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Abstract

Existing approaches to amortized inference in
probabilistic programs with unbounded loops
can produce estimators with infinite vari-
ance. An instance of this is importance sam-
pling inference in programs that explicitly in-
clude rejection sampling as part of the user-
programmed generative procedure. In this
paper we develop a new and efficient amor-
tized importance sampling estimator. We
prove finite variance of our estimator and em-
pirically demonstrate our method’s correct-
ness and efficiency compared to existing al-
ternatives on generative programs containing
rejection sampling loops and discuss how to
implement our method in a generic proba-
bilistic programming framework.

1 INTRODUCTION

It is now understood how to apply probabilistic pro-
gramming inference techniques to generative mod-
els written in existing “universal” languages (van de
Meent et al., 2018). While the expressivity of such
languages allows users to write generative procedures
naturally, this flexibility introduces complexities, some
of surprising and subtle character. For instance there
is nothing to stop users from using rejection sampling
loops to specify all or part of their generative model.
While existing inference approaches may asymptoti-
cally produce correct inference results for such pro-
grams, the reality, which we discuss at length in this
paper, is murkier.

The specific problem we address, that of efficient amor-
tized importance-sampling-based inference in models

Preprint. Work in progress

with user-defined rejection sampling loops is more
prevalent than it might seem on first consideration.
Our experience suggests that rejection sampling within
generative model specification is actually the rule
rather than the exception when programmers use uni-
versal languages for model specification. To generate
a single draw from anything more complex than stan-
dard distribution effectively requires either adding a
new probabilistic primitive to the language (beyond
most users), hard conditioning on constraint satisfac-
tion (inefficient under most forms of universal PPL in-
ference), or a user-programmed rejection loop. A quick
example of this is sampling from a truncated normal.
If the model specification language does not have a
truncated normal primitive then the most natural way
to generate such a variate is via user-programmed re-
jection. More sophisticated examples abound in sim-
ulators used in the physical sciences (Baydin et al.,
2018, 2019), chemistry (Cai, 2007; Ramaswamy and
Sbalzarini, 2010; Slepoy et al., 2008), and other do-
mains (Stuhlmüller and Goodman, 2014). Note that
the issue we address here is not related to hard re-
jection via conditioning, i.e. (Ritchie et al., 2015)
and related work. Ours is specifically about rejec-
tion sampling loops within the generative model pro-
gram, whereas the latter is about developing inference
engines that are reasonably efficient even when the
user specified program has a constraint-like observa-
tion that produces an extremely peaked posterior.

The first inference algorithms for languages that al-
lowed generative models containing rejection sam-
pling loops to be written revolved around Markov
chain Monte Carlo (MCMC) (Goodman et al., 2008;
Wingate et al., 2011) and sequential importance sam-
pling (SIS) (Wood et al., 2014) using the prior as the
proposal distribution and then mean-field variational
inference (Wingate and Weber, 2013). Those methods
were very inefficient, prompting extensions of PPLs
providing programmable inference capabilities (Mans-
inghka et al., 2014; Ścibior, 2019). Efforts to speed
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1: x ∼ p(x)

2: w ← p(x)
q(x|y)

3: for k ∈ N+ do
4: zk ∼ p(z|x)
5: wk ← p(zk|x)

q(zk|x,y)

6: w ← wwk

7: if c(x,zk) then
8: z = zk

9: break
10: observe(y, p(y|z, x))

(a) Original program

x ∼ q(x|y)
w ← p(x)

q(x|y)
for k ∈ N+ do

zk ∼ q(z|x, y)
wk ← p(zk|x)

q(zk|x,y)

w ← wwk

if c(x,zk) then
z = zk

break
w ← wp(y|z, x)

(b) Inference compilation

1: x ∼ p(x)

2: w ← p(x)
q(x|y)

3: z ∼ p(z|x, c(x, z))
4: w ← w p(z|x,c(x,z))

q(z|x,y,c(x,z))
5: observe(y, p(y|z, x))

(c) Equivalent to above

x ∼ q(x|y)
w ← p(x)

q(x|y)
z ∼ q(z|x, y, c(x, z))
w ← w p(z|x,c(x,z))

q(z|x,y,c(x,z))
w ← w p(y|z, x)

(d) Our IS estimator

Figure 1: (a) illustrates the problem we are address-
ing. Existing approaches to inference compilation use
trained proposals for the importance sampler shown in
(b), where w can have infinite variance, even when each
wk individually has finite variance, as k is unbounded.
There exists a simplified program (c) equivalent to (a)
and ideally we would like to perform inference using
the importance sampler in (d). While this is not di-
rectly possible, since we do not have access to the con-
ditional densities required, our method approximates
this algorithm, guaranteeing finite variance of w.

inference since then have revolved around amortized
inference (Gershman and Goodman, 2014), where a
slow initial off-line computation is traded against fast
and accurate test-time inference. Such methods work
by training neural networks that quickly map a dataset
either to a variational posterior (Ritchie et al., 2016)
or a to a sequence of proposal distributions for SIS (Le
et al., 2017). This paper examines and builds on the
latter “Inference Compilation” (IC) approach.

Unbounded loops potentially require integrating over
infinitely many latent variables. With IC each of these
variables has its own importance weight and the prod-
uct of all the weights can have infinite variance, re-
sulting in a divergent importance sampler. Further-
more, the associated self-normalizing importance sam-
pler can converge to an arbitrary point, giving wrong
inference results without warning. It is therefore nec-
essary to take extra steps to ensure consistency of
the importance sampler resulting from IC when un-
bounded loops are present.

In this paper we present a solution to this problem

for the common case of rejection sampling loops. We
establish, both theoretically and empirically, that com-
puting importance weights näıvely in this situation can
lead to arbitrarily bad posterior estimates. To remedy
this problem, we develop a collection of novel estima-
tors and discuss when each of them is best to apply.
A preview of the problem and the proposed solution is
shown in Figure 1.

2 PROBLEM FORMULATION

Our formulation of the problem will be presented con-
cretely starting from the example probabilistic pro-
gram shown in Figure 1a. Even though both the prob-
lem and our solution are more general, applying to all
probabilistic programs with rejection sampling loops
regardless of how complicated they are, this simple ex-
ample captures all the important aspects of the prob-
lem. As a reminder, inference compilation refers to
offline training of importance sampling proposal dis-
tributions for all random variables in a program (Le
et al., 2017). Existing approaches to inference compi-
lation for the program in Figure 1a correspond to the
importance sampler shown in Figure 1b where there is
some proposal learned for every random choice in the
program. While the weighted samples produced by
this method result in unbiased estimates, the variance
of the weights can be very high and potentially infinite
due to the unbounded number of wk’s. To show this,
we start by more precisely defining the meaning of the
sampler in Figure 1b.

Definition 2.1 (Naive weighing). Let p(x, y, z) be a
probability density such that all conditional densities
exist. Let c(x, z) be a Boolean condition, and A be the
event that c is satisfied, such that p(A|x, y) ≥ ε for all
(x, y) and some ε > 0. For each y, let q(x, z|y) be a
probability density absolutely continuous with respect
to p(x, z|y) and q(A|x, y) ≥ ε for all (x, y). Let x ∼
q(x|y) and let zk ∼i.i.d. q(z|x, y) and wk = p(zk|x)

q(zk|x,y)
for all k ∈ N+. Let L = min{k|c(x, zk)}, z = zL and

wIC = p(x)
q(x|y)p(y|x, z)

∏L
k=1 w

k.

We assert that definition 2.1 corresponds to the pro-
gram in Figure 1b. A rigorous correspondence could
be established using formal semantics methods, such
as the construction of Ścibior et al. (2017), but this is
beyond the scope of this paper. Although the result-
ing importance sampler correctly targets the posterior
distribution, the variance of wIC is a problem, and it
is this specific problem that we tackle in this paper.

Intuitively, a large number of rejections in the loop
leads to a large number of wk being included in
wIC and the variance of their product tends to grow
quickly. In the worst case, this variance may be in-
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Figure 2: Dependency graph for a trace from Pro-
gram 1a. Here, Ai is the event of accepting a sampled
z i.e. c(x, zi) holds and similarly, Ai is defined for re-
jection. Circles and squares represent stochastic and
deterministic nodes, respectively.

finite, even when each wk has finite variance individ-
ually. This happens when the proposed samples are
rejected too often, which is formalized in the following
theorem.

Theorem 1. Under assumptions of Definition 2.1, if
the following condition holds with positive probability
under x ∼ q(x|y)

Ez∼q(z|x,y)

[
p(z|x)2

q(z|x, y)2
(1− p(A|x, z))

]
≥ 1 (1)

then the variance of wIC is infinite.

Proof. In Appendix A.

What this means is that importance sampling with
proposals other than the prior may hurt more than
help in the case of rejection sampling loops and it
is no trivial way to ensure Equation 1 does not hold
or to detect if it holds for a proposal. Furthermore,
existing IC schemes are effectively useless under the
conditions of Theorem 1, since the consistency of the
self-normalizing importance sampler depends on the
variance of weights being finite. Worse, even when
the variance is finite but large, it may render the ef-
fective sample size too low for practical applications,
a phenomenon we have observed repeatedly in prac-
tice. What remains is to derive an alternative way
to compute wIC that guarantees finite variance and
in practice leads to larger effective sample sizes than
existing methods.

3 APPROACH

A starting point to the presentation of our algorithm is
to observe that the program in Figure 1a is equivalent
to the program 1c, where z satisfying the condition c

is sampled directly. Figure 1d presents an importance
sampler targeting 1c, obtained by sampling z directly
from q under the condition c. Note that the sampling
processes in 1b and 1d are the same, only the weights
are computed differently.

Definition 3.1 (Collapsed weighing). Extending Def-
inition 2.1, let

wC =
p(x)

q(x|y)

p(z|x,A)

q(z|x,A, y)︸ ︷︷ ︸
T

p(y|x, z) (2)

Note that E [wIC ] = E [wC ], which we prove in Theo-
rem 3. However, since wC only involves a fixed number
(three) of terms, we can expect it to avoid problems
with exploding variance. Unfortunately, we can not
directly compute wC .

In equation 2 we can directly evaluate all terms except
T , since, p(z|x,A) and q(z|x,A, y) are defined implic-
itly by the rejection sampling loop. Applying Bayes’
rule to this term gives the following equality:

T =
q(A|x, y)

p(A|x)︸ ︷︷ ︸
1

p(z|x)

q(z|x, y)︸ ︷︷ ︸
2

�����p(A|z, x)

������
q(A|z, x, y)︸ ︷︷ ︸

3

(3)

The term 2 can be directly evaluated, since we have
access to both conditional densities and the term 3

is always equal to 1, since A is deterministic given x
and z. However, the term 1 , which is the ratio of
acceptance probabilities under q and p, can not be
computed directly and we need to estimate it. We
provide separate unbiased estimators for q(A|x, y) and

1
p(A|x) .

For q(A|x, y) we use straightforward Monte Carlo es-
timation of the following expectation:

q(A|x, y) =

∫
q(A|z, x, y)q(z|x, y)dz

=

∫
c(z, x)q(z|x, y)dz

= Ez∼q(z|x,y) [c(z, x)] (4)

For 1
p(A|x) we use Monte Carlo estimation after apply-

ing the following standard lemma:

Lemma 2. Let A be an event that occurs in a trial
with probability p. The expectation of the number of
trials to the first occurrence of A is equal to 1

p .

It is important that these estimators are constructed
independently of z being sampled to ensure that we
obtain an unbiased estimator for wC specified in Equa-
tion 2. We put together all these elements to obtain
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our final method in Algorithm 1. More formally, the
weight obtained our method is defined as follows.

Algorithm 1 Pseudocode for our algorithm ap-
plied to the probabilistic program from Figure 1a.

1: x ∼ q(x|y)

2: w ← p(x)
q(x|y)

3: for k ∈ N+ do
4: zk ∼ q(z|x, y)
5: if c(x, zk) then
6: z = zk

7: break
8: w ← w p(z|x)

q(z|x,y)
9: . estimate q(A|x, y) using Equation 4

10: K ← 0
11: for i ∈ 1, . . . N do
12: z′i ← q(z|x, y)
13: K ← K + c(z, x)

14: . estimate 1
p(A|x) using Lemma 2

15: for j ∈ 1, . . .M do
16: for l ∈ N+ do
17: z′′j,l ← p(z|x)
18: if c(x, z′′j,l) then
19: Tj ← l
20: break
21: T ← 1

M

∑M
j=1 Tj

22: w ← w KT
N

23: w ← w p(y|z, x)

Definition 3.2 (Our weighing). Extending Definition
2.1, let z′i ∼i.i.d q(z|x, y) for i ∈ 1, . . . , N and K
be the number of z′i for which c(x, z′i) holds. Let
(z′′j,1, . . . ,z

′′
j,Tj

) be sequences of potentially varying

length for j ∈ 1, . . . ,M with z′′j,l ∼i.i.d. p(z|x) such
that for all j, Tj is the smallest index l for which

c(x, z′′j,l) holds. Let T = 1
M

∑M
j=1 Tj . Finally, let

w =
p(x)

q(x|y)

KT

N

p(z|x)

q(z|x, y)
p(y|x, z). (5)

Throughout this section we have only informally ar-
gued that the three importance samplers presented
target the same distribution. With all the definitions
in place we can make this argument precise in the fol-
lowing theorem.

Theorem 3. For any N ≥ 1 and M ≥ 1, and all
values of (x, y,z),

E [wIC |x, y,z] = wC = E [w|x, y,z] . (6)

Proof. For the second equality, use Equation 4, then

Lemma 2, Equation 3, and finally Equation 2.

E [w|x, y,z] = (7)

p(x)

q(x|y)

p(z|x)

q(z|x, y)
p(y|x, z)

1

N
Ez′ [K]Ez′′ [T ] = (8)

p(x)

q(x|y)

p(z|x)

q(z|x, y)
p(y|x, z)q(A|x, y)

1

p(A|x)
= (9)

p(x)

q(x|y)

p(z|x,A)

q(z|x,A, y)
p(y|x, z) = wC (10)

For the first equality, use Equation 20 in Appendix A
to get

E [wIC |x, y, z] = (11)

p(x)

q(x|y)
p(y|x, z)wL Ez1:L−1

[
L−1∏
k=1

wk

]
= (12)

p(x)

q(x|y)
p(y|x, z) p(z|x)

q(z|x, y)

q(A|x, y)

p(A|x)
= wC (13)

Since all three importance samplers use the same pro-
posal distributions for (x, z), Theorem 3 shows that
they all target the same distribution, which is the pos-
terior distribution specified by the original probabilis-
tic program in Figure 1a.

Finally, we can prove that our method handles infer-
ence in rejection sampling loops without introducing
infinite variance. Note that variance may still be in-
finite for reasons not having to do with the rejection
sampling loop, if q(x|y) and q(z|x, y) are poorly cho-
sen.

Theorem 4. For any N ≥ 1 and M ≥ 1, if wC from
Definition 3.1 has finite variance, then w from Defini-
tion 3.2 has finite variance.

Proof. Note that conditionally on (x, y,z) K follows
a binomial distribution, so V ar[KN |x, y,z] < 1 <
∞, while T follows a geometric distribution and
V ar[T |x, y,z] < 1

p(A|x)2 ≤
1
ε2 < ∞. Also, condi-

tionally on (x, y,z), K
N and T are independent, so

V ar[KTN ] < B for some constant B < ∞. Then see

that w = wC
p(A|x)
q(A|x,y)

KT
N . Then, using the law of total

variance, we get

V ar[w] = E [V ar[w|x, y,z]] + V ar[E [w|x, y,z]] (14)

= E

[(
wC

p(A|x)

q(A|x, y)

)2

V ar

[
KT

N

∣∣∣∣x, y,z]
]

+ V ar[wC ]

(15)

≤ E
[
wC

1

ε2
B

]
+ V ar[wC ] <∞ (16)
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Figure 3: Inference results for the Gaussian unknown
mean program. We estimate Ep(µ|y) [µ] which in this
instance has an analytic ground truth value. The plots
show an aggregation of 100 different runs of the exper-
iment. (top) Estimation error of 3 different methods
(IC, Biased, and (ours) ARS with different values of
M). Our method reaches estimation error approaching
zero faster and with significantly less variance than the
alternatives. Larger values of M lead to lower variance
and faster convergence. (bottom) Effective sample size
(ESS) as a function of number of IS proposals for each
estimator. The multiplicative inclusion of importance
weights in the existing IC approach significantly ad-
versely affects ESS compared to our method regardless
of the chosen value of M .

4 EXPERIMENTS

We illustrate our method by performing inference in
two example probabilistic programs that include rejec-
tion sampling loops. We designed these programs so
that baseline posteriors can be derived analytically.

As is now nearly standard in writing about proba-
bilistic programming, in the following programs sample
means to draw a random value from the given distri-
bution and observe means to condition the program on
having observed the given value under the given dis-
tribution.

In our example models, Programs 1 and 2, we either
explicitly introduce rejection sampling or replace some

sample statements with rejection sampling loops that
generate samples from the same distribution as the one
replaced. We evaluate the efficacy of our approach in
several ways including computing the effective sample
size (ESS) of IS posterior estimates and empirically
comparing the convergence rates of different methods
to analytically computed ground truth values.

The specific methods we compare are:

• Existing (IC): Like the approach in Figure 1b this
uses a proposal for all iterations of rejection sam-
pling loops. Final importance weights are com-
puted by multiplying all the weights for all sam-
ples in the trace, accepted and rejected.

• Ours (ARS, M=m): Similar to the approach in
Figure 1d this uses our method (Algorithm 1)
with M = m and N = max(n, 10) as defined in
Definition 3.2, not multiplying in the weights of
all of the rejected samples on the trace.

• Existing (Biased): Implements the incorrect vari-
ant of ARS that appears currently in PyProb. It
does not multiply in all the weights of the rejected
samples, however, it does not estimate nor multi-

ple in the correction factor q(A|x,y)
p(A|x) .

Program 1: Gaussian unknown mean (GUM)

def GUM(mu 0 , sigma 0 , sigma, y obs):

u = sample(Uniform(low=0, high=1))

if u > 0.5:

while True:

rs start()

mu = sample(Normal(mean=mu 0 , std=sigma 0))

if mu > mu 0:

rs end ()

break

else:

while True:

rs start()

mu = sample(Normal(mean=mu 0 , std=sigma 0))

if mu <= mu 0:
rs end ()

break

y = observe(Normal(mean=mu, std=sigma), y obs)

return mu

4.1 Gaussian Unknown Mean

Our first Gaussian unknown mean (GUM) model con-
sists of one latent variable, the mean µ ∈ R, which is
given a Gaussian prior with mean µ0 ∈ R and variance
σ0 ∈ R+, and a single observation y governed by a nor-
mal observation model with fixed standard deviation
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σ ∈ R+.

µ ∼ N(µ0, σ0)

y|µ ∼ N(µ, σ)

We introduce rejection sampling into this model by
splitting the prior into two truncated normal distribu-
tions and sampling from these truncated normals via
rejection sampling. This is shown in Program 1. The
reason that u is a random variable will be made appar-
ent in due course; for now suffice it to say that the full
generality of our method extends to various composi-
tions of rejection samplers, including state dependent
rejection samplers that are have potentially different
exit probabilities in each trace.

We fix µ0 = 0, σ0 = 1, σ =
√
2
2 . The observation y

is 0. The proposals are fixed; for the first branch in
Program 1 the proposal is N(−2, 2) whereas all other
proposals are fixed to be equal to the prior. In this
experiment we intentionally chose the proposal so as
to not be close to the true posterior, yielding a more
difficult problem.

Figure 3 shows the aggregated results of running each
IS inference technique 100 times. While IC converges
to the ground truth, it has poor ESS. The high vari-
ance of the IC estimator can also plainly be seen in
comparison to our method. On the other hand, as our
method does not multiplicatively update importance
sampling weights with weights from rejected samples
both has has much higher ESS and converges more
rapidly to the ground truth.

4.2 Gaussian Mixture Model

Our second example program is a GMM with two
components and a single observation. Its implemen-
tation is shown in Program 2 where sampling from
one of the mixtures is done through a rejection sam-
pling loop. The target distribution for the rejec-
tion sampling branch is N(µ1, σ1) and is implicitly
defined via a rejection-sampler with base distribu-
tion N(µ0, σ0). The implementation of alpha(x) is

α(x) = 1
M

N(x;µ1,σ1)
N(x;µ0,σ0)

where the value of M is com-

puted based on the base and the target distribution an-
alytically so as to satisfy the textbook “soft” rejection

sampling requirement, i.e. M = arg maxx
N(x;µ1,σ1)
N(x;µ0,σ0)

.

Program 2: GMM model

def GMM(mixture params , sigma, y obs ,

mu 0 , sigma 0):

u = sample(Uniform(low=0, high=1))

while True:

rs start()

if u < mixture params.pi 1:

mu = sample(Normal(mean=mu 0 ,

std=sigma 0))

u2 = sample(Uniform(low=0, high=1))

if u2 < alpha(x):

rs end ()

break

else:

mu = sample(Normal(mean=mu 2 ,

std=sigma 2))

break

y = observe(Normal(mean=mu, std=sigma), y obs)

return mu

In our experiments we set the mixture probabilities to
π1 = 0.5 and π2 = 0.5, the parameters of the first
Gaussian to µ1 = −1, σ1 = 1, with µ2 = 2, σ2 = 1 for
the second Gaussian. The observation is y = 0. We
set µ0 = 1, σ0 = 2. For inference, we use N(−2, 2)
as the proposal for the first Gaussian and every other
proposal is the same as the prior. Figure 4a shows ag-
gregated results of running different inference methods
100 times each.

We also run an experiment on the same GMM with
a proposal for µ1 that will be perfect if all the sam-
ples from it gets accepted, and every other proposal is
equal to the prior. This corresponds to the IC variant
for handling rejection sampling proposed in (Baydin
et al., 2018) where the proposal is learned perfectly, as
this would be the ideal proposal it learns for this par-
ticular random variable. In this experiment, we call
this proposal the perfect proposal. Figure 4b shows
our results.

In our next setup, besides having the aforementioned
perfect proposal for µ1, we use N(−0.5, 0.5) as a pro-
posal for u2 (which is sampled from the acceptance
distribution, Uniform(0, 1) in the prior). This leads to
less rejection at inference time and is a better overall
proposal since, ideally, samples from the perfect pro-
posal should not be rejected as distribution of accepted
samples would be imperfect otherwise. The results are
shown in Figure 4c.

In this experiment IC does not converge, even when
we use the perfect proposal. This is in addition to
its poor sample efficiency. This is evidence of the
weight variance problem with existing IC approaches
to amortized IS. They may not work even when the
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Figure 4: Results of GMM experiment. We target estimating Ep(µ|y) [µ] which can be computed analytically in
this model. The plots show aggregation of 100 different runs of the experiment. (a) With a fixed proposal (b)
With perfect proposal for the base distribution (c) With perfect proposal for the base distribution and a proposal
for acceptance distribution that leads to less rejection. Our method with any M achieves zero estimation error
with lower variance compared to IC. As expected, larger M leads to faster convergence, lower variance and higher
ESS of the weights. In this example, IC does not converge to zero estimation error.

perfect proposal is used. Our method, as in the previ-
ous example, converges to the true expectation value
with lower error, lower variance, and better sample
efficiency (higher ESS).

5 IMPLEMENTATION

Program 3: Original

x = sample(P x)

while True:

z = sample(P z(x))

if c(x, z):

break

observe(P y(x,z), y)

return x, z

Program 4: Annotated

x = sample(P x)

while True:

rs start()

z = sample(P z(x))

if c(x, z):

rs end ()

break

observe(P y(x,z), y)

return x, z

Figure 5: An illustration of annotations required by
our system. To apply our method we only require that
entry and exit to each rejection sampling loop be an-
notated with rs start and rs end respectively. Our im-
plementation then automatically handles the whole in-
ference process, even if the annotated loops are nested.

In the previous sections we have presented and exper-
imentally validated our method in simple programs,
starting with the examplar program in Figure 1, which
only has a single rejection sampling loop and a very
simple structure otherwise. However, our method ap-
plies much more broadly, in fact to all probabilistic
programs with arbitrary stochastic control flow struc-
tures and any number of rejection sampling loops, in-
cluding nesting such loops to arbitrary degree. The
only constraint is that observations can not be placed
inside the loops, i.e. no conditioning inside rejection
sampling loops. We conjecture that our method pro-
duces correct weights for all probabilistic programs
satisfying this constraint, but proving that is beyond
the scope of this paper and would require employ-
ing sophisticated machinery for constructing formal
semantics, such as developed by Ścibior et al. (2017).

To enable practitioners to use our method in its full
generality we have implementing it in PyProb (Le
et al., 2017), a universal probabilistic programming
library written in Python. The particulars of such a
general purpose implementation pose several difficult
but interesting problems, including identifying rejec-
tion sampling loops in the original program, addressing
particular rejection sampling loops, and engineering
solutions that allow acceptance probabilities bespoke
to each loop to be estimated by repeatedly executing
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the loops with different proposal distributions. In this
section we describe some of these challenges and dis-
cuss our initial approach to solving them.

The first challenge is identifying rejection sampling
loops in the probabilistic program itself. One mecha-
nism for doing this is to introduce a rejection sampling
primitive, macro, or syntactic sugar into the proba-
bilistic programming language itself whose arguments
are two functions, one the acceptance function, the
other the body of the rejection sampling loop. While
this may be feasible, our approach lies in a different
part of the design space, given our choice to imple-
ment in PyProb and its applicability to performing
inference in existing stochastic simulators. In this set-
ting there are two other design choices: some kind of
static analyzer that automates the labelling of rejec-
tion sampling loops by looking for rejection sampling
motifs in the program (unclear how to accomplish this
in a reliable and general way) or providing the proba-
bilistic programmer functions that need to be carefully
inserted into the existing probabilistic program to de-
marcate where rejection sampling loops start and end.

This is the initial approach we have taken. In the pro-
grams in Section 4 we nearly silently introduced the
functions rs start and rs end to tag the beginning and
end of rejection sampling loops. The purpose of these
functions was hinted at then, but now is explained as
the way to inform an inference engine about the scope
of each rejection sampling loop, in particular so that
all sample statements in between calls to rs start and
rs end can be tracked. Program 5 illustrates where
these primitives have to be inserted in probabilistic
programs with rejection loops to invoke our ARS tech-
niques.

The specific implementation details are beyond scope
for this paper and require substantial review of PyProb
internals, however, the key functionality enabled by
these tags includes two critical things. First, we need
to be able to execute additional iterations of every re-
jection sampling loop in the program to compute our

estimator of q(A|x,y)
p(A|x) . For every rs start we have to be

able to continue the program multiple times, executing
the rejection loop both proposing from p and q, ter-
minating the continuation once the matching rs end is
reached. Efficient implementations of this make use of
the same forking ideas that made probabilistic-c pos-
sible (Paige and Wood, 2014). Second, we have to be
able to identify rejection sampler start and end pairs
in a way that is more strict than the uniqueness re-
quirement on random variable addresses in probabilis-
tic programming. As the acceptance function of the
rejection sampling loop can be an arbitrary function
of program state, the identity (in the address sense)

of the rejection sampling loop and its associated exit
probabilities under p and q have to be manually iden-
tified, using a manual addressing scheme like that used
in Pyro for all random variables.

Our PyProb implementation addresses all of these is-
sues and the details of our implementation will be
made public as part of its continuing open source de-
velopment.

6 DISCUSSION

We have addressed a significant issue in amortized
and adapted importance-sampling-based inference for
universal probabilistic programming languages. We
have demonstrated that even simple rejection sampling
loops cause major problems for existing probabilistic
programming inference algorithms. In particular, we
showed empirically and theoretically that sequential
importance sampling will perform poorly in presence
of rejection sampling loops. Our proposed method is
an unbiased estimator with lower variance than näıve
SIS estimators.

The cost of taking our approach is somewhat subtle
but involves needing to estimate the exit probabilities
of all rejections sampling loops in the program un-
der both the prior and the proposal. In many cases
this can be amortized in the sense that these rejection
sampling loops can be statically determined and the
relevant constants estimated at training time. Unfor-
tunately if at test time a rejection sampling loop is
encountered for which these constants have not been
already estimated, the inference engine must “pause”
and estimate them on the fly. Not only can this be slow
but it seriously increases the implementation complex-
ity of the probabilistic programming system.

However, when all is said and done, this “fix” of amor-
tized and adapted importance-sampling-based infer-
ence for universal probabilistic programming systems
is very significant, particularly as it pertains to up-
take of this kind of probabilistic programming sys-
tem. Current users of systems who wisely use rejec-
tion sampling in their generative models will experi-
ence the probabilistic programming system as confus-
ingly but simply not working. This will be due to
slowness if non-amortized inference techniques are uti-
lized and, worse, poor sample efficiency and poten-
tially non-diagnosable non-convergent behavior if ex-
isting fast amortized inference techniques are utilized
instead. Our work makes it so that efficient, amortized
inference engines work for probabilistic programs that
users actually write and in so doing removes a major
impediment to the uptake of universal probabilistic
programming systems in general.
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A Importance weight variance

Theorem 5. Under assumptions of Definition 2.1, if the following condition holds with positive probability under
x ∼ q(x|y)

Ez∼q(z|x,y)

[
p(z|x)2

q(z|x, y)2
(1− p(A|x, z))

]
≥ 1 (17)

then the variance of wIC is infinite.

Proof. In this proof, we carry the assumptions and definitions from Definition 2.1, with the exception that we
use subscript for denoting weights and samples in iterations of the loop i.e. zk → zk and wk → wk. Let

Eq
[∏L−1

k=1 wk

]
denote the mean value of the product of all the weights corresponding to the rejected samples,

and Eq
[∏L−1

k=1 w
2
k

]
is defined similarly. We will compute the variance of the importance weight of the rejected

samples.

First, we compute the mean of weights:

Eq

[
L−1∏
k=1

wk

]
= q(A|x, y)

∞∑
L=1

q(A|x, y)L−1
L−1∏
k=1

Ez∼q
[
w|A

]
(18)

Ez∼q
[
w|A

]
= Ez∼q(z|x,y)

[
p(z|x)

q(z|x, y)

1− c(x, z)

q(A|x, y)

]
=

1

q(A|x, y)
Ez∼p(z|x) [1− c(x, z)] =

p(A|x)

q(A|x, y)
(19)

Therefore,

Eq

[
L−1∏
k=1

wk

]
= q(A|x, y)

∞∑
k=1

p(A|x)k−1 =
q(A|x, y)

p(A|x)
(20)

Next, we compute the expected value of squared of weights:

Eq

[
L−1∏
k=1

w2
k

]
= q(A|x, y)

∞∑
L=1

q(A|x, y)L−1
L−1∏
k=1

Ez∼q(z|x,y)
[
w2|A

]
(21)

Ez∼q(z|x,y)
[
w2|A

]
= Ez∼q

[
p(z|x)2

q(z|x, y)2
1− c(x, z)

q(A|x, y)

]
=

1

q(A|x, y)
Ez∼q

[
p(z|x)2

q(z|x, y)2
p(A|x, z)

]
:=

Sp,q

q(A|x, y)
(22)

Hence,

Eq

[
L−1∏
k=1

w2
k

]
= q(A|x, y)

∞∑
L=1

(Sp,q)
L−1 (23)

Consequently, since the mean of the weights is finite (Equation 20), if Equation 23 is not finite, the variance of
the rejected weights will be infinite.

if Sp,q ≥ 1⇒ V ar

(
k−1∏
i=1

wi

)
is infinite (24)

Noting that if the variance of the weight of a subset of traces is infinite, the variance of the whole traces would
be infinite completes the proof.
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