
Bayesian Optimization for Probabilistic Programs

Tom Rainforth Jan-Willem van de Meent Michael A. Osborne Frank Wood
Dept of Engineering Science

University of Oxford
{twgr, jwvdm, mosb, fwood}@robots.ox.ac.uk

Abstract

We outline a general purpose framework for black-box marginal maximum a pos-
teriori estimation of probabilistic program variables using Bayesian optimization
with Gaussian processes. We introduce the concept of an optimization query,
whereby a probabilistic program returns an infinite lazy sequence of increasingly
optimal estimates, and explain how a general purpose program transformation
would allow the evidence of any probabilistic program, and therefore any graphi-
cal model, to be optimized with respect to an arbitrary subset of its variables.

1 Introduction and Background

Probabilistic programming systems (PPS) [1–11] allow probabilistic models to be represented in the
form of a generative model and statements for conditioning on data. Informally, one can think of
the generative model as the definition of a prior, the conditioning statements as the definition of a
likelihood and the output of the program as samples representing expectation values of conditional
distribution. The core philosophy of PPS is to decouple model specification and inference, the
former corresponding to the user specified program code and the latter to an inference engine capable
of operating on arbitrary programs, often taking the form of samplers based on Markov chain Monte
Carlo (MCMC) [12, 13] or sequential Monte Carlo (SMC) [11, 14].

In this paper we introduce the idea of carrying out marginal maximum a posteriori (MMAP) es-
timation for probabilistic programs (PP). We aim to optimize with respect to some variables in a
program, whilst marginalizing out others. There are number of ways this could prove useful such as
hyperparameter optimization, mode finding and when the final required output is a single sample,
for example engineering design. Note that our objective function will be based on the evidence of a
program, rather than a return value.

In general PPS inference engines are inappropriate for optimization, particularly if the objective
function is expensive to evaluate, as is typically the case when it takes the form of an intractable
integral. Bayesian optimization (BO) [15–17] is an attractive technique for optimizing expensive
functions, as the resulting algorithms are typically very efficient in the number of function evalua-
tions, making it a suitable candidate for the maximization component of MMAP in PP.

Let f : Θ → R denote an arbitrary black-box function that can be evaluated for an arbitrary point
θ ∈ Θ to produce, potentially noisy, outputs Ẑ ∈ R. BO aims to find the global maximum over a
sub-space of permissible solutions S ⊆ Θ defined as

θ∗ = argmax
θ∈S

f (θ) . (1)

It is assumed that any noise is unbiased such that E[Ẑ|θ] = Zθ where Zθ represents the noiseless
evaluation of f (θ). One can place a prior on f , such as a Gaussian process (GP), and condition
upon observed data Dm = {θj , Ẑj}j=1:m, to give a posterior over functions p (f |Dm). This allows
estimation of the expected value and uncertainty in Zθ for all θ ∈ Θ. BO calculates such a posterior

1

and uses it to define an acquisition function a : S → R which assigns a utility to evaluating f at par-
ticular θ, based on the trade off between exploration and exploitation in finding the maximum. This
acquisition function therefore forms a lower overhead surrogate function which can be optimized to
ascertain the next point at which the target function should be evaluated in a sequential fashion.

We will first define a framework for an optimization query. We outline an algorithm for the black-box
optimization of any marginal likelihood estimator, with respect to its input parameters, before mov-
ing on to how MMAP estimation of parameters defined within any arbitrary query can be achieved.

2 The Optimization Query

A PP query [18] is a function which takes a program and its inputs, and returns a characterisation
of the conditional distribution, for example an infinite lazy sequence of samples. In this section we
define a set of requirements for an “optimization query”, which instead returns an infinite lazy se-
quence of increasingly optimal estimates. We will first consider the case of optimizing the evidence
of a query q with respect to its input variables and discuss extension to arbitary variables with the
program in section 4. We refer to our setup as BOPP (Bayesian optimization for probabilistic pro-
grams). We assume q takes as inputs data upon which the query is conditioned Y and the parameters
which are being optimized with respect to θ. As we require q to provide an unbiased estimate of its
marginal likelihood p (Y |θ) we are restricted in the inference engines that can be used. Examples
of permissible inference algorithms include importance sampling [19], sequential Monte Carlo [11]
and the particle cascade [20], all of which are supported by Anglican [11].

Let q contain a set of latent variables X = {xi}i=1,...,N (note xi may have different dimensionality

for different i) with prior p (X|θ) = p (x1|θ)
∏N
i=2 p (xi|x1, . . . , xi−1, θ) parametrized by a set of

program inputs θ ∈ Θ, and a set of conditioning statements on observations Y = {yi}i=1,...,N , yi ∈
R such that the query defines the joint factorization1

p (X,Y |θ) = p (x1|θ) p (y1|x1, θ)
N∏
i=2

p (yi|x1, . . . , xi, θ) p (xi|x1, . . . , xi−1, θ) . (2)

We assume that the observations Y are fixed and finite dimensional. BOPP will attempt to find

θ∗ = argmax
θ∈S

f (θ) = argmax
θ∈S

p (Y |θ) p (θ) = argmax
θ∈S

p (θ)

∫
X

p (X,Y |θ) dX, (3)

and will require as inputs Y and p (θ). It will be necessary for q to either be passed to the BOPP
query, or be defined within its program block. We define the BOPP query to output an infinite lazy
sequence θ̂1, θ̂2, . . . such that

E
[
f
(
θ̂m

)
|Dm

]
≥ E

[
f
(
θ̂j

)
|Dm

]
, ∀j = 1, . . . ,m− 1, m = 1, (4)

In other words θ̂m corresponds to the point that is expected to be the most optimal of those evaluated,
which need not always be the point with the maximum function evaluation Ẑ.

3 Black-Box Bayesian Optimization

Although BO is a technique for optimizing black-box functions, there is substantial flexibility in
the BO algorithm itself. For example there are many possible choices for the class of surrogate
function including Gaussian processes [16, 24, 25], random forests [26] and neural nets [27]. Further
decisions need to be made on the surrogate model hyperparameters, the means of optimizing the
acquisition function and, in some cases, the method used to train the surrogate. For PPS the BO
algorithm must itself run in a black-box fashion; we therefore bring together a number of established
techniques along with our own design decisions to form an BO algorithm that can be run without the
need for problem specific user input. We refer to this as black-box Bayesian optimization (BBBO).

1Note, there is notational deficiency as in a higher-order PPS variable types, the order of the conditioning
for the latent variables and even the number of latent variables can change depending on the program trace.

2

(a) 1 iteration
θ = [−1.478, 0.855]T (b) 20 iterations

θ = [−2.942, 1.550]T (c) 100 iterations
θ = [−2.306, 1.249]T (d) Ground truth

θ = [−2.3, 1.25]T

Figure 1: An example application of our BBBO to the problem of optimizing the transition function
parameters of an extended Kalman filter for tracking the chaotic latent states of a dynamical system,
the model for which is given in Appendix B. We marginalize over a set of latent statesX , conditioned
upon a series of observations Y , using a particle filtering algorithm (see Cappè SMC overview [21]),
and optimize the marginal likelihood p (Y |θ) with respect to the transition function parameters θ.
The synthetic data was generated using 104 time steps with ground truth parameters θ1 = −2.3 and
θ2 = 1.25. Experiments were run using a prototype algorithm written in MATLAB. The top plots
show a series of trajectories for different parameters, demonstrating converged to the true attractor.
The colormap is based on the speed and curvature of the trajectory, with rendering done using the
program Chaoscope [22]. The bottom left plot gives convergence in terms of log marginal likelihood
(left) and the bottom right in terms of distance to ground truth. Red corresponds to BBBO, green to
simulated annealing [23] and blue to a gradient descent algorithm with random restarts. The solid
lines shows the median performance and the bounds of the shaded areas are the upper and lower
quartiles over 20 tests, each of which was restricted to 100 function evaluations for all algorithms.
In all 20 tests, the BBBO algorithm converged within a small tolerance to the global maximum.

It should be noted that there are existing packages, such as Spearmint [25] and SMAC [26], that
can also be run without problem specific input. Due to space restrictions, only a brief high level
overview of our algorithm is presented here, with a full scheme given in Appendix 1.

As p (Y, θ) tends to be tightly peaked around its modes and is a strictly non-negative function, we use
the log joint f (θ) = log p (Y |θ) + log p (θ) as our objective function [28]. A small number of well
spaced points are sampled as an initialization. We use a GP prior on f with a Matérn- 32 [29] covari-
ance function, chosen because it is only once differentiable and therefore only makes weak assump-
tions about the smoothness of f. The GP prior mean function is taken to be µprior (θ) = log p (θ)− c
where c is a constant based on previous evaluations of f . We define a weakly informative, separable
hyperprior over the GP hyperparameters and marginalize over them [16, 25] using a Hamiltonian
Monte Carlo sampling scheme [30]. This leads to an integrated acquisition function corresponding
to a Monte Carlo integration over the individual acquisition functions of each GP, for which we use
the expected improvement (EI) [31]. The estimate of the optimal point at any step of the algorithm
is given by the point of those queried with the maximum mean value in the GP posterior (with the
hyperparameters marginalized out).

4 Marginalization of Arbitrary Variables within a Program

In section 2 we defined a framework for black-box MMAP estimation for the input parameters of a
query with respect to a given prior. Although this is a common scenario for optimization in machine

3

learning (for example hyperparameter optimization), we propose extending these ideas to instead
optimize with respect to an arbitrary subset of sampled variables in a program. This is equivalent to
optimizing with respect to an arbitrary subset of nodes in a graphical model, whilst marginalizing
over the others, representing a new method beyond the scope of current BO algorithms.

Consider the Anglican query q in figure 2 as a demonstrative example of the problem. The marginal
distribution of q, p (Y, θ) =

∫
U

∫
V
p (U) p (θ|U) p (V |θ, U) p (Y |V, θ, U) dUdV , still defines the

same objective function as in (3) if we define X = {U, V }, but θ is no longer at the root of the
dependency structure as it was in (2). This causes two problems for optimizing with respect to
θ: it is sampled within the program and the corresponding probability distribution is only defined
conditioned on one of the parameters we wish to marginalize over U .

We propose dealing with both these issues simultaneously using a program transformation by which
we change any sample statements for elements of θ into observe statements, as detailed in figure 2. In
other words we will use the defined probability distribution for sampling θ to condition the program
to a particular value of θ. Critically, the distribution defined by the program has not changed, but the
query is now a function of θ which can be optimized. This simple but elegant solution means that
we can transform any probabilistic program, and therefore any graphical model, to an optimization
problem with respect to any of its composite variables.

Some complications remain from the fact that the definition of p (θ) is now not provided externally,
as was the case in the BOPP query defined in section 2, but is instead implicitly defined within the
program. This will require careful engineering of our optimization query. If there are implicit hard
constraints placed on θ because p (θ|U) has finite support, we will we need to, at least partially,
query the program to test if a θ is valid. Work by Gelbart et al [32] and Hernández et al[33] amongst
others has looked into the case of BO under unknown constraints which could prove helpful in
solving this problem. One could also look to use further problem transformation to allow partial
program evaluation in order to estimate p (θ) without requiring the full program to be evaluated.

We have assumed that θ is continuous with constant dimension. This need not always be case
for probabilistic programs, but arbitrary θ can be considered with suitable adaptation of the GP
covariance function. For example, arc kernels [34, 35] would allow the dimension of θ to vary.

Despite these outstanding issues, we believe the application of Bayesian optimization to probabilistic
programs is a promising direction for future research, both from a perspective of improving the
performance and applicability of PPS, and as flexible method for increasing the scope of BO to the
marginalization of arbitrary variables in a graphical model.

(defopt q [Y]
(let [U (sample p-U)

theta (sample :theta (p-theta U))
V (sample (p-V U theta))]

(observe (lik-func U theta V) Y)
(predict :U-V [U V])
(maximize-wrt :theta)))

(defquery qT [Y theta]
(let [U (sample p-U)

_ (observe (p-theta U) theta)
V (sample (p-V U theta))]

(observe (lik-func U theta V) Y)
(predict :U-V [U V])))

(defn doopt [qT Y n method]
(letfn [(point-seq [points theta]

(lazy-seq
(let [samples (->> (doquery

method qT [Y theta])
(take n))

log-Z (log-marginal samples)
predicts (map get-predicts samples)
points (conj points

[theta log-Z predicts])
[theta-next i-best] (bo-acquire points)]
(cons (nth points i-best)

(point-seq points theta-next)))))]
(point-seq (sample-initial-points qT Y n method))))

Figure 2: Possible defopt design written in Anglican. Here sample samples from a distribution, ob-
serve conditions on data and predict defines program output. Top left is a simple example defopt
query where we want to optimize θ. Note p-U, p-theta, p-V and lik-func all represent the
distribution definitions. The macro defopt transforms the query q to a query of the form shown bot-
tom left as qT. A query of this form may be passed to the function doopt, which returns sequence of
increasingly optimal triples [theta log-Z predicts]. After first using sample-initial-points
to generate and evaluate a set of initialization points, the algorithm alternates between performing
inference at a given theta, using doquery to estimate the log marginal likelihood for that theta,
and calling bo-acquire to select the next theta to evaluate. bo-acquire also calculates which of
the points so far is expected to be the optimum using the integrated mean function from our GP
posterior. This point is added to the lazy infinite sequence of returned points at each iteration.

4

References
[1] Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey

Kolobov. BLOG : Probabilistic Models with Unknown Objects. In IJCAI, 2005.
[2] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A probabilistic prolog and

its application in link discovery. IJCAI International Joint Conference on Artificial Intelli-
gence, pages 2468–2473, 2007.

[3] Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B Tenen-
baum. Church: a language for generative models. In Proc. 24th Conf. Uncertainty in Artificial
Intelligence (UAI), pages 220–229, 2008.

[4] Avi Pfeffer. Figaro: An object-oriented probabilistic programming language. Technical report,
2009.

[5] A McCallum, K Schultz, and S Singh. Factorie: Probabilistic programming via imperatively
defined factor graphs. In Advances in Neural Information Processing Systems, volume 22,
pages 1249–1257, 2009.

[6] T Minka, J Winn, J Guiver, and D Knowles. Infer .NET 2.4, Microsoft Research Cambridge,
2010.

[7] Brooks Paige and Frank Wood. A compilation target for probabilistic programming languages.
arXiv preprint arXiv:1403.0504, 2014.

[8] Vikash Mansinghka, Daniel Selsam, and Yura Perov. Venture: a higher-order probabilistic
programming platform with programmable inference. arXiv preprint arXiv:1404.0099, 2014.

[9] Stan: A c++ library for probability and sampling, version 2.7.0, 2015. URL http:
//mc-stan.org/.

[10] Tom Minka, John Winn, John Guiver, and David Knowles. Infer .net 2.4, 2010. microsoft
research cambridge.

[11] Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. A new approach to proba-
bilistic programming inference. In Proceedings of the 17th International conference on Artifi-
cial Intelligence and Statistics, pages 2–46, 2014.

[12] W Keith Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

[13] David Wingate, Andreas Stuhlmueller, and Noah D Goodman. Lightweight implementations
of probabilistic programming languages via transformational compilation. In International
Conference on Artificial Intelligence and Statistics, pages 770–778, 2011.

[14] Adrian Smith, Arnaud Doucet, Nando de Freitas, and Neil Gordon. Sequential Monte Carlo
methods in practice. Springer Science & Business Media, 2013.

[15] Jonas Mockus. Bayesian approach to global optimization: theory and applications, volume 37.
Springer Science & Business Media, 2012.

[16] Michael A Osborne, Roman Garnett, and Stephen J Roberts. Gaussian processes for global op-
timization. In 3rd international conference on learning and intelligent optimization (LION3),
pages 1–15, 2009.

[17] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

[18] Noah D Goodman, Vikash K Mansinghka, Daniel Roy, Keith Bonawitz, and Joshua B Tenen-
baum. Church: a language for generative models. 2008.

[19] Peter W Glynn and Donald L Iglehart. Importance sampling for stochastic simulations. Man-
agement Science, 35(11):1367–1392, 1989.

[20] Brooks Paige, Frank Wood, Arnaud Doucet, and Yee Whye Teh. Asynchronous anytime se-
quential monte carlo. In Advances in Neural Information Processing Systems, pages 3410–
3418, 2014.

[21] Olivier Cappé, Simon J Godsill, and Eric Moulines. An overview of existing methods and
recent advances in sequential monte carlo. Proceedings of the IEEE, 95(5):899–924, 2007.

[22] http://www.chaoscope.org/.

5

http://mc-stan.org/
http://mc-stan.org/

[23] Emile Aarts and Jan Korst. Simulated annealing and boltzmann machines. 1988.
[24] Michael Osborne. Bayesian Gaussian Processes for Sequential Prediction, Optimisation and

Quadrature. PhD thesis, PhD thesis, University of Oxford, 2010.
[25] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of ma-

chine learning algorithms. In Advances in neural information processing systems, pages 2951–
2959, 2012.

[26] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Learning and Intelligent Optimization, pages 507–523.
Springer, 2011.

[27] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sun-
daram, Md Patwary, Mostofa Ali, Ryan P Adams, et al. Scalable bayesian optimization using
deep neural networks. arXiv preprint arXiv:1502.05700, 2015.

[28] Michael Osborne, Roman Garnett, Zoubin Ghahramani, David K Duvenaud, Stephen J
Roberts, and Carl E Rasmussen. Active learning of model evidence using bayesian quadra-
ture. In Advances in Neural Information Processing Systems, pages 46–54, 2012.

[29] Michael L Stein. Interpolation of spatial data: some theory for kriging. Springer Science &
Business Media, 2012.

[30] Radford M Neal. Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte
Carlo, 2, 2011.

[31] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimization of ex-
pensive cost functions, with application to active user modeling and hierarchical reinforcement
learning. arXiv preprint arXiv:1012.2599, 2010.

[32] Michael A Gelbart, Jasper Snoek, and Ryan P Adams. Bayesian optimization with unknown
constraints. arXiv preprint arXiv:1403.5607, 2014.

[33] José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive
entropy search for efficient global optimization of black-box functions. In Advances in Neural
Information Processing Systems, pages 918–926, 2014.

[34] Frank Hutter and Michael A Osborne. A kernel for hierarchical parameter spaces. arXiv
preprint arXiv:1310.5738, 2013.

[35] Kevin Swersky, David Duvenaud, Jasper Snoek, Frank Hutter, and Michael A Osborne.
Raiders of the lost architecture: Kernels for bayesian optimization in conditional parameter
spaces. arXiv preprint arXiv:1409.4011, 2014.

[36] Ronald L Iman. Latin hypercube sampling. Encyclopedia of quantitative risk analysis and
assessment, 2008.

[37] Anthony Lee and Nick Whiteley. Variance estimation and allocation in the particle filter. arXiv
preprint arXiv:1509.00394, 2015.

[38] Daniel James Lizotte. Practical bayesian optimization. University of Alberta, 2008.
[39] Matthew D Homan and Andrew Gelman. The no-u-turn sampler: Adaptively setting path

lengths in hamiltonian monte carlo. The Journal of Machine Learning Research, 15(1):1593–
1623, 2014.

[40] Iain Murray and Ryan P Adams. Slice sampling covariance hyperparameters of latent gaussian
models. In Advances in Neural Information Processing Systems, pages 1732–1740, 2010.

[41] Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. Lipschitzian optimization without
the lipschitz constant. Journal of Optimization Theory and Applications, 79(1):157–181, 1993.

[42] Robert L Devaney, Luke Devaney, and Luke Devaney. An introduction to chaotic dynamical
systems, volume 13046. Addison-Wesley Reading, 1989.

[43] Keisuke Fujii. Extended kalman filter. Refernce Manual, 2013.
[44] Huawei Ruan, Tongyan Zhai, and Edwin Engin Yaz. A chaotic secure communication scheme

with extended kalman filter based parameter estimation. In Control Applications, 2003. CCA
2003. Proceedings of 2003 IEEE Conference on, volume 1, pages 404–408. IEEE, 2003.

[45] Clifford A Pickover. The pattern book: Fractals, art, and nature. World Scientific, 1995.

6

A Black-Box Bayesian Optimization Algorithm in Detail

In this section we give a more extensive outline our BBBO algorithm for optimizing a target func-
tion of the form f (θ) = p (θ) p (Y |θ). Although we have focussed on the case where p (Y |θ)
corresponds to a marginal likelihood, the introduced methods applies to any p (θ) and p (Y |θ), in-
cluding the case where these are not even probability densities. To aid with the application of our
algorithm to arbitrary programs we make two transformations to our target function that leave the
solution to (3) unchanged. Firstly we take the logarithm of f to account for the anticipation that
p (Y, θ) will be tightly peaked around its modes and so that the support of our target is the full real
line, noting that p (Y, θ) is strictly positive and therefore cannot be modelled by a GP without a
transformation. Secondly we use affine transformation after each data point is observed so that the
evaluated values of log p (Y |θ) have zero mean and unit variance in the transformed space2. This
is done to adjust for the varying scaling of different problems and means that we can more sensibly
specify automatic hyperpriors on the signal and noise variances.

Algorithm 1 outlines the general procedure for BBBO which starts by sampling m0 initialization
points. This is done to prevent because typically with a few points there is insufficient information
to make well informed decisions about the optimal point to next sample and we wish to avoid the
BO algorithm attempting to do anything other than exploring the space at this time. We take as a
defaultm0 = min (1 + 4 ‖θ‖0 , 20) where ‖θ‖0 is the dimensionality of θ, but note that the user may
wish to change this depending on the intended total number of function evaluations. In general the
choice ofm0 will not be critical to the performance of the algorithm. When the prior defines bounds
corresponding to a hypercube, we use a Latin hypercube method [36] to achieve well separated
points, otherwise we resort to (potentially approximately) sampling the start points from p (θ).

Algorithm 1 BLACK-BOX BAYESIAN OPTIMIZATION

1: Inputs: pY |θ, pθ,m0

2: {θj}j=1:m0
← GENERATEINITIALSAMPLES(pθ)

3: Ẑj ← log pY |θ (θj) + log (pθ (θj)) , ∀j = 1, . . . ,m0

4: m← m0

5: while true do
6: α` ∼ p

(
α|θ1:m, Ẑ1:m

)
∀` = 1 : L . Generate samples from posterior on GP hyperparameters

7:
{
µ`m (·) , k`m (·, ·)

}
← GPTRAIN(θ1:m, Ẑ1:m, α`, pθ) ∀` = 1 : L

8: θ̂m ←
{
argmaxj=1:m

1
L
µ`m (θj)

}
. Evaluated point with best expected Z

9: am (·)← 1
L

∑
`=1:L ζ

(
· ;α`, µ`m (·) , k`m (·, ·)

)
. Integrated acquisition function

10: θm+1 ← argmaxθ am (θ) . Next point to try
11: m← m+ 1
12: Ẑm ← log pY |θ (θm) + log (pθ (θm))
13: end while
14: return θ̂m

A GP prior is used to model f and we assume a Gaussian likelihood for p(Ẑ|f (θ)) =

1
σn

√
2π

exp

(
− (Ẑ−f(θ))

2

σ2
n

)
where σn is stationary anticipated standard deviation in our noisy func-

tion evaluations that we consider to be a hyperparameter of the GP. We note that using a Gaussian
likelihood will be an approximation to the truth as even though the Ẑ are unbiased, they need not
be Gaussian distributed. It may be possible to improve upon this assumption in future work, for
example by using variance estimation of particle filters [37]. This assumption is, however, highly
convenient as it ensures that our posterior after observingm datapointsDm = {θj , Ẑj}j=1:m is also
a GP, fully defined by a posterior mean function µm (θ;α) and covariance function km (θ, θ′;α).

As we have only considered bounded optimizations with uniform prior p (θ) in our experiments,
we use a zero prior mean function for the GP. For unbounded optimizations it will be necessary
to have a prior mean function which diminishes away from a region of interest. If p (θ) is cheap
to evaluate, we suggest setting the GP prior mean to µprior (θ) = log p (θ) − c where c is set to
the Monte Carlo estimate for the mean of log p (θ) over the initialization points. If p (θ) cannot be

2In future work we intend to refine this so that this scaling is not continually updated but based on a number
of samples at the start of the process.

7

evaluated cheaply we suggest using the same expression but to replace p (θ) with a moment matched
normal distribution based on the previous evaluations.

We use a Matérn- 32 kernel [29] for the covariance function

k (θ, θ′)0 = σ2
f

(
1 +

√
3 ‖θ − θ′‖2

ρ

)
exp

(
−
√

3 ‖θ − θ′‖2
ρ

)
(5)

where σf and ρ are hyperparameters corresponding to a signal standard deviation and length scale
respectively. A key feature of the Matérn- 32 kernel is that it is only once differentiable and therefore
makes relatively weak assumptions about the smoothness of f . We refer to α = {ρ, σf , σn} as the
GP hyperparameters. We intend to investigate more complicated covariance functions, such as using
multiple kernels and non isotropic length scales, in future work.

As the performance of our GP surrogate will depend strongly on α, we introduce a weakly informa-
tive, separable hyperprior p (α) = p (ρ) p (σf) p (σn):

log10 (ρ) ∼ N

‖θ1‖0∑
d=1

log10

∆d

10
, 1 + log10 (max ∆d −min ∆d)

 (6a)

log10 (σf) ∼ N (1, 0.5) (6b)
log10 (σn) ∼ N (−2, 2) . (6c)

For bounded optimizations, ∆d is the maximum allowable variation of θ in dimension
d as defined by the bounds. For unbounded optimizations we instead take ∆d =
3
2

(
maxj=1:m θ

d
j −minj=1:m θ

d
j

)
where θdj denotes dimension d of each sampled point θj . The

hyperprior for ρ effectively reflects the range of length scales we might reasonably expect to infer
given the limited evaluations that our algorithm expects to take. The hyperpriors for σf and σn are
based on the fact that the problem has been scaled to have unit variance which bounds the range a
sensible values for a finite number of samples.

We use the expected improvement (EI) [31] above some threshold ξ > 0 as the acquisition function
ζm (θ;α) for a single GP with a particular given α

ζm (θ;α) =

∫ ∞
µ++ξ

p (z|µm (θ;α) , σm (θ;α))
(
z − µ+ − ξ

)
dz

=

{
(µm (θ;α)− µ+ − ξ) Φ (γm (θ)) + σm (θ;α)λ (γm (θ)) , σm (θ;α) > 0

0, σm (θ;α) = 0

(7)

where σm (θ;α) =
√
kτ (θ, θ), Φ is the cumulative distribution of a unit normal, , γm (θ) =

µm(θ;α)−µ+
m−ξ

σm(θ;α) , λ is the probability density of a unit normal and µ+
m = maxj∈{1,...,τ} µm (θj).

We use Lizotte’s [38] suggestion of ξ = 0.01σf . Marginalizing over α [16, 25] with respect to its
posterior probability gives the final integrated acquisition function:

am (θ) =

∫
α

ζm (θ;α) p (α|Dm) dα. (8)

A Hamiltonian Monte Carlo (HMC) method [30] is used to sample from the GP-hyperparameter
posterior p (α|Dm). HMC was chosen because the availability of analytic derivatives of the GP
log marginal likelihood. For each iteration of the BO algorithm we use a default of 100 HMC
iterations (i.e. 100 accept / reject steps) but note that user may wish to vary this depending on how
expensive the target function is to evaluate. For each HMC iteration we use 5 leapfrog updates
and for hyperparameter κ, the step size is set to min

(
0.01σκ, 0.1/

∣∣∣∂ log p(α|Dm)
∂κ

∣∣∣) where σκ is the

standard deviation of κ under the hyperprior and
∣∣∣∂ log p(α|Dm)

∂κ

∣∣∣ is the absolute value of the derivative
of the log GP-hyperparameter posterior with respect to κ at the current point. Although we found
this worked well in practise, a more advanced HMC sampler that avoids the need to set the number
of leapfrog updates or the step size might be preferable, for example NUTS [39]. Alternatively one
could consider using slice sampling for the GP hyperparameters [40] as is employed in a number of

8

other BO implementations. Note that the hyperparameter samples are discarded from one iteration
of the BO algorithm to the next.

We use a simple simulated annealing [23] algorithm for optimizing the acquisition function. A
number of annealing trajectories are simulated in parallel and heuristics used for setting the cooling
schedule, step sizes and starting point of the trajectories. These heuristics are based on preliminary
evaluations of the acquisition function at randomly sampled points. We acknowledge that the choice
of simulated annealing is unlikely to prove the most efficient and intend to investigate alternatives in
future work. Possible alternatives include DIRECT [41], which has the advantage of being parameter
free but the disadvantage that it requires the optimization to be bounded, and gradient based methods,
noting that the derivatives are analytically available.

B Extended Kalman Filter for the Pickover Chaotic Attractor

As an example application we consider the case of optimizing the transition function parameters of
an extended Kalman filter for the tracking of a chaotic attractor. Chaotic attractors present an inter-
esting case for tracking problems as, although their underlying dynamics are strictly deterministic
with bounded trajectories, neighbouring trajectories diverge exponentially3. Therefore regardless of
the available precision, a trajectory cannot be indefinitely extrapolated to within a given accuracy
and probabilistic methods such as the extended Kalman filter [43] must be incorporated [44]. From
an empirical perspective, this forms a challenging optimization problem as the target transpires to
be multi-modal, has variations at different length scales and has local minima close to the global
maximum.

Suppose we observe a noisy signal yt ∈ RK , t = 1, 2, . . . in some K dimensional observation
space which we believe has a lower dimensional latent space xt ∈ RD corresponding to a chaotic
attractor of known type but with unknown parameters. Given observations up to some time T , we
wish to performance inference over the latent space using an extended Kalman filter as defined by

x0 ∼N (µ0, σ0I) (9)
xt =A (xt−1, θ) + δt−1, δt−1 ∼ N (0, σqI) (10)
yt =Cxt + εt, εt ∼ N (0, σyI) (11)

where I is the identity matrix, C is a known K ×D matrix, µ0 is the expected starting position, and
σ0, σq and σy are all scalars which are assumed to be known. The transition function A (·, ·) is

xt,1 = sin (βxt−1,2)− cos

(
5xt−1,1

2

)
xt−1,3 (12a)

xt,2 =− sin

(
3xt−1,1

2

)
xt−1,3 − cos (ηxt−1,2) (12b)

xt,3 = sin (xt−1,1) (12c)

corresponding to a type of Pickover attractor [45] with unknown parameters θ = {β, η} which we
wish to optimize. Note that η and −η will give the same behaviour.

Data was generated for 104 time steps using the parameters of µ0 = [−0.2149,−0.0177, 0.7630]T ,
σ0 = 0.01, σq = 0.01, σy = 0.2, a fixed matrix C where K = 20 and each column was randomly
drawn from a symmetric Dirichlet distribution with parameter 0.1, and ground truth transition pa-
rameters of β = −2.3 and η = 1.25 (note that the true global optimum for finite data need not be
exactly equal to this). Our prior p (θ), corresponds to a uniform in over a bounded region such that

p (θ) =

{
1/18, if − 3 ≤ β ≤ 3 ∩ 0 ≤ η ≤ 3

0, otherwise
. (13)

3It is beyond the scope of this paper to properly introduce chaotic systems. We refer the reader to Devaney
[42] for an introduction

9

	Introduction and Background
	The Optimization Query
	Black-Box Bayesian Optimization
	Marginalization of Arbitrary Variables within a Program
	Black-Box Bayesian Optimization Algorithm in Detail
	Extended Kalman Filter for the Pickover Chaotic Attractor

