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ABSTRACT

We explore the effects of architecture and training objective choice on amortized
posterior predictive inference in probabilistic conditional generative models. We
aim this work to be a counterpoint to a recent trend in the literature that stresses
achieving good samples when the amount of conditioning data is large. We instead
focus our attention on the case where the amount of conditioning data is small. We
highlight specific architecture and objective choices that we find lead to qualita-
tive and quantitative improvement to posterior inference in this low data regime.
Specifically we explore the effects of choices of pooling operator and variational
family on posterior quality in neural processes. Superior posterior predictive sam-
ples drawn from our novel neural process architectures are demonstrated via image
completion/in-painting experiments.

1 INTRODUCTION

What makes a probabilistic conditional generative model good? The belief that a generative model
is good if it produces samples that are indistinguishable from those that it was trained on (Hinton,
2007) is widely accepted, and understandably so. This belief also applies when the generator is
conditional, though the standard becomes higher: conditional samples must be indistinguishable
from training samples for each value of the condition.

Consider an amortized image in-painting task in which the objective is to fill in missing pixel values
given a subset of observed pixel values. If the number and location of observed pixels is fixed, then
a good conditional generative model should produce sharp-looking sample images, all of which
should be compatible with the observed pixel values. If the number and location of observed pixels
is allowed to vary, the same should remain true for each set of observed pixels. Recent work on this
problem has focused on reconstructing an entire image from as small a conditioning set as possible.
As shown in Fig. |1} state-of-the-art methods (Kim et al., [2018)) achieve high-quality reconstruction
from as few as 30 conditioning pixels in a 1024-pixel image.

Our work starts by questioning whether reconstructing an image from a small subset of pixels is
always the right objective. To illustrate, consider the image completion task on handwritten digits.
A small set of pixels might, depending on their locations, rule out the possibility that the full image
is, say, 1, 5, or 6. Human-like performance in this case would generate sharp-looking sample images
for all digits that are consistent with the observed pixels (i.e., 0, 2-4, and 7-9). Observing additional
pixels will rule out successively more digits until the only remaining uncertainty pertains to stylistic
details. The bottom-right panel of Fig. [T|demonstrates this type of “calibrated” uncertainty.

We argue that in addition to high-quality reconstruction based on large conditioning sets, amortized
conditional inference methods should aim for meaningful, calibrated uncertainty, particularly for
small conditioning sets. For different problems, this may mean different things. In this work, we
focus on the image in-painting problem, and define well calibrated uncertainty to be a combination of
two qualities: high sample diversity for small conditioning sets; and sharp-looking, realistic images
for any size of conditioning set. As the size of the conditioning set grows, we expect the sample
diversity to decrease and the quality of the images to increase. We note that this emphasis is different
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Figure 1: Representative image in-painting results for CelebA and MNIST. From left to right, neural
process (NP) (Garnelo et al., 2018b)), attentive neural process (ANP) (Kim et al., |2018)), and ours.
Top rows show context sets of given pixels, ranging from very few pixels to all pixels. In each
panel the ground truth image (all pixels) is in the upper right corner. The rows correspond to i.i.d.
samples from the corresponding image completion model given only the pixels shown in the top row
of the same column. Our neural process with semi-implicit variational inference and max pooling
produces results with the following characteristics: 1) the images generated with a small amount of
contextual information are “sharper” and more face- and digit-like than NP results and 2) there is
greater sample diversity across the i.i.d. samples than those from the ANP. This kind of “calibrated
uncertainty” is what we target throughout.

from the current trend in the literature, which has focused primarily on making sharp and accurate
image completions when the size of the conditioning context is large (Kim et al., 2018)).

To better understand and make progress toward our aim, we employ posterior predictive inference
in a conditional generative latent-variable model, with a particular focus on neural processes (NPs)
(Garnelo et al.,|2018aib). We find that particular architecture choices can result in markedly different
performance. In order to understand this, we investigate posterior uncertainty in NP models, and
we use our findings to establish new best practices for NP amortized inference artifacts with well-
calibrated uncertainty. In particular, we demonstrate improvements arising from a combination
of max pooling, a mixture variational distribution, and a “normal” amortized variational inference
objective.

2  AMORTIZED INFERENCE FOR CONDITIONAL GENERATIVE MODELS

Our work builds on amortized inference (Gershman & Goodman, 2014} [Kingma & Welling, |2014),
probabilistic meta-learning (Gordon et al., 2019)), and conditional generative models in the form of
neural processes (Garnelo et al., 2018b; [Kim et al., 2018)). This section provides background.

Let (zc,yc) = {(zi, yi) iy and (z7,y7) = {(2], yj) ", be a context set and target set respec-
tively. In image in-painting, the context set input ¢ is a subset of an image’s pixel coordinates, the
context set output y¢ are the corresponding pixel values (greyscale intensity or colors), the target
set input &7 is a set of pixel coordinates requiring in-painting, and the target set output y is the
corresponding set of target pixel values. The corresponding graphical model is shown in Fig.[2]

The goal of amortized conditional inference is to rapidly approximate, at “test time,” the posterior
predictive distribution

po(yrler, zc, ye) = / po(yrler 2)po(zlae, ye)dz - (1)

We can think of the latent variable z as representing a problem-specific task-encoding. The like-
lihood term py(y7|xT, z) shows that the encoding parameterizes a regression model linking the
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Figure 2: Graphical model for a single neural process task. C is the task “context” set of input/output
pairs (z;,y;) and T is a target set in which only the input values are known.

target inputs to the target outputs. In the NP perspective, z is a function and Eq. (I)) can be seen as
integrating over the regression function itself, as in Gaussian process regression (Rasmussenl [2003).

Variational inference  There are two fundamental aims for amortized inference for conditional
generative models: learning the model, parameterized by 6, that produces good samples, and pro-
ducing an amortization artifact, parameterized by ¢, that can be used to approximately solve Eq.
quickly at test time. Variational inference techniques couple the two learning problems. Let y and
x be task-specific output and input sets, respectively, and assume that at training time we know the
values of y. We can construct the usual single-training-task evidence lower bound (ELBO) as

IOgPG(y|‘T) > Ez~q¢,(z\w,y) {1Og %} . (2)
Summing over all training examples and optimizing Eq. (2) with respect to ¢ learns an amortized
inference artifact that takes a context set and returns a task embedding; optimizing with respect to ¢
learns a problem-specific generative model. Optimizing both simultaneously results in an amortized
inference artifact bespoke to the overall problem domain.

At test time the learned model and inference artifacts can be combined to perform amortized poste-
rior predictive inference, approximating Eq. (I)) with

po(yrleT, T, Yyc) =~ /pe(yﬂfb"r,Z)Q¢(Z|ﬂfc,yc)dz . 3)

Crucially, given an input (¢, yc), sampling from this distribution is as simple as sampling a
task embedding z from ¢4 (z|xc,yc) and then passing the sampled z to the generative model
po(yr|TT, 2) to produce samples from the conditional generative model.

Meta-learning The task-specific problem becomes a meta-learning problem when learning a re-
gression model 6 that performs well on multiple tasks with the same graphical structure, trained
on data for which the target outputs {y;} are observed as well. In training our in-painting models,
following conventions in the literature (Garnelo et al., [2018ajb), tasks are simply random-size sub-
sets of random pixel locations & and values y from training set images. This random subsetting of
training images into context and target sets transforms this into a meta-learning problem, and the
“encoder” ¢, (z|x,y) must learn to generalize over different context set sizes, with less posterior
uncertainty as the context set size grows.

Neural processes Our work builds on neural processes (NPs) (Garnelo et al.l [2018afjb). NPs are
deep neural network conditional generative models. Multiple variants of NPs have been proposed
(Garnelo et al., 2018azbj; |Kim et al.,|2018)), and careful empirical comparisons between them appear
in the literature (Grover et al.| 2019} Le et al.l [2018)).

NPs employ an alternative training objective to Eq. (2) arising from the fact that the graphical model
in Fig. 2] allows a Bayesian update on the distribution of z, conditioning on the entire context set to
produce a posterior py(z|xc, ye). If the generative model is in a tractable family that allows analytic
updates of this kind, then the NP objective corresponds to maximizing

E

evatior o) [ PO ] B, 1074 g MOz (o
where replacing pg(z|@c, yc) with its variational approximation is typically necessary because most
deep neural generative models have a computationally inaccessible posterior. This “NP objective”
can be trained end-to-end, optimizing for both ¢ and € simultaneously, where the split of training
data into context and target sets must vary in terms of context set size. The choice of optimizing
Eq. (@) instead of Eq. (2) is largely empirical (Le et al.| 2018).
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(a) encoder (b) decoder

Figure 3: Our modified neural process architecture. The encoder produces a permutation invariant
embedding that parameterizes a stochastic task encoding z as follows: features extracted from each
element of the context set using neural net hy are pooled, then passed to other neural networks pg
and 7)4 that control the distribution over task embedding z. The decoder uses such a task encoding
along with embeddings of target inputs to produce the output distribution for each target input.

3 NETWORK ARCHITECTURE

The network architectures we employ build on NPs, inspired by our findings from Section f] We
describe them in detail in this section.

Encoder The encoder g4 (2|, yc) takes input observations from an i.i.d. model (see Fig. 2] plate
over C), and therefore its encoding of those observations must be permutation invariant if it is to be
learned efficiently. Our g, as in related NP work, has a permutation-invariant architecture,

si = he(zi,yi), 1<i<n; sc =@ ys5  (ne,0c) = ps(se);  qo(zlze, ye) = N(ue, 0¢) -
Here pg and hg are neural networks and @ is a permutation-invariant pooling operator. Fig.

contains diagrams of a generalization of this encoder architecture (see below). The standard NP ar-
chitecture uses mean pooling; motivated by our findings in Section4] we also employ max pooling.

Hierarchical Variational Inference In order to achieve better calibrated uncertainty in small con-
text size regimes, a more flexible approximate posterior should be beneficial. Consider the MNIST
experiment shown in Fig. [§] Intuitively, an encoder could learn to map from the context set to a
one-dimensional discrete z value that lends support only to those digits that are compatible with
the context pixel values at the given context pixel locations (x¢, yc). This suggests that g4 should
be flexible enough to produce a multimodal distribution over z, which can be encouraged by mak-
ing g4 a mixture and corresponds to a hierarchical variational distribution (Ranganath et al.l 2016
Yin & Zhou, 2018; |Sobolev & Vetrov, [2019). Specifically, the encoder structure described above,
augmented with a mixture variable is

4o (2], y) = / 4 (W, ¥) a0 (210, 2, y)d) )

This is shown in Fig.[3] For parameter-learning, semi-implicit variational inference (SIVI) (Yin &
Zhou, |2018)) constructs a tractable lower bound to the ELBO (See the Supplementary Material). Our
experimental findings suggest that the combination of max pooling and SIVI produce state-of-the-art
high-quality and diverse samples from well calibrated posteriors, as illustrated in Fig. [6]

Decoder The deep neural network stochastic decoder in our work is standard and not a focus. Like
other NP work, the data generating conditional likelihood in our decoder is assumed to factorize in
a conditionally independent way, pg(yr|z,z7) = [/~ po(y.|2, 2}), where m is the size of the
target set and 2} and y, are a target set input and output respectively. Fig.[3b| shows the decoder
architecture, with the neural network gy the link function to a per pixel likelihood.

4 UNCERTAINTY IN NEURAL PROCESS MODELS

In this section, we investigate how NP models handle uncertainty. A striking property of NP models
is that as the size of the (random) context set increases, there is less sampling variation in target
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Figure 4: Posterior contraction of g4 (z|x¢,yc) in a NP+max pooling model. (a) The entropy of
¢4 (2|, ye) as a function of context set size, averaged over different tasks (images) and context
sets. The gray shaded area in both plots indicates context set sizes that did not appear in the training
data for the amortization artifact. (b) Predictions of a classifier trained to infer the context set size
given only s¢, the pooled embedding of a context set. Equivalent results for the standard NP+mean
pooling encoder and for ANP appear in the Supplementary Material.

samples generated by passing z ~ g4 (z|zc, yc) through the decoder. The samples shown in Fig.
are the likelihood mean (hence a deterministic function of z), and so the reduced sampling variation
can only be produced by decreased posterior uncertainty. Our experiments confirm this, as shown in
Fig.[dal posterior uncertainty (as measured by entropy) decreases for increasing context size, even
beyond the maximum training context size. Such posterior contraction is a well-studied property
of classical Bayesian inference and is a consequence of the inductive bias of exchangeable models.
However, NP models do not have the same inductive bias explicitly built in. How do trained NP
models exhibit posterior contraction without being explicitly designed to do so? How do they learn
to do so during training?

A simple hypothesis is that the network somehow transfers the context size through the pooling op-
eration and into p, (s¢), which uses that information to set the posterior uncertainty. That hypothesis
is supported by Fig.[4b] which shows the results of training a classifier to infer the context size given
only s¢c. However, consider that within a randomly generated context set, some observations are
more informative than others. For example, Fig. [5|shows the first {10, 50, 100} pixels of an MNIST
2, greedily chosen to minimize Dxr,(¢q(2|®, y)||¢s(2|®c,yc)). If z is interpreted to represent,
amongst other things, which digit the image contains, then a small subset of pixels determine which
digits are possible.

It is these highly informative pixels that drive posterior contraction in a trained NP. In a random con-
text set, the number of highly informative pixels is random. For example, a max-pooled embedding
saturates with the M most highly informative context pixels, where M < d, the dimension of em-
bedding space. On average, a random context set of size n, taken from an image with N pixels, will
contain only »M/n of the informative pixels. In truth, Fig. displays how the information content of
a context depends, on average, on the size of that context. Indeed, greedily choosing context pixels
results in much faster contraction (Fig.[3).

Learning to contract  Posterior contraction is implicitly encouraged by the NP objective Eq. ().
It can be rewritten as

B2y zler,yr) 108 P (Y2, 27)] — Dkr(qs (22T, y7)ll9g (2|2, yc)) - (6)

The first term encourages perfect reconstruction of y7, and discourages large variations in z ~
¢4 (z|xT, y7), Which would result in large variations in predictive log-likelihood. This effect is
stronger for larger target sets since there are more target pixels to predict. In practice, C C T, so
the first term also (indirectly) encourages posterior contraction for increasing context sizes. The sec-
ond term, Dxr,(qe (2|27, y7)||¢s (2|2c, Yc)), reinforces the contraction by encouraging the context
posterior to be close to the target posterior.
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Figure 5: (Left) The first {10,50,100} pixels greedily chosen to minimize
Dk (q4(2|2,y)|lgs(z|zc,yc)). These pixels are highly informative about z, but only a
subset of them will appear the vast majority of random context sets. (Right) Posterior entropy
decreasing as context size increases, for different methods of generating a context set: green is
the average over 100 random context sets of each size; blue greedily chooses context pixels to
minimize posterior entropy; and orange greedily minimizes Dkr,(q4 (2|2, y)||q4(2|Zc, yc)). The
black dashed line represents the posterior entropy when conditioned on the full image.

Although the objective encourages posterior contraction, the network mechanisms for achieving
contraction are not immediately clear. Ultimately, the details depend on interplay between the pixel
embedding function, h, the pooling operation @&, and ps. We focus on mean and max pooling.

Max pooling  As the size of the context set increases, the max-pooled embedding s¢ = ®}_;s;
is non-decreasing in n; in a trained NP model, ||s¢|| will increase each time an informative pixel
is added to the context set; it will continue increasing until the context embedding saturates at the
full image embedding. At a high level, this property of max-pooling means that the ¢ component
of ps(sc) has a relatively simple task: represent a function such that the posterior entropy is a
decreasing function of all dimensions of the embedding space. An empirical demonstration that pg
achieves this can be found in the Supplementary Material.

Mean pooling For a fixed image, as the size of a random context set increases, its mean-pooled
embedding will, on average, become closer to the full image embedding. Moreover, the mean-
pooled embeddings of all possible context sets of the image are contained in the convex set whose
hull is formed by (a subset of) the individual pixel embeddings. The o¢ component of p,(s¢), then,
must approximate a function such that the posterior entropy is a convex function on the convex
set formed by individual pixel embeddings, with minimum at or near the full image embedding.
Learning such a function across the embeddings of many training images seems a much harder
learning task than that required by max pooling, which may explain the better performance of max
pooling relative to mean pooling in NPs (see Section [3)).

Generalizing posterior contraction Remarkably, trained NP-based models generalize their pos-
terior contraction to context and target sizes not seen during training (see Fig. d)). The discussion
of posterior contraction in NPs using mean and max pooling in the previous paragraphs highlights
a shared property: for both models, the pooled embeddings of all possible context sets that can be
obtained from an image are in a convex set that is determined by a subset of possible context set
embeddings. For max-pooling, the convex set is formed by the max-pooled embedding of the M
“activation” pixels. For mean-pooling, the convex set is obtained from the convex hull of the indi-
vidual pixel embeddings. Furthermore, the full image embedding in both cases is contained in the
convex set. We conjecture that a sufficient condition for an NP image completion model to yield
posterior contraction that generalizes to context sets of unseen size is as follows: For any image,
the pooled embedding of every possible context set (which includes the full image) lies in a convex
subset of the embedding space.
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Figure 6: Example MNIST and CelebA image completion tasks, for each of three NP methods. The
following guide applies to each block. The top row shows context sets of different sizes (context
sets are exactly the same for all methods), i.e., one task per column. The ground truth image is in the
upper right corner. The rows correspond to the mean function produced by gy for different sampled
values of z. The bottom row shows an empirical estimate of the standard deviation of the mean
function from 1000 draws of z, a direct visualization of the uncertainty encoding.

5 EXPERIMENTAL EVALUATION

We follow the experimental setup of (Garnelo et al.| (2018b), where images are interpreted as func-
tions that map pixel locations to color values, and image in-painting is framed as an amortized
predictive inference task where the latent image-specific regression function needs to be inferred
from a small context set of provided pixel values and locations. For ease of comparison to prior
work, we use the same MNIST (LeCun et al.||[1998) and CelebA (Liu et al.| 2015) datasets. Specific
architecture details for all networks are provided in the Supplementary Materials and open-source
code for all experiments will be released at the time of publication.

Qualitative Results  Fig. [ shows qualitative image in-painting results for MNIST and CelebA
images. It is apparent in both contexts that ANPs perform poorly when the context set is small,
despite the superior sharpness of their reconstructions when given large context sets. The sets of
digits and faces that ANPs produce are not sharp, realistic, nor diverse. On the other hand, their pre-
decessor, NP (with mean pooling), arguably exhibits more diversity but suffers at all context sizes in
terms of realism of the images. Our NP+SIVI with max pooling approach produces results with two
important characteristics: 1) the images generated with a small amount of contextual information
are sharper and more realistic; and 2) there is high context-set-compatible variability across the i.i.d.
samples. These qualitative results demonstrate that max pooling plus the SIVI objective result in
posterior mean functions that are sharper and more appropriately diverse, except in the high context
set size regime where diversity does not matter and ANP produces much sharper images. Space
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Figure 7: Inception scores of conditional samples (left, MNIST; right CelebA).

limitations prohibit showing large collections of samples where the qualitative differences are even
more readily apparent. The Supplementary Material contains more comprehensive examples.

Quantitative Results  Quantitatively assessing posterior predictive calibration is an open prob-
lem (Salimans et al., |2016; Heusel et al., 2017). Table |1| reports, for the different architectures
we consider, predictive held out test-data log-likelihoods averaged over 10,000 MNIST and 19,962
CelebA test images respectively. While the reported results make it clear that max pooling improves
held-out test likelihood, likelihood alone does not provide a direct measure of sample quality nor
diversity. It simply measures how much mass is put on each ground-truth completion.

Borrowing from the generative adversarial networks community, who have faced the similar prob-
lems of how to quantitatively evaluate models via examination of the samples they generate, we
compute inception scores (Salimans et al., 2016)) using conditionally generated samples for different
context set sizes for all of the considered NP architectures and report them in Fig.|7} However, since
inception scores are based on classification outputs of inception network (Szegedy et al., [2016), an
ImageNet (Deng et al.|[2009) classifier, it is known to give misleading results when applied to other
image domains (Barratt & Sharmal [2018)) including MNIST and CelebA. We therefore use trained
MNIST and CelebA classifiers (He et al., 2016)) in place of inception network. (See Supplementary
Materials for details.) The images used to create the results in Fig. [7]are the same as in Fig. [6|and
the sequence of context sets considered include the ones in Fig.[6] For each context set size, the
reported inception scores are aggregated over 10 different randomly chosen context sets. The dark
gray dashed lines are the inception scores of training samples and represent the maximum one might
hope to achieve at a context set size of zero (these plots start at one).

For small context sets, an optimally calibrated model should have high uncertainty and therefore
generate samples with high diversity, resulting in high inception scores as observed. As the context
set grows, sample diversity should be reduced, resulting in lower scores. Here again, architectures
using max pooling produce large gains in inception score in low-context size settings. Whether the
addition of SIVI is helpful is less clear here. Nonetheless, the inception score is again only correlated
with the qualitative gains we observe in Fig. [d]

6 CONCLUSION

The contributions we report in this paper include suggested neural process architectures (max pool-
ing, no deterministic path) and objectives (regular amortized inference versus the heuristic NP objec-
tive, SIVI versus non-mixture variational family) that produce qualitatively better calibrated poste-
riors, particularly in low context cardinality settings. We provide empirical evidence of how natural
posterior contraction may be facilitated by the neural process architecture. Finally, we establish

Table 1: Predictive held-out test log-likelihood

Method MNIST CelebA Method MNIST CelebA

NP+mean | 0.96+0.12 2.91£0.30 NP+max | 1.07£0.11 3.17+0.30
ANP+mean | 0.55£0.12 1.814+0.18 SIVI+max | 0.99 £0.25 2.99+£0.39
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quantitative evidence that shows improvements in neural process posterior predictive performance
and highlight the need for better metrics for quantitatively evaluating posterior calibration.

We remind the reader that this work, like most other deep learning work, highlights the impact of
varying only a small subset of the dimensions of architecture and objective degrees of freedom.
We found that, for instance, simply making p,4 deeper than that reported in the literature improved
baseline results substantially. The choice of learning rate also had a large impact on the relative
gap between the reported alternatives. We report what we believe to be the most robust configu-
ration across all the configurations that we explored: max pooling and SIVI consistently improve
performance.
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A IMAGE INPAINTING RESULTS

Fig. [8] shows the inpainting results from different methods when the context set is carried to the
output. In other words, inference is done via Equation[T]when the target and context sets are disjoint
and the given yc¢ is directly copied to the shown output, instead of asking the model to predict values
of ye.

Figure 8: Image inpainting results when the context set is directly copied to the shown output and the
model is queried for the rest of image pixels. From left to right, NP, ANP, and ours (NP+SIVI+max
pooling). As non-attentive models are known to underfit on the context points, the final results for
them are not smooth. ANP improves on this aspect.

B ARCHITECTURE AND TRAINING DETAILS

B.1 ARCHITECTURE
In the following, d, = ds = dj, = 512 and d,, = 32.
Encoder The embedding function for each input/output pair is

ho (i, yi) = (do + dy)
For SIVI models, the rest of the encoder pg and 74 is defined as

fc+relu fe+relu

dy, e g g,

fct+relu

po(s) t (dg + do) < qy, &

fe+relu

Mo (5,0 ¢ (ds + dy) =% d), L 254,

where € ~ A(0,1) and € € R%. The output of 74 is then split into two d.-dimensional vectors /i,
and o/, with

qs(zlzc, ye) = N(p., diag(0.9 + 0.1 * sigmoid(al))?) .
For the NP models, there is no 7, and py is defined as

ps(s) : ds forrelu, dp, LN d,

where the output is split into two vectors d.-dimensional vectors like in SIVL.

fe+rel f . . . .
Decoder gg(xg, z):dy+d, SN Ay 2xd,,, where the output is split into two d,,-dimensional

4 times
vectors j, and o7, and

a(yjla, z) = N (py, diag(0.9 + 0.1 x softplus(oy))?) .
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For the models with a fixed observation variance, the output of gy is only the vector p, and
q(yjlas, 2) = N(py,0.2% % Iy).

ANP model is implemented with the same specifications as above and the other components (deter-
ministic path and attention) is the same as|Kim et al.| (2018).

B.2 TRAINING

All the models were trained using Adam optimizer and a batch size of 16 for 100 epochs. Learning
rate was 5 x 10~4 for NP+avg, NP+max and SIVI+max, and 5 x 1075 for ANP. For SIVI on MNIST,
a learning rate scheduler was employed as well that would multiply the learning rate by 0.1 after 20,
50 and 80 epochs.

The procedure for constructing context sets and target sets from a chosen image in the dataset was
as follows. From the image, n + m’ pixels, where n ~ [1,200) and m’ ~ [0,200), were chosen
without replacement. The first n pixels constitute the context set, and all m = n + m’ pixels were
put into the target set.

B.3 SIVI OBJECTIVE

As stated in the paper, SIVI bound is a tractable lower bound to the ELBO for hierarchical variational
families (c.f. Eq. (8)). This bound in the context of Neural Processes is defined as

po(y|z, z)po(2)
%H Zf:o 90 (2|, Yr)

where gy (¢1.x|x) = H1K:1 g¢(1;|x) and ELBO is defined as Eq. .

E

q4(2,%0|,Y)

Egy 1.k l2.y) llog H < ELBO < logpg(ylz) (7)

C OTHER VARIANTS OF NEURAL PROCESS MODELS

There are many variants of Neural Processes with different probabilistic modelling assumptions and
network architectures. We have attempted to be as clear and fair as possible in generating the quali-
tative results in the main text. In this section we clarify which specific architectures were considered
and why. Moreover, to make the results comparable with other publications in the literature, we
include qualitative results for other popular architecture choices not considered in the main text.

ANPs (Kim et al., [2018) include a deterministic path bypassing z from the encoder to the decoder
that is not found in the original NP (Garnelo et al., |2018b). Our implementation of NP follows
the original model without a deterministic path. In Kim et al.|(2018), a NP without attention but
with a deterministic path was considered. Fig. [9] shows that adding a deterministic path to NP
generally hurts sample diversity in small context sizes. An additional complicating factor is whether
gp produces just the mean or both the mean and the variance of the likelihood function. In line with
previous results (Le et al.,[2018), we found that if gy is trained to produce the observation variance
of pg(y}|z, x}), then models with a deterministic path (including ANP) tend to end up with a large
observation variance and a low-variance task-embedding posterior g4 (z|x¢, yc ), leading to poorly
calibrated uncertainty and low sample diversity. Therefore, to be as fair as possible to ANP models,
its results in the main text correspond to a model trained with a fixed observation variance, whereas
NP and NP+SIVI results are reported with learned observation variance. Fig.|10]shows the results
for ANP with learned observation variance.

D FiIG. 4 EXPERIMENTAL DETAILS

Fig. {4a| shows entropy of the variational posterior, i.e., g4(2|Zc, yc), versus context set size (n)
for a growing context set with i.i.d. items. The plot shows an aggregation over 1000 runs of this
procedure, each with a different ground truth image. The experiment verifies that the learned NP
posterior follows the classical Bayesian inference results and, more interestingly, the posterior con-
traction even generalizes to context sets larger than the context sets seen during training. The plot
was generated by an NP+max model trained on MNIST, but the observed behavior is not specific to
it. We see the same behavior when average pooling is used for the CelebA dataset.
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(c) Fixed observation variance (d) Learned observation variance

Figure 9: Qualitative results of NP+avg with deterministic path on (top) MNIST and (bottom)
CelebA datasets. These plots show poor sample diversity from the model irrespective of whether
the observation variance is fixed or learned.

(a) MNIST (b) CelebA

Figure 10: Qualitative results of ANP model with learned observation variance. Comparing (El])
with Fig. |b6c| shows that learning the observation variance hurts sample diversity. It is not as easy
to compare sample diversity for CelebA (see (b) and Fig. [6d). However, ANP in general performs
worse than SIVI+max or NP+max on small context sets.
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Figure 11: Posterior contraction of g4 (z|z¢, yc) in a NP+mean pooling model.
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Figure 12: (a) Norm of pooled embedding, ||sc||1, versus context size for three different methods
of context set generation. Note that the embeddings are shifted so that the minimum embedding
value in each dimension is 0. (b) Posterior entropy versus norm of (shifted) pooled embedding.
Observe that the norm of the embedding is strictly increasing in context size, with large increases
when the context is small; and that the posterior entropy is decreasing as a function of the norm of
the embedding.

The experiment suggests that even though the context dataset is represented through an aggregated
embedding that does not explicitly embed n, the training objective forces the networks and the
embedding space to retain information about n. We validate this by training a classifier to predict
n given the learned embeddings sc. Fig. @b shows the classifier performance on a held-out test set
and shows a strong correlation between embeddings s¢ and context set sizes.

Fig. [IT] shows the same behavior with mean pooling. The plot is generated by a NP+mean model
trained on MNIST dataset.

E MAX POOLED EMBEDDINGS AND POSTERIOR ENTROPY

As discussed in the main text, a NP model with max pooling exhibits posterior contraction by learn-
ing a py such that the posterior entropy is a decreasing function in all dimensions of embedding
space. To illustrate, Fig. 12| shows ||sc||1 vs context size (increasing), and the posterior entropy
versus ||sc||1 (decreasing).

F CoOMPUTING TEST DATA LOG LIKELIHOODS

The test data (normalized) log likelihoods ‘—}l log po(y7|xT,2C, Yc) are computed and averaged

over context/target sets sampled from held-out test sets. Context sets and target sets are disjoint
(i.e., all the items in target set are unobserved) and have a random size in [1,200). As we do not
have a closed form for predictive log-likelihoods, we compute the following IWAE-like lower bound
(Burda et al., 2016) instead with K=1000.

y7lxT, 2)pe (2|, ye)
Q¢(2k|$‘c, yc)

K
1 Po
logpo(yrl®T, T, Yc) 2 By, (a1.xclwc we) 108 3 > ( ®

=1
yrleT, 21 )08 (2| TC, Ye) ©)
4 (2klTC, ye)

1= po(
6
~ qub(zl:xlfcc,yc) log K Z
k=1
1 K
=gy (o1 e we) 108 72 D po(yr o, 26) (10)
k=1
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G COMPUTING INCEPTION SCORES IN OUR EXPERIMENTS

G.1 DEFINITION

Inception score is defined in a way such that a high score requires the individual samples to be
classifiable with high confidence and, at the same time, the marginal class distribution of samples to
be diverse. More formally,

logIS = Epc [Dxi(p(y|2)|[p(v))] = —Eanc [H(p(y|z)) — H(p(y|z),p(y))] (A1)

where G is a generator producing samples x and y is the classification labels specified by the clas-
sifier.

G.2 CLASSIFIER NETWORKS

As results in the GAN literature suggest that inception score is unreliable when applied to image
domains other than ImageNet, we replace inception network with classifiers trained on MNIST and
CelebA datasets. The network architecture of both classifiers is ResNet (He et al., 2016). The
MNIST classifier network is trained to solve the MNIST digit classification task with 10 classes. It
is more challenging for CelebA as there is no well-defined set of labelled classes for it. As CelebA
images are labelled with 40 attributes, we choose the four attributes of {Male, Black Hair, Smiling,
Young} and construct a synthetic classification task with 2% classes where each class refers to a
configuration of the chosen attributes. The trained models are used in place of inception network to
get calibrated scores in our experiments.

H MNIST CLASSIFIER RESULTS

We examine the diversity of samples generated from each model by classifying them using a MNIST
classifier and looking at the distribution of the predictions. The main expectations are that (1) the
models have a non-zero probability of generating the ground truth image irrespective of the context
set and that (2) the models do not generate digits that are inconsistent with the context set.

As the true posterior probability of the digit given a few pixels of its image (the context set) is
unknown, we report Figs. [I3]and[I4]as a proxy to it. These figures show the results of an experiment
where a sequence of growing context sets incrementally reveals an image of a 3 and compare the
prediction distribution of generated samples from different models. The final image in Fig. [13]is
chosen from the test set, and the context sets are constructed to eliminate a specific digit with each
step. In Fig.[I4] the final image is synthetic and hand-drawn. The context set in each step is grown
by adding new strokes of the digit.

I ADDITIONAL QUALITATIVE RESULTS

In this section, we report additional results for MNIST and CelebA experiments. Figs.[I5]and
show 15 samples per context set drawn from models trained on the MNIST dataset, and Figs.
and [I8 show the same for the CelebA dataset.
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Figure 13: MNIST classification results for a sequence of growing context sets. Each column shows
the results for the context set in the first row. Each histogram under a context set shows the prediction
distribution of a MNIST classifier for 1000 samples from a model that was conditioned on the
context set. The context set sizes are written at the top of each column. The first context set is the
top left pixel, treated as an uninformative context set. Each of the following context sets add 10 new
pixels that are specifically chosen to eliminate a remaining possible digit (in the order of 0 to 9).
Given the digit to eliminate, the 10 chosen pixels are the ones that differ the most in pixel intensity
between the mean image of all instances of 3 in the training set and the mean image of all instances
of the digit to eliminate.
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Figure 14: MNIST classification results for a synthetic sequence of context sets. The context sets
are designed to hint at an image of a 3. The details of how the subplots are organized is the same as
Fig.[13] All the models except NP+avg have a non-zero probability for the correct digit throughout
the process. In terms of the compatibility of the generated digits with the context set, ANP works
reasonably well on larger context sets while NP+max and SIVI+max generally outperform the others
throughout the process.
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(a) NP objective with average pooling

(d) ANP

(c) NP+SIVI objective with max pooling

Figure 15: Samples from models trained on the MNIST dataset.
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Figure 16: Samples from models trained on the CelebA dataset.
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Figure 17: Samples from models trained on the MNIST dataset.
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(a) NP objective with average pooling

(d) ANP

(c) NP+SIVI objective with max pooling

Figure 18: Samples from models trained on the CelebA dataset.
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