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Abstract

We present a framework for automatically
structuring and training fast, approximate,
deep neural surrogates of existing stochas-
tic simulators. Unlike traditional approaches
to surrogate modeling, our surrogates retain
the interpretable structure of the reference
simulators. The particular way we achieve
this allows us to replace the reference sim-
ulator with the surrogate when undertaking
amortized inference in the probabilistic pro-
gramming sense. The fidelity and speed of
our surrogates allow for not only faster “for-
ward” stochastic simulation but also for ac-
curate and substantially faster inference. We
support these claims via experiments that in-
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volve a commercial composite-materials cur-
ing simulator. Employing our surrogate mod-
eling technique makes inference an order of
magnitude faster, opening up the possibility
of doing simulator-based, non-invasive, just-
in-time parts quality testing; in this case in-
ferring safety-critical latent internal temper-
ature profiles of composite materials under-
going curing from surface temperature profile
measurements.

1 Introduction

Simulators are accurate generative models that encode
the knowledge of domain experts. Whether in aero-
nautical engineering (Wu et al., 2018), nonlinear flow
physics (Veldman et al., 2007), or stochastic generative
modeling (Heinecke et al., 2014; Endeve et al., 2012;
Raberto et al., 2001; Perdikaris et al., 2016), they play
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Figure 1: Illustration of a process simulation of composite materials, which we denote xRAVEN. Each subfigure
shows a temperature profile measured in degrees Celsius as a function of time along the x axis and depth along
the y-axis. (Left) shows the actual simulated heating process. (Right) shows the same process but originating
from our probabilistic surrogate network trained to match the original simulator. Noticeably, the process in
(right) is 26.8 times faster than the process in (left). Later we perform inference in this process, where we seek
to infer the expected temperature in the time window [155, 165] min at depth 30 mm represented by the black
box conditioned on measuring the temperature at the bottom surface and air temperature represented by the
blue boxes.

an important role in design, diagnosis, and manufac-
turing. Unfortunately, detailed simulators are often
computationally expensive, ruling them out for just-
in-time uses. This problem is exacerbated in stochas-
tic simulators as these often need to be run many times
to produce convergent expectations.

A natural solution to this problem, known as surro-
gate modeling, is to construct a fast approximation
to some reference simulator. Surrogate modeling has
found success in applications in various fields includ-
ing computational fluid dynamics (CFD) (Glaz et al.,
2010; Yamazaki and Mavriplis, 2013; Biannic et al.,
2016), aerospace engineering (Jeong et al., 2005), ma-
terial science (Rikards et al., 2004) and quantum chem-
istry (Gilmer et al., 2017).

In this paper we develop a novel method for automat-
ically structuring and training surrogates for arbitrary
stochastic simulators, leveraging deep generative neu-
ral networks (Hu et al., 2017). Unlike prior art, our
surrogate automatically generates all latent variables
in the simulator regardless of the language in which the
simulator was written. We achieve that by simultane-
ously learning to approximate the distributions and
the control flow of the original simulator. That we do
this affords maximal interpretability as it allows the
user to inspect, should they wish, any and all of the
latent variables at all times during its execution. Our
method can handle simulators with arbitrarily many
random variables and arbitrary dependency structure
between them, including the existence of latent vari-
ables being conditional on the values of other variables.
Due to this flexibility we describe our surrogates as
universal simulator approximators and call them prob-
abilistic surrogate networks (PSNs).

Faster simulation via surrogate modeling is itself use-
ful. However, this speed has arguably even greater
impact on the development of practical applications
by enabling faster “inverting” of simulators via prob-
abilistic programming techniques.

Here inverting a simulator means to perform Bayesian
inference over its inputs and latent variables given ob-
served values of its output. This definition blurs the
line between stochastic simulators and probabilistic
models and is arguably a key point of probabilistic
programming (van de Meent et al., 2018). In this pa-
per we specifically build on the inference compilation
(IC) framework of Le et al. (2017) and its PyProb
(Baydin and Le, 2018) realization. PyProb enables
Bayesian inference in stochastic simulators written in
existing programming languages via built-in inference
engines, only requiring the user to annotate random
variables in the original simulator source. The built-in
inference engine communicates with and controls the
simulator through a standardized interface that en-
sures compatibility across languages. This process is
illustrated in Figure 2 and is explained elsewhere in
full technical abstraction (van de Meent et al., 2018,
chapt. 6).

We design our PSNs to be compatible with this inter-
face, which has two advantages. First, it lets us easily
train PSNs using existing simulators written in stan-
dard programming languages such as C. This is cru-
cial for practical applications, as reimplementing exist-
ing simulators in special-purpose modeling languages
is undesirable. Second, this design choice lets us au-
tomatically use PSNs for efficient amortized inference.
This is achieved by directly substituting the surrogate
for the simulator and having the former communicate
with the inference engine over the same interface in-
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stead (illustrated in Figure 2). As having to run the
simulator is nearly always the computational bottle-
neck in amortized inference, this leads to significantly
sped up inference on average.

The non-trivial, real-world application we illustrate
our method on relates to just-in-time validation of a
composite material cure. In particular we learn a sur-
rogate for the commercial heat-transfer finite element
analysis simulator, depicted in Figure 1, that is used
to model the cure cycle for Boeing’s composite aircraft
parts (e.g. wings). As a proof of concept we show how
to use this simulator to estimate the temperature at
a point in a simplified design that cannot be accessed
non-invasively. We call this a “virtual thermocouple”
and its “reading,” achieved through examination of
the posterior state of the simulator virtual machine
given observable features of the thermal environment,
is critical for saying whether the part is safe or not.

To summarize, we make two key methodological con-
tributions in this paper.

1. We develop a universal method for constructing
fast surrogates for stochastic simulators and

2. We show how to use our surrogates to speedup
inference in stochastic simulators.

Our theoretical contributions include both a novel
method for projecting a nonparametric stochastic pro-
cess onto a parametric stochastic process and trans-
posing time and space in a surrogate for a more
parameter-efficient process representation. The appli-
cation itself is a contribution too.

2 Background

2.1 Surrogate Modeling

Surrogate modeling aims to replace an accurate but
slow model/simulator with a faster, approximate “sur-
rogate”. It is fundamentally a regression problem,
where the surrogate predicts the output of the model
for a given input. Currently, the most commonly
used methods for constructing deterministic surrogate
models (Razavi et al., 2012) include Kriging (Simp-
son et al., 2001; Sacks et al., 1989), support vector
machines (SVMs) (Willcox and Megretski, 2005), ra-
dial basis functions (RBFs) (Hussain et al., 2002; Regis
and Shoemaker, 2007; Mullur and Messac, 2006), and
neural networks (NNs) (Tompson et al., 2017; Alam
et al., 2004; Khu and Werner, 2003; Gilmer et al.,
2017), while methods like the stochastic Kriging (Ham-
dia et al., 2017) allow for stochastic surrogate model-
ing.

Surrogate modeling methods can be divided into local,
where the surrogate only needs to be accurate for a
specific range of input values, and global, where the
surrogate needs to be accurate across all the possible
input values. Local approximation is easier, but in
many applications global approximation is required,
because the input range is not known in advance.

Our PSNs are stochastic and global, designed to con-
struct multipurpose surrogate models, where it is not
known a priori what questions will be asked of the sur-
rogate or what the inputs to it will be. We denote the
simulator as a joint distribution p(x), where x are all
the random variables defined by the simulator. This
joint distribution can be specified using a probabilistic
program.

2.2 Probabilistic Programming

The probabilistic programming paradigm equates a
generative model with a program written in a prob-
abilistic programming language (PPL). An inference
backend then takes the program and the observed data
and generates inference results, usually in a form of
samples from the posterior distribution. PPLs can
be broadly divided (van de Meent et al., 2018) into
restricted, which limit the set of expressible models
to ensure that particular inference algorithms can be
efficiently applied (Lunn et al., 2009; Minka et al.,
2018; Milch et al., 2005; Carpenter et al., 2017; Tran
et al., 2016), and unrestricted (universal), which al-
low arbitrary models at the expense of making infer-
ence less efficient (Goodman et al., 2008; Mansinghka
et al., 2014; Wood et al., 2014; Pfeffer, 2009; Good-
man and Stuhlmüller, 2014; Bingham et al., 2018). For
our purposes it is particularly important to note that
extending an existing Turing complete programming
language with operations for sampling and condition-
ing results in a universal PPL (Gordon et al., 2014).
For this reason any existing stochastic simulator, writ-
ten in any language, after some limited annotations
of the source code becomes a program in a univer-
sal PPL Baydin et al. (2019, 2018a); Baydin and Le
(2018); Baydin et al. (2018b). PSN targets universal
PPLs, so we focus our discussion here on those.

For our purposes the crucial concept is that of a trace
of a probabilistic program, which is a sequence of pairs
(xat , at) for t = 1, . . . , T , where at ∈ A is an address
(Wingate et al., 2011; van de Meent et al., 2018) of a
random variable and xat its value. A = {α1, α2, . . . }
is a countable set of possible addresses and within
each trace all addresses are guaranteed to be different.
The purpose of the addresses is to identify the same
random variables across different execution traces to
facilitate efficient inference. The trace length T can
vary between different traces of the same program
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Figure 2: Illustration of the communication between the inference network (right) obtained from inference
compilation and a generative model p(x) defined as a program or a PSN approximating it (left). Every time the
program executes a sampling operation, it sends the distribution d and the address a to the inference network
(red lines) and suspends its execution. The inference network then generates a value x and sends it back to the
program (blue arrows), which resumes its execution using the obtained value as a result of the call to sample.
PSN approximates the program, trying to emit the same messages the program would produce. It conforms to
the same interface, predicting addresses and distributions for all the random variables in the program, retaining
full interpretability and enabling inference using the same inference network without any modifications to the
overall setup.

and is generally unbounded but finite. We define
x = (xa1 , . . . , xaT ) and a = (a1, . . . , aT ). As an exam-
ple, the program shown in Figure 2 always generates
traces of length T = 3, with a being either (α1, α2, α4)
or (α1, α3, α4).

Every probabilistic program specifies a joint distribu-
tion over the space of traces, denoted as

p(x,a) =

T∏

t=1

p(at|xa1:at−1 , a1:t−1)p(xat |xa1:at−1 , a1:t),

(1)
where for each t, p(xat |xa1:at−1

, a1:t) is specified by the
distribution passed to the relevant sample or observe
statement in the program. In probabilistic programs
a is always deterministic conditionally on x, but we
allow it to be stochastic to facilitate the construction

in Section 3.

The subset of x generated using observe statements is
designated xobs and the values for these variables are
always provided as observed data. The remaining vari-
ables are designated as latent xlat = x \ xobs and the
goal of inference is to compute the posterior distribu-
tion p(xlat|xobs). Inference in PPLs can be performed
in many different ways, but we focus on a particular
approach called inference compilation.

2.3 Inference Compilation

Inference compilation (IC) (Le et al., 2017) is an amor-
tized algorithm for performing inference in probabilis-
tic programs using sequential importance sampling
(SIS) (Wood et al., 2014). It works by constructing
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Figure 3: Each boxplot represents the posterior distribution (conditioned on either x−obs, x
nominal
obs , or x+

obs) over
f(x) = µw, where µw is the empirical mean across the time window w = [155 min, 165 min] and at a fixed depth
30 mm, see black boxes in Figure 1. We compare three different methods for estimating the posterior; ground
truth (GT), which uses regular SIS where q(xlat|xobs) = p(xlat), using IC in the simulator and using the same
IC inference network in PSN. We observe that the posteriors change as a function of the observation, while each
posterior match for the same observation (with the PSN posterior slightly higher for x+

obs).

an inference network, which constructs proposal dis-
tributions for all the latent random variables in the
program, based on the observed variables.

At the most basic level IC is a self-normalizing impor-
tance sampler targeting p(xlat|xobs) using a proposal

distribution q(xlat|xobs). It draws K samples xklat
i.i.d.∼

q(xlat|xobs), computes the weights wk =
p(xk

lat,xobs)

q(xk
lat|xobs)

,

and approximates the posterior as

p(xlat|xobs) ≈
∑K
k=1 w

kδ(xklat − xlat)∑K
k=1 w

k
. (2)

The proposal q factorizes in t just like p. Subsequent
conditional distributions in q are constructed using a
recurrent deep neural network, the inference network.
Specifically,

q(xlat|xobs;φ) =
∏

xlat
at
∈xlat

q(xlat
at |ηat(xlat

<at ,xobs, φ)),

where xlat
<at =

{
xat |xat′ ∈ xlat, t

′ < t
}

, φ are the pa-
rameters of the inference network, and ηat(·) is the
parameters associated with q computed by the neural
network.

For our purposes it is particularly important to empha-
size how the inference network interacts with the prob-
abilistic program. This is depicted in Figure 2. The
program and the network communicate by exchanging
messages with the program sending a distribution and
an address and receiving back a sampled value. This

interface enables a level of modularity that we take
advantage of. Our PSN, as described in Section 3,
replaces the original probabilistic program while im-
plementing the same interface, which makes it fully
compatible with IC.

In IC the proposal q(xlat|xobs;φ) is trained to match
the true posterior p(xlat|xobs) ∝ p(x), where the dis-
tance between p and q is measured using the Kullback–
Leibler (KL) divergence KL ( p || q). In order to match
p(xlat|xobs) for all possible xobs the expected KL di-
vergence under the marginal p(xobs) is minimized,

LIC(φ) = Ep(xobs) [KL ( p(xlat|xobs) || q(xlat|xobs;φ))]

= −Ep(x) [log q(xlat|xobs;φ)] + const. (3)

This objective is optimized by running the probabilis-
tic program many times to obtain a collection of traces
and maximizing the likelihood under q.

The overall architecture of the inference network uses
a Long Short Term Memory (LSTM) core (Hochre-
iter and Schmidhuber, 1997) as well as embeddings
of the addresses, distributions types, and the obser-
vations ηobs(xobs). These embeddings are fed to the
LSTM core whose output is further fed to a “proposal
layer” ηprop

at , that produces the parameters to the pro-
posal distribution q(xlat

at |ηat(xlat
<at ,xobs, φ)) unique to

each address at

We emphasize that in IC both the program and the
network are used at inference time. In particular it is
not possible to use the inference network without the
program, as the network needs to receive the informa-
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Figure 4: Expected squared difference between the
output (xR = xRAVEN) from the PSN and output from
the simulator. We observe small errors throughout,
with small peaks around time 160 min and towards
the end of the heating process.

tion about the address transitions.

3 Probabilistic Surrogate Networks

We introduce probabilistic surrogate networks (PSNs)
with the context of probabilistic programming as de-
fined in Section 2.2, emphasizing again that any exist-
ing stochastic simulator, written in any programming
language, can be turned into a probabilistic program
by adding a small amount of annotations to the source
code. We construct PSNs to model a distribution over
the trace space that factorizes exactly as the distri-
bution of the original program specified in Eq. (1).
Specifically, the distribution represented by PSN is de-
fined as

s(x,a; θ) =

T∏

t=1

s(xat |ξat(xa1:at−1
, a1:t, θ))

× s(at|ξt−1(xa1:at−1
, a1:t−1, θ)), (4)

where ξat(·) is a neural network (NN) that maps to the
parameters of the surrogate density at address at, and
ξt(·) is another NN associated with the tth surrogate
address transition. We let θ describe all parameters in
the PSN, where typically factors in Eq. (4) only use a
subset of these.

Structuring the surrogate this way retains the whole
structure of the latent space, which means that it can
be used to answer any queries about the distribution of
any variables in the program. On top of that, because
the surrogate also models address transitions of the
original program, it can be used with the inference net-
work to speedup inference with IC. We can use exactly

the standard inference network trained on the original
program without any modifications. Moreover, as we
show below, PSN can be trained using the same col-
lection of traces used to train the inference network,
so training a PSN on top of the inference network is
very cheap.

3.1 Training Procedure

The PSN s(x,a; θ) is trained to be close to p(x,a) in
terms of the KL-divergence,

L(θ) = KL ( p(x,a) || s(x,a; θ))

= −Ep(x,a) [log s(x,a; θ)] + const

We can minimize L(θ) using the unbiased gradient es-
timator,

∇θL(θ) ≈ − 1

N

N∑

n=1

∇θ log s(xn,an; θ),

where each trace is sampled from the simulator
(xn,an) ∼ p(x,a). We can therefore consider the N
sampled traces as our “dataset”. The same collection
of traces can be used to train PSN and the inference
network.

A subtle point concerning this training procedure is
that the number of possible transition addresses can
be infinite, so we need to be careful when specifying
a parameterization of this distribution. We choose to
truncate this distribution, for each address α only al-
lowing transitions to a finite collection of addresses
Cα = {α1, . . . , αN}. We only allow transitions that
were observed in one of the sampled traces, that is
αi ∈ Cα if and only if we have sampled a trace in
which for some t, at = α and at+1 = αi. Since Cα is
finite, and typically small, we parameterize it using a
categorical distribution.

3.1.1 Surrogate Network Architecture

The PSN architecture is dynamically constructed
during training and uses an LSTM core as well
as embeddings of the addresses and distributions
types. This process is driven by the program, where
the embeddings are fed to the LSTM core whose
output is further fed to the “distributions layers”
ξat and ξt, that for each unique address at pro-
duces the parameters for s(xat |ξat(xa1:at−1

, a1:t, θ))
and s(at+1|ξt(xa1:at , a1:t, θ)) respectively. Whenever
a new address is encountered during training (as we
go through the “dataset”’), new embeddings and dis-
tributions layers ξ are constructed, which can then be
accessed later in a lookup table.

When replacing the simulator with the PSN, it is ini-
tialized using embeddings x0, d0, and a0 which are
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Table 1: Runtime [traces/s] comparisons. We calculate the number of traces produced per second when (1)
running just the simulator or PSN and (2) when performing SIS in either model. We see a slowdown in traces
per second for the PSN when performing inference, as the inference engine adds additional overhead which proves
to be a bottleneck. However, as the simulator is considerably slower, it remains the computational bottleneck
during inference.

Simulator (tsim[s]) PSN (tPSN[s]) Speedup [tPSN/tsim]

Sampling from generative model 0.4 10.7 26.8
Sampling using IC 0.4 4.2 10.5

typically set to zero, but could be learnable parame-
ters. The unique first address a1 (which is guaranteed
to be unique as the program has to start somewhere) is
fed to the PSN and the surrogate program starts its ex-
ecution. At each subsequent time step t the PSN pro-
duces a sample xat and address at+1, which then prop-
agates the PSN forward where the structure is build
in a “just-in-time” manner until an “end execution”
address is sampled.

3.2 Performing inference

As the PSN mirrors the execution of the original sim-
ulator, including the address transitions as described
above, the PSN has the capability to replicate the com-
munication interface between the PSN (now the pro-
gram) and various inference engines found in proba-
bilistic programming, in particular IC. Figure 2 illus-
trates exactly how inference in PSN corresponds to in-
ference in the model using IC (and therefore the same
inference network). As the execution of the simulator
tends to be the computational bottleneck in inference,
replacing the simulator with a PSN can yield signifi-
cant speedups.

4 Experiments

We showcase the capabilities of PSNs using a real-
world process simulation of composite materials for
which the PSNs accurately learn to approximate the
generative model. We then show that performing in-
ference in the original generative model and surrogate
model respectively yields indistinguishable posteriors,
with inference in the PSN being an order of magnitude
faster than performing inference in the original simu-
lator and thereby allows for faster amortized inference.

4.1 Process simulation of composite
materials

At its most basic level, composite manufacturing in-
volves an uncured composite material being laid up
onto a tool, of known material, which are then placed
in an autoclave where a predefined pressure and heat-

ing cycle is imposed. Advanced composite materials
are composed of a relatively inert reinforcing fibre com-
bined with an initially fluid resin (Tuttle, 2003). The
combined material will undergo some imposed cycle
to transform the fluid resin into a stiff solid; typically,
this involves an autoclave cure which will drive the
resin’s exothermic polymerization from a collection of
monomers into a fully-connected macromolecule (Pas-
cault et al., 2002).

The current state-of-the-art in process simulation in-
volves deterministically solving the thermo-chemical
behaviour of hybrid composite structures under multi-
stage processing. The specific simulator used in this
work, RAVEN, is used in the aerospace and automo-
tive industries to evaluate key performance metrics for
part design with the ultimate goal of decreasing man-
ufacturing cost (Convergent Manufacturing Technolo-
gies, 2019). However, simulation of composites pro-
cessing remains a technical challenge due to the com-
plex physical transformation of the material and the
often uncertain boundary conditions (Zobeiry et al.,
2018). Full 3D physics-based simulation of large struc-
tures can take on the order of weeks to run leading to
less efficient designs. Therefore, taking advantage of
symmetries, 1D through thickness simulations provide
useful insights into part response and can be used as
an accurate approximation to the full 3D simulation
when analyzed far from the material edges. For a 1D
analysis, the heat transfer problem can be solved if
the heating cycle, the heat transfer coefficients, and
the composite and tool material properties are known
(Rasekh et al., 2004). However, while these 1D simu-
lation are significantly faster to compute than their 3D
counterparts, at several seconds per run, they remain
a bottleneck for inference purposes.

The specific problem at hand is the measurement of
the internal temperature of a composite material dur-
ing processing. Typical processing conditions require
tight tolerances, less than a few degrees Celsius (Hex-
cel Composites, 2010), to ensure the composite will
reach a high enough temperature to yield a desired per-
formance metric, while simultaneously dissipating the
exothermic reaction energy so that the polymer does
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Table 2: We estimate µ̂w ≈ Ep(xlat|xobs) [µw] under the posterior using SIS denoted GT, IC in simulator and
IC in PSN using 15000 traces, and report the associated effective sample size (ESS). We provide six different
estimations; three posteriors and three observations x−obs, x

nominal
obs , and x+

obs. We observe that the PSN estimates
matches that of the GT and IC in simulator, albeit with a slight overestimation when conditioning on x+

obs.

x−obs xnominal
obs x+

obs

µ̂w ESS µ̂w ESS µ̂w ESS

GT 204.90 259 204.46 304 203.82 399
IC in Simulator 204.94 378 204.44 390 203.84 235
IC in PSN 204.87 399 204.31 186 204.02 121

not degrade. Physical observations of the material’s
internal temperature during manufacturing are expen-
sive and manufacturers would prefer to infer the inter-
nal state of the material given less expensive external
measurements. Inferring the part’s internal tempera-
ture from external observations of the surface temper-
ature using imposed latent variables is of great value
to advanced composite manufacturing industry.

To solve this task we consider a generative model de-
scribing the heating process written in PyProb with
the aim of inferring the latent internal temperatures of
the part using IC. As even the 1D simulator imposes a
computational bottleneck, we will use PSN to speedup
inference while preserving highly accurate inference.

The generative model defines a joint distribution over
heat coefficients, thicknesses and various temperatures
associated with the heating process. We leave out the
explicit details of the generative model for proprietary
reasons and will discuss the problem purely in terms
of the description of the variables.

We continue by denoting the set of latent in-
put parameters xinput (heat coefficients and thick-
nesses), the observed temperature configuration
xtemp.config, observed air temperatures xair, observed
tool temperature (measured at the bottom sur-
face of the tool) xtemp.bot (see blue boxes in Fig-
ure 1), and latent internal temperature profiles
xtemp.internal. We summarize the latent variables
xlat = {xinput,xtemp.internal} and the observed vari-
ables xobs = {xtemp.config,xair,xtemp.bot} such that
x = xobs ∪ xlat.

To evaluate the quality of the PSN we
consider the conditional expectation of
xRAVEN = {xtemp.internal,xtemp.bot} conditioned
on xsettings = {xtemp.config,xinput)} under (1) the
model Ep(xRAVEN|xsetting) [xRAVEN] (expected RAVEN
output given the fixed input parameters xinput and
temperature configuration xtemp.config) and (2) the
PSN Es(xRAVEN|xsetting) [xRAVEN]. Figure 1 shows that
our PSN produces outputs indistinguishable from
those from the simulator, and Figure 4 confirms

negligible expected squared errors. Small peaks are,
however, observed at around time t = 160 min, as
well as towards the end of the heating process, which
is where the internal temperature exhibits the most
rapid changes.

To evaluate the quality of performing inference (using
IC) in the PSN we consider the function f(xlat) = µw,
where µw is the empirical mean of xRAVEN across
the time window w = [155 min, 165 min] (chosen to
be close to peak temperatures) and at a fixed depth
30 mm (chosen to be somewhere near the upper quar-
ter of the tool/material), see Figure 1.

We then estimate µ̂w ≈ Ep(xlat|xobs) [f(xlat)] =
Ep(xlat|xobs) [µw] using IC with the same inference net-
work q(xlat|xobs) used for performing inference in both
the surrogate and the model. As a ground truth pos-
terior, we employ SIS where the proposal distribution
is the prior q(xlat|xobs) = p(xlat) and denote it GT.
To evaluate the effect of amortized inference we con-
sider conditioning on three different observations x−obs,
xnominal

obs , and x+
obs each corresponding to an observa-

tion produced by the simulator with input values and
temperature settings well below, equal to, and well
above the nominal values respectively.

In all cases inference is performed using 15000 traces
and we summarize the results in Table 2, which shows
that performing inference in the PSN yields the same
results as inference in the simulator (with the excep-
tion that when observing x+

obs the PSN slightly overes-
timates µ̂w). Further, to get a sense of how our traces
are distributed we show in Figure 3 boxplots represent-
ing the posterior distribution from which we estimate
Ep(xlat|xobs) [µw]. The results confirm that inference
in the PSN yields similar posteriors and expectations
compared to inference in the simulator (with the pos-
terior shifted slightly when observing x+

obs).

We also find that posterior inference is sensitive to dif-
ferent observations with a resolution of about ∼ 0.5 ◦C,
which is required for the purpose of assessing whether
the internal heat conditions of the material fall within
some specified tolerances. The advantage of using the
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PSN is that we maintain high accuracy in the poste-
rior estimations with a speedup factor of 10.5, see Ta-
ble 1. Further, in cases where we simply seek to pro-
duce faster simulations (not for the sake of inference),
the PSN provides an even greater speedup factor of
26.8. The additional speedup is due to dropping the
overhead of needing to perform inference.

5 Related Work

As far as the authors of this paper are aware, PSNs
is the first framework for learning surrogate models
in a model-agnostic way. While the idea of learning
trace execution using LSTMs has been seen before,
e.g. , neural programmer-interpreters (NPI) (Reed and
De Freitas, 2015), our approach differs in two key ar-
eas: (1) NPIs are trained to predict the sequence of
called subroutines used to solve specific tasks like sort-
ing or image rotation. As such there exists no model
which NPIs explicitly aim to replicate, and so NPIs
are not suitable for inference as the tasks need to be
known a priori. (2) Where PSNs model the entire sim-
ulator, NPIs make no attempt to abstract away the
predicted subroutines – i.e. if any subroutine causes a
computational bottleneck, NPIs cannot decrease the
computational cost.

6 Conclusions

We have proposed a novel approach to surrogate mod-
eling that models not only the distributions in stochas-
tic simulators but the stochastic structure of the simu-
lator itself. We call our surrogates probabilistic surro-
gate networks and have discussed how our approach is
necessary for producing surrogates for arbitrary simu-
lators with e.g. stochastic control flow. Using a real-
world process simulation of composite materials as an
example, we show that our approach provides signif-
icant computational speedups in inference problems
relying on evaluating the joint distribution while pre-
serving highly accurate inference results indistinguish-
able from the ground truth. We believe that our ap-
proach can have major impact across academic and
industrial fields making substantial use of computa-
tionally costly simulators, where fast repeated infer-
ence would provide new analytical opportunities.
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