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Abstract

Existing methods for structure discovery in time series data construct interpretable,
compositional kernels for Gaussian process regression models. While the learned
Gaussian process model provides posterior mean and variance estimates, typically
the structure is learned via a greedy optimization procedure. This restricts the
space of possible solutions and leads to over-confident uncertainty estimates. We
introduce a fully Bayesian approach, inferring a full posterior over structures,
which more reliably captures the uncertainty of the model.

1 Introduction
How much of the data science process can we automate? Many techniques such as random forests [1],
neural networks [12] and support vector machines [4] can deliver outstanding predictive performance
when used in an out-of-the-box fashion [7, 15], while the rise of so-called automated machine learning
[8] is providing increased automation of the full data-science pipeline. However, such methods tend to
focus only on predictive performance, giving crude estimates for uncertainty and providing negligible
human insight into the data generation process. Such approaches are not, in isolation, sufficient in the
strife for automated data science.

This paper focuses on automatic methods for model construction and selection in the context of
models built up compositionally from simple atomic parts [6, 10]. These models can be expressive
and powerful while still maintaining human interpretability, a key characteristic for automatic ML
systems that are to be trusted by end users. Specifically, our method builds upon automatic Bayesian
covariance discovery [13] (ABCD), which employs search over the kernel structure and parameters
of a Gaussian process [16] (GP) for regressing time series data.

We suppose that some time series data D = {(yn, xn) : n = 1, . . . , N} was generated by a
latent function f with additive Gaussian noise. We consider a GP prior f ∼ GP(0, kθ) for some
positive semi-definite kernel function kθ(x, x′) parametrised by a vector of hyperparameters θ =

(θ1, . . . , θP )
>. Noting that the set of positive semi-definite functions S+ has the property z, z′ ∈ S+

implies z + z′ ∈ S+ and z × z′ ∈ S+ [16], we define a space of kernels as the space of hierarchical
products and sums of base kernels b ∈ B. Here B consists of the linear (LIN), squared exponential
(SE), periodic (PER) and rational quadratic (RQ) kernels. ABCD selects a single kθ using a greedy
optimisation based search that maximises the marginal likelihood of the model.

We expand on this by integrating out kθ. In particular, we explore inferring the distribution over
possible kernel compositions, to provide better a better uncertainty estimate and allow exploration
of the multiple modes in the model space. Integrating out kθ has previously been attempted by
Schaechtle et al. [17] in a restricted setting, where set of possible kernel combinations is finite and
heavily limited; we extend this to use a true stochastic context-free grammar as a prior on kernel
structure. Our approach is implemented within the probabilistic programming framework of Anglican
[18], allowing integration with other systems in a probabilistic modelling pipeline.
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Figure 1: Regression of the Maunu Lao CO2 dataset [16]. Models are trained on data from 1957
through 1983 (red line); we compare the extrapolation to collected data from 1984 through 2000.
Median plotted, 10-90 percentile region shaded. (1a) The learned best-fit model and model parameters
using ABCD fits the training data closely, but yields overconfident predictions in the extrapolation.
(1b) Averaging over multiple plausible models yields better-calibrated uncertainty estimates.
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Figure 2: Three particles generated in our approach demonstrate how competing explanations,
differing both in kernel structure and kernel parameters, combine to produce posterior estimates.

2 Model & inference
Given a prior distribution over the kernel p(k, θ) = p(k)p(θ|k), where k denotes the composite
kernel structure and θ the kernel parameters, and assuming a Gaussian process prior p(f |D, k, θ), the
posterior for predictions y? at x? can be written as

p(y?|x?,D) =
∫∫

p(k, θ)

[∫
p(y?|x?, f)p(f |D, k, θ) df

]
dk dθ. (1)

Taking p(y?|x?, f) to be a Gaussian likelihood, the integral over f can be computed in closed form.
The key task is thus to define a suitable kernel prior and perform integration over k and θ. Using a
sampling based system for this integration produces a weighted mixture of GPs posterior, retaining
an analytic predictive distribution.

We define p(k) using a probabilistic context free grammar [14] with production rules R = {s →
s+ s|s× s|b ∈ B}, where s is a non-terminal symbol and b is a base kernel, and fixed context free
rule probabilities {pr : r ∈ R}. We use a separable prior on θ, p(θ|k) =

∏P
i=1 p(θi|k), with each

term determined by type of the hyperparameter θi and its corresponding base kernel in k. Jointly,
these define a generative model for kθ that we can sample from.

We marginalise over k and θ using a population Monte Carlo method [2] inspired by the use of
Monte Carlo methods in decision tree inference [3, 11]. We sample initial particles (kj , θj) for
j = 1, . . . ,M from the joint prior and repeatedly mutate them using a ‘resample-move’ algorithm
[9]. At each iteration, we propose a mutation to each particle, using both

1. changing the kernel structure by sampling an existing component base kernel b from the
composite kernel k and replacing it using one of: b + b′, b × b′, b or ∅, where b′ is a new
randomly chosen base kernel and ∅ indicates removing b from k; and

2. applying multiple Hamiltonian Monte Carlo (HMC) transitions to θ, given the composite
kernel k.
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This produces a new, modified set of particles drawn from a proposal distribution which can be
described as a mixture of Markov kernels; with appropriate weights [5], we can perform a resampling
step to construct a new particle set which again approximates the posterior. Posterior predictive
comparisons to ABCD are shown in figure 1 and example individual particles are shown in figure 2.

3 Discussion

We have developed a fully probabilistic approach to structure discovery in time series and imple-
mented it in Anglican. Through capturing the uncertainty in both the structure of the kernel and the
hyperparameters, the system provides better calibrated uncertainty estimates than previous greedy
optimisation approaches. The system allows for the posterior distribution over models to be inspected
to get an understanding of how and why the system has made its predictions; one can think of the
produced samples as providing different possible explanations for the data generation. Thus, the
system provides not only a powerful regressor in a rich class of models, but also interpretable output.
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