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Abstract. We introduce an adaptive output-sensitive Metropolis-Hast-
ings algorithm for probabilistic models expressed as programs, Adap-
tive Lightweight Metropolis-Hastings (AdLMH). The algorithm extends
Lightweight Metropolis-Hastings (LMH) by adjusting the probabilities
of proposing random variables for modification to improve convergence
of the program output. We show that AdLMH converges to the correct
equilibrium distribution and compare convergence of AdLMH to that of
LMH on several test problems to highlight different aspects of the adap-
tation scheme. We observe consistent improvement in convergence on the
test problems.
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1 Introduction

One strategy for improving convergence of Markov Chain Monte Carlo (MCMC)
samplers is through online adaptation of the proposal distribution [1,2,14]. An
adaptation scheme must ensure that the sample sequence converges to the cor-
rect equilibrium distribution. In a componentwise updating Metropolis-Hastings
MCMC, i.e. Metropolis-within-Gibbs [5,8,10], the proposal distribution can be
decomposed into two components:

1. A stochastic schedule (probability distribution) for selecting the next random
variable for modification.

2. The kernels from which new values for each of the variables are proposed.

In this paper we concentrate on the first component—adapting the schedule for
selecting a variable for modification.

Our primary interest in this work is to improve MCMC methods for proba-
bilistic programming [6,7,11,16]. Probabilistic programming languages facilitate
development of general probabilistic models using the expressive power of gen-
eral programming languages. The goal of inference in such programs is to reason
about the posterior distribution over random variates that are sampled during
execution, conditioned on observed values that constrain a subset of program
expressions.
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Lightweight Metropolis-Hastings (LMH) samplers [15] propose a change to
a single random variable at each iteration. The program is then rerun, reusing
previous values and computation where possible, after which the new set of sam-
ple values is accepted or rejected. While re-running the program each time may
waste some computation, the simplicity of LMH makes developing probabilistic
variants of arbitrary languages relatively straightforward.

Designing robust Adaptive MCMC methods for probabilistic programming is
complicated because of diversity of models expressed by probabilistic programs.
The same adaption scheme should perform well with different programs without
manual tuning. Here we present an adaptive variant of LMH, which dynamically
adjusts the schedule for selecting variables for modification. First, we review
the general structure of a probabilistic program. We discuss convergence crite-
ria with respect to the program output and propose a scheme for tracking the
“influence” of each random variable on the output. We then adapt the selection
probability for each variable, borrowing techniques from the upper confidence
bound (UCB) family of algorithms for multi-armed bandits [3]. We show that
the proposed adaptation scheme preserves convergence to the target distribution
under reasonable assumptions. Finally, we compare original and Adaptive LMH
on several test problems to show how convergence is improved by adaptation.

2 Preliminaries

2.1 Probabilistic Program

A probabilistic program is a stateful deterministic computation P with the fol-
lowing properties:

– Initially, P expects no arguments.
– On every call, P returns either a distribution F , a distribution and a value

(G, y), a value z, or ⊥.
– Upon returning F , P expects a value x drawn from F as the argument to

the next call.
– Upon returning (G, y) or z, P is invoked again without arguments.
– Upon returning ⊥, P terminates.

A program is run by calling P repeatedly until termination.
Every run of the program implicitly produces a sequence of pairs (Fi, xi) of

distributions and values of latent random variables. We call this sequence a trace
and denote it by xxx. A trace induces a sequence of pairs (Gj , yj) of distributions
and values of observed random variables. We call this sequence an image and
denote it by yyy. We call a sequence of values zk an output of the program and
denote it by zzz. Program output is deterministic given the trace.

The probability of a trace is proportional to the product of the probability
of all random choices xxx and the likelihood of all observations yyy

p(xxx) ∝
|xxx|∏
i=1

pFi(xi)

|yyy|∏
j=1

pGj (yj). (1)
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Algorithm 1 Adaptive componentwise MH

1: Select initial point xxx1.
2: Set initial selection probabilities ααα1.
3: for t = 1 . . .∞ do
4: αααt ← f t(αααt,xxx0,xxx1, . . . ,xxxt).
5: Choose k ∈ {1, . . . , N} with probability αtk.
6: Generate xxx′ ∼ qkθ (xxx|xxxt).
7: ρ← min

(
π(xxx′)qkθ (xxx

t|xxx′)
π(xxxt)qk

θ
(xxx′|xxxt) , 1

)
8: xxxt+1 ← xxx′ with probability ρ, xxxt otherwise.
9: end for

The objective of inference in probabilistic program P is to discover the distribu-
tion of zzz.

2.2 Adaptive Markov Chain Monte Carlo

MCMC methods generate a sequence of samples {xxxt}∞t=1 by simulating a Markov
chain using a transition operator that leaves a target density π(xxx) invariant. In
MH the transition operator is implemented by drawing a new sample xxx′ from a
parameterized proposal distribution qθ(xxx

′|xxxt) that is conditioned on the current
sample xxxt. The proposed sample is then accepted with probability

ρ = min

(
π(xxx′)qθ(xxx

t|xxx′)
π(xxxt)qθ(xxx′|xxxt)

, 1

)
. (2)

If xxx′ is rejected, xxxt is re-used as the next sample.

The convergence rate of MH depends on parameters θ of the proposal distri-
bution qθ. The parameters can be set either offline or online. Variants of MCMC
in which the parameters are continuously adjusted based on the features of the
sample sequence are called adaptive. Challenges in design and analysis of Adap-
tive MCMC methods include optimization criteria and algorithms for the pa-
rameter adaptation, as well as conditions of convergence of Adaptive MCMC to
the correct equilibrium distribution [13]. Continuous adaptation of parameters
of the proposal distribution is a well-known research subject [1,2,14].

In a componentwise MH algorithm [10] which targets a density π(xxx) de-
fined on an N -dimensional space X , the components of a random sample xxx =
{x1, . . . , xN} are updated individually, in either random or systematic order.
Assuming the component i is selected at the step t for modification, the pro-
posal xxx′ sampled from qiθ(xxx|xxxt) may differ from xxxt only in that component,
and x′j = xtj for all j 6= i. Adaptive componentwise Metropolis-Hastings (Algo-
rithm 1) chooses different probabilities for selecting a component for modification
at each iteration. Parameters of this scheduling distribution may be viewed as a
subset of parameters θ of the proposal distribution qθ, and adjusted according
to optimization criteria of the sampling algorithm.



4 David Tolpin, Jan Willem van de Meent, Brooks Paige, and Frank Wood

Varying selection probabilities based on past samples violates the Markov
property of {xxxt}∞1 . However, provided the adaptation of the selection probabili-
ties diminishes, with ||αααt−αααt−1|| → 0, then under suitable regularity conditions
for the target density (see Section 4) an adaptive componentwise MH algorithm
will still be ergodic [8], and the distribution on xxx induced by Algorithm 1 con-
verges to π.

2.3 Lightweight Metropolis-Hastings

LMH [15] is a sampling scheme for probabilistic programs where a single random
variable drawn in the course of a particular execution of a probabilistic program
is modified via a standard MH proposal, and this modification is accepted by
comparing the values of the joint probability of old and new program traces.
LMH differs from componentwise MH algorithms in that other random variables
may also have to be modified, depending on the structural dependencies in the
probabilistic program.

LMH initializes a proposal by selecting a single variable xk from an execution
trace xxx and resampling its value x′k either using a reversible kernel κ(x′k|xk)
or from the conditional prior distribution. Starting from this initialization, the
program is rerun to generate a new trace xxx′. For each m > k, the previous
value xm is reused, provided it still lies in the support of the distribution on x′m,
rescoring its log probability relative to the new random choices {x′1, . . . , x′m−1}.
When x′m cannot be rescored, a new value is sampled from the prior on x′m,
conditioned on preceding choices. The acceptance probability ρLMH is obtained
by substituting (1) into (2):

ρLMH = min

(
1,
p(yyy′|xxx′)p(xxx′)q(xxx|xxx′)
p(yyy|xxx)p(xxx)q(xxx′|xxx)

)
. (3)

We here further simplify LMH by assuming x′k is sampled from the prior condi-
tioned on earlier choices and that all variables are selected for modification with
equal probability. In this case, ρLMH takes the form [16]

ρLMH = min

(
1,
p(yyy′|xxx′)p(xxx′)|xxx|p(xxx\xxx′|xxx ∩ xxx′)
p(yyy|xxx)p(xxx)|xxx′|p(xxx′\xxx|xxx′ ∩ xxx)

)
, (4)

where xxx′ \xxx denotes the resampled variables, and xxx′ ∩ xxx denotes the variables
which have the same values in both traces.

3 Adaptive Lightweight Metropolis-Hastings

We develop an adaptive variant of LMH, which dynamically adjusts the proba-
bilities of selecting variables for modification (Algorithm 2). Let xxxt be the trace
at iteration t of Adaptive LMH. We define the probability distribution of se-
lecting variables for modification in terms of a weight vector WWW t that we adapt,
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Algorithm 2 Adaptive LMH

1: Initialize WWW 0 to a constant.
2: Run the program.
3: for t = 1 . . .∞ do
4: Randomly select a variable xtk according to WWW t.
5: Propose a value for xtk.
6: Run the program, accept or reject the trace.
7: if accepted then
8: Compute WWW t+1 based on the program output.
9: else

10: WWW t+1 ←WWW t

11: end if
12: end for

such that the probability αti of selecting the ith variable for modification is

αti =
W t
i

|xxxt|∑
k=1

W t
k

. (5)

Just like LMH, Adaptive LMH runs the probabilistic program once and then
selects variables for modification randomly. However, acceptance ratio ρAdLMH

must now include selection probabilities αk and α′k of the resampled variable in
the current and the proposed sample

ρAdLMH = min

(
1,
p(yyy′|xxx′)p(xxx′)α′kp(xxx\xxx′|xxx ∩ xxx′)
p(yyy|xxx)p(xxx)αkp(xxx′\xxx|xxx′ ∩ xxx)

)
. (6)

This high-level description of the algorithm does not detail how WWW t is com-
puted for each iteration. Indeed, this is the most essential part of the algorithm.
There are two different aspects here — on one hand, the influence of a given
choice on the output sequence must be quantified in terms of convergence of
the sequence to the target distribution. On the other hand, the influence of the
choice must be translated into re-computation of weights of random variables in
the trace. Both parts of re-computation of WWW t are explained below.

3.1 Quantifying Influence

Extensive research literature is available on criteria for tuning parameters of
Adaptive MCMC [1,2,14]. The case of inference in probabilistic programs is
different: the user of a probabilistic program is interested in fast convergence
of the program output {zzzt} rather than of the vector of the program’s random
variables {xxxt}.

In adaptive MCMC variants the acceptance rate can be efficiently used as
the optimization objective [14]. However, for convergence of the output sequence
an accepted trace that produces the same output is indistinguishable from a
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rejected trace. Additionally, while optimal values of the acceptance rate [1,14]
can be used to tune parameters in adaptive MCMC, in Adaptive LMH we do
not change the parameters of proposal distributions of individual variables, and
assume that they are fixed. However, proposing a new value for a random variable
may or may not change the output even if the new trace is accepted. By changing
variable selection probabilities we attempt to maximize the change in the output
sequence so that it converges faster. In the pedagogical example

x1 ∼Bernoulli(0.5), x2 ∼ N (x1, 1),

z1 ←(x1, x2),

selecting the Bernoulli random choice for modification changes the output only
when a different value is sampled, while selecting the normal random choice will
change the output almost always.

Based on these considerations, we quantify the influence of sampling on the
output sequence by measuring the change in the output zzz of the probabilistic
program. Since probabilistic programs may produce output of any type, we chose
to discern between identical and different outputs only, rather than to quantify
the distance by introducing a type-dependent norm. In addition, when |zzz| > 1,
we quantify the difference by the fraction of components of zzz with changed
values.

Formally, let {zzzt}∞1 = {zzz1, . . . , zzzt−1, zzzt, . . .} be the output sequence of a
probabilistic program. Then the influence of a choice that produced zzzt is defined
by the total reward Rt, computed as normalized Hamming distance between the
outputs

Rt =
1

|zzzt|

|zzzt|∑
i=k

11(ztk 6= zt−1k ). (7)

In the case of a scalar zzz, the reward is 1 when outputs of subsequent samples
are different, 0 otherwise.

The reward is used to adjust the variable selection probabilities for the sub-
sequent steps of Adaptive LMH by computing WWW t+1 (line 8 of Algorithm 2).
It may seem sufficient to assign the reward to the last choice and use average
choice rewards as their weights, but this approach will not work for Adaptive
LMH. Consider the generative model

x1 ∼N (1, 10), x2 ∼ N (x1, 1),

y1 ∼N (x2, 1),

z1 ←x1,

where we observe the value y1 = 2. Modifying x2 may result in an accepted
trace, but the value of z1 = x1, predicted by the program, will remain the same
as in the previous trace. Only when x1 is also modified and a new trace with
the updated values for both x1 and x2 is accepted, the earlier change in x2 is
indirectly reflected in the output of the program. In the next section, we discuss
propagation of rewards to variable selection probabilities in detail.
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3.2 Propagating Rewards to Variables

Both LMH and Adaptive LMH modify a single variable per trace, and either
re-use or recompute the probabilities of values of all other variables (except
those absent from the previous trace or having an incompatible distribution, for
which new values are also sampled). Due to this updating scheme, the influence
of modifying a variable on the output can be delayed by several iterations. We
propose the following propagation scheme: for each random variable xi, the re-
ward ri and count ci are kept in a data structure used to compute WWW . The set
of variables selected for modification, called here the history, is maintained for
each component zk of output zzz. When the value of zk changes, the reward is
distributed between all of the variables in the history, and the history is emp-
tied. When zk does not change, the selected variable is penalized by zero reward.
This scheme, for the case of scalar output for simplicity, is shown in Algorithm 3
which expands line 8 of Algorithm 2. When zzz has multiple components, histories
for each component are maintained independently.

Algorithm 3 Propagating Rewards to Variables

1: Append xk to the history of variables selected for modification.
2: if zzzt+1 6= zzzt then
3: w ← 1

|history|
4: for xm in history do
5: rm ← rm + w, cm ← cm + w
6: end for
7: Flush the history.
8: else
9: ck ← ck + 1

10: end if

Rewarding all of the variables in the history ensures that while variables
which cause changes in the output more often get a greater reward, variables
with lower influence on the output are still selected for modification sufficiently
often. This, in turn, ensures ergodicity of sampling sequence, and helps establish
conditions for convergence to the target distribution, as we discuss in Section 4.

Let us show that under certain assumptions the proposed reward propaga-
tion scheme has a non-degenerate equilibrium for variable selection probabilities.
Indeed, assume that for a program with two variables, x1, and x2, probability
matching, or selecting a choice with the probability proportional to the unit
reward ρi = ri

ci
, is used to compute the weights, that is, Wi = ρi. Then, the

following lemma holds:

Lemma 1 Assume that for variables xi, where i ∈ {1, 2}:

– αi is the selection probability;
– βi is the probability that the new trace is accepted given that the variable was

selected for modification;
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– γi is the probability that the output changed given that the trace was accepted.

Assume further that αi, βi, and γi are constant. Then for the case γ1 = 1,
γ2 = 0:

0 <
α2

α1
≤ 1

3
(8)

Proof. We shall proof the lemma in three steps. First, we shall analyse a sequence
of samples between two subsequent arrivals of x1. Then, we shall derive a formula
for the expected unit reward of x2. Finally, we shall bound the ratio α2

α1
.

Consider a sequence of k samples, for some k, between two subsequent arrivals
of x1, including the sample corresponding to the second arrival of x1. Since a
new value of x1 always (γ1 = 1) and x2 never (γ2 = 0) causes a change in the
output, at the end of the sequence the history will contain k occurrences of x2.
Let us denote by ∆ri, ∆ci the increase of reward ri and count ci between the
beginning and the end of the sequence. Noting that x2 is penalized each time
it is added to the history (line 9 of Algorithm 3), and k occurrences of x2 are
rewarded when x1 is added to the history (line 5 of Algorithm 3), we obtain

∆r1 =
1

k + 1
, ∆c1 =

1

k + 1
∆r2 =

k

k + 1
, ∆c2 = k +

k

k + 1
(9)

Consider now a sequence of M such sequences. When M →∞, riMciM approaches
the expected unit reward ρi, where riM and ciM are the reward and the count
of xi at the end of the sequence.

ρi = lim
M→∞

riM
ciM

= lim
M→∞

ri
M
ci
M

= lim
M→∞

∑M
m=1∆rim
M∑M

m=1∆cim
M

=
∆ri

∆ci
(10)

Each variable xi is selected randomly and independently and produces an
accepted trace with probability

pi =
αiβi

α1β1 + α2β2
. (11)

Acceptances of x1 form a Poisson process with rate 1
p1

= α1β1+α2β2

α1β1
. k is dis-

tributed according to the geometric distribution with probability p1, Pr[k] =
(1− p1)kp1. Since ∆r1 = ∆c1 for any k, the expected unit reward ρ1 of x1 is 1.
We shall substitute ∆ri and ∆ci into (10) to obtain the expected unit reward
ρ2 of x2:

∆r2 =

∞∑
k=0

k

k + 1
(1− p1)kp1

∆c2 =

∞∑
k=0

(
k +

k

k + 1

)
(1− p1)kp1 =

1− p1
p1︸ ︷︷ ︸
k

+

∞∑
k=0

k

k + 1
(1− p1)kp1 (12)
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ρ2 =
∆r2

∆c2
=

∞∑
k=0

k
k+1 (1− p1)kp1

1−p1
p1

+
∞∑
k=0

k
k+1 (1− p1)kp1

=

1−

A︷ ︸︸ ︷
∞∑
k=0

1

k + 1
(1− p1)kp1

1
p1
−
∞∑
k=0

1

k + 1
(1− p1)kp1︸ ︷︷ ︸
A

(13)

For probability matching, selection probabilities are proportional to expected
unit rewards:

α2

α1
=
ρ2
ρ1

(14)

To prove the inequality, we shall derive a closed-form representation for ρ2, and
analyse solutions of (14) for α2

α1
. We shall eliminate the summation A in (13):

A =

∞∑
k=0

k

k + 1
(1− p1)kp1 =

p1
1− p1

∞∑
k=0

1

k + 1
(1− p1)k+1

=
p1

1− p1

∞∑
k=0

∫ 1

p1

(1− ξ)kdξ =
p1

1− p1

∫ 1

p1

∞∑
k=0

(1− ξ)kdξ = − p1
1− p1

log p1

(15)

By substituting A into (13), and then ρ1 and ρ2 into (14), we obtain

α2

α1
=
ρ2
ρ1

= ρ2 =
1 + p1 log p1

1−p1
1
p1

+ p1 log p1
1−p1

}
B(p1) (16)

The right-hand side B(p1) of (16) is a monotonic function for p1 ∈ [0, 1], and
B(0) = 0, B(1) = 1

3 (see Appendix for the analysis of B(p1)). According to (11),
α2

α1
= 0 implies p1 = 1, hence α2

α1
6= 0, and 0 < α2

α1
≤ 1

3 . ut

By noting that any subset of variables in a probabilistic program can be
considered a single random variable drawn from a multi-dimensional distribution,
Lemma 1 is generalized to any number of variables by Corollary 1:

Corollary 1 For any partitioning of the set xxx of random variables of a prob-
abilistic program, AdLMH with weights proportional to expected unit rewards
selects variables from each of the partitions with non-zero probability.

To ensure convergence of WWW t to expected unit rewards in the stationary
distribution, we use upper confidence bounds on unit rewards to compute the
variable selection probabilities, an idea which we borrowed from the UCB family
of algorithms for multi-armed bandits [3]. Following UCB1 [3], we compute the
upper confidence bound ρ̂i as the sum of the unit reward and the exploration
term

ρ̂i = ρi + C

√
log
∑|xxx|
i=1 ci
ci

, (17)
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where C is an exploration factor. The default value for C is
√

2 in UCB1; in
practice, a lower value of C is preferable. Note that variable selection in Adaptive
LMH is different from arm selection in multi-armed bandits: unlike in bandits,
where we want to sample the best arm at an increasing rate, in Adaptive LMH
we expect WWW t to converge to an equilibrium in which selection probabilities are
proportional to expected unit rewards.

4 Convergence of Adaptive LMH

As adaptive MCMC algorithms may depend arbitrarily on the history at each
step, showing that a given sampler correctly draws from the target distribution
can be non-trivial. General conditions under which adaptive MCMC schemes
are still ergodic, in the sense that the distribution of samples converges to the
target π in total variation, are established in [13]. The fundamental criteria for
validity of an adaptive algorithm are diminishing adaptation, which (informally)
requires that the amount which the transition operator changes each iteration
must asymptotically decrease to zero; and containment, a technical condition
which requires that the time until convergence to the target distribution must
be bounded in probability [4].

The class of models representable by probabilistic programs is very broad,
allowing specification of completely arbitrary target densities; however, for many
models the adaptive LMH algorithm reduces to an adaptive random scan Metro-
polis-within-Gibbs in Algorithm 1. To discuss when this is the case, we invoke the
concept of structural versus structure-preserving random choices [17]. Crucially,
a structure-preserving random choice xk does not affect the existence of other
xm in the trace.

Suppose we were to restrict the expressiveness of our language to admit only
programs with no structural random choices: in such a language, the LMH al-
gorithm in Algorithm 2 reduces to the adaptive componentwise MH algorithm.
Conditions under which such an adaptive algorithm is ergodic have been estab-
lished explicitly in [8, Theorems 4.10 and 5.5]. Given suitable assumptions on the
target density defined by the program, it is necessary for the probability vector
||αt − αt−1|| → 0, and that for any particular component k we have probability
αtk > ε > 0. Both of these are satisfied by our approach: from Corollary 1, we
ensure that the unit reward across each xi converges to a positive fixed point.

While any theoretical result will require language restrictions such that pro-
grams only induce distributions satisfying regularity conditions, we conjecture
that this scheme is broadly applicable across most non-pathological programs.
We leave a precise theoretical analysis of the space of probabilistic programs in
which adaptive MCMC schemes (with infinite adaptation) may be ergodic to
future work. Empirical evaluation presented in the next section demonstrates
practical convergence of Adaptive LMH on a range of inference examples, in-
cluding programs containing structural random choices.
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5 Empirical Evaluation

We evaluated Adaptive LMH on many probabilistic programs and observed con-
sistent improvement of convergence rate compared to LMH. We also verified
on a number of tests that the algorithm converges to the correct distribution
obtained by independent exact methods. In this section, we compare Adaptive
LMH to LMH on several representative examples of probabilistic programs. The
rates in the comparisons are presented with respect to the number of samples, or
simulations, of the probabilistic programs. The additional computation required
for adaptation takes negligible time, and the computational effort per sample is
approximately the same for all algorithms. Our implementation of the inference
engine is available at https://bitbucket.org/dtolpin/embang.

In the following case studies differences between program outputs and target
distributions are presented using KullBack-Leibler (KL) divergence, Kolmogorov-
Smirnov (KS) distance, or L2 distance, as appropriate. In cases where target
distributions cannot be updated exactly, they were approximated by running a
non-adaptive inference algorithm for a long enough time and with a sufficient
number of restarts. In each of the evaluations, all of the algorithms were run
with 25 random restarts and 500,000 simulations of the probabilistic program
per restart. The difference plots use the logarithmic scale for both axes. In the
plots, the solid lines correspond to the median, and the dashed lines to 25% and
75% percentiles, taken over all runs of the corresponding inference algorithm.
The exploration factor for computing upper confidence bounds on unit rewards
(Equation 17) was fixed at C = 0.5 for all tests and evaluations.

The first example is a latent state inference problem in an HMM with three
states, one-dimensional normal observations (0.9, 0.8, 0.7, 0, -0.025, 5, 2, 0.1,
0, 0.13, 0.45, 6, 0.2, 0.3, -1, -1) with variance 1.0, a known transition matrix,
and known initial state distribution. There are 18 distinct random choices in all
traces of the program, and the 0th and the 17th state of the model are predicted.
The results of evaluation are shown in Figure 1 as KL divergences between the
inference output and the ground truth obtained using the forward-backward
algorithm. In addition, bar plots of unit reward and sample count distributions
among random choices in Adaptive LMH are shown for 1000, 10 000, and 100 000
samples.

As can be seen in the plots, Adaptive LMH (black) exhibits faster convergence
over the whole range of evaluation, requiring half as many samples as LMH
(cyan) to achieve the same approximation, with the median of LMH above the
75% quantile of Adaptive LMH.

In addition, the bar plots show unit rewards and sample counts for different
random choices, providing an insight on the adaptive behavior of AdLMH. On
the left-hand bar plots, red bars are normalized unit rewards, and blue bars are
normalized sample counts. On the right-hand bar plots, the total height of a bar
is the total sample count, with green section corresponding to the accepted, and
yellow to the rejected samples. At 1 000 samples, the unit rewards have not yet
converged, and exploration supersedes exploitation: random choices with lower
acceptance rate are selected more often (choices 7, 8 and 13 corresponding to

https://bitbucket.org/dtolpin/embang
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Fig. 1. HMM, predicting the 0th and 17th state

states 6, 7 and 12). At 10 000 samples, the unit rewards become close to their
final values, and choices 1 and 18, immediately affecting the predicted states,
are selected more often. At 100 000 samples, the unit rewards converge, and the
sample counts correspond closely to the equilibrium state outlined in Lemma 1.

The second case study is estimation of hyperparameters of a Gaussian Pro-
cess. We define a Gaussian Process of the form

f ∼GP(m, k),

where m(x) =ax2 + bx+ c, k(x, x) = de
(x−x′)2

2g .

The process has five hyperparameters, a, b, c, d, g. The program infers the poste-
rior values of the hyperparameters by maximizing marginal likelihood of 6 ob-
servations (0.0, 0.5), (1.0, 0.4), (2.0, 0.2), (3.0,−0.05), (4.0,−0.2), and (5.0, 0.1).
Parameters a, b, c of the mean function are predicted. Maximum of KS distances
between inferred distributions of each of the predicted parameters and an ap-
proximation of the target distributions is shown in Figure 2. The approximation
was obtained by running LMH with 2 000 000 samples per restart and 50 restarts,
and then taking each 100th sample from the last 10 000 samples of each restart,
5000 samples total. Just as for the previous case study, bar plots of unit rewards
and sample counts are shown for 1000, 10 000, and 100 000 samples.

Here as well, Adaptive LMH (black) converges twice as fast as LMH over
the whole range of evaluation, outperforming LMH. Bar plots of unit rewards
and sample counts for different number of choices, again, show the dynamics of
sample allocation among random choices. Choices a, b, and c are predicted, while
choices d and g are required for inference but not predicted. Choice a has the
lowest acceptance rate (ratio between the total height of the bar and the green
part on the right-hand bar plot), but the unit reward is close the unit reward of
choices b and c. At 1 000 samples, choice a is selected with the highest probability.
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Fig. 2. Gaussian process hyperparameter estimation

However, close to the converged state, at 100 000 samples, choices a, b, and c are
selected with similar probabilities. At the same time, choices 4 and 5 are selected
with a lower probability. Both the exploration-exploitation dynamics for choices
a–b and probability matching of selection probabilities among all choices secure
improved convergence.

The third case study involves a larger amount of data observed during each
simulation of a probabilistic program. We use the well-known Iris dataset [9] to
fit a model of classifying a given flower as of the species Iris setosa, as opposite
to either Iris virginica or Iris versicolor. Each record in the dataset corresponds
to an observation. For each observation, we define a feature vector x and an
indicator variable zi, which is 1 if and only if the observation is of an Iris setosa.
We fit the model with five regression coefficients β1, . . . , β5, defined as

σ2 ∼ InvGamma(1, 1),

βj ∼ Normal(0, σ),

p(zi = 1) =
1

1 + e−βT x
.

To assess the convergence, we perform shuffle split leave-2-out cross validation
on the dataset, selecting one instance belonging to the species Iris setosa and
one belonging to a different species for each run of the inference algorithm. The
classification error is shown in Figure 3 over 100 runs of LMH and Adaptive
LMH.

The results are consistent with other case studies: Adaptive LMH exhibits
a faster convergence rate, requiring half as many samples to achieve the same
classification accuracy as LMH.
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Fig. 3. Logistic regression on Iris dataset.
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Fig. 4. Kalman filter, 500 samples after 10,000 samples of burn-in.

As a final case study we consider a linear dynamical system (i.e. a Kalman
smoothing problem) that was previously described in [12]

xt ∼ Norm(A · xt−1,Q), yt ∼ Norm(C · xt,R).

In this problem we assume that 16-dimensional observations yt are conditioned
on 2-dimensional latent states zt. We impose additional structure by assuming
that the transition matrix A is a simple rotation with angular velocity ω, whereas
the transition covariance Q is a diagonal matrix with coefficient q,

A =

[
cosω − sinω
sinω cosω

]
, Q =

[
q 0
0 q

]
.

We predict posterior values for ω, and q in a setting where C and R are as-
sumed known, under mildly informative priors ω ∼ Gamma(10, 2.5) and q ∼
Gamma(10, 100). Posterior inference is performed conditioned on a simulated
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sequence y1:T of T = 100 observations, with ω∗ = 4π/T , and q∗ = 0.1. The
observation matrix C and covariance R are sampled row-wise from symmetric
Dirichlet distributions with parameters c = 0.1, and r = 0.01 respectively.

Figure 4 shows a qualitative evaluation the mixing rate in the form of 500
consecutive samples (ω, q) from an LMH and AdLMH chain after 10,000 samples
of burn-in. The LMH sequence exhibits good mixing over ω but is strongly
correlated in q, whereas the AdLMH sequence obtains a much better coverage
of the space.

To summarize, Adaptive LMH consistently attained faster convergence than
LMH, measured by differences between the ongoing output distribution of the
random program and the target independently obtained distribution, assessed
using various metrics. Variable selection probabilities computed by Adaptive
LMH are dynamically adapted during the inference, combining exploration of
the model represented by the probabilistic program and exploitation of influence
of random variables on program output.

6 Contribution and Future Work

In this paper we introduced a new algorithm, Adaptive LMH, for approximate
inference in probabilistic programs. This algorithm adjusts sampling parame-
ters based on the output of the probabilistic program in which the inference is
performed. Contributions of the paper include

– A scheme of rewarding random choice based on program output.

– An approach to propagation of choice rewards to MH proposal scheduling
parameters.

– An application of this approach to LMH, where the probabilities of selecting
each variable for modification are adjusted.

Adaptive LMH was compared to LMH, its non-adaptive counterpart, and was
found to consistently outperform LMH on several probabilistic programs, while
still being almost as easy to implement. The time cost of additional computation
due to adaptation was negligible.

Although presented in the context of a particular sampling algorithm, the
adaptation approach can be extended to other sampling methods. We believe
that various sampling algorithms for probabilistic programming can benefit from
output-sensitive adaptation. Additional potential for improvement lies in ac-
quisition of dependencies between predicted expressions and random variables.
Exploring alternative approaches for guiding exploration-exploitation compro-
mise, in particular, based on Bayesian inference, is another promising research
direction.

Overall, output-sensitive approximate inference appears to bring clear advan-
tages and should be further explored in the context of probabilistic programming
models and algorithms.
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