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Abstract

Hard visual attention is a promising approach to reduce the computational burden of
modern computer vision methodologies. Hard attention mechanisms are typically
non-differentiable. They can be trained with reinforcement learning but the high-
variance training this entails hinders more widespread application. We show
how hard attention for image classification can be framed as a Bayesian optimal
experimental design (BOED) problem. From this perspective, the optimal locations
to attend to are those which provide the greatest expected reduction in the entropy
of the classification distribution. We introduce methodology from the BOED
literature to approximate this optimal behaviour, and use it to generate ‘near-
optimal’ sequences of attention locations. We then show how to use such sequences
to partially supervise, and therefore speed up, the training of a hard attention
mechanism. Although generating these sequences is computationally expensive,
they can be reused by any other networks later trained on the same task.

1 Introduction

Attention can be defined as the “allocation of limited cognitive processing resources” [1]. In humans
the density of photoreceptors varies across the retina. It is much greater in the centre [2] and covers
an approximately 210 degree field of view [3]. This means that the visual system is a limited resource
with respect to observing the environment and that it must be allocated, or controlled, by some
attention mechanism. We refer to this kind of controlled allocation of limited sensor resources
as “hard” attention. This is in contrast with “soft” attention, the controlled application of limited
computational resources to full sensory input. Our focus in this paper is on hard attention mechanisms.
Their foremost advantage is the ability to solve certain tasks using orders of magnitude less sensor
bandwidth and computation than the alternatives [4, 5].

This paper focuses on the application of hard attention in image classification. Our model of attention
(shown in Fig. 1) is as follows: a recurrent neural network (RNN) is given T steps to classify
some unchanging input image. Before each step, the RNN outputs the coordinates of a pixel in
the image. A patch of the image centered around this pixel is then fed into the RNN. We call this
image patch a glimpse, and the coordinates a glimpse location. As such, the RNN controls its input
by selecting each glimpse location, and this decision can be based on previous glimpses. After
T steps, the RNN’s hidden state is mapped to a classification output. As with most artificial hard
attention mechanisms [6, 7], this output is not differentiable with respect to the sequence of glimpse
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Figure 1: The hard attention network architecture we consider, consisting of an RNN core (yellow), a
location network (light blue), a glimpse embedder (dark blue), and a classifier (red). ht is the RNN
hidden state after t steps. The network outputs distributions over where to attend (lt) at each time
step, and over the class label (θ) after T steps.

locations selected. This makes training with standard gradient backpropagation impossible, and so
high variance gradient estimators such as REINFORCE [8] are commonly used instead [6, 7]. The
resulting noisy gradient estimates make training difficult, especially for large T .

In order to improve hard attention training, we take inspiration from neuroscience literature which
suggests that visual attention is directed so as to maximally reduce entropy in an agent’s world
model [9–12]. There is a corresponding mathematical formulation of such an objective, namely
Bayesian optimal experimental design (BOED) [13, 14]. BOED tackles the problem of designing an
experiment to maximally reduce uncertainty in some unknown variable. In the case of hard visual
attention, the ‘experiment’ is the process of taking a glimpse; the ‘design’ is the glimpse location;
and the unknown variable is the class label. In general, BOED is applicable only when a probabilistic
model of the experiment exists. This could be, for example, a prior distribution over the class label
and a generative model for the observed image patch conditioned on the class label and glimpse
location. We leverage generative adversarial networks (GANs) [15–17] to provide such a model.

We use methodology from BOED to introduce the following training procedure for hard attention
networks, which we call partial supervision by near-optimal glimpse sequences (PS-NOGS).

1. We assume that we are given an image classification task and a corresponding labelled
dataset. Then, for some subset of the training images, we determine an approximately
optimal (in the BOED sense) glimpse location for a hard attention network to attend to at
each time step. We refer to the resulting sequences of glimpse locations as near-optimal
glimpse sequences. Section 4 describes our novel method to generate them.

2. We use these near-optimal glimpse sequences to give an additional supervision signal for
training a hard attention network. We introduce our novel training objective for this in
Section 5, which utilises training images both with and without such sequences.

We empirically investigate the performance of PS-NOGS and find that it speeds up training compared
to our baselines, and leads to qualitatively different behaviour with competitive accuracy. We also
validate the use of BOED to generate the glimpse sequences by showing that even partial supervision
by hand-crafted glimpse sequences does not have such a beneficial effect on training.

2 Hard attention

Given an image, I, we consider the task of inferring its label, θ. We use an architecture based on
that of Mnih et al. [6], shown in Fig. 1. It runs for a fixed number of steps, T . At each step t, the
RNN samples a glimpse location, lt, which is conditioned on the previous glimpses via the RNN’s
hidden state. A glimpse, in the form of a contiguous square of pixels, is extracted from the image
at this location. We denote this yt = ffovea(I, lt). An embedding of yt and lt is then input to the
RNN. After T glimpses, the network outputs a classification distribution qφ(θ|y1:T , l1:T ), where φ
are the learnable network parameters. Mnih et al. [6] use glimpses consisting of three image patches
at different resolutions, but the architectures are otherwise identical.

During optimisation, gradients cannot be computed by simple backpropagation since ffovea is non-
differentiable. An alternative, taken by Mnih et al. [6] and others in the literature [7, 18], is to
obtain high-variance gradient estimates using REINFORCE [8]. Although these are unbiased, their
high-variance has made scaling beyond simple problems such as digit classification [19] challenging.
Much research has focused on altering the architecture to ease the learning task: for example, many
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Figure 2: A near-optimal glimpse sequence being generated for the task of inferring the attribute
‘Male’. Top row: A heatmap of estimated expected posterior entropy for each possible next glimpse
location lt. The red cross marks the minimum, which is chosen as the next glimpse location. Bottom
row: Observed parts of the image after taking each glimpse.

process the full, or downsampled, image before selecting glimpse locations [7, 18, 4, 20]. We
summarise these innovations in Section 7 but note that they tend to be less suitable for low-power
computation. We therefore believe that improved training of the architecture in Fig. 1 is an important
research problem, and it is the focus of this paper.

3 Bayesian optimal experimental design

Designing an experiment to be maximally informative is a fundamental problem that applies as much
to tuning the parameters of a political survey [21] as to deciding where to direct attention to answer
a query. BOED [13] provides a unifying framework for this by allowing a formal comparison of
possible experiments under problem-specific prior knowledge. Consider selecting the design, l, of an
experiment to infer some unknown parameter, θ. For example, θ may be the median lethal dose of a
drug, and l the doses of this drug given to various groups of rats [13]. Alternatively, as we consider in
this paper, θ is the class label of an image and l determines which part of the image we observe. The
experiment results in a measurement of y ∼ p(y|l, θ). For example, y could be the number of rats
which die in each group or the observed pixel values. Given a prior distribution over θ and knowledge
of p(y|l, θ), we can use the measurement to infer a posterior distribution over θ using Bayes’ rule:
p(θ|y, l) = p(y|l,θ)p(θ)∫

p(y|l,θ)p(θ)dθ .

The aim of our experiment is to infer θ, and so a well designed experiment will reduce the uncertainty
about θ by as much as possible. The uncertainty after the experiment can be quantified by the Shannon
entropy in the posterior:

H [p(θ|y, l)] = Ep(θ|y,l) [− log p(θ|y, l)] . (1)

To maximally reduce the uncertainty, we wish to select l to minimise this posterior entropy. However,
the design of the experiment must be chosen before y is measured and so we cannot evaluate the
posterior entropy exactly. Instead, we minimise an expectation of it over p(y|l) = Ep(θ) [p(y|l, θ)],
the marginal distribution of y. This is the expected posterior entropy, or EPE:

EPE(l) = Ep(y|l) [H [p(θ|y, l)]] . (2)

Above, we considered the case of selecting a one-off design for an experiment, such as taking a single
glimpse. For the case where a sequence of glimpses can be taken, we need sequential experimental
design. In this scenario, the choice of design lt can be informed by the designs and outcomes
of previous experiments, l1:t−1 and y1:t−1. The marginal distribution over outcomes is therefore
p(yt|l1:t,y1:t−1) rather than p(yt|lt). Similarly, the posterior after observing yt is p(θ|l1:t,y1:t).
Therefore, in the sequential case which we consider throughout the rest of the paper, we minimise the
following form of the EPE:

EPEy1:t−1,l1:t−1(lt) = Ep(yt|y1:t−1,l1:t) [H [p(θ|y1:t, l1:t)]] . (3)

To summarise, sequential BOED involves, at each time t, selecting lt = arg minlt EPEy1:t−1,l1:t−1
(lt)

and then performing the experiment with design lt to observe yt.
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Figure 3: Attentional variational posterior CNN. An RGB image and l1:t are processed to create an
embedding of the information gained from glimpses 1 to t. This embedding is fed into an image
classifier to obtain an approximation of p(θ|y1:t, l1:t).

4 Generating near-optimal glimpse sequences

Role of BOED pipeline To reiterate the outline of our method, we first annotate a portion of the
training data with glimpse sequences, and then in the second stage use these to speed up the training
of a hard attention mechanism. This section details our BOED pipeline for the first stage.

EPE estimator BOED requires a probabilistic model of the measurements and parameters we
wish to infer. That is, we need to define p(θ,y1:t|l1:t) for any l1:t. To do so in the visual attention
setting, we first define p(θ, I) to be the intractable joint distribution over labels and images from
which our training and test data originate. To be consistent with our definition in Section 2 of y
as a deterministic function of I and l, we then define p(yi|I, li) to be a Dirac-delta distribution on
ffovea(I, li). The joint distribution is then

p(θ,y1:t|l1:t) =

∫
p(θ, I)

t∏
i=1

p(yi|I, li)dI. (4)

Given this joint distribution, EPEy1:t−1,l1:t−1
(lt) is well defined but intractable in general. We

therefore consider how to approximate it. To simplify our method for doing do, we first rearrange the
expression given in eq. (3) so that the expectation is over I rather than yt. Taking advantage of the
fact that yi is a deterministic function of I and li allows it to be rewritten as follows (proof in the
appendix). Defining ffovea(I, l1:t) = {ffovea(I, l1), . . . , ffovea(I, lt)},

EPEy1:t−1,l1:t−1(lt) = Ep(I|y1:t−1,l1:t−1) [H [p(θ|ffovea(I, l1:t), l1:t)]] . (5)

Given this form of the expected posterior entropy, we can approximate it if we can leverage the
dataset to make the following two approximations:

• a learned attentional variational posterior, gAVP(θ|y1:t, l1:t) ≈ p(θ|y1:t, l1:t),
• and stochastic image completion distribution rimg(I|y1:t−1, l1:t−1) ≈ p(I|y1:t−1, l1:t−1).

We expand on the form of each of these approximations later in this section. First, combining them
with eq. (5) and using a Monte Carlo estimate of the expectation yields our estimator for the EPE:

EPEy1:t−1,l1:t−1
(lt) ≈

1

N

N∑
n=1

H
[
gAVP(θ|ffovea(I(n), l1:t), l1:t)

]
(6)

with I(1) . . . , I(N) ∼ rimg(I|y1:t−1, l1:t−1).

Overview of BOED pipeline We select lt with a grid search. That is, denoting the set of allowed
values of lt as L, we compute our approximation of EPEy1:t−1,l1:t−1

(lt) for all lt ∈ L. We then select
the value of lt for which this is least. To do so, our full BOED pipeline is as follows.

1. Sample I(1) . . . , I(N) ∼ rimg(I|y1:t−1, l1:t−1).
2. For each lt ∈ L, approximate the expected posterior entropy with eq. (6).
3. Select the value of lt for which this approximation is least.

This is repeated for each t = 1, . . . , T . Figure 2 shows examples of EPEs estimated in this way for
each t. We now detail the form of gAVP (the attentional variational posterior) and rimg (stochastic
image completion).

Attentional variational posterior In this section we introduce our novel approach to efficiently
approximating the intractable posterior p(θ|y1:t, l1:t). We train a convolutional neural network
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(CNN) to map from a sequence of glimpses , y1:t, and their locations, l1:t, to gAVP(θ|y1:t, l1:t), an
approximation of this posterior. We call this the attentional variational posterior CNN (AVP-CNN).
To allow a single CNN to cope with varying y1:t, l1:t, and even varying t, we embed its input as
shown in Fig. 3. Essentially, l1:t is used to create a mask the size of the image which is 1 for observed
pixels and 0 for unobserved pixels. Elementwise multiplication of this mask with the input image sets
unobserved pixels to zero. The mask is then concatenated as an additional channel. This embedding
naturally maintains spatial information while enforcing an invariance to permutations of the glimpse
sequence. Our experiments use a Densenet-121 [22] CNN architecture (pretrained on ImageNet [23])
to map from this embedding to a vector of class probabilities representing gAVP.

We train the network to minimise the KL divergence between its output and p(θ|y1:t, l1:t). That
is, DKL (p(θ|y1:t, l1:t)||gAVP(θ|y1:t, l1:t)). To ensure that gAVP is close for all t, l1:t and y1:t, the
loss used is an expectation of this KL divergence over p(y1:t|l1:t)u(t, l1:t). We factorise u(t, l1:t) as
u(t)

∏t
i=1 u(li) where, so that all times and glimpse locations are weighted equally in the loss, u(t)

is a uniform distribution over 1, . . . , T and u(li) is a uniform distribution over all image locations.
Denoting the network parameters λ, the gradient of this loss is

∂

∂λ
Lλ = Ep(θ,y1:t|l1:t)u(t,l1:t)

[
− ∂

∂λ
log gλAVP(θ|y1:t, l1:t)

]
. (7)

This gradient is the same as that of a cross-entropy loss on data sampled from p(θ,y1:t|l1:t)u(t, l1:t),
and can be approximated by a Monte Carlo estimate.

Our approximation of the EPE in eq. (6) involves the entropy of gAVP. Since gAVP is a categorical
distribution, this is simple to compute analytically. Our approximation of the posterior entropy by an
amortised artifact in this way is inspired by the variational posterior estimator introduced by Foster
et al. [14], although there are two important differences:

• Foster et al. learn a mapping from yt to g(θ|y1:t, l1:t), sharing information between “nearby”
samples of yt to reduce the computational cost of the experimental design. Our AVP-
CNN takes this amortization further by learning a single mapping from t, l1:t and y1:t to
gAVP(θ|y1:t, l1:t), which yields significant further efficiency gains in our setting.

• Whereas we approximate H[p] with H[gAVP] = EgAVP [− log gAVP], Foster et al. use
Ep[− log g]. This provides an upper bound on H[p] but is not applicable in our case
as we cannot sample from p(θ|y1:t, l1:t). Both approximations are exact when gAVP = p.

Stochastic image completion We considered numerous ways to form rimg(I|y1:t−1, l1:t−1) includ-
ing inpainting techniques [24, 25] and through Markov chain Monte Carlo in a probabilistic image
model. Future research in GANs and generative modelling may provide better alternatives to this
component of our method but, for now, we choose to represent rimg using a technique we developed
based on image retrieval [26]. We found that, of the methods we considered, this gives the best
trade-off between speed and sample quality. It involved creating an empirical image distribution
consisting of 1.5 million images for each experiment using deep generative models with publicly
available pre-trained weights (StyleGAN [16] for CelebA-HQ and FineGAN [17] for Caltech-UCSD
Birds). During sampling, the database is searched for images that ‘match’ the previous glimpses
(y1:t−1 and l1:t−1). How well these glimpses match some image in the database, I ′, is measured by
the squared distance in pixel space at glimpse locations:

∑t−1
i=1 ‖yi − ffovea(I ′, li)‖22. This distance is

used to define a probability distribution over the images in the database. To reduce computation, we
first cheaply compare approximations of the observed parts of each image using principal component
analysis [27], and compute exact distances only when these are close. The overall procedure to
sample from rimg corresponds to importance sampling [28] in a probabilistic model where p(yt|I, lt)
is relaxed from a Dirac-delta distribution to a Gaussian. See the appendix for further details.

5 Training with partial supervision

The previous section describes how to annotate an image with a near-optimal sequence of glimpse
locations for a particular image classification task. This section assumes that these, or other forms
of glimpse sequence (e.g. the handcrafted glimpse sequences in Section 6), exist for all, or some,
images in a dataset. These can then be used to partially supervise the training of a hard attention
mechanism on this dataset. We refer to glimpse sequences used in this way as supervision sequences.
We use separate losses for supervised (i.e. annotated with both a class label and a sequence of
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Figure 4: Comparison of glimpse locations chosen by RAM and PS-NOGS on the CelebA-HQ test
set for three classification tasks. For each t ∈ {1, 2, 3, 4, 5}, we show an image where each pixel’s
colour corresponds to how often it was observed at this time step during testing. The outlines are
produced by averaging outputs from a face detector across the dataset. For t = 1, each network
learns a single location which it attends to on every test image. This is expected behaviour as the first
location is chosen before taking any glimpses, and therefore before being able to condition on the
image. RAM appears to then fail to learn to direct the later glimpses, attending almost uniformly
across the image. In contrast, PS-NOGS distributes these glimpses broadly over the salient regions.

glimpse locations) and unsupervised (i.e. annotated with a class label but not glimpse locations)
examples. By minimising the sum of these losses, our procedure can be viewed as maximising the
joint log-likelihood of the class labels and supervision sequences. To be precise, let qφ(θi, li1:T |Ii) be
a network’s joint distribution over the chosen glimpse locations and predicted class label on image Ii.
Let qφ(θi|Ii) be the marginalisation of this distribution over li1:t. We maximise a lower bound on

L =
∑
i∈sup.

supervised objective︷ ︸︸ ︷
log qφ(θi, li1:T |Ii) +

∑
i∈unsup.

unsupervised objective︷ ︸︸ ︷
log qφ(θi|Ii) . (8)

where ‘sup’ is the set of training indices with supervision sequences, and ‘unsup’ is the remainder.

When running on unsupervised examples, we follow Mnih et al. [6] and train the location network
with a REINFORCE estimate of the gradient of the accuracy, using a learned baseline to reduce the
variance of this estimate. Meanwhile, the RNN, glimpse embedder, and classifier network are trained
to maximise the log-likelihood of the class labels (i.e. minimise a cross-entropy loss). Ba et al. [7]
noted that this can be viewed as maximising a lower bound on the unsupervised objective in eq. (8).
For examples with supervision sequences, the supervised objective in eq. (8) is maximised by gradient
backpropagation. The loss is computed by running the network with its glimpse locations fixed to
those in the supervision sequence. The location network is updated to maximise the probability of
outputting these glimpse locations while, as for unsupervised examples, the other network modules are
trained to maximise the likelihood of the class labels. Gradients of the supervised and unsupervised
objectives can be computed simultaneously, with minibatches containing both types of example.

6 Experiments and results

Datasets and network architectures We test our approach on CelebA-HQ [29] and a cropped
variant of Caltech-UCSD Birds (CUB) [30], both of which are convincingly modelled by state-of-
the-art GANs [16, 17] as we require. For both datasets, we use T = 5. The hard attention network’s
classifier is a fully-connected layer mapping from the hidden state to a softmax output and the
location network has a single 32-dimensional hidden layer. All hard attention networks are trained by
Adam optimiser [31] with a batch size of 64; learning rate 3× 10−4 for CelebA-HQ and 5× 10−5

for CUB; and other hyperparameters set to the recommended defaults [31]. The dataset-specific
details are as follows: (1) CelebA-HQ Our experiments tackle 40 different binary classification tasks,
corresponding to the 40 labelled attributes. We resize the images to 224 × 224 and use training,
validation, and test sets of 27 000, 500, and 2500 images respectively. We use 16× 16 pixel glimpses,
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Figure 5: Number of training iterations for each CelebA-HQ attribute before a validation cross-
entropy loss within 0.01 of the best is achieved. On average, PS-NOGS trains almost 7× faster than
RAM and with less than a fifth of the variance in training speed. This speed-up is complemented by
an average increase in test accuracy of 0.4%. Attributes are sorted by RAM’s mean training time.

with a 50× 50 grid of allowed glimpse locations. The glimpse network has two convolutional layers
followed by a linear layer, and the RNN is a GRU [32] with hidden dimension 64. (2) CUB We
perform 200-way classification of bird species. We crop the images using the provided bounding
boxes and resize them to 128× 128. Cropping is necessary because good generative models do not
exist for the uncropped dataset, but there is still considerable variation in pose after cropping. We use
5120 training images, a validation set of 874 and a test set of 5751 (having removed 43 images also
found in ImageNet). We use 32× 32 pixel glimpses and a 12× 12 grid of allowed glimpse locations
so that adjacent locations are 8 pixels apart. The glimpse network is the first 12 convolutional layers
of a VGG pretrained on ImageNet [33, 23], and the RNN is a GRU with hidden dimension 1024.

BOED We create 600 near-optimal glimpse sequences for each of the 40 CelebA-HQ classification
tasks, and 1000 for CUB. This took approximately 20 GPU-hours for CUB, and 10 GPU days for
each CelebA-HQ attribute. We have publicly released these sequences along with our code1, allowing
them to be re-used by anyone to speed up the training of hard attention networks on these tasks.

RAM baseline On both experiments, we train our architecture with the algorithm used for the
recurrent attention model (RAM) of Mnih et al. [6] as a baseline, which is equivalent to the special
case of our partially supervised objective with zero supervision sequences. We compare this to our
method of partially-supervising training using near-optimal glimpse sequences (PS-NOGS).

Partial-supervision for CelebA-HQ In Fig. 5, we plot the number of iterations until convergence
for RAM and PS-NOGS on each different CelebA-HQ classification task. Using PS-NOGS reduced
the average number of iterations by a factor of 6.8 compared to RAM (3500 vs. 24 000) while
improving mean test accuracy from 86.7% to 87.1%. We also compare the attention policies learned
by each method. These are plotted for several tasks in Fig. 4, and for the remainder in the appendix.
RAM has difficulty learning policies for more than the first glimpse. PS-NOGS appears to learn a
reasonable policy for every timestep.

Figure 6: CUB validation accuracy over training.

Partial-supervision for CUB For experiments
on CUB, we find that a pretraining stage is re-
quired to obtain good final classification accu-
racy. We therefore pretrain the classifier, RNN,
and glimpse network with glimpse locations
sampled independently at each time step from ei-
ther a uniform distribution (in the case of RAM)
or from a heuristic which assigns higher prob-
ability to more salient locations, as estimated
using the AVP-CNN (RAM+ and all others).
Additional details are available in the appendix.
We train both RAM baselines and PS-NOGS.
We also consider partial supervision with hand-
crafted glimpse sequences, PS-HGS. The hand-
crafted glimpse sequences are designed, using

1Our code and near-optimal glimpse sequences are at https://github.com/wsgharvey/ps-nogs.
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Table 1: Results summary

CelebA-HQ (avg.) CUB

Method Iterations Accuracy (%) Iterations Accuracy (%)

RAM / RAM+ 24 000 86.7 11 600 56.3
PS-HGS - - 960 52.0
PS-NOGS (ours) 3500 87.1 640 55.4

CUB’s hand-annotated features, to always attend to the beak, eye, forehead, belly and feet (in that
order). If any of these parts are obscured, they are replaced by a randomly selected visible body part.

In Figure 6, we plot the validation accuracy of the various methods throughout training. We find
that PS-NOGS outperforms the baselines at the start of training, achieving 54% accuracy after just 5
epochs. In comparison, the RAM+ model takes 16 epochs to reach 54% and PS-HGS never does.
The naive baseline RAM has worse validation accuracy throughout training than RAM+, which
uses the AVP-CNN for pre-training. Finally, we note that after 95 epochs, the validation accuracy
for RAM+ overtakes that for PS-NOGS. This may be because REINFORCE has unbiased gradient
estimates, whereas error due to approximations in the generation of supervision sequences leads to a
bias throughout training. Table 1 summarises the accuracy and iterations until convergence on each
dataset, with the best technique on each metric in bold. The number of iterations on CUB is the
number before achieving a validation accuracy within 1% of the highest.

7 Related work

Hard attention architectures Elsayed et al. [20] recently demonstrated a hard attention network
which achieved accuracy on ImageNet [23] close to that of CNNs which use the whole image.
However, their approach neccesitates running a convolutional network on the entire image to select
glimpse locations. As such, they advertise improvements in interpretability rather than computational
efficiency. Sermanet et al. [18] train a hard attention architecture with REINFORCE to achieve
state-of-the-art accuracy on the Stanford Dogs dataset. In addition to accessing the full image in
low resolution at the start, they use large glimpses (multiple 96 × 96 pixel patches at different
resolutions) to effectively solve the task in a single step. This avoids problems resulting from learning
long sequences with REINFORCE but also rules out the computational gains possible with smaller
glimpses. Katharopoulos and Fleuret [4] proposed a form of hard attention where, after processing
the downsampled image, multiple glimpses are sampled and processed simultaneuosly. This is again
incompatible with a low-power setting where we cannot afford to operate on the full image.

Supervised attention One solution to improving training is to provide supervision targets for the
attention mechanism. This is common in visual question answering, usually for training soft attention.
Typically the targets are created by human subjects, either with gaze-tracking [34] or explicit data
annotation [35]. Either way is expensive and dataset-specific [35, 36]. Recent work has considered
reducing this cost by, for example, extrapolating supervision signals from a manually-annotated
dataset to other, related, datasets [37], or using existing segmentations to speed up annotation [36].
Even so, considerable human effort is required. Our method for generating near-optimal glimpse
sequences can be viewed as automation of this in an image classification context.

8 Discussion and conclusion

We have demonstrated a novel BOED pipeline for generating near-optimal sequences of glimpse
locations. We also introduced a partially supervised training objective which uses such a supervision
signal to speed up the training of a hard attention mechanism. By investing up-front computation in
creating near-optimal glimpse sequences for supervision, this speed up can be achieved along with
comparable final accuracy. Since we release the near-optimal glimpse sequences we generated, faster
training and experimentation on these tasks is available to the public without the cost of generating
new sequences. Our work could also have applications in neural architecture search, where this cost
can be amortised over many training runs with different architectures.
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There is potential to significantly speed up the BOED pipeline by, for example, selecting lt though
Bayesian optimisation rather than a grid search. Our framework could also be extended to attention
tasks such as question answering where the latent variable of interest is richly structured.

Broader Impact

Our work on hard attention aims to make possible more power-efficient computer vision. This could
make certain computer vision methods more feasible in settings where limited power is available,
such as in embedded devices, or for applications with extremely large data throughput, such as
processing satellite images. These applications can have a positive impact through, for example,
environmental monitoring or healthcare but also potential negative implications, particularly with
regard to privacy. We hope that standards and legislation can be developed to mitigate these concerns.

Another motivation for hard visual attention is its interpretability [20, 38], since a network’s outputs
can be more easily understood if we know which part of the image informed them. This is especially
applicable to the hard attention architecture considered in our work, which never accesses the full im-
age. Greater traction for such architectures, whether motivated by power efficiency or interpretability,
would therefore lead to computer vision systems making more interpretable decisions. This may lead
to more trust being placed in such systems. An important research direction is the implications of
this trust, and whether it is justified by this level of interpretability.
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A Details for method

A.1 BOED pseudocode

Algorithm 1 gives pseudocode for our BOED pipeline. This selects a near-optimal glimpse location
for a single timestep. Repeating this for t = 1, . . . , T yields a near-optimal glimpse sequence for a
particular image. Figure 7 provides a visualisation of the various stages of this algorithm.

Algorithm 1 BOED pipeline to select lt. This roughly follows the three-step procedure given in
Section 4: N images are sampled in line 2; these are used to estimate expected posterior entropies for
each lt ∈ L in lines 3-7. Finally, the minimising value of lt is found on line 9.

1: procedure SELECTLOCATION(y1:t−1, l1:t−1)
2: I(1), . . . , I(N) ∼ rimg(I|y1:t−1, l1:t−1) . stochastic image completion
3: for lt ∈ L do . grid search for lt
4: for n← 1, . . . , N do
5: PE(n)

lt
← H

[
gAVP(θ|ffovea(I(n), l1:t), l1:t)

]
. estimate posterior entropy

6: end for
7: EPElt ← 1

N

∑N
n=1 PE(n)

lt
. average over Monte Carlo samples

8: end for
9: l∗t ← argminltEPElt

10: return l∗t
11: end procedure
.

Figure 7: BOED procedure to select l2 given y1 and l1, corresponding to algorithm 1 with t = 2.
Panel 1 shows a visualisation of the single previous glimpse, y1, taken at l1, with all unobserved
image pixels displayed in pink. Panel 2 shows I(1), . . . , I(N), Monte Carlo samples of the full image
drawn on line 2 of algorithm 1. For each of these images, panel 3 shows a heatmap. Each heatmap
plots the estimated posterior entropy after conditioning on yt = ffovea(I, l∗) and lt = l∗ for each
l∗ ∈ L, plotted against the x and y coordinates of l∗. These posterior entropies are estimated on
line 5, and then averaged over the Monte Carlo samples on line 7, giving the expected posterior
entropies displayed by a heatmap in panel 4. Finally, lt is chosen to minimise EPElt .

A.2 EIG estimator in eq. (5)

This section derives the form of the expected posterior entropy presented in eq. (5). Starting from
eq. (3), we introduce an inner expectation over I:

EPEy1:t−1,l1:t−1
(lt) = Ep(yt|y1:t−1,l1:t) [H [p(θ|y1:t, l1:t)]] (9)

= Ep(yt|y1:t−1,l1:t)Ep(I|y1:t,l1:t) [H [p(θ|y1:t, l1:t)]] (10)

= Ep(yt,I|y1:t−1,l1:t) [H [p(θ|y1:t, l1:t)]] . (11)

Since, according to the probabilistic model defined in eq. (4), each yi is a deterministic
function of I and li we can substitute y1:t using the definition y1:t = ffovea(I, l1:t) =
{ffovea(I, l1), . . . , ffovea(I, lt)}.

EPEy1:t−1,l1:t−1
(lt) = Ep(yt,I|y1:t−1,l1:t) [H [p(θ|ffovea(I, l1:t), l1:t)]] (12)

= Ep(I|y1:t−1,l1:t−1) [H [p(θ|ffovea(I, l1:t), l1:t)]] (13)

as presented in eq. (5).
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Figure 8: Sampled image completions using various techniques. The glimpse locations are marked
with red squares, and close-ups of each glimpse are shown to the right of each image. The leftmost
column shows the ‘true’ image from which the observed glimpses are taken and the others show
samples conditioned on these glimpses.

A.3 Stochastic image completion

This section provides more detail on our method for stochastic image completion and the alternatives
we considered, as discussed in Section 4. Three sampling mechanisms for rimg(I|y1:t−1, l1:t−1)
were compared qualitatively, based on both the diversity of samples produced and how realistic the
samples are (taking into account the previous observations). These were a conditional GAN, HMC
in a deep generative model, and the image retrieval-based approach used in our pipeline. We now
provide more detail on each.

A.3.1 Conditional GAN

We considered a conditional GAN, motivated by recent state-of-the-art performance on conditional
image generation problems [39, 24]. In particular, we considered using pix2pix [25] to map from
an embedding of y1:t and l1:t (similar to that in Fig. 3 but without concatenating the mask, and
with unobserved pixels replaced with Gaussian noise instead of zeros) to the completed image. We
used the U-net architecture [40] with resolution 256 × 256. Fig. 8 shows samples when all other
hyperparameters were set to the defaults [25]. We tried varying both the generator architecture and
the weight given to the L1-norm, although neither significantly improved the quality of the generated
images. Although the GAN can learn to generate realistic images for CelebA-HQ, they have very little
diversity when the observations are fixed. An additional issue is that the outputs looked considerably
less realistic for the Caltech-UCSD birds dataset.

A.3.2 HMC in a deep generative model

We also considered taking a pre-existing, unconditional, GAN (StyleGAN [16]) with publicly
available weights and using Hamiltonian Monte Carlo [41, 42] (HMC) to sample images from it con-
ditioned on the observations. Specifically, we sample from p(I|y1:t, l1:t) ∝ p(I)

∏t
i=1 p(yi|I, li),

where p(I) is the prior over images defined by the GAN. Deviating from the model specified in
eq. (4), we define p(yi|I, li) to be an isotropic Gaussian centred on ffovea(I, li), rather than a Dirac-
delta on ffovea(I, li). This change is necessary to make inference with HMC feasible. We used an
implementation of HMC in Pyro [43], a probabilistic programming language. Samples are shown in
the second row of Fig. 8. These were taken using a likelihood with standard deviation 0.4 applied to
the normalised pixel values, which was set to trade-off the ‘closeness’ of samples to the true image
and the feasibility of inference. The integration was performed with 200 steps of size 0.05 and all
other parameters set to the defaults. Although the samples mostly look realistic, they suffered from
low sample diversity; the HMC chains became stuck in certain modes and did not explore the full
posterior. Additionally, sampling was slow: drawing each sample took approximately a minute on a
GPU.
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Algorithm 2 SAMPLEIMAGES calls SAMPLEPROPOSAL to select K1 images to load into memory,
based on approximations of their importance weights. These are then reweighted using their exact
likelihood. K2 images are sampled from the resulting weighted categorical distribution, and returned.

procedure SAMPLEPROPOSAL(I, l1:t)
Select relevant weight matrix columns W̃← SLICE(W, l1:t)
Select relevant columns of mean vector µ̃← SLICE(µ, l1:t)

Reconstruct observations ŷ1:t ← µ̃+ W̃>WI
for i = 1, . . . , N data do

Approximate observed patches ŷi1:t ← W̃>zi

Compute approximate likelihood wi1 ← N
(
ŷ1:t|ŷi1:t, σ2

q

)
end for
j(1), . . . , j(K1) ← RESAMPLE(w1

1, . . . , w
N data

1 )

return {i(k), wi(k)

1 } for k = 1, . . . ,K1

end procedure
procedure SAMPLEIMAGES(I, l1:t)

Input: I, l1:t
{i(1), wi(1)1 }, . . . , {i(K1), wi

(K1)

1 } = SAMPLEPROPOSAL(I, l1:t)
for k = 1, . . . ,K1 do

Load Ii(k)

yk1:t ← Glimpse(Ii(k)

, l1:t)

Compute exact likelihood p(y1:t|Ii
(k)

, l1:t) = N
(
y1:t|yk1:t, σ2

p

)
Compute weight w(k)

2 ← p(y1:t|Ii
(k)
,l1:t)

wi(k)

1

end for
j(1), . . . , j(K2) ← RESAMPLE(w1

2, . . . , w
K1
2 )

return Ij(k)

for k = 1, . . . ,K2

end procedure

A.3.3 Image retrieval

Our stochastic image retrieval procedure proceeds as follows. We begin with a large dataset of images
I1, . . . , IN data

independently sampled from p(I) (or an approximation of it). We are then given some
observations, y1:t, l1:t and, roughly speaking, want to approximate K2 samples from p(I|y1:t, l1:t)
using K2 images from the dataset. We begin by assigning each image i in the dataset a weight,
wi1, which approximates the likelihood p(y1:t|Ii, l1:t). This approximation is efficiently computed
using PCA, as we describe later. We then construct a categorical proposal distribution over these
images, where the probability of each is proportional to the weight. We draw K1 samples from this
proposal. These images are then retrieved from the database. To make up for the inexact weights
computed previously, we reweight these samples using exact likelihoods. These weights are used to
compute a categorical distribution over the K1 images. This distribution approximates p(I|y1:t, l1:t)
increasingly well as N data (the dataset size) and K1 tend to infinity. K2 samples from this distribution
are returned.

Principal component analysis allows for a memory-efficient representation of the dataset through a
mean image, µ, a low-dimensional vector for each image, zi, and an orthogonal matrix, W, which
transforms from an image, Ii, into the corresponding zi as follows:

zi = WIi (14)

Denoting the dimensionality of z as L, the number of images as N data, and the number of pixels per
image as P , these objects can be stored with memory complexity Θ(N dataL + PL), compared to
Θ(N dataP ) for the entire dataset. Since W is orthogonal, image i can be approximated using zi as

x̂i = W>zi (15)

and x̂ ≈ I for large enough L. If only certain pixels of the reconstructed image are required, Iip1:pC
these can be obtained efficiently by using W̃>, a matrix made up of rows p1 to pC of W>:

Iip1:pC = W̃>zi. (16)
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This allows us to construct an approximation of the observed portion with each image in the dataset in
a time and memory-efficient manner. Additionally, we found that our proposal was improved when the
approximate likelihood was calculated with a reconstruction of the observations as ŷ1:t = W̃>WI,
rather than the true observations y1:t. Although this requires access to the full true image, this is
acceptable as the full image was always available when we carried out our experimental design. Also,
since this is only used to calculate the proposal distribution, it should have limited effect on the
samples returned after new weights are calculated with the exact likelihood.

The algorithms we use in our experiments vary in the following ways from algorithm 2. They both
expand the effective size of the generated dataset by comparing the observations with a horizontally-
flipped version of each dataset image, as well as the original version. Additionally for CelebA-HQ, in
order to increase the sample size and impose an invariance to very small translations, the likelihoods
(for both the proposal and the exact likelihood) for each image are given by summing the Gaussian
likelihoods over a grid of image patches taken at locations close to the observed location. For CUB,
a simpler alteration is made to increase the effective sample size: σq is tuned while creating each
proposal distribution so that it will have an effective sample size roughly equal to the number of
samples drawn. The attached code contains both variations.

B Experimental details

B.1 AVP-CNN training

Here, we expand on the training procedure for the AVP-CNN which was described in Section 4.
For CelebA-HQ, it was trained to predict each of the 40 attributes simultaneously by outputting a
vector parameterising an independent Bernoulli distribution for each, which we found to improve
accuracy compared to training a network for each. Similarly for CUB, the AVP-CNN output a vector
of probabilities for each of the 312 binary attributes in the dataset, in addition to the 200-dimensional
categorical distribution. These outputs were produced by linear mappings (and a sigmoid/softmax)
from the same final hidden layer. The predictions for the binary attributes of CUB were not used; this
was done purely to improve the training of the classifier.

For both datasets, the AVP-CNN was initialised from weights pretrained on ImageNet, with only
the final layer replaced and an additional input channel added (with weights initialised to zero). It
was then trained using Adam optimizer with a learning rate of 1 × 10−4 and a batch size of 64.
Validation was performed and a checkpoint saved every epoch, and the checkpoint which gave the
lowest validation cross-entropy was used. This occurred after 183 epochs for the network used to
create near-optimal glimpse sequences on CUB and after 458 for CelebA-HQ. For both datasets, the
training set for the AVP-CNN was chosen to exclude the examples on which Bayesian experimental
design was later performed in order to prevent any potential issues with using the AVP-CNN to
approximate classification distributions on data which it may be overfitted to.

B.2 CUB pretraining

As mentioned in the paper, we found a pretraining stage to be important for achieving high accuracy
on CUB. During this stage, the parameters of the RNN, glimpse embedder, and classifier were
trained, while the location network was not used. After 250 epochs of pretraining, saved parameters
from the epoch with highest validation accuracy were used for the next stage of training. These
parameters were then frozen while the location network was trained. The only difference between
our pretraining loss and our training loss is that pretraining glimpse locations are sampled from some
fixed distribution, instead of from the distribution proposed by the location network. As mentioned
in the paper, this is a uniform distribution over all lt ∈ L for RAM. We now describe the heuristic
distribution used to pretrain the other networks. In all our tests, we found that this heuristic gave
better performance than the uniform distribution.

The heuristic distribution uses EPE∅,∅(l) as a measure of the saliency of a location. That is, the
expected entropy in the posterior after taking a single glimpse at l. Since this is not conditioned
on any previous glimpses, it is independent of the image being processed. This is used to create a
distribution over locations as:

log ploc(l) = C − γ−1 · EPE∅,∅(l) (17)
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where γ−1 is the inverse temperature, which we set to 1. C = − log
∑
l exp

(
−γ−1 · EPE∅,∅(l)

)
is

a constant chosen such that ploc is a normalised distribution. We estimate EPE∅,∅(l) for each l using
our BOED pipeline.

B.3 Additional baselines

In addition to the hand-crafted glimpse sequences described in Section 6, we here consider another
form of heuristic supervision sequence as a baseline. These were created by sampling glimpse
locations independently at each time step from the distribution defined in eq. (17). We ran experiments
with both γ−1 = 1 (denoted PS-H1) and γ−1 = 5 (denoted PS-H5).

Figure 12 shows validation accuracy for these over the course of training. We find that networks
trained with PS-H1 and PS-H5 converge quickly: after 240 and 400 iterations respectively, as
measured by when they reach within 1% of the highest validation accuracy. This may be due to the
simplicity of the policies that the supervision sequences encourage them to learn, with identical and
independent distributions over the glimpse location at every time step. Despite their fast convergence,
the validation accuracy for these heuristics appears to be almost always lower than that for PS-NOGS
throughout training, and never higher by a statistically significant margin.

B.4 Architectural details

As mentioned, we use a learned baseline to reduce the variance of the REINFORCE gradient estimate.
Following Mnih et al. [6], this is in the form of a linear ‘baseline’ network which maps from the RNN
hidden state to a scalar estimate of the reward.

The glimpse embedder for CelebA-HQ consisted of the following, in order: a 3× 3 convolution to 16
channels with stride 1; a ReLU activation; a 3× 3 convolution to 32 channels with stride 2; a ReLU
and 2× 2 max pool; and a linear layer mapping the output of this to the 64-dimensional RNN input.

B.5 Hyperparameters

For the Monte Carlo estimation of the expected posterior entropy in eq. (6), we use N = 200 Monte
Carlo samples for CelebA-HQ and N = 100 for CUB.

For the stochastic image completion algorithm, we use the following hyperparameters for CelebA-HQ:
K1 = 1000; K2 = 200; and σp = σq = 5× 2t for each timestep t. For CUB, we use: K1 = 500;
K2 = 100; σp = 80; and a dynamically adjusted σq (as descibed in Appendix A.3.3). For both
datasets, we use a 256-dimensional latent space for the PCA and N data = 1 500 000.

To allow direct comparison between PS-NOGS and the baseline supervision sequences (PS-HGS,
PS-H1 and PS-H5), we supervise the same number of training images for each; that is, 600 for tasks
on CelebA-HQ and 1000 for CUB classification.

C Additional plots

C.1 Glimpse locations

Building on Fig. 4 in the paper, Figures 9 to 11 show the glimpse locations of networks trained with
each of RAM and PS-NOGS for all 40 CelebA-HQ attributes.

C.2 CUB training

Figure 12 shows the validation accuracy throughout training for CUB, including for the additional
baselines from Appendix B.3.

C.3 Supervision sequences

Figure 13 shows supervision glimpse sequences given by various methods. These are for a random
sample of images.
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5 o'Clock Shadow

Arched Eyebrows

Attractive

Bags Under Eyes

Bald

Bangs

Big Lips

Big Nose

Black Hair

Blond Hair

Blurry

Brown Hair

Bushy Eyebrows

Chubby

Double Chin

Eyeglasses

Goatee

Gray Hair

Figure 9: Glimpse locations on CelebA-HQ.
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No Beard

Oval Face

Pale Skin

Pointy Nose

Receding Hairline

Rosy Cheeks

Sideburns

Smiling

Straight Hair

Wavy Hair

Wearing Earrings

Wearing Hat

Heavy Makeup

High Cheekbones

Male

Mouth Slightly Open

Mustache

Narrow Eyes

Figure 10: Glimpse locations on CelebA-HQ.
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Wearing Lipstick

Wearing Necklace

Wearing Necktie

Young

Figure 11: Glimpse locations on CelebA-HQ.

Figure 12: Expanded version of Fig. 6 including the additional baselines described in Appendix B.3.

19



Figure 13: Examples of the image areas observed by near-optimal glimpse sequences (NOGS);
sequences generated using the heuristic described in Appendix B.3 with γ−1 = 1 (H1) or γ−1 = 5
(H5); and hand-crafted glimpse sequences (HGS).
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