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Abstract

We introduce a novel objective for training
deep generative time-series models with dis-
crete latent variables for which supervision is
only sparsely available. This instance of semi-
supervised learning is challenging for existing
methods, because the exponential number of
possible discrete latent configurations results
in high variance gradient estimators. We first
overcome this problem by extending the stan-
dard semi-supervised generative modeling ob-
jective with reweighted wake-sleep. However,
we find that this approach still suffers when the
frequency of available labels varies between
training sequences. Finally, we introduce a
unified objective inspired by teacher-forcing
and show that this approach is robust to vari-
able length supervision. We call the resulting
method caffeinated wake-sleep (CWS) to em-
phasize its additional dependence on real data.
We demonstrate its effectiveness with exper-
iments on MNIST, handwriting, and fruit fly
trajectory data.

1 INTRODUCTION

In recent years there has been an explosion of interest
in deep generative models (DGM), which use neural
networks transforming random inputs to learn complex
probability distributions. We particularly focus on the
variational auto-encoder (VAE ; Kingma and Welling
(2013)) family of models, where the generative model
is learned simultaneously with an associated inference
network. This approach has been extended to settings
with partially observed discrete variables (Kingma et al.,
2014) and sequential data (Chung et al., 2015) but so far
little work has been done on combining the two. In this
paper we address this gap.

*Correspondence to mteng@robots.ox.ac.uk

In many scenarios it is natural to assign discrete labels to
specific intervals of time-series data and try to infer these
labels from observations. For example, sequences of stock
prices can be identified as periods of bear or bull markets,
fragments of home CCTV footage can be classified as
burglaries or other events, and heart rate signals can be
used to classify cardiac health. In addition to the latent
classification of observations in these applications, we
may also wish to conditionally generate new sequences
or predict ahead given some input sequence. Existing
approaches to generative modeling in this context either
require full supervision in the label space, and therefore
are not able to leverage large amounts of unlabeled data,
or are restricted to classification and can not generate new
data (Chen et al., 2013; Wei and Keogh, 2006).

Additionally, many methods for semi-supervised learn-
ing of static DGM tasks define separate unsupervised
and supervised loss terms in the training objective, which
are weighted to reflect the overall supervision rate in
the dataset (Kingma et al., 2014). Though this class of
approaches is extendable to the time-series setting, the
optimization of model and inference network parameters
become unstable when there is an uneven contribution of
partial labels to the supervised term, as a result of varying
supervision rates in each training example. Because of
this, the state-of-the-art approaches to semi-supervised
learning, including Virtual Adversarial Training (Miy-
ato et al., 2018), Mean Teacher (Tarvainen and Valpola,
2017), and entropy minimization (Grandvalet and Bengio,
2005), cannot be easily adapted to modeling time-series
data.

In this work we derive two novel objectives for training
DGMs with discrete latent variables in a semi-supervised
fashion. They are both based on the reweighted wake-
sleep (RWS) algorithm (Bornschein and Bengio, 2014),
which avoids using high variance score function estima-
tors for expectations over the discrete latents. The first
one, which we call semi-supervised wake-sleep (SSWS),
is obtained by extending RWS with a supervised classifi-
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cation term. While it performs well when labels available
in the training set are regularly distributed per training
example, it suffers from optimization problems when they
are not, which can be unavoidable in real world datasets.
To overcome this problem, we introduce a new approach
which performs wake-sleep style optimization using a
single objective that incorporates both supervised and un-
supervised terms for every gradient update. We call this
approach caffeinated wake-sleep (CWS).

Although we are explicitly targeting the sequential set-
ting, our objectives can also be useful in non-sequential
settings, especially when the discrete latent space is too
large to be fully enumerated. We evaluate our objectives
on MNIST, a handwriting dataset, and a dataset of fruit
fly trajectories labeled with behavior classes. In the rest
of the paper, Section 2 reviews the relevant background
information, Section 3 describes our model and train-
ing objective, and Section 4 presents the experimental
results.

2 BACKGROUND

2.1 VARIATIONAL AUTO-ENCODERS

Variational auto-encoders (Kingma and Welling, 2013;
Rezende et al., 2014) are an approach to deep generative
modeling where we simultaneously learn a generative
model pθ and an amortized inference network qφ, both
parameterized by neural networks. For any given observa-
tion x, the inference network variationally approximates
the intractable posterior distribution pθ(z|x) over a la-
tent variable z as qφ(z|x). In order to train both networks
simultaneously, Kingma and Welling (2013) propose max-
imizing the evidence lower bound (ELBO), which is a sum
over ELBOs for individual data points defined as

L(θ, φ,x) : = log pθ(x)− KL(qφ(z|x) ‖ pθ(z|x))

= Eqφ(z|x)
[
log

pθ(z,x)

qφ(z|x)

]
(1)

The ELBO approximates log-marginal likelihood
log pθ(x), making it a good target objective for learn-
ing θ, and is proportional to negative KL(qφ|pθ), making
it a good target objective for learning φ.

Burda et al. (2015) propose an extension to the variational
autoencoder (VAE) where, for a given number of samples
K, the single-datapoint objective is instead defined as

L
K(θ, φ,x) = Ez1:K∼qφ

[
log

(
1

K

K∑
k=1

pθ(zk,x)

qφ(zk|x)

)]
(2)

This yields a tighter bound for log pθ(x), which is desir-
able for learning θ.

In either case, the estimator of the gradient with respect
to φ is typically high variance if z includes any dis-
crete variables and therefore not suitable for gradient-
based optimization. Various authors have proposed to
reduce this variance using continuous relaxation Mad-
dison et al. (2016); Jang et al. (2016) or control-variate
methods (Mnih and Rezende, 2016; Mnih and Gregor,
2014; Tucker et al., 2017; Grathwohl et al., 2017) with
varying degrees of success.

An alternative approach is to use the reweighted wake-
sleep (RWS) algorithm (Bornschein and Bengio, 2014)
which uses separate objectives for θ and φ, interleav-
ing the corresponding gradient steps. The target for θ is
LKIWAE(θ, φ,x), while the target for φ is −KL(pθ||qφ). In
the latter the expectation with respect to pθ is approxi-
mated by importance sampling from qφ. Le et al. (2018)
show that using two separate objectives avoids the prob-
lems with high variance gradient estimates in the presence
of discrete latent variables and avoids learning problems
discussed by Rainforth et al. (2018). Ba et al. (2015)
demonstrate RWS as a viable method for time-series
modeling by using it to train recurrent attention mod-
els.

2.2 SEMI-SUPERVISED VAE

In certain situations it is desirable to extend the VAE
with an interpretable latent variable y, the canonical ex-
ample being learning on the MNIST dataset where y is
the digit label, z is “style,” and x is the image. Kingma
et al. (2014) consider the setting where the label y is only
scarcely available and the dataset consists of many in-
stances of x and relatively few instances of (x, y), which
is a typical semi-supervised learning setting. They choose
a factorization pθ(x, y, z) = pθ(x|y, z)pθ(y)pθ(z) and
qφ(y, z|x) = qφ(z|x, y)qφ(y|x). A naive optimization
objective can be constructed by summing standard ELBOs
for x and (x, y). However, this objective is unsatisfactory,
since it does not contain any supervised learning signal
for qφ(y|x). Letting xu denote unsupervised input vari-
ables and (xs, ys) denote supervised observation-latent
pairs, Kingma et al. (2014) propose to maximize the corre-
sponding supervised and unsupervised objectives:

Ls(xs, ys) = Eqφ(z|ys,xs)
[
log

(
p(xs, ys, z)

qφ(z|ys,xs)

)]
+ α Ep̂(ys,xs) [log(qφ(ys|xs))] (3)

L
u(xu) = Eqφ(z,y|xu)

[
log

(
p(xu, y, z)

qφ(z, y|xu)

)]
(4)

The additional second term in Equation 3 is an expectation
over the empirical distribution of labeled training pairs,
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Figure 1: Per time step graphical model for the structured
VRNN we use in this paper. In addition to the continuous
latent variable zt, we include a discrete latent variable yt
corresponding to an interpretable label, for which ground
truth is sometimes available in the dataset. Dashed lines
indicate the inference inference network, and solid lines
the generative model.

p̂(xs, ys), and can be optionally scaled by a hyperparam-
eter, α, controlling the relative strength of supervised and
unsupervised learning signals. A semi-supervised VAE
typically achieves performance superior to its unsuper-
vised version. We subsequently refer to this objective as
“M1+M2”.

2.3 VARIATIONAL RNN

The variational RNN (VRNN) (Chung et al., 2015) is
a deep latent generative model that is an extension of
the VAE family. It can be viewed as an instantiation of
a VAE at each time-step, with the model factorised in
time overall. We use a structured VRNN variant, where a
discrete latent variable y is also present at each time step,
as depicted in Figure 1.

2.4 RELATED WORK

Xu et al. (2017) introduce a semi-supervised VAE which
overcomes the high-variance gradient estimators in se-
quential models using control variates during training. We
build upon their work by adapting a similar architecture
specification for the inference networks while avoiding
the high-variance gradient estimators using reweighted
wake-sleep style updates for training. Additionally, Chen
et al. (2018) proposes a semi-supervised DGM for model-
ing natural language using full sentence context. While a
useful method for the task domain, they state their model
cannot do generation.

3 CAFFEINATED WAKE-SLEEP

Here we derive a general purpose training objective used
for semi-supervised generative modeling. As we will
show in subsequent experiments, both the objective and
training method can be used to effectively train sequential
models. As such, we introduce CWS in the context of
time-series modeling, but note that it can trivially be used
for static models by considering them to have a single
time-step. In all subsequent sections, we denote a≤t :=
a1:t and b<t := b1:t−1 if t > 1.

3.1 GENERATIVE MODEL

First, we define a generative model over a sequence of ob-
served variables, x1:T , continuous latent variables, z1:T ,
and a discrete latent categorical variable, y1:T .

pθ(x≤T ,y≤T , z≤T ) =
∏
t≤T

[
pθ(xt|z≤t, y≤t) (5)

× pθ(zt|x<t, y<t, z<t) pθ(yt|x<t, y<t, z<t)
]

Additionally, we are given x≤T and a subset S ⊆ 1 : T
of labeled yt, denoted yS := {yt : t ∈ S}. We denote
unlabeled yt as yU := {yt : t ∈ (1 : T ) \ S}.

3.2 INFERENCE

Given the generative model defined above and a partially
labeled dataset in the y space, our variational distribution
is the following:

qφ(yU , z≤T |x≤T , yS) = (6)∏
t∈U

qφ(yt|x≤T , y<t, z<t)
∏
t≤T

qφ(zt|x≤T , y≤t, z<t)

If the categorical variable yt is always treated as a latent
variable in the fully unsupervised case, we can define a
variational distribution, q(z≤T , y≤T |x≤T ) and maximize
the ELBO with respect to {θ, φ}. Instead, we will not
need to infer given yS for any sequence, but at any time-
step when yt is available, we use it instead of a sampled
yt from the variational distribution. This is made clear by
writing the ELBO as:

log p(x≤T , yS) ≥ (7)

Eqφ(yU ,z≤T |x≤T ,yS)

[
log

(∏
t∈S

pθ(xt, zt, yt, )

qφ(zt|x≤T , y≤t, z<t)

×
∏
t∈U

pθ(xt, zt, yt)

qφ(yt, zt|x≤T , z<t, y<t)

)]

3.3 OPTIMIZATION

Having defined the model and inference network, we now
specify the optimization objective.
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Figure 2: (a) Validation accuracy of a MNIST classification model comparing two approaches for semi-supervised
learning, CWS and M1+M2. As seen, CWS trains to the highest validation accuracy and faster on a held out test set
of 10000 examples. (b) Visual reconstructions of MNIST digit in final trained model using CWS (c) Reconstructions
using the final trained model by M1+M2 method. In (b-c), the first column denotes the input image, the second denotes
reconstruction where z, y are both inferred using q(y, z|x), the third denotes reconstruction where z is inferred given
the correct label y, and columns 4-12 denote reconstruction where we infer the style, z, fix it, and vary the y label to
conditionally generate.

3.3.1 SEMI-SUPERVISED WAKE-SLEEP

Before introducing our new objective, we first show how
to use the reweighted wake-sleep algorithm (Bornschein
and Bengio, 2014) with the semi-supervised objective
introduced by Kingma et al. (2014). Following the rec-
ommendation of Le et al. (2018), extending reweighted
wake-sleep to include a supervision term can be used to
effectively avoid problems with discrete variables. Below
we derive the semi-supervised wake-sleep (SSWS) objec-
tive within that framework. Both of our objectives will be
evaluated by sampling from qφ, so for each k ∈ 1 : K we
have ykt ∼ qφ(yt|·) for all t ∈ U and zkt ∼ qφ(zt|·) for
all t ∈ 1 : T with a convention ykt = yt for t ∈ S.

For learning the generative model, we maximize the
IWAE bound with respect to parameters θ:

Lp(x≤T , yS) :=

Eq

[
log

1

K

K∑
k=1

pθ(y
k
U , z

k
≤T ,x≤T , yS)

qφ(ykU , z
k
≤T |x≤T , yS)

]
, (8)

q =

K∏
k=1

qφ(ykU , z
k
≤T |x≤T , yS)

This is a lower bound to log pθ(x≤T , yS) which is tight
when qφ(yU , z≤T |x≤T , yS) = pθ(yU , z≤T |x≤T , yS).
Sampling from qφ(yU , z≤T |x≤T , yS) and evaluating its
density is simple since it is factorized as in (6) where both
q(yt|·) and qφ(zt|·) are given, and all values to the right
of the conditioning bar are always available at sampling
at time step t (previous y<t are either sampled or given
supervision and z<t are sampled).

For learning the inference network parameters, we need
to consider the unsupervised and the supervised cases.
For unsupervised inference learning, we minimize the
expected KL-divergence between the true posterior and
the variational posterior given by qφ under the generative
model, p := pθ(x≤T , yS):

∇φEp[KL(pθ(yU , z≤T |x≤T , yS)||qφ(yU , z≤T |x≤T , yS))]
= Ep[Epθ(yU ,z≤T |x≤T ,yS) [−∇φ log qφ(yU , z≤T |x≤T , yS)]]

Given some (x≤T , yS) from the data distribution,
p̂θ(x≤T , yS), the inner expectation is approximated using
samples from the inference network, qφ, referred to as the
wake-φ update for learning parameters φ:

Lq(x≤T , yS) :=

Eqφ

[
K∑
k=1

w̄k
(
− log qφ(ykU , z

k
≤T |x≤T , yS)

)]
, (9)

where w̄k is a normalized version of

wk :=
pθ(y

k
U , z

k
≤T ,x≤T , yS)

qφ(ykU , z
k
≤T |x≤T , yS)

, w̄k =
wk∑
l wl

(10)

and
qφ =

∏
k

qφ(ykU , z
k
≤T |x≤T , yS)

Evaluating (9) requires evaluating the joint p density given
in (5), the q density given in (6), and sampling again from
(6).

Finally, we need to include a supervised loss term. There
is only supervision signal for some given yt for some
t ∈ S per data example. As such, we want to maximize
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Figure 3: Left: Top10 validation accuracy throughout training for a 70-class character classification task comparing
three methods of semi-supervised training, CWS, SSWS, and REINFORCE (M1+M2), with 12.5% supervision rate
and one method of fully supervised training using IWAE and a classifier loss on 12.5% of the dataset. Right: Final
top1, top5, and top10 accuracy summaries for semi-supervision using CWS (green) against models trained with full
supervision but on a corresponding fraction of the original dataset (blue). As before, the method denoted by blue trains
with full supervision using IWAE and a classifier loss on the subset of the total data denoted by the labels.

the log-likelihood of the supervised pairs (yS ,x≤T ) under
the variational distribution, qφ(y≤T |x≤T ), marginalized
over unsupervised time-steps:

qφ(yS |x≤T ) =

∫
qφ(y≤T , z≤T |x≤T )dyUdz≤T

=

∫
qφ(yS |x≤T , z≤T , yU )qφ(yU , z≤T |x≤T )dyUdz≤T

= Eqφ(yU ,z≤T |x≤T )[qφ(yS |x≤T , z≤T , yU )] (11)

We lower bound this with Jensen’s inequality and obtain
our supervised loss term:

Ls(yS) :=

Eqφ(yU ,z≤T |x≤T )[log qφ(yS |x≤T , z≤T , yU )] (12)

For each minibatch the objectives, (8), (9), and (12), are
computed using the same set of samples and we perform
the relevant gradient steps in φ and θ by alternating be-
tween the two parameter updates:

θ∗ = θ + αθ∇θLp(x≤T , yS) (13)

φ∗ = φ− αφ∇φ
(
Lq(x≤T , yS)− Ls(yS)

)
(14)

3.3.2 CAFFEINATED WAKE-SLEEP

Although the SSWS approach can be used to train time-
series models, in practice there is a tradeoff between learn-
ing and optimization stability. As mentioned earlier, se-
quences of observations may contain variable amounts
of supervision, the most extreme example being datasets

containing both sequences with fully observed and fully
unobserved labels.

Because of this, the magnitude of the supervised and unsu-
pervised terms in the qφ loss will vary per data sequence,
and we incur a tradeoff between correcting for this bias
and computational efficiency. For example, we could nor-
malize Ls and Lq by |S| and |U |, respectively, but doing
so treats sequences with a lower supervision rate the same
as those with much higher supervision. Alternatively, we
could take a weighted average of the terms across the
sequences, but this faces the same issue as before unless
we also scale the learning rate dynamically per gradient
step for each stochastic mini-batch.

To remedy this problem, we obviate the need to maintain
two different supervision terms by minimizing the ex-
pected KL-divergence between the true posterior and the
full variational posterior under the generative likelihood,
pθ(x≤T ):

∇φEpθ(x≤T )[KL(pθ(y≤T , z≤T |x≤T )||qφ(y≤T , z≤T |x≤T ))]
= Epθ(x≤T )[Epθ(yU ,yS ,z≤T |x≤T ) [−∇φ log qφ(·|x≤T )]]

Unlike in the derivation for Equation (9), there is no dis-
tinction here between yS and yU , meaning that we should
always sample a value for yt when computing this loss.
However, doing so would give the fully unsupervised
wake-φ objective and not include any supervision signal
for the yS labels that we do have. To “correct” for this,
we introduce an empirically justified bias into this estima-
tor, namely replacing sampled values of yt with yS when
available. Intuitively, this is exactly the reweighted wake-
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Figure 4: Generated of sample trajectories of handwriting conditioned on generating the bottom text. Each pair of rows
is trained with a supervision rate (right) and a method (left). Corresponding sample generated from a fully supervised
model is displayed in the red box. Note that the 100% supervision example in this figure is trained with the full dataset
with a separate classifier loss.

sleep algorithm if yS is treated as having been sampled
from the distributions, qφ(·). This is a kind of teacher-
forcing approach (Williams and Zipser, 1989) for discrete
latent labels, yt.

To be concrete about our method, we still compute an ex-
pectation over the empirical data distribution p̂(x≤T , yS),
and estimate the innermost expectation with samples from
(6) when needed. The bias introduced then comes from
the additional qφ(yS |...) terms in the denominator of the
importance weights:

LCWS
q (x≤T , yS) :=

E(yS ,x≤T )∼p̂, (y1:KU ,z1:K)∼qφ(ykU ,zk≤T |yS ,x≤T )
[f ] ,

f :=

K∑
k=1

w̃k
(
− log qφ(ykU , yS , z

k
≤T |x≤T )

)
, (15)

wcws
k :=

pθ(y
k
U , z

k
≤T ,x≤T , yS)

qφ(ykU , yS , z
k
≤T |x≤T )

, w̃k =
wcws
k∑
l w

cws
l

Finally, we formally introduce the caffeinated wake-
sleep algorithm. Model parameters are learned with the
importance-weighted ELBO as before. However, crucially,
we use a unified gradient estimator in (15) to update φ
parameters:

θ∗ = θ + αθ∇θLp(x≤T , yS) (16)

φ∗ = φ− αφ∇φLCWS
q (x≤T , yS) (17)

4 EXPERIMENTS

We evaluate CWS on an variety of tasks within genera-
tive modeling by running experiments on three separate

datasets, MNIST, IAM On-Line Handwriting Database
(IAM-OnDB) (Liwicki and Bunke, 2005), and Fly-vs-Fly
(Eyjolfsdottir et al., 2014). In our experiments, we con-
sider the training accuracy of the inference network in
classification, the conditional and unconditional gener-
ation of new data, and the uncertainty captured by our
generative models.

4.1 SEMI-SUPERVISED MNIST

We start with a toy MNIST experiment, which semi-
supervises a discrete latent variable corresponding to digit
class. We use the same model and VAE architecture de-
tailed in Kingma et al. (2014) and compare against their
training method, denoted as M1+M2 with the supervised
weight set to 60. For supervision, we use only 100 labeled
digits out of a total dataset of 50000. We briefly note that
CWS for the single time-step case is trivial given the ob-
jectives defined above and SSWS recovers the M1+M2
objective.

In Figure 2a, we compare validation accuracy of digit
classification between CWS and M1+M2 trained mod-
els. We find that our method both trains faster and better
despite using an identical generative model, inference
network, learning rate, and optimizer. Furthermore, our
approach requires setting one fewer hyperparameter when
compared to M1+M2.

In Figure 2b, we conditionally generate samples using our
trained models by first inferring the style using qφ(z|x̂, ŷ).
Then, fixing the style, we change y and reconstruct using
pφ(x|z, y). We find that CWS is able to conditionally
generate as well as prior art.
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Figure 5: (a) Diagram of the red fly’s field of view encoding in a petri dish environment containing two other flies. The
middle line in the plots denotes the fly’s direct line of sight. Each pair of plots indicates the agent’s field of view with
respect to walls and other flies, respectively. The fly closer to the red agent contributes more mass to the encoding
vector. (b) Comparison of each model’s continuation tracks for four distinct seed sequences. Each column shows a
model’s continuation sampled from the generative model compared against the leftmost column displaying the ground
truth continuation. Each row shows one of four seed sequences used to seed the generative models. Within the petri
dish, both flies’ locomotion tracks are shown. For the first fly, the red arrow indicates the starting position of the
seed sequence, the black markers and line indicate the seed tracks, the purple markers and line indicate the sampled
continuation tracks, and the red ’x’ indicates the final position of the fly after 200 time-steps. For the second fly, these
indicators are blue arrow, gray markers, orange markers, and blue ’x’, respectively.

4.2 HANDWRITING

Next, we run an experiment on the IAM-OnDB dataset.
The generative model is over xt := {cit, c

j
t ,pent, eoct},

where ci, cj denotes a single time-step vectorized stroke
of the pen and the pent and eoct denote pen-up status and
end-of-character binary values. The latent space in this
model is comprised of continuous style variable, zt, and
a discrete character label corresponding to a sequence of
observed strokes that make up a valid character, yt. For
the IAM-OnDB data, the valid alphabet is comprised of 70
different characters: upper and lower case letters, digits,
and special characters. The large latent space makes this
a very challenging time-series problem.

The VRNN architecture we use is taken from the Deep-
Writing model introduced by Aksan et al. (2018). At a
high level, we use a VRNN over x≤T , z≤T , and a BiL-
STM network for qφ(y≤T |x≤T ). Because the VRNN can
be optimized solely using reparameterization, we train
qφ(z≤T |y≤T ,x≤T ) using IWAE and qφ(y≤T |x≤T ) using
CWS. This mirrors the optimization in Aksan et al. (2018),
except that now, we can train with semi-supervision. For
more detailed experimental setup, we refer the reader to

the cited work. In all experiments, we use a training set
of 26560 sequences and a validation set of 512 sequences,
all of length 200.

As previously mentioned, techniques for semi-supervised
learning do not trivially extend to time-series models.
Instead, we compare CWS against SSWS, the latter of
which can be viewed as the M1+M2 objective for se-
quential models using wake-φ style updates for learning
discrete latents. For comparison, we can also train the
M1+M2 objective without using RWS by using the RE-
INFORCE estimator for taking gradients through discrete
latent variables. In Figure 3 (left), we find that this method
results in poorly trained inference networks which can-
not classify character labels accurately even using top-10
metric.

In Figure 3 (right), we present classification results of
training with a fixed architecture, varying only the training
objective using either CWS or IWAE. Because the normal
IWAE objective cannot be used with semi-supervision
and REINFORCE, we compare CWS with fully unsuper-
vised IWAE plus training the classifier separately with
full supervision. This baseline is generated by using the
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Figure 6: Comparison of uncertainty estimates over future trajectories of two flies’ interactions in the environment
between different models. Each model is seeded with the same ground truth sequence each time and 100 continuations
are sampled for 100 time-steps into the future. We show the kernel density estimate of all fly positions at the indicated
time-step across the 100 continuations. Each model’s estimate is split by fly for clarity (two columns per model
indicated by separators), where the red ’x’ indicates the true position of the fly at that time-step. The future trajectories
across all models show greater uncertainty about the fly’s position as the model evolves in time. We find the model
trained with CWS is the least noisy as it evolves, still captures the actual position within a high probability region, and
has the most mass close to the true position of fly 1 at time 100 among the 4 models.

optimization technique used from Aksan et al. (2018) on
a corresponding fraction of the dataset. In other words,
we take the exact same architecture and compare training
with conventional DGM techniques plus a classification
loss against training with our CWS method using the
same amount of full labels but being able to incorporate
unlabeled data. We find that validation accuracy of the
classifier trained with CWS using additional unlabeled
data greatly outperforms the IWAE baseline using the
same amount of partial labels from the dataset but with-
out the additional data.

In Figure 4, we show reconstructed samples from trained
models where we force the network to attempt to generate
the phrase, "hello friends my name is Bob and machine
learning is very cool while useful". We find that even
at 12.5% supervision, sampled generations resemble the
target sentence using SSWS or CWS.

4.3 FLY TRACKING

In our final experiment, we run CWS on a dataset of two
male fruit flies interacting in a petri dish (Eyjolfsdottir

et al., 2014). We use a VRNN which attempts to mirror bi-
ological plausibility by modeling movement, xt, as veloc-
ities of body position and configuration (Cueva and Wei,
2018). We inject as input to the RNN at each time-step,
the visual encoding for a given fly shown in Figure 5a
(Clandinin and Giocomo, 2015) along with knowledge of
its own state (Cueva and Wei, 2018).

The dataset uses high level actions, which we model as a
6-valued discrete variable, yt, corresponding to possible
semantic labels: "lunge", "charge", "tussle", "wing threat",
"hold", and "unknown". These annotations are provided
by human experts at time-steps dispersed throughout the
dataset without a clear pattern or regularity. In all ex-
periments we compare four models: the RNN used by
Eyjolfsdottir et al. (2016) outputting a probability vector
over discretized action space at each time step, the stan-
dard VRNN without y and with continuous valued z, the
discrete VRNN (DVRNN) with yt trained unsupervised,
and the same DVRNN trained with CWS. While CWS
was able to train this model, we ran into optimization dif-
ficulties with the same model but training with a separate
supervision term. We fine-tune and report results of the



Table 1: KDE of ground truth position under model

KDE log p

model fly 1 fly 2

CWS+DVRNN −780.1 −851.5
RWS+DVRNN −901.8 −853.9

VRNN −962.0 −879.8
RNN −931.0 −921.2

best performing model during training: CWS-DVRNN
with 30-dimensional z and 6-valued y, RWS-DVRNN
with 50-dimensional z and 10-valued y, and VRNN with
120-dimension z. We provide further details of model in
the Appendix.

In Figure 5b, we condition the model on an initial se-
quence of actions, then sample a continuation and visually
inspect how it compares with the true continuation that
was not shown to the model. We find that under the RNN
model, the flies tend to move in circular patterns with
relatively constant velocity. In contrast, real flies tend
to alternate between fast and slow movements, changing
their directions much more abruptly. All three variants
of our VRNN model qualitatively recover this behavior,
however the continuous VRNN also tends to behave too
erratically. In the DVRNN models, we were not able to
identify any other clear visual artifacts in the generated
trajectories that disagrees with the real data, although
DVRNN without semi-supervision appears to generate
trajectories where flies move too much. In Figure 6, we
investigate the quality of uncertainty estimates produced
by various models. For this purpose we again seed the
model with an initial sequence of actions, then observe
how the probability mass over the flies’ projected future
positions evolves over time and compare it with the actual
positions in the dataset. Figure 6 visualizes the results
and Table 1 provides the log likelihood of each fly’s true
position under this density estimate. Again, we find that
CWS trained DVRNN performs best, followed by the
unsupervised DVRNN, the continuous VRNN, and the
RNN.

4.4 DISCUSSION

We have introduced a new method for semi-supervised
learning in deep generative time-series models and we
have shown that it achieves better performance than un-
supervised learning and fully supervised learning with a
fraction of the data. Although CWS uses a biased gradi-
ent estimator, it has many advantages including ease of
implementation, intuition as teacher-forcing RWS, and
empirical validation. A formal, theoretical justification
of why the biased estimator of CWS works remains for

future work. Additionally, we are interested in extending
CWS to a more general class of semi-supervised mod-
els, taking inspiration from the ideas of Siddharth et al.
(2017).
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