the number of cells identified

on all channels where Mi is optimal the number of units
identified for each channel. Let zk = [z1

k, z2

k, . . . , zB
k ] be the

firing rate of all B cells identified in the recording in time bin
k where zj

k is the firing rate of cell j. Let ~c i, 0 < i < K
be the PCA representation of the K waveforms recorded
between the start and end times of bin k.

Then, under the mixture model, the maximally likely
firing rate, ‘Auto Max’, is computed as usual:

z
j

k =
K

∑

i=0

{

1 if j = argmax
m

P (m|~c i);

0 otherwise.

A motivation for our adoption of a probabilistic, mixture
model sorting algorithm was that we could leverage the char-
acterization of uncertainty in our decoding algorithm. The
‘Auto Weighted’ decoding used the same Kalman decoding
framework but the firing rate was computed as:

z
j

k =

K
∑

i=0

P (j|~c i)

In both estimates of firing rate P (j|~c i) = 0 if ~c i was not
recorded on the same channel where neuron j was identified.

This weighting scheme accounts for spikes that are
difficult to attribute to any single neuron. It does so by
contributing a ‘partial spike’ or ‘weight’ to the firing rates
of every neuron that could have generated them. In the clus-
tering context, this is equivalent to eschewing a maximum
likelihood clustering criteria, and instead finding a way to
cope with the fact that a point may be inherently ambiguous
and should be treated is if it belongs to several clusters
simultaneously. In this ‘auto weighted’ rate estimation, we
used the mixture likelihood given a spike P (j|~c i) as the
‘partial spike’ weight contribution to neuron j.

III. RESULTS

Table I summarizes the decoding results. In the table,
‘None’ posits one noiseless unit per channel. ‘Random’
posits three units per channel and assigns waveforms to each
unit uniformly at random. ‘Ave. Human’ is the average of
subjects ‘A’, ‘B’, ‘C’, and ‘D’. ‘Auto Max’ is the result
for the algorithm described in this paper with the normal,
maximum likelihood estimate of firing rate. ‘Auto Weighted’
uses the same clustering as ‘Auto Max’ except that a proba-
bilistically ‘weighted’ estimate of firing rate is used instead.
‘None’ and ‘Random’ are shown for comparison. Reported
are the total number of neurons and spikes identified, the
correlation coefficients between the decoded and the true
x and y hand position, and the mean square error (MSE)
between the same. We found that our automatic sorter did
as well or better than the best human sorter.
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TABLE I
DECODING RESULTS

Subject Neurons Spikes MSE (cm2)
A 107 757674 11.45 ± 1.39
B 96 335656 16.16 ± 2.38
C 78 456221 13.37 ± 1.52
D 88 642422 12.37 ± 1.22
Ave. Human 92 547993 13.46 ± 2.54
Random 288 860261 13.28 ± 1.54
None 96 860261 12.78 ± 1.89
Auto Max 114 625861 11.31 ± 1.33
Auto Weighted 114 625861 11.30 ± 1.15

IV. DISCUSSION

We found it surprising that human spike sorters pro-
duced spike trains that are worse for decoding than no
sorting at all. With the exception subject ‘A’, the sub-
jects generally erred toward missing valid spikes in lieu
of attributing non-spikes to neurons. This sorting strategy
could result in problematically low firing rates for decoding.
Subject ‘A’ identified more spikes than did the automated
algorithm, but decoding results for his spike trains were
slightly worse than for those from the automated algorithm.
This could be due to the fact that the automated algorithm
found more units and presumably those units had better
tuning properties.

For decoding it might be more important to find units
that are well correlated to the kinematic variables than
to find precisely the unique units being recorded. This
differs substantially from the objectives of spike sorting
for neuroscience at large, and resulted in some unusual but
effective clusterings. Consider a channel containing clearly
separable clusters of waveforms from two different neurons.
If they have similar tuning properties they may be grouped
together and treated as a single unit.

Additionally, it has been observed [17] that ‘discarding’
certain units sometimes improves decoding results. Our
algorithm discarded some units, and indeed some channels
wholly, by labeling all activity on poorly correlated channels
to be noise. The sequential greedy nature of our algorithm
may remove more units from consideration than is necessary.
It is possible that the observed improvement in decoding
results may have come from the elimination of superfluous
data in this way.

We stress that the particular algorithm given in this
paper is a ‘proof of concept’ approach and that both doing
a better job of accounting for spike train uncertainty in the
decoding process and building a better formulation of spike
sorting as a decoding optimization problem may ultimately
improve neural decoding significantly.

V. CONCLUSIONS

We discovered that spike train variability effects de-
coding results and demonstrated that for neuroprosthetic
applications simple automated sorting techniques are as good
or better than human manual sorting. We extended Gaussian
mixture model sorting to identify non-spike waveforms as

noise and exploited a spectral cluster initialization technique
that works well in this context. We also demonstrated that
decoding performance can be used to solve the problem of
model selection for neural decoding applications. Likewise
we suggested that decoding results may be a valuable tool
to evaluate sorting algorithms. Areas for future research
include developing a better noise model and evaluating basis
transformations other than PCA.
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