
Using Synthetic Data to Train Neural Networks is
Model-Based Reasoning

Tuan Anh Le∗, Atılım Güneş Baydin∗, Robert Zinkov† and Frank Wood∗
∗Department of Engineering Science

University of Oxford, Parks Road, OX1 3PJ Oxford, UK
Email: {tuananh, gunes, fwood}@robots.ox.ac.uk

†School of Informatics and Computing
Indiana University, 919 E 10th Street, Bloomington, IN 47408, USA

Email: zinkov@iu.edu

Abstract—We draw a formal connection between using syn-
thetic training data to optimize neural network parameters and
approximate, Bayesian, model-based reasoning. In particular,
training a neural network using synthetic data can be viewed
as learning a proposal distribution generator for approximate
inference in the synthetic-data generative model. We demonstrate
this connection in a recognition task where we develop a novel
Captcha-breaking architecture and train it using synthetic data,
demonstrating both state-of-the-art performance and a way of
computing task-specific posterior uncertainty. Using a neural net-
work trained this way, we also demonstrate successful breaking of
real-world Captchas currently used by Facebook and Wikipedia.
Reasoning from these empirical results and drawing connections
with Bayesian modeling, we discuss the robustness of synthetic
data results and suggest important considerations for ensuring
good neural network generalization when training with synthetic
data.

I. INTRODUCTION

Neural networks are powerful regressors [1]. Training a
neural network for regression means finding values for its
free parameters using supervised learning techniques. This
generally requires a large amount of labeled training data.
Generally the harder the task, the larger the neural network,
and the more training data required.

When labeled training data are scarce, one must either
generate and use synthetic data to train, or resort to unsu-
pervised generative modeling and generally slow test-time
inference since it must be run afresh for new data. The deep
learning community has reported remarkable results taking the
former approach, either in the limited form of data augmen-
tation [2, 3], where a dataset is artificially enlarged using
label-preserving transformations, or training models solely
on synthetic data, such as the groundbreaking work on text
recognition in the wild [4, 5, 6], which was achieved by
training a neural network to recognize text using synthetically
generated realistic renders. Goodfellow et al. [7] addressed
recognition of house numbers in Google Street View images in
a supervised fashion, also solving reCaptcha [8] images using
synthetic data to train a recognition network from image to
latent text. That the authors were Google employees meant
that they had access to the true reCaptcha generative model
and thus could generate millions of labeled instances for use in
a standard supervised-learning pipeline. More recently, Stark

et al. [9] also used synthetic data for Captcha-solving and
Wang et al. [10] for font identification.

A contribution of this paper is to point out that this kind
of use of synthetic data to train a neural network under a
standard loss is, in fact, equivalent to training an artifact to do
amortized approximate inference, in the sense of Gershman
and Goodman [11], for the generative model corresponding to
the synthetic data generator. This relationship forms the basis
of our recent work on inference compilation for probabilistic
programming [12] and is also noted by both Paige and Wood
[13] and Papamakarios and Murray [14], where approximate
inference guided by neural proposals is the goal rather than
training neural networks using synthetic data. A consequence
of this is that there is no need to ever reuse training data,
as “infinite” labeled training data can be generated at training
time from the generative model. Another contribution we make
is a suggestion for how to take advantage of this framework
by running a neural network more than once at test time to
compute task-specific uncertainties of interest.

These contributions can also be seen as a reminder and
guidance to the neural network community as it continues to
move towards tackling unsupervised inference and problems
in which labeled training data are difficult or impossible to
obtain. Towards this end, we examine experimental findings
that highlight problems that are likely to arise when using
synthetic data to train neural networks. We discuss these
problems in terms of the brittleness demonstrated to exist for
deep neural networks, for example by Szegedy et al. [15], who
showed that perceptually indistinguishable variations in neural
network input can lead to profound changes in output. We also
discuss model misspecification in the Bayesian sense [16].

The paper structure is as follows. In Section II, we develop a
probabilistic synthetic data generative model and suggest a sin-
gle, flexible neural network architecture for Captcha-breaking.
In Section III, we train each such model independently us-
ing training data derived from running the synthetic data
generator with parameters set to produce the corresponding
style. These neural networks are shown to produce extremely
good breaking performance, both in terms of accuracy and
speed, well beyond standard computer vision pipeline results
and comparable to recent deep learning results. We then

discuss and demonstrate the brittleness of these regressors.
We demonstrate improved robustness by focusing on and
improving the generative model. In Section IV, we illustrate
the connection of the demonstrated brittleness with Bayesian
model mismatch. We end by explaining how the learned neural
network can be used to perform sample-based approximate
inference.

II. CAPTCHA-BREAKING

Assuming no access to the true Captcha [21] generating
system and a paucity of labeled training data, how does one go
about breaking Captchas? A hint appears in the probabilistic
programming community’s approach to procedural graphics
[22] where a generative model for Captchas is proposed and
then general purpose Markov chain Monte Carlo (MCMC)
Bayesian inference is used to computationally inefficiently
invert the said model. We will make the argument that this
is, effectively, the same as generating synthetic training data
in the manner of Jaderberg et al. [4, 5] to train a neural network
that regresses to the latent Captcha variables. In either case,
developing a flexible, well-calibrated synthetic training data
generator is our first concern.

A. Generating synthetic training data

Our synthetic data generative model for Captcha specifies
joint densities ps(x, y), parameterized by style s, that describe
how to generate both the latent random variable x and the
corresponding Captcha image y. Referring to the first row of
Table I, style s pertains to different schemes (e.g., Baidu, eBay,
Wikipedia, Facebook) involving distinct character ranges,
fonts, kerning, deformations, and noise. Note that in the fol-
lowing equations we omit the style subscript while keeping in
mind that there is a separate unique model for each style. The
latent structured random variable x = {L, ε1:K , i1:L} includes
L, the number of letters, ε1:K , a multidimensional structured
parameter set controlling Captcha-rendering parameters such
as kerning and various style-specific deformations, and ii:L,
letter identities. Given these, we use a custom stochastic
Captcha renderer R to generate each Captcha image y, this
renderer and its fidelity being the primary component of the
synthetic data generation effort. The corresponding per-style
synthetic data generator corresponds to the model

x ∼ p(x) (1)

y|x ∼ R(x) , (2)

where p(x) is a style-specific prior distribution over the latent
variables including the character identities. For each different
style shown in Table I, we use different settings of the prior
parameters to drive the Captcha renderer. In particular, the
model places style-specific uniform distributions over different
intervals for L, ε1:K , and i1:L. This is the mechanism for
generating synthetic training data {(x(n), y(n))}. Note that
p(y|x) cannot be evaluated for a given y, rather only sampled.

CNN

LSTM

L

�

i� iL

y

x �

�

�� ��[]

� � � �

Output

Input

Sampling

i

Fig. 1. Neural network architecture mapping the Captcha image y to the
latent variables x of interest.

B. Neural network architecture

Our Captcha-breaking neural network is designed taking
into account architectures that have been shown to perform
well on image inputs and variable-length output sequences
[23, 24]. Specifically, we choose a combination of convolu-
tional neural networks (CNNs) and recurrent neural networks.

The core of our neural architecture (Figure 1) is a long short-
term memory (LSTM) network [25], the output of which at
each time step is passed through output layers corresponding
one-to-one to the components of the latent variable x in
the generative model (i.e., number of letters L, rendering
parameters ε1:K , and letter identities i1:L) that constitute
the inputs to the Captcha renderer. Since the latent variable
x has T = 1 + K + L components, where K is style-
specific and L is instance-specific, the LSTM is run for T
time steps, and we represent by x1:T the components of
the latent x at each time step. The output layers are fully-
connected layers followed by a softmax function, distinct for
each latent variable, that parameterize a discrete probability
distribution. Since the LSTM has a fixed-dimensional output,
these output layers allow us to match the dimensions of the
discrete distributions for the corresponding latent variables.

A CNN is used to embed the Captcha image y into a fixed-
dimensional embedding vector CNN(y). At each time step, the
LSTM input is constructed as the concatenation of the image
embedding CNN(y), the value of the latent variable xt−1 of the
previous time step, and a label vector {0, 1}D corresponding to
each xt. During training, all x1:T are provided to the network
in a way similar to that used by Reed and de Freitas [26], using
the actual values that generated the synthetic image y. At test
time, the values of xt are sampled from the corresponding
discrete probability distribution.

We denote the combined set of parameters of the overall
architecture θ and its forward propagation function η, so given
an input y, the output of the softmax layer at time step t corre-
sponding to xt is ηθ,t(y). In the running example of Figure 1,
x1 = L, x2:(2+K−1) = ε1:K , and x(2+K):(2+K+L−1) = i1:L.

TABLE I
SYNTHETIC CAPTCHA BREAKING RESULTS. RR: RECOGNITION RATE, BT: BREAKING TIME.

Style Baidu (2011) Baidu (2013) eBay Yahoo reCaptcha Wikipedia Facebook

Our method RR 99.8% 99.9% 99.2% 98.4% 96.4% 93.6% 91.0%
BT 72 ms 67 ms 122 ms 106 ms 78 ms 90 ms 90 ms

Bursztein et al. [17] RR 38.68% 55.22% 51.39% 5.33% 22.67% 28.29%
BT 3.94 s 1.9 s 2.31 s 7.95 s 4.59 s

Starostenko et al. [18] RR 91.5% 54.6%
BT < 0.5 s

Gao et al. [19] RR 34% 55% 34%

Gao et al. [20] RR 51% 36%
BT 7.58 s 14.72 s

Goodfellow et al. [7] RR 99.8%

Stark et al. [9] RR 90%

C. Loss

By design, the softmax outputs determine the parameters for
the discrete probability distributions of the Captcha generator
parameters. The loss we minimize during training is the
negative sum of the log of the softmax outputs

L(θ) =
1

N

N∑
n=1

[
−

T∑
t=1

log
(

[ηθ,t(y
(n))]

x
(n)
t

)]
, (3)

where we use the notation [z]i to denote the ith element of
z. This is a standard loss used in training neural networks
for classification. The connection with Bayesian modeling in
which we interpret softmax outputs as probabilities of discrete
random variables in a joint importance sampling proposal
distribution is explored in more detail in Section IV-B.

III. EXPERIMENTS

We wrote synthetic data generative models for seven dif-
ferent Captcha styles, covering the types frequently found in
the Captcha breaking literature [18, 17, 20, 19]. For each
of these, we trained a neural architecture consisting of (1)
a CNN with six convolutions (3×3, with successively 64,
64, 64, 128, 128, 128 filters), max-pooling (2×2, step size
2) after the second, fifth, and sixth convolutions, and two
final fully-connected layers of 1024 units; (2) a stack of two
LSTMs of 512 hidden units each; and (3) fully-connected
layers of appropriate dimension mapping the LSTM output to
the corresponding softmax dimension of each latent variable.
ReLU activations were used after the convolutions and the
fully-connected layers overall.

We empirically verified that supplying the image embedding
CNN(y) to the LSTM at every time step makes the training
progress faster in our setup where we train the CNN from
scratch together with the rest of the components, compared
with the alternative of using CNN(y) only once and pretraining

CNN weights on an image recognition database as in Vinyals
et al. [23] and Karpathy and Fei-Fei [24].

The networks were implemented in Torch [27] and trained
with Adam [28] optimization, with initial learning rate α =
0.0001, hyperparameters β1 = 0.9, β2 = 0.999, using mini-
batches of size 128. The generative models were implemented
in the Anglican probabilistic programming language [29]. The
two are coupled in our inference compilation [12] framework.1

A. Initial results

As can be seen in Table I, this architecture, and our method
for training it using synthetic data, outperforms nearly all
state-of-the-art Captcha breakers in terms of both accuracy
and recognition times with the exception of Goodfellow et al.
[7], which used data drawn from the true reCaptcha generator.
The row labeled “our method” shows breaking results and
speeds for our neural network trained using synthetic data to
decode unlabeled Captchas from the same Captcha generator.
The Goodfellow et al. [7] and Stark et al. [9] rows show the
most directly comparable results, namely, using deep neural
networks to break unlabeled Captchas training on synthetic
data. The additional rows show breaking results for more
traditional segment-and-classify computer vision image pro-
cessing pipelines. These, in contrast to the others, do not have
access to the true Captcha generator but instead report test
results on real-world Captchas gathered in the wild. If robust,
> 90% accuracies would seem to confirm that Captcha, from
a computer security perspective [30, 31], is indeed broken.

While the capabilities of deep neural networks are impres-
sive, it should be noted that these kinds of results, on occasion,
can be somewhat misleading [15]. In particular, one should
note the assumption that, up to this point in this paper and
in the referenced results from the deep learning literature, the
training procedure of the Captcha-breaking network has access

1https://probprog.github.io/inference-compilation/

to data from the true generative process. Indeed, samples from
the true generative process are superior even to hand-labeled
training instances gathered in the wild. Any simulated data,
required when we do not have access to the true generative
model, must come from an approximation to the true genera-
tive process, a model per se. Whether or not networks trained
using such approximate data are robust in the sense of working
well on real data in the wild becomes the real question. To
put it another way, is Captcha really broken if we do not have
access to the true generative model—or a legion of human
labelers and a pile of cash?

B. Robustness of results
So, what happens to these state-of-the-art models if the test

data is subtly different to the generated synthetic data? Or,
what happens if you attempt to transfer learning from one
Captcha style to another? Our exploration of these questions
forms the inspiration and basis for the rest of the paper.

To start, we tried to use our trained models on real Captchas
from Wikipedia and Facebook, which we identified as two
major web services that still make use of textual Captchas,2

collecting and hand-labeling test sets of 500 images each.
We found that the trained Wikipedia and Facebook models
achieving > 90% recognition with synthetic data yielded
practically zero breaking rates with real data. We then tried
using a model trained on one Captcha style to break another
style and found that it nearly always failed as well. We found
that this was only partially caused by the non-overlapping
latent variable domains (e.g., the distinct character ranges) for
renderers of different styles. For instance, one might expect
the reCaptcha breaker to work on the visually similar Yahoo
Captchas, but we found that this was not the case.

To investigate, we performed experiments where we con-
structed test Captchas that the trained networks cannot
recognize despite being perceptually indistinguishable from
Captchas from the original generative model. We found that
we could more-or-less arbitrarily degrade test performance by
shifting the test data in either of two ways away from the
original synthetic data (Figure 2, left). In the first (Figure 2,
middle), we corrupted the image by subtle additive noise
which shifts each Captcha a small, imperceptible Euclidean
distance from its original position. This causes our Captcha
breaking networks to exhibit the kind of brittleness well known
to be a problem for deep neural network classifiers [15]. In
the second (Figure 2, right), by changing the generative model
of the test data relative to the training data, even in ways that
are arguably below human ability to perceive, we were also
able to cause test performance to degrade. This is the kind of
model misspecification that has been discussed in the Bayesian
inference literature [16].

Inspired by the success of Jaderberg et al. [4], we at-
tacked these problems by improving our synthetic training

2Facebook Captchas appear as a measure for preventing flood-posting and
when links to particular Facebook pages are followed. Wikipedia Captchas
appear on the account creation page. We note that textual reCaptchas, as of
version 2.0, have been replaced with tasks such as image recognition [31],
making them unlikely to encounter and collect.

Fig. 2. Synthetic data from the Wikipedia generative model (left) are
recognized correctly whereas even perceptually subtle changes such as adding
per-pixel white noise with σ = 5 (middle) and εkerning modified by just
one pixel (right) result in severely degraded recognition rates. The overall
recognition rates for the test groups from which these samples are taken are
93.6% (left), 24.0% (middle) and 65.2% (right). Note that the middle and
right columns do get recognized correctly with the robust Wikipedia model.

data generation. In particular, we developed a substantially
more flexible generative model using the elastic displacement
fields introduced by Simard et al. [2], effectively forcing the
neural network to generalize over a greater variation than that
exhibited by ground-truth labeled test data from the wild.
These improved generative models have been observed to be
robust to the subtle modifications that we report in Figure
2. The results we obtained are encouraging, achieving 81%
and 42% recognition rates on real Wikipedia and Facebook
Captchas respectively. In both cases our robust results, arrived
at by improving the quality of the synthetic data generator,
have performance comparable (in the case of Wikipedia,
superior) to traditional vision pipelines, and are significantly
higher than the 1% recognition threshold suggested to deem
a deployed Captcha system broken [30].

IV. DISCUSSION AND CONNECTIONS TO MODEL-BASED
BAYESIAN REASONING

In order to explore some of the factors that cause the
brittleness of the neural network performance that we have
just reported, we draw a connection between Bayesian model
mismatch and out-of-sample generalization failure of neural
network and other regressors when tested on data that is
different to that used for training.

As a prerequisite to this, we review importance sampling
[32], the approximate probabilistic inference algorithm that
most naturally corresponds to the kind of inference our trained
neural networks allow us to do. Given a joint distribution
p(x, y) and a user-specified proposal distribution q(x|y), im-
portance sampling allows us to approximate the posterior
distribution p(x|y) and expectations of arbitrary functions f

5 0 5 10
5

0

5

5 0 5 10 5 0 5 10

Test data y

Model p(x)

True model π(x)

Posterior p(x|y)
Adapted importance sampling proposal q(x|ηθ(y))
Adapted importance sampling posterior p̃(x|y)

Fig. 3. Illustration of model mismatch. Left: The model encompasses the true data distribution; Middle: the model partially matches the true data distribution;
Right: the model is completely mismatched to the true data distribution.

under it

p(x|y) ≈
M∑
m=1

Wmδ(x− x(m)) (4)

Ep(x|y)[f] ≈
M∑
m=1

Wmf(x(m)) . (5)

This is done by generating M weighted samples
{(wm, x(m))}Mm=1

x(m) ∼ q(x|y) m = 1, . . . ,M (6)

wm = p(x(m), y)/q(x(m)|y) m = 1, . . . ,M (7)

Wm = wm/
∑
j

wj m = 1, . . . ,M . (8)

Note that importance sampling is generally inefficient unless
the proposal distribution is well-matched to the target distribu-
tion in the sense that it “overlaps” the target, and is extremely
efficient if it matches exactly.

A. Bayesian model misspecification

We illustrate the effects of mismatch between synthetic and
real data in terms of Bayesian model misspecification using a
simpler experiment (Figure 3), highlighting conceptually what
we believe to be happening. Let π(x, y) be the true data
generating distribution and p(x, y) a model, where

π(x) = N (x|µπ,Σπ) (9)
π(y|x) = N (y|x,Σ) (10)
p(x) = N (x|µp,Σp) (11)

p(y|x) = N (y|x,Σ) . (12)

We will use the mismatch between the distributions π(x) and
p(x) as an illustrative proxy to the mismatch of the joint
distributions π(x, y) and p(x, y).

The marginal p(x) of the model distribution p(x, y) is
shown in Figure 3 as a thin blue dashed ellipse which covers

99% of its probability mass. We draw a data point y from this
model by first drawing x from p(x) and then drawing y from
π(y|x) where Σp = 2I , µp = [0, 0]T and Σ = I .

The marginal π(x) of the true data generating distribution
π(x, y) is shown in Figure 3 as a black solid ellipse. A typical
data point y is drawn by first drawing x from π(x) and then
drawing y from π(y|x) where Σπ = I and µπ is [0, 0]T, [5, 0]T

and [8, 0]T from left to right.
Such a model has a posterior

p(x|y) = N (x|µpost,Σpost) (13)

Σpost = (Σ−1p + Σ−1)−1 (14)

µpost = Σpost(Σ
−1
p µp + Σ−1y) , (15)

which is shown in Figure 3 as a thick blue dashed ellipse.
Using a procedure similar to the one described in Sec-

tion II, we generate training data {(x(n), y(n))} from the model
p(x, y) and use it to train a neural network mapping from y to
importance sampling proposal parameters (µq,Σq) := ηθ(y).
The resulting proposals generated from such a proposal dis-
tribution q(x|ηθ(y)) := N (x|µq,Σq) are shown in Figure 3
as magenta dash-dotted ellipses. Remember that µq and Σq
are functions of y computed by the trained neural network
regressor.

If we then draw M = 1000 samples from this proposal
distribution by repeatedly running the trained neural network
forward and weight the resulting samples according to the
importance sampling scheme in the beginning of Section IV,
we arrive at approximations to the model-based posterior mean
and covariance:

µ̃M ≈ Ep(x|y)[x] (16)

Σ̃M ≈ Ep(x|y)
[(
x− Ep(x|y)[x]

) (
x− Ep(x|y)[x]

)T]
. (17)

The distribution p̃(x|y) := N (x|µ̃M , Σ̃M) is shown in Fig-
ure 3 as a magenta dashed ellipse.

Now consider the three scenarios in Figure 3, in which
the difference between the true data generating distribution,
illustrated by its marginal π(x), and the model p(x) is progres-
sively increased from left to right. As the true data generating
distribution π(x) moves further away from our model p(x)
we see that we get, for a fixed computational budget of
M = 1000 samples, progressively worse estimates p̃(x|y) of
p(x|y) (Figure 3, middle and right). What is happening here
is that the neural network, at training time, learns to invert the
model p(x, y) from samples drawn from it. In Figure 3 (left),
when the model overlaps the true data generative process,
the neural network sees examples of x and y pairs that are
representative of the true data generating mechanism and then,
given sufficient capacity in terms of neural architecture and
training time (remembering that we have access in this setting
to infinite training data), can almost certainly learn a mapping
that solves the task of predicting x given y. If the model is
slightly misspecified then the number of training examples in
the domain of the true model might be small and as such
we might not expect good generalization performance. When
there is high model misspecification (Figure 3, right) the neural
network will simply never see training examples that look
like the true data, and, as such, will produce mostly spurious
regression results leading to unhelpful proposal distributions.

This experiment graphically illustrates the kinds of prob-
lems that can arise from model misspecification. What it
indicates is that if we are going to use synthetic data to
train a neural network regressor we should ensure that our
synthetic data generator is ideally as close as possible to the
true data generation process and that mismatch from the true
data in terms of broadness (e.g., the Gaussian example in
Figure 3 (left), in which µπ and µp match but Σπ and Σp do
not) is more tolerable and in fact preferable to a perceptually
indistinguishably miscalibrated model (e.g. the phenomenon
illustrated in Figure 2 and described in Section III-B). We
conjecture that the latter is what caused the brittleness we
discovered in our trained neural networks and illustrate in
Figure 2.

This intuition guided our decision to broaden our synthetic
data generator by adding the displacement fields of Simard
et al. [2] in Section III-B, leading to significant improvements
to robustness evidenced by the improved real-data results we
obtained. This, we believe, accounts for the fact that our
Captcha generator is not likely to capture all details of the
true generative model such as subtle font differences.

B. Inference

A corollary to the Bayesian inference interpretation of
training a neural network on synthetic data is that the resulting
neural network can be used for approximate inference in
the probabilistic model p(x, y) corresponding to the synthetic
training data generator.

Let the importance sampling proposal distribution be fac-
torized as q(x|y) =

∏T
t=1 qt(xt|x1:t−1, y). If we consider

the individual time-dependent softmax layers of the Captcha-
solving neural network to be probabilities of a proposal

distribution qt(xt|x1:t−1, y), we can adopt an alternative way
of writing our loss in (3) as

L(θ) =
1

N

N∑
n=1

[
−

T∑
t=1

log
(

[ηθ,t(y
(n))]

x
(n)
t

)]

=
1

N

N∑
n=1

[
−

T∑
t=1

log qt(x
(n)
t |x

(n)
1:t−1, y)

]

=
1

N

N∑
n=1

[
− log

(
T∏
t=1

qt(x
(n)
t |x

(n)
1:t−1, y)

)]

=
1

N

N∑
n=1

[
− log q(x(n)|ηθ(y(n)))

]
. (18)

The loss in (18) can be viewed as a Monte Carlo approx-
imation of an expectation over a function under the joint
distribution p(x, y) of the synthetic data, which, following
Paige and Wood [13], can be shown to be the Kullback-Leibler
divergence between the proposal and the posterior averaged
over all possible datasets

Ep(x,y)[− log q(x|ηθ(y))]

=

∫
Y

∫
X
p(x, y)(− log q(x|ηθ(y))) dxdy

=

∫
Y
p(y)

∫
X
p(x|y) log

p(x|y)

q(x|ηθ(y)))
dxdy + const.

= Ep(y)[DKL (p(x|y) || q(x|ηθ(y)))] + const. (19)

Hence, minimizing (18) is also known as importance sampling
proposal adaptation.

Running a neural network trained using synthetic data and
this common loss on an input y actually produces efficient
proposal distribution parameters ηθ(y). By running the neural
network M times given the same input and subsequently
weighting the sampled x values according to (7), we obtain
an approximate posterior distribution (Figure 4). We note that,
in the case of Captchas, we must use a likelihood based on
approximate Bayesian computation (ABC) [33] instead of the
intractable p(y|x) in order to calculate the weight in (7).

Accounting for uncertainty is a principal benefit of model-
based inference and is particularly useful when there is actual
ambiguity in y as in Figure 4.

V. CONCLUSION

What is remarkable about the natural scene text recognition
results of Jaderberg et al. [4, 5] is that they show generalization
from synthetic data, to the degree that one could argue
that their result is actually a generative modeling triumph.
Our results showing improved robustness of Wikipedia- and
Facebook-style Captcha-breaking stem likewise from focus-
ing on the synthetic data generative model. In addition to
being usefully prescriptive, our point that training neural
networks using synthetic data is equivalent to performing
proposal adaptation for importance sampling inference in the

Fig. 4. Posteriors of real Facebook and Wikipedia Captchas. Conditioning on each Captcha, we show an approximate posterior produced by a set of weighted
importance sampling particles {(wm, x(m))}M=100

m=1 .

YPL9
ce

u

YPL9
ce

L

YJL
9c

eu
0.0
0.2
0.4
0.6
0.8
1.0

mJG
D7z

P

mJC
D7z

P

mJC
D2z

P

z7
T7J

da

z7
T7jd

a

z7
TZJd

a

8V
NARw

BVNARw

5V
NARw

RVNARw

MwFFKw

MwFFXw

MwEFKw

MvF
FKw

GeP
HEz4

GaP
HEz4

GeP
H5z

4
0.0
0.2
0.4
0.6
0.8
1.0

9x
PBS5k

gx
PBS5k

9v
PBS5k

aG
8B

PY

aG
8R

PY

8L
6x

BhE

8L
CxB

hE

8L
6x

8h
E

8L
5x

BhE

8L
SxB

hE

8L
Cx8

hE

WrC
JC

dN

WrC
Dcd

N

WrC
DCdH

MrC
Dcd

N

MrC
Jc

dN

WrC
DQdN

jim
myd

ice
y

jin
myd

ice
y

0.0
0.2
0.4
0.6
0.8
1.0

ca
rdp

oc
ls

ca
rdp

oc
ks

bir
thg

art
h

bir
tbg

art
h

ba
lkle

pe
r

ba
lklz

pe
r

ba
lklg

pe
r

sc
ore

oin
ks

sc
ors

oin
ks

sc
ofs

oin
ks

sc
ora

oin
ks

ac
ors

oin
ks

wile
sc

za
rs

wile
sc

zd
rs

wile
sc

zs
rs

0.0
0.2
0.4
0.6
0.8
1.0

am
os

qa
lls

am
os

ga
lls

se
as

rum
ba

se
as

run
ba

sh
ae

nju
mpy

sh
ee

nju
mpy

eh
ee

nju
mpy

sh
se

nju
mpy

sc
ats

sc
ou

t

sc
ata

sc
ou

t

ac
ats

sc
ou

t

synthetic data generative model sets an empirical cornerstone
for future theory that quantifies and bounds the impact of
model mismatch on neural network and approximate inference
performance.

ACKNOWLEDGMENTS

Tuan Anh Le is supported by EPSRC DTA and Google
(project code DF6700) studentships. Atılım Güneş Baydin and
Frank Wood are supported under DARPA PPAML through
the U.S. AFRL under Cooperative Agreement FA8750-14-2-
0006, Sub Award number 61160290-111668. Robert Zinkov
is supported under DARPA grant FA8750-14-2-0007.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[2] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best
practices for convolutional neural networks applied to

visual document analysis,” in Proceedings of the Seventh
International Conference on Document Analysis and
Recognition - Volume 2, ser. ICDAR ’03. Washington,
DC: IEEE Computer Society, 2003, pp. 958–962.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in Neural Information Processing Systems,
2012, pp. 1097–1105.

[4] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zis-
serman, “Synthetic data and artificial neural networks
for natural scene text recognition,” arXiv preprint
arXiv:1406.2227, 2014.

[5] ——, “Reading text in the wild with convolutional neural
networks,” International Journal of Computer Vision,
vol. 116, no. 1, pp. 1–20, 2016.

[6] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic Data
for Text Localisation in Natural Images,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 2315–2324.

[7] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and
V. Shet, “Multi-digit number recognition from street
view imagery using deep convolutional neural networks,”
arXiv preprint arXiv:1312.6082, 2013.

[8] L. von Ahn, B. Maurer, C. McMillen, D. Abraham,
and M. Blum, “reCAPTCHA: Human-based character
recognition via web security measures,” Science, vol.
321, no. 5895, pp. 1465–1468, 2008.

[9] F. Stark, C. Hazırbaş, R. Triebel, and D. Cremers,
“Captcha recognition with active deep learning,” in
GCPR Workshop on New Challenges in Neural Com-
putation, Aachen, Germany, 2015.

[10] Z. Wang, J. Yang, H. Jin, E. Shechtman, A. Agarwala,
J. Brandt, and T. S. Huang, “Deepfont: Identify your
font from an image,” in Proceedings of the 23rd ACM
international conference on Multimedia. ACM, 2015,
pp. 451–459.

[11] S. J. Gershman and N. D. Goodman, “Amortized infer-
ence in probabilistic reasoning,” in Proceedings of the
36th Annual Conference of the Cognitive Science Society,
2014.

[12] T. A. Le, A. G. Baydin, and F. Wood, “Inference compi-
lation and universal probabilistic programming,” in 20th
International Conference on Artificial Intelligence and
Statistics, April 20–22, 2017, Fort Lauderdale, US, 2017.

[13] B. Paige and F. Wood, “Inference networks for sequential
Monte Carlo in graphical models,” in Proceedings of the
33rd International Conference on Machine Learning, ser.
JMLR, vol. 48, 2016.

[14] G. Papamakarios and I. Murray, “Fast ε-free inference
of simulation models with Bayesian conditional density
estimation,” arXiv preprint arXiv:1605.06376, 2016.

[15] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Er-
han, I. Goodfellow, and R. Fergus, “Intriguing properties
of neural networks,” arXiv preprint arXiv:1312.6199,
2013.

[16] A. Gelman and C. R. Shalizi, “Philosophy and the
practice of Bayesian statistics,” British Journal of Math-
ematical and Statistical Psychology, vol. 66, no. 1, pp.
8–38, 2013.

[17] E. Bursztein, J. Aigrain, A. Moscicki, and J. C.
Mitchell, “The end is nigh: generic solving of text-based
CAPTCHAs,” in 8th USENIX Workshop on Offensive
Technologies (WOOT 14), 2014.

[18] O. Starostenko, C. Cruz-Perez, F. Uceda-Ponga, and
V. Alarcon-Aquino, “Breaking text-based CAPTCHAs
with variable word and character orientation,” Pattern
Recognition, vol. 48, no. 4, pp. 1101–1112, 2015.

[19] H. Gao, W. Wang, Y. Fan, J. Qi, and X. Liu, “The robust-
ness of “connecting characters together” CAPTCHAs,”
Journal of Information Science and Engineering, vol. 30,
no. 2, pp. 347–369, 2014.

[20] H. Gao, W. Wang, J. Qi, X. Wang, X. Liu, and J. Yan,
“The robustness of hollow CAPTCHAs,” in Proceedings
of the 2013 ACM SIGSAC Conference on Computer &
Communications Security. ACM, 2013, pp. 1075–1086.

[21] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford,
“CAPTCHA: Using hard AI problems for security,” in
International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 2003, pp. 294–
311.

[22] V. Mansinghka, T. D. Kulkarni, Y. N. Perov, and
J. Tenenbaum, “Approximate Bayesian image interpre-
tation using generative probabilistic graphics programs,”
in Advances in Neural Information Processing Systems,
2013, pp. 1520–1528.

[23] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show
and tell: A neural image caption generator,” in Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 3156–3164.

[24] A. Karpathy and L. Fei-Fei, “Deep visual-semantic align-
ments for generating image descriptions,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 3128–3137.

[25] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[26] S. Reed and N. de Freitas, “Neural programmer-
interpreters,” in International Conference on Learning
Representations (ICLR), 2016.

[27] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7:
A matlab-like environment for machine learning,” in
BigLearn, NIPS Workshop, 2011.

[28] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in International Conference on Learning
Representations (ICLR), San Diego, US, 2015.

[29] F. Wood, J. W. van de Meent, and V. Mansinghka, “A
new approach to probabilistic programming inference,” in
Proceedings of the Seventeenth International Conference
on Artificial Intelligence and Statistics, 2014, pp. 1024–
1032.

[30] E. Bursztein, M. Martin, and J. Mitchell, “Text-based
CAPTCHA strengths and weaknesses,” in Proceedings
of the 18th ACM Conference on Computer and commu-
nications security. ACM, 2011, pp. 125–138.

[31] S. Sivakorn, I. Polakis, and A. D. Keromytis, “I am
robot: (deep) learning to break semantic image captchas,”
in 2016 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 2016, pp. 388–403.

[32] A. Doucet and A. M. Johansen, “A tutorial on particle
filtering and smoothing: Fifteen years later,” Handbook
of Nonlinear Filtering, vol. 12, no. 656-704, p. 3, 2009.

[33] R. D. Wilkinson, “Approximate Bayesian computation
(ABC) gives exact results under the assumption of model
error,” Statistical Applications in Genetics and Molecular
Biology, vol. 12, no. 2, pp. 129–141, 2013.

