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Abstract

We introduce a new sequential Monte Carlo algorithm we call the particle cas-
cade. The particle cascade is an asynchronous, anytime alternative to traditional
particle filtering algorithms. It uses no barrier synchronizations which leads to
improved particle throughput and memory efficiency. It is an anytime algorithm
in the sense that it can be run forever to emit an unbounded number of particles
while keeping within a fixed memory budget. We prove that the particle cascade
is an unbiased marginal likelihood estimator which means that it can be straight-
forwardly plugged into existing pseudomarginal methods.

1 Introduction

Particle filter based inference techniques require blocking barrier synchronization at resampling
steps which limits parallel throughput and is costly in terms of memory. We introduce a new asyn-
chronous particle filter algorithm that has statistical efficiency competitive with standard resampling
algorithms, and has sufficiently higher particle throughput such that it is, on balance, more efficient
per unit time. The approach uses locally-computed decision rules for each particle that do not re-
quire block synchronization of all particles, instead only requiring sharing summary statistics with
particles that follow. In our algorithm each resampling point acts as a queue rather than a barrier:
each particle chooses the number of its own offspring using by comparing its own weight to the
weights of particles which previously reached the queue, updates its own weight, then proceeds
without waiting.

An anytime algorithm is an algorithm which can be run continuously, generating progressively better
solutions when afforded additional computation time. Traditional particle filter (PF) algorithms are
not anytime in nature; all particles need to be propagated in lock-step to completion in order to
compute expectations. Once a particle set runs to termination, inference cannot straightforwardly
be continued by simply doing more computation. The naive strategy of running sequential Monte
Carlo (SMC) again and merging the resulting sets of particles is suboptimal due to bias (see [1]
for explanation). More complex methods (i.e. particle Metropolis Hastings and iterated conditional
sequential Monte Carlo (iCSMC) [2]) for correctly merging particle sets produced by additional
SMC runs are closer to anytime in nature but suffer from burstiness as big sets of particles are
computed then emitted at once and, fundamentally, the inner-SMC loop of such algorithms still
suffers the kind of excessive synchronization performance penalty that the particle cascade directly
avoids. Our asynchronous SMC algorithm, the particle cascade, is anytime in nature. The particle
cascade can be run indefinitely, without resorting to merging of particle sets, and with only a fixed
(tunable) memory requirement.

1.1 Related work

Our algorithm shares a superficial similarity to Bernoulli branching numbers [3] and other search
and exploration methods which have been used for particle filtering, where each particle samples
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some number of children to propagate to the next observation. Like the particle cascade (and in
contrast to most traditional resampling algorithms), the total number of particles which exist at each
generation is allowed to gradually increase and decrease. However, computing branching correction
numbers is also generally a synchronous operation, requiring all particle weights to be known at
each observation in order to choose an appropriate number of offspring; this also precludes use of
an anytime algorithm.

Parallelizing the resampling step of sequential Monte Carlo methods has drawn increasing recent in-
terest as the effort progresses to scale up algorithms to take advantage of high-performance comput-
ing systems and GPUs. A recent approach to removing the global collective resampling operation,
quite different from the particle cascade method introduced here, can be found at [4].

Another recent method for running arbitrarily many particles within a fixed memory budget intro-
duced in [5] focuses on keeping track of random seeds used to generate proposals, allowing par-
ticular particles to be deterministically “replayed”; a first pass through all particles computes the
normalizing constant of the particle weights, and a second pass re-executes those which are cho-
sen to continue to the next generation. However, the algorithm as presented there still relies on a
synchronous resampling step, and lacks the anytime property of our approach.

2 Background

We begin by briefly reviewing particle filtering as generally formulated on state-space models. Sup-
pose we have a non-Markovian dynamical system with latent random variables X0, . . . , XN and
observed random variables Y0, . . . , YN described by the joint density

p(Xn|X0:n−1, Y0:n−1) = f(Xn|X0:n−1)

p(Yn|X0:n, Y0:n−1) = g(Yn|X0:n), (1)
where X0 is drawn from some initial distribution µ(·), and f and g are conditional densities.

Given observed values Y0:N = y0:N , we approximate the posterior distribution p(X0:n|y0:n) with
a weighted set of K particles, with each particle k denoted xk0:n for k = 1, . . . ,K. Particles are
propagated forward from proposal densities q(xn|x0:n−1) and re-weighted at each observation n =
1, . . . , N :

xkn|xkn−1 ∼ q(·|xkn−1) (2)

wkn =
f(xkn|xk0:n−1)g(yn|xk0:n)

q(xkn|xk0:n−1)
(3)

W k
n = W k

n−1w
k
n (4)

where wkn is the weight associated with observation yn and W k
n is the weight of particle k after

observation n. We assume that exact evaluation of p(x0:N |y0:N ) is intractable, requiring only that
the conditional terms likelihoods g(yn|xk0:n) can be evaluated pointwise. In many complex dynam-
ical systems, or in black-box simulation models, evaluation of f(xkn|xk0:n−1) may be prohibitively
costly or even impossible. As long as we are capable of simulating from the system we can set our
proposal distribution q(·) ≡ f(·), in which case the particle weights are simply wkn = g(yn|xk0:n),
eliminating the need to compute the conditional densities f(·) directly.

By normalizing the weights W k
n , defining

ω̄kn =
W k
n∑K

j=1W
j
n

, (5)

we can approximate the posterior distribution p(X0:N |y0:N ) with a weighted set of K particles

p(X0:N |y0:N ) ≈
K∑
k=1

ω̄kNδxk0:N (X0:N ). (6)

In the very simple sequential importance sampling setup described here, the marginal likelihood can
be estimated by

p̂(y0:n) =
1

K

K∑
k=1

W k
n . (7)
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2.1 Resampling, degeneracy, synchronization

The algorithm described above suffers from a degeneracy problem wherein the normalized weights
ω̄1
n, . . . , ω̄

K
n become mostly very close to zero for even moderately large n. Traditionally this is

combated by introducing a resampling step: as we progress from n to n + 1, particles with high
weights are duplicated and particles with low weights are discarded. Many difference schemes for
resampling particles exist; see [6] for an overview, with discussion and theoretical results for several
common approaches. One can think of a resampling scheme as a method for drawing the number
of offspring particles Mk

n+1 that each particle k will produce after stage n. After resampling, all
outgoing particles from n to n+ 1 receive a new outgoing weight V kn+1, and we have

W k
n+1 = V kn+1w

k
n+1. (8)

In most traditional resampling schemes the outgoing weights of all K particles are deterministically
set to be equal, i.e. with V kn+1 = 1/K; a valid resampling scheme then must satisfy the unbiasedness
condition

E[Mk
n+1] = Kω̄kn. (9)

Introducing this resampling step prevents all the probability mass in our approximation to the pos-
terior from accumulating on a single particle. In this version of the algorithm, where a resampling
step is added at every n, the marginal likelihood can be estimated by

p̂(yn|y0:n−1) =
1

K

K∑
k=1

wkn; (10)

it is well-known that the estimate of the marginal likelihood is unbiased [7].

2.2 Limitations

Our goal is to scale up to very large numbers of particles, using a parallel computing architecture
where each particle is simulated as a separate process or thread. In order to resample at each n we
must compute the normalized weights ω̄kn, requiring us to wait until all individual particles have
both finished forward simulation and computed their individual weight W k

n before any can proceed.
While the forward simulation itself is trivially parallelizable, the weight normalization and resam-
pling step is a synchronous, collective operation. In practice this can lead to significant underuse
of computing resources in a multiprocessor environment, hindering our ability to scale up to large
numbers of particles.

Memory limitations on finite computing hardware also limit the number of simultaneous particles
K we are capable of running in practice. All K particles must move through the system together,
and all must exist simultaneously; if the total memory requirements of K particles is greater than
the available system RAM, then a substantial overhead will be incurred from regularly swapping
memory contents to disk.

3 The Particle Cascade

The particle cascade algorithm we introduce addresses both these limitations: it does not require
synchronization, and keeps only a bounded number of particles alive in the system at any given
time. Instead of resampling, we will consider particle branching, where each particle can result
in 0 or more offspring. These branching events happen asynchronously and mutually exclusively,
i.e. they are processed one at a time.

3.1 Local branching decisions

At each stage n of the particle filter, particles process observation yn. Without loss of generality, we
can define an ordering on the particles 1, 2, . . . in the order they arrive at yn. This order need not be
independent of the state of the particles xk0:n.
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We keep track of the running average weight W
k

n of the first k particles to arrive at observation yn
in an online manner:

W
k

n = W k
n for k = 1, (11)

W
k

n =
k − 1

k
W

k−1
n +

1

k
W k
n for k = 2, 3, . . . . (12)

The number of children of particle k should depend on the weight W k
n of particle k relative to

those of other particles. Particles with higher relative weight are more likely to be located in a high
posterior probability part of the space, and should be allowed to spawn more child particles.

In the online asynchronous particle system as described here, we do not have access to the weights
of future particles when processing k. Instead we will compare W k

n to the current average weight
W

k

n among particles processed thus far. Specifically, the number of children, which we denote by
Mk
n+1, will depend on the ratio

Rkn =
W k
n

W
k

n

. (13)

Each child of particle k will be assigned a weight V kn+1 such that the total weight of all children
Mk
n+1V

k
n+1 has expectation W k

n .

There is a great deal of flexibility available in designing a scheme for choosing the number of child
particles; we need only be careful to set V kn+1 appropriately. Informally, we would like Mk

n+1 to
be large when Rkn is large. If Mk

n+1 is sampled in such a way that E[Mk
n+1] = Rkn, then we set

the outgoing weight V kn+1 = W
k

n. Alternatively, if we are using a scheme which deterministically
guarantees Mk

n+1 > 0, then we set V kn+1 = W k
n/M

k
n+1.

A simple approach would be to sample Mk
n+1 independently conditioned on the weights. In such

schemes we could draw each Mk
n+1 from some simple distribution, e.g. a Poisson distribution with

mean Rkn, or a discrete distribution over the integers {bRknc, dRkne}. However, one issue that arises
in such approaches where the number of children for each particle is conditionally independent,
is that the variance of the total number of particles at each generation can grow without bound.
Suppose we start the system with K0 particles. The number of particles at subsequent stages n is
given recursively as Kn =

∑Kn−1

k=1 Mk
n . We would like to avoid situations in which the number of

particles becomes too large, or collapses to 1.

Instead, we will allow Mk
n to depend on the number of children of previous particles at n, in such

a way that we can stabilize the total number of particles in each generation. Suppose that we wish
for the number of particles to be stabilized around K0. After k − 1 particles have been processed,
we expect the total number of children produced at that point to be approximately k − 1, so that if
the number is less than k − 1 we should allow particle k to produce more children, and vice versa.
Similarly, if we already currently have more than K children, we should allow particle k to produce
less children. We use a simple scheme which satisfies these criteria, where the number of particles
is chosen at random when Rkn < 1, and set deterministically when Rkn ≥ 1:

(Mk
n+1, V

k
n+1) =


(0, 0) w.p. 1−Rkn, if Rkn < 1;

(1,W
k

n) w.p. Rkn, if Rkn < 1;

(bRknc,
Wk
n

bRknc
) if Rkn ≥ 1 and

∑k−1
j=1 M

j
n+1 > min(K0, k − 1);

(dRkne,
Wk
n

dRkne
) if Rkn ≥ 1 and

∑k−1
j=1 M

j
n+1 ≤ min(K0, k − 1).

(14)

We pause here to take note of the anytime nature of this algorithm — any given particle passing
through the system needs only the previous weights W

k

n in order to make its local branching deci-
sions, not the previous particles themselves. Thus it is possible to run this algorithm for some fixed
number of initial particles K0, inspect the output of the KN completed particles which have left the
system, and then decide whether to continue inference by initializing additional particles.
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3.2 Computing expectations and marginal likelihoods

Samples drawn from the particle cascade can be used to compute expectations in the same manner
as samples from a standard particle filter; that is, given some function ϕ(·), we normalize weights

ω̄kn =
Wk
n∑Kn

j=1W
j
n

analogously to before and approximate the posterior expectation by

EX0:N |Y0:N
[ϕ(X0:N )] ≈

KN∑
k=1

ω̄kNϕ(xk0:N ). (15)

We can also use the particle cascade to define an estimator of the marginal likelihood p(y0:n),

p̂(y0:n) =
1

K0

Kn∑
k=1

W k
n . (16)

The form of this estimate is fairly distinct from the standard SMC estimators in Section 2. In terms
of predictive densities, one can think of p̂ (y0:n) as

p̂ (y0:n) = p̂ (y0)

n∏
i=1

p̂ (yi|y0:i−1) (17)

where

p̂ (y0) =
1

K0

K0∑
k=1

W k
0 , p̂ (yn| y0:n−1) =

∑Kn
k=1W

k
n∑Kn−1

k=1 W k
n−1

for n ≥ 1. (18)

It is interesting to note that the incrementally updated W
k

n statistics in the denominator of Rkn are
very directly tied to the marginal likelihood estimate; that is, p̂(y0:n) = Kn

K0
W

k

n.

3.3 Theoretical properties, unbiasedness

Here we show that the marginal likelihood estimator p̂(y0:n) defined in Eq. 16 is unbiased;
i.e. E[p̂(y0:n)] = p(y0:n). In a very general form, we can summarize the particle cascade algo-
rithm as

• Initialization at n = 0: for k = 1, ...,K0 sample Xk,0
0 ∼ µ(·) and compute W k

0 =

g(y0|Xk,0
0 ).

• At each time n ≥ 0, perform

1. Resampling step: resample
{
W k
n , X

k,n
0:n

}Kn
k=1

to obtain
{
W̃ k
n , X

k,n+1
0:n

}Kn+1

k=1

2. Forward simulation step: for k = 1, ...,Kn+1 sample Xk,n+1
n+1 ∼ f

(
·|Xk,n+1

0:n

)
, and

set W k
n+1 = W̃ k

ng
(
yn+1|Xk,n+1

0:n+1 , y0:n

)
and n← n+ 1.

We denote by B(E) the space of bounded real-valued functions on a space E. We make the follow-
ing assumption on the resampling step.

Assumption R. For any n ≥ 0, we have p(Kn > 0) = 1 and for any ϕ ∈ B(Xn)

E

Kn+1∑
k=1

W̃ k
n ϕ

(
Xk,n+1

0:n

)∣∣∣∣∣∣Fn
 =

Kn∑
k=1

W k
n ϕ

(
Xk,n

0:n

)
(19)

where Fn denotes the natural filtration associated to all the random variables generated by the par-
ticle algorithm before resampling at time n. We also denote by F̃n denotes the natural filtration
associated to all the random variables generated by the particle algorithm just after the resampling
step at time n.
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The resampling step of the particle cascade corresponds to

E

Kn+1∑
k=1

W̃ k
n ϕ

(
Xk,n+1

0:n

)∣∣∣∣∣∣Fn
 = E

[
Kn∑
k=1

Mk
n+1V

k
n+1 ϕ

(
Xk,n

0:n

)∣∣∣∣∣Fn
]

=

Kn∑
k=1

W k
n ϕ

(
Xk,n

0:n

)
,

(20)

i.e. each particleXk,n
0:n hasMk

n+1 offspring of associated weight V kn+1 so thatKn+1 =
∑Kn
k=1M

k
n+1.

Proposition 1. Assume Assumption R holds and g(yn|·, y0:n−1) : Xn−1 → R is in B(Xn−1) for
any n = 0, ..., N . Then we have

E[p̂(y0:n)] = p(y0:n). (21)

Proof of Proposition 1. The proof follows from a backward induction. We have

E [p̂ (y0:n)] = E

[
E

[
1

K0

Kn∑
k=1

W k
n

∣∣∣∣∣ F̃n−1
]]

= E

 1

K0

Kn∑
k=1

W̃ k
n−1

∫
f
(
xn|Xk,n

0:n−1

)
g
(
yn|Xk,n

0:n−1, xn, y0:n−1

)
dxn︸ ︷︷ ︸

p(yn|Xk,n0:n−1,y0:n−1)


= E

[
E

[
1

K0

Kn∑
k=1

W̃ k
n−1p

(
yn|Xk,n

0:n−1, y0:n−1

)∣∣∣∣∣Fn−1
]]

= E

E
 1

K0

Kn−1∑
k=1

W k
n−1p

(
yn|Xk,n−1

0:n−1 , y0:n−1

)∣∣∣∣∣∣ F̃n−2


= E

E
 1

K0

Kn−1∑
k=1

W̃ k
n−2p

(
yn−1:n|Xk,n−1

0:n−2 , y0:n−2

)∣∣∣∣∣∣Fn−2


= E

E
 1

K0

Kn−2∑
k=1

W k
n−2p

(
yn−1:n|Xk,n−2

0:n−2 , y0:n−2

)∣∣∣∣∣∣Fn−2


= E

[
1

K0

K0∑
k=1

W k
0 p
(
y1:n|Xk,0

0 , y0

)]
= p(y0:n).

4 Active bounding of memory usage

In an idealized computational environment, with infinite available memory, our implementation of
the particle cascade could begin by launching (a very large number) K0 particles simultaneously
which then gradually propagate forward through the system. In practice, only some finite number
of particles, probably much smaller than K0, can be simultaneously simulated efficiently. Further-
more, the initial particles are not truly launched all at once, but rather in a sequence, introducing a
dependency in the order in which particles arrive at each observation n.

While the resampling scheme in Eq. 14 is designed to stabilize the number of particles over time,
we can still see an explosion in the number of particles Kn. The degree to which the particle count
becomes unstable depends on the extent to which the ordering of the particles is permuted as we
progress to each n. In Fig. 1 we compare a best-case situation where the ordering of particles at n
is completely independent of the ordering of particles at n + 1, to a worst-case situation where the
ordering of particles is completely preserved from n to n + 1. In practice, a naı̈ve implementation
of the incremental resampling scheme will have a very strong dependence in ordering across n — a
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Figure 1: Number of particles Kn at each of n = 0, . . . , 49 for a one-dimensional linear Gaussian
model, initialized with 100 particles. (left) When the order of the particles arriving at each n is
subject to a random permutation, then the number of particles is reasonably stable, staying at or near
100. (right) When the order of the particles arriving at each n is completely deterministic, then the
total number of particles quickly explodes, in this case exceeding 15000 by n = 11.

particle which is one of the first to reach stage n is quite likely one of the first to reach stage n + 1
as well.

Our implementation of the particle cascade addresses these issues by explicitly injecting randomness
into the execution order of particles, and by imposing a machine-dependent hard cap on the number
of simultaneous extant processes. This permits us to run our particle filter system indefinitely, for
arbitrarily large initial particle counts K0, while consuming only a fixed computational budget.

Each particle in our implementation runs as an independent operating system process. In order
to efficiently run a large number of particles, we impose a hard limit limit ρ on the total number
of particles which can simultaneously exist in the particle system; most of these will generally be
sleeping processes. The ideal choice for this number will vary based on hardware capabilities, but
in general should be made as large as possible.

Scheduling across particles is managed via a global first-in random-out process queue of length
ρ; this can equivalently be conceptualized as a random-weight priority queue. Each particle corre-
sponds to a single live process, augmented by a single additional control process which is responsible
only for spawning additional initial particles (i.e. incrementing the initial particle count K0). When
any particle k arrives at any likelihood evaluation n, it computes its target number of child parti-
cles Mk

n+1 and outgoing particle weight V kn+1. If Mk
n+1 = 0 it immediately terminates; otherwise

it enters the queue. Once this particle either enters the queue or terminates, some other process
continues execution — this process is chosen uniformly at random, and as such may be a sleeping
particle at any stage n < N , or it may instead be the control process which then launches a brand
new particle. At any given time, there are some number of particles Kρ < ρ currently in the queue,
and so the probability of resuming any particular individual particle, or of launching a new particle,
is 1

Kρ+1 . If the particle released from the queue has exactly one child to spawn, it advances to the
next observation and repeats the resampling process. If, however, a particle has more than one child
particle to spawn, rather than launching all child particles at once it launches a single particle to
simulate forward, decrements the total number of particles left to launch by one, and itself re-enters
the queue.

In the event that the process count is fully saturated (i.e. the process queue is full), then we forcibly
prevent particles from duplicating themselves and creating new children. If we release a particle
from the queue which seeks to launch m > 1 additional particles when the queue is full, we instead
collapse all the remaining particles into a single particle; this single particle represents a “virtual” set
of particles, but does not actually create a new process and requires no additional CPU or memory
resources. We keep track of a particle count multiplier Ckn that we propagate forward along with the
particle. All particles are initialized with Ck0 = 1, and then when a particle collapse takes place,
update their multiplier at n+ 1 to mCkn.

This affects the way in which running weight averages are computed; suppose a new particle k
arrives with multiplier Ckn and weight W k

n . We incorporate all these values into the average weight
immediately, and update W

k

n taking into account the multiplicity, with

W
k

n =
k − 1

k + Ckn − 1
W

k−1
n +

Ckn
k + Ckn − 1

W k
n for k = 2, 3, . . .. (22)
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Figure 2: All results are reported over multiple independent replications, shown here as independent
lines. (top) Convergence of estimates to ground truth vs. number of particles, shown as (left) MSE
of marginal probabilities of being in each state for every observation n in the HMM, and (right)
MSE of the latent expected position in the linear Gaussian state space model. (bottom) Convergence
of marginal likelihood estimates to the ground truth value (marked by a red dashed line), for (left)
the HMM, and (right) the linear Gaussian model.

This does not affect the computation of the ratio Rkn. We preserve the particle multiplier, until we
reach the final n = N ; then, after all forward simulation is complete, we re-incorporate the particle
multiplicity when reporting the final particle weight W k

N = CkNV
k
Nw

k
N . The system is initialized

by seeding the system with a number of initial particles ρ0 < ρ at n = 0, creating ρ0 active initial
processes.

The ideal choice for the process count constraint ρ may vary across operating systems and hardware
configurations; online optimization of this parameter remains an avenue for future work.

5 Experiments

We run a preliminary set of experiments on two simple state space models, each with N = 50
observations, with the goal of demonstrating the overall validity and utility of the particle cascade
algorithm. Results are presented here on two simple models. The first is a hidden Markov model
(HMM) with 10 latent discrete states, each with an associated Gaussian emission distribution; the
second is a one-dimensional linear Gaussian model. In both models we can use an exact algorithm
to compute posterior marginals at each n and compute the marginal likelihood Z = p(y1:N ).

These experiments are not designed to stress-test the particle cascade; rather, they are designed
to show that performance of the particle branching scheme closely approximates that of the fully
synchronous particle filter, even in a small-data small-complexity regime where we expect particle
filter performance to be very good. In addition to comparing to a particle filter which resamples
synchronously, we also compare to a worst-case particle filter in which we never resample, instead
propagating particles forward deterministically with a single child particle at every n. While the
statistical (per-sample) efficiency of this approach is quite poor, it is fully parallelizable with no
blocking operations in the algorithm at all, and thus provides a ceiling estimate of the raw sampling
speed attainable in our overall implementation.

We also benchmark against what we believed to be the most practically competitive similar ap-
proach, iterated conditional SMC [2]. Iterated conditional SMC corresponds to the particle Gibbs
algorithm in the case where parameter values are known; by using a particle filter sweep as a step
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Figure 3: (top) Comparative convergence rates between SMC alternatives including our new algo-
rithm, and (bottom) estimation of marginal likelihood, by time. Results are shown for (left) the
hidden Markov model, and (right) the linear Gaussian state space model.

within a larger MCMC algorithm, iCSMC provides a statistically valid approach to sampling from a
posterior distribution by repeatedly running sequential Monte Carlo sweeps each with a fixed num-
ber of particles. One downside to iCSMC is that it does not provide an estimate of the marginal
likelihood.

On both these models we see the statistical efficiency of the particle cascade is approximately in
line with the true particle filter, slightly outperforming the iCSMC algorithm and significantly out-
performing the fully parallelized non-resampling approach. This suggests that the approximations
made by computing weights at each n based on only the previously observed particles, and the total
particle count limit imposed by ρ, do not have an adverse effect on overall performance. In Fig. 2
we plot convergence per particle to the true posterior distribution, as well as convergence in our
estimate of the normalizing constant.

5.1 Performance and scalability

Although values will be implementation-dependent, we are ultimately interested not in per-sample
efficiency but rather in our rate of convergence over time. We record wall clock time for each algo-
rithm for both of these models; the results for convergence of our estimates of values and marginal
likelihood are shown in Fig. 3. These particular experiments were all run on Amazon EC2, in an
8-core environment with Intel Xeon E5-2680 v2 processors. The particle cascade provides a much
faster and more accurate estimate of the marginal likelihood than the competing methods, in both
models. Convergence in estimates of values is quick as well, faster than the iCSMC approach. We
note that for very small numbers of particles, running a simple particle filter is faster than the parti-
cle cascade, despite the blocking nature of the resampling step. This is due to the overhead incurred
by the particle cascade in sending an initial flurry of ρ0 particles into the system before we see
any particles progress to the end; this initial speed advantage diminishes as the number of samples
increases. Furthermore, in stark contrast to the simple SMC method, there are no barriers to draw-
ing more samples from the particle cascade indefinitely. On this fixed hardware environment, our
implementation of SMC, which aggressively parallelizes all forward particle simulations, exhibits
a dramatic loss of performance as the number of particles increases from 104 to 105, to the point
where simultaneously running 105 particles is simply not possible in a feasible amount of time.

We are also interested in how the particle cascade scales up to larger hardware, or down to smaller
hardware. A comparison across 5 different hardware configurations is shown in Fig. 4.
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Figure 4: Average time to draw a single complete particle on a variety of machine architectures.
Queueing rather than blocking at each observation improves performance, and appears to improve
relative performance even more as the available compute resources increase. Note that we see only
average time per sample, here; this is not a measure of statistical efficiency. The high speed of the
non-resampling algorithm is not sufficient to make it competitive with the other approaches.

6 Discussion

The particle cascade has broad applicability, appropriate for all SMC and particle filtering inference
applications. For example, constructing an appropriate sequence of densities for SMC is possible in
arbitrary probabilistic graphical models, including undirected graphical models; see e.g. the sequen-
tial decomposition approach of [8]. We are particularly motivated by the SMC-based probabilistic
programming systems that have recently appeared in the literature [9, 10]. In both references it was
suggested that primary performance bottleneck in their inference algorithms was barrier synchro-
nization, something we have done away with entirely. What is more, while particle MCMC methods
are particularly appropriate when there is a clear boundary that can be exploited between between
parameters of interest and nuisance state variables, in a growing number of applications in the prob-
abilistic programming and SMC communities, parameters values are generated as part of the state
trajectory itself, leaving no explicitly denominated latent parameter variables per se. The particle
cascade is particularly relevant to such approaches.

Finally, an attractive property of this algorithm is that it yields an unbiased estimate of the marginal
likelihood, and thus can be plugged directly into PIMH, SMC2 [11], and other so-called pseudo-
marginal methods.
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