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Abstract

The analysis of extra-cellular neural recordings typically begins with careful spike
sorting and all analysis of the data then rests on the correctness of the resulting spike
trains. In many situations this is unproblematic as experimental and spike sorting
procedures often focus on well isolated units. There is evidence in the literature,
however, that errors in spike sorting can occur even with carefully collected and
selected data. Additionally, chronically implanted electrodes and arrays with fixed
electrodes cannot be easily adjusted to provide well isolated units. In these situa-
tions, multiple units may be recorded and the assignment of waveforms to units may
be ambiguous. At the same time, analysis of such data may be both scientifically
important and clinically relevant. In this paper we address this issue using a novel
probabilistic model that accounts for several important sources of uncertainty and
error in spike sorting. In lieu of sorting neural data to produce a single best spike
train, we estimate a probabilistic model of spike trains given the observed data. We
show how such a distribution over spike sortings can support standard neuroscien-
tific questions while providing a representation of uncertainty in the analysis. As a
representative illustration of the approach, we analyzed primary motor cortical tun-
ing with respect to hand movement in data recorded with a chronic multi-electrode
array in non-human primates. We found that the probabilistic analysis generally
agrees with human sorters but suggests the presence of tuned units not detected by
humans.
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1 Introduction

A “spike train” is a temporal sequence containing the times of all action poten-
tials for a given cell. Such spike trains are central to the analysis of neural data
and are generated from electrophysiological recordings by a process called spike
sorting (see, for example, (Lewicki, 1998) for a review). Spike sorting involves
detecting all action potentials that occur in a neurophysiological recording
and labeling them to indicate from which neuron each came. In this paper we
present a new approach to spike sorting that differs from almost all prior art
in that no single best spike train is sought. Instead a distribution over spike
trains is estimated which allows us to express uncertainties that arise during
the spike sorting process and in the results of neural data analysis . To do so
we expand on the infinite Gaussian mixture model spike sorter of Wood et al.
(2004a) and illustrate how it can be used as a model of spike trains.

We are motivated by traditional neural data analyses that rest on the accu-
racy of spike trains. Among many others these include hypothesis tests about
single cells or population characteristics, and decoding from single or mul-
tiple neurons. Currently it is typical in such problems to assume that the
spike trains upon which the analysis is based are unambiguously correct. In
other words, any uncertainties that might have arisen during the conversion
from an analog voltage trace to a discrete spike train are ignored. While it is
common practice to report in published results the spike sorting methodology
employed and signal to noise ratios for analyzed data, this does not readily
admit a quantification of the uncertainty in any conclusions based on the data.
Unfortunately several studies have demonstrated that spike sorting is not al-
ways unambiguous and that expert human spike sorters can, and do, produce
spike trains that vary extensively (Harris et al., 2000; Wood et al., 2004a).
The effect of such variability is not widely reported and is not commonly an-
alyzed. Many analyses consequently rely on only well isolated, and hence less
ambiguous neurons. This, of course, may limit both the kind and amount of
data that can be analyzed.

We argue that new statistical tools are needed to make the analysis of such
ambiguous neural data practical. In particular there are situations in which
discarding data that is potentially ambiguous may be undesirable or impracti-
cal. An example of this involves chronically implanted human and non-human
primates where one might expect the implanted recording device to work for
years without post-implant adjustment. Chronic recordings can yield a wealth
of information but may contain poorly isolated units (Joshua et al., 2007)
which may in turn produce waveforms that are difficult to sort unambigu-
ously. For human neural prostheses in particular, it in may be important to
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make the best of the available signal, even if it is ambiguous.

The proposed nonparametric Bayesian approach differs significant from typi-
cal automated spike sorting approaches. Our aim is not a new and improved
automated spike sorter like those proposed by Nguyen et al. (2003); Shoham
et al. (2003); Wood et al. (2004b); Hulata et al. (2002); Lewicki (1998); Taka-
hashi et al. (2003); or Sahani et al. (1998). These previous methods attempt
to produce a single “best” spike train given a recording. Rather than try to
remove the inherent uncertainty we develop a probabilistic model to represent
it explicitly and automatically account for its effect on spike train analysis.
The approach enables the evaluation of the confidence in neural data analysis
outcomes with respect to spike sorting variability.

In this paper we apply non-parametric Bayesian estimation and inference tech-
niques to the problem of spike sorting. Specifically we develop an infinite
Gaussian mixture model (IGMM) (Rasmussen, 2000) in which the number of
units present on a recording channel does not need to be known a priori. In
Nguyen et al. (2003) a similar approach was taken, and we, like them, demon-
strate that our approach is a practical improvement over traditional Gaussian
mixture model spike sorting. In Nguyen et al. (2003) maximum a posteriori
model estimation was used to learn the number of neurons in a recording.
Our approach is similar in that we too estimate how many neurons are in the
recording, but we go one step further and suggest how to use a probabilistic
model to express spike sorting uncertainty in subsequent spike train analyses.

Like in Nguyen et al. (2003) and many other spike sorting papers we restrict
our focus to a subproblem of the overall spike sorting problem. In particu-
lar our focus is on the process of determining from which neuron, out of an
unknown number of neurons, each action potential arose based on action po-
tential waveshape alone. In doing so we overlook the problem of spike detection
and instead refer readers to Radons et al. (1994) for treatment of that topic.
Additionally we ignore the problem of detecting overlapping spikes (decon-
volving coincident action potentials) here referring readers to the work of Fee
et al. (1996) and Görür et al. (2004). Finally, our analysis here does not take
into account the refractory period of a cell. In principle, however, the Bayesian
framework developed here can be extended to model these additional aspects
of the problem.

Finally, the method is illustrated with an analysis of action potentials recorded
from primary motor cortex in a monkey performing reaching tasks. Specifically
we present an analysis of direction tuning in units recorded using a chronically
implanted micro-electrode array. We demonstrate how our method allows us
to make use of all of the recorded data by accounting for spike sorting uncer-
tainty. The modeling consequence of our approach is that, given a recording,
we build a distribution over tuning directions. This stands in contrast to the
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Fig. 1. Example spike sorting problem. Spiking data for six chronically implanted
electrodes are shown. Spike waveforms are projected onto the first two principal
component directions; each dot represents a single spike. Left: unsorted data. Right:
human sorted (light and dark blue indicate a “spike” while black undicates that the
datapoint was deemed too ambiguous to sort).

typical finding of a single direction for each manually identified unit. Evidence
gleaned from examining the estimated model suggests that additional, poten-
tially valuable information can be extracted from suboptimal neural data by
accounting for spike sorting uncertainty in the way we suggest.

The following section briefly summarizes the data used here. Section 3 in-
troduces notation and reviews finite Gaussian mixture modeling. Section 4
reviews infinite Gaussian mixture modeling and two kinds of IGMM estima-
tion, one batch algorithm and a second “sequential” or “iterative” algorithm.
Section 5 then uses the IGMM to analyze neural signals.

2 Spike Sorting

Suppose that we have N action potential waveforms from a single-channel
neurophysiological recording R = [~t1, . . . ,~tN ], where each waveform is repre-
sented by a vector of n = 40 voltage samples, ~ti = [t1i , . . . , t

n
i ]T ∈ Rn. Our

goal is to build a posterior distribution over sortings of this recording; a dis-
tribution which simultaneously represents how many neurons are present and
which waveforms came from which neurons.

Instead of clustering the waveforms in the high dimensional (n = 40) space, we
cluster a reduced dimensionality representation of the waveforms, where each
~ti is represented in a lower dimensional basis obtained via principal component
analysis (PCA). Given a set of recordings we perform PCA and keep only the
first D = 2 eigenvectors characterizing the largest variance in the data and
approximate a waveform as ~ti ≈ µ+

∑D
d=1 yd

i ~ud. Here µ is the mean waveshape
in R, ~ud is the dth PCA basis vector, and the yd

i are linear coefficients. The
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projection of six channels of monkey motor cortical data onto the first two
PC’s is shown in Figure 1 (left). A detailed description of this data is given
in Section 5.

The human sorting, Figure 1 (right), was performed using offline spike sorting
software (Plexon Inc., 2003). Note that in this case, the sorter appears to
have been quite conservative and many of the waveforms were deemed too
ambiguous to include in subsequent analysis. We will return to this example
later in the paper.

Our spike sorting algorithm clusters the low dimensional representation of
the waveforms Y = [~yi, . . . , ~yN ] rather than the full waveforms, so, for the
remainder of this paper, when we write “event”, “spike”, or “waveform” it
should be read as shorthand for “low dimensional waveform representation”.

We follow Lewicki (1998) in making the common assumption that the distribu-
tion of waveforms from a single neuron is well approximated by a multivariate
Gaussian.

3 Finite Gaussian Mixture Modeling

A finite Gaussian mixture model (GMM) is a latent variable probabilistic
model formed by adding together weighted Gaussians. Finite GMM’s are fre-
quently used because they can both approximate arbitrary multi-modal prob-
ability densities and cluster data if the latent variables are interpretted as
class labels.

In spike sorting this interpretation of the latent variables is crucial. Each
neuron is identified by its mean action potential waveform and the statistics
of how this waveform varies between spikes. The Gaussian assumption means
that only second order statistics of waveform variability are accounted for
(by a per-neuron covariance matrix). The semantics of the Gaussian mixture
model are such that each individual waveform is seen as being generated from
a single stochastically chosen neuron. The traditional Gaussian mixture model
notation

P (~yi) =
K∑

k=1

P (ci = k)P (~yi|θk)

makes this intuition precise. Here K is the number of units present on the chan-
nel (assumed known and finite for now) and ci indicates from which neuron
each waveform arose (i.e. ci = k means that the ith waveform came from neu-
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ron k). P (ci = k) = πk represents the a priori probability that the waveform
was generated by neuron k. Finally the likelihood P (~yi|θk) is the generative
model of waveforms arising from neuron k. This is taken to be a multivariate
Gaussian with parameters θk for each neuron k.

For the remainder of the paper, we will specify this model with the following
notation

ci|~π∼Discrete(~π) (1)

~yi|ci = k; Θ∼Gaussian(·|θk).

The notation y|x; z ∼ f(y, x; z) means that y is conditionally distributed given
x and parameter z according to the probability density function f . Here by
“Gaussian” we mean the multivariate normal (MVN) density function and
by “Discrete” we mean the discrete (multinomial) distribution defined by a
vector whose entries sum to one.

Additionally we will sometimes utilize more general names for the variables in
this model. For instance, instead of “neuron” we will often write “class”. Thus
C = {ci}Ni=1 is the collection of all class indicator variables, Θ = {θk}Kk=1, is the
collection of all class parameters, θk = {~µk,Σk} are the mean and covariance
for class k, and ~π = {πk}Kk=1, πk = P (ci = k) are the class prior probabilities.

To use a GMM for spike sorting, one must estimate model parameters from the
data. Expectation Maximization (EM), introduced by (Dempster et al., 1977)
in general and Lewicki (1998) in the context of spike sorting, is a maximum
likelihood parameter estimation approach that can be used to estimate model
parameters in situations where there are missing or latent data. Here the
parameters of the model are Θ and ~π; C is a hidden (or latent) variable. Given
a set of waveforms Y our estimation task is to find the waveform means and
covariances Θ for each neuron and their relative firing rates, or equivalently
their prior probability, ~π.

Maximum-likelihood approaches such as EM all seek a single “best” model
of the data which is the intuitive thing to do if a single setting of the model
parameters is the quantity of interest. However there can be problems with
this approach, particularly if the objective being maximized leads to multi-
ple equivalently good models of the data. Also, some quantities, such as the
number of neurons in the recording (K) can be difficult to optimize explicitly,
leading to difficult model selection problems.

While it is common practice to try to find a single best model (with the
hope that this model corresponds to the ground truth), it may not always be
necessary or beneficial to do so. With respect to spike sorting, if the ultimate
data analysis goal is to reach some conclusion about the neural population
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recorded on a single channel (“Is there evidence of excess synchrony?”, “Does
this brain area have cells that are strongly correlated to some behavioural
stimulus?”, etc.) it may be possible to express the analysis in such a way
that its result can be averaged over multiple models (spike sortings). Then,
for instance in cases where determining the best model is difficult, it may be
beneficial to report an average result computed across multiple models of the
data. In other words, if a particular single channel recording is hard to spike
sort because of overlapping clusters (for instance), sorting it multiple times
and repeating the analysis using each different sorting will provide evidence
about the robustness of the particular analytical finding. This is both because
the distribution of results will tend towards the true distribution over results,
and also because a distribution over results allows confidence in the analysis
result to be reported.

One way to do this is to take a Bayesian approach to spike sorting. This
means that the model parameters will themselves be treated as random vari-
ables and that generative models for the parameters will be specified as well;
these being called “priors.” Thus, instead of estimating a single best model
(set of parameters), our goal will be to estimate a distribution over models
(parameters) instead. This is called the posterior distribution. As a reminder,
Bayes’ rule tells us that the posterior probability of a modelM given a set of
observations Y is proportional to the likelihood of the obervations under the
model P (Y|M) times the prior probability of the modelM

P (M|Y) ∝ P (Y|M)P (M). (2)

To estimate the posterior distribution we first have to specify a prior for all
of the parameters of the model. For both purposes of illustration and for use
in subsequent sections we follow Fraley and Raftery (2005) in choosing priors
of the following types for the model parameters: Dirichlet for ~π and Gaussian
times Inverse Wishart for the Gaussian parameters (Gelman et al., 1995).
These priors are chosen for mathematical convenience and interpretable ex-
pressiveness. They are conjugate priors 1 which will allow us to analytically
perform many of the marginalization steps (integrations) necessary in estimat-
ing the posterior distribution for this model. This choice of priors is denoted

~π|α∼Dirichlet(·| α
K

, . . . ,
α

K
) (3)

Θ∼G0

where Θ ∼ G0 is shorthand for

1 A prior is conjugate if it yields a posterior that is in the same family as the prior
(Gelman et al., 1995).
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Σk∼ Inverse-Wishartυ0(Λ
−1
0 ) (4)

~µk∼Gaussian(~µ0,Σk/κ0). (5)

The formulas for these distributions are widely available, e.g. in Gelman et al.
(1995). Here we give a brief overview of the modeling assumptions this par-
ticular choice of priors embodies. The Dirichlet prior is used to encode prior
knowledge about the number and relative activity of neurons in the record-
ing. In the finite model the number of neurons is assumed to be known and
is the same as the length of ~π. The parameters to the Dirichlet prior is a
vector of exactly the same length and, if parameterized uniformly as above,
says that all neurons are a priori equally likely to have generated every spike.
This uniform parameterization is chosen for mathematical convenience when
generalizing to unknown K; however, if K is somehow known a priori then
a more specific parameterization of the prior can be employed. For instance,
if it is known that there are three neurons in a particular recording and the
most active neuron produced 50% of the total activity in the recording and
the other two produced the remaining spikes in nearly equal proportion then
the Dirichlet prior should be initialized with some multiple of [.5 .25 .25] (i.e.
[500 250 250]). The specific values chosen encode how confident we are in our
prior. Each parameter of the Dirichlet prior is a count of pseudo-observations
that follow the pattern expressed in the prior. The higher the pseudo-counts
the more real data it takes to cause the posterior to deviate from the prior
and vice versa. In the uniformly parameterized case we can simply think of α
as a hyperparameter that indicates how confident we are that all neurons in
the recording are equally active.

The parameters of the Inverse-Wishart prior, H = {Λ−1
0 , υ0, ~µ0, κ0}, are used

to encode our prior beliefs regarding the action potential waveform shape and
variability. For instance ~µ0 specifies our prior belief about what the mean
waveform should look like, where κ0 is the number of pseudo-observations we
are willing to ascribe to our belief (in a way similar to that described above
for the Dirichlet prior). The hyper-parameters Λ−1

0 and υ0 encode the ways in
which waveforms are likely to vary from the mean waveform and how confident
we are in our prior beliefs about that.

We will refer to H as the hyperparameters of our model. In general these will
be specified by a user and not estimated from the data. these are not the only
choices that one could make for the priors.

A graphical model representing this model is shown in the middle of Figure 2.
This graphical model illustrates the conditional dependency structure of the
model. For instance πk is independent of yi given ci. In this figure circles indi-
cate random variables and boxes (plates) indicate repetition (with the number
of repetitions in the lower right). Links between variables indicate the assumed
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Fig. 2. From left to right: graphical models for a finite Gaussian mixture model
(GMM), a Bayesian GMM, and an infinite GMM

conditional dependency structure of the joint probability distribution. From
such a graphical model the joint distribution of the data and model parameters
can easily be read out. Here that joint distribution is is given by

P (Y , Θ, C, ~π, α;H) =

 K∏
j=1

P (θj;H)

( N∏
i=1

P (~yi|ci, θci
)P (ci|~π)

)
P (~π|α)P (α).

(6)

Applying Bayes rule and conditioning on the observed data we see that pos-
terior distribution is simply proportional to the joint (rewritten slightly)

P (C, Θ, ~π, α|Y ;H) (7)

∝P (Y|C, Θ)P (Θ;H)

(
N∏

i=1

P (ci|~π)

)
P (~π |α)P (α).

where P (Y|C, Θ) =
∏N

i=1 P (~yi|ci, θci
) and P (Θ;H) =

∏K
j=1 P (θj;H).

In Equation 7 the proportionality sign hides the marginal probability of the
data under the model (also called the “evidence”) which cannot be computed
analytically. In such cases Markov chain Monte Carlo (MCMC) methods such
as those reviewed in Neal (1993) can be used to obtain a discrete represen-
tation of the posterior by sampling from this unnormalized density. These
methods simulate a discrete Markov process whose equilibrium distribution
is the posterior distribution. Other posterior inference methods can be used
here, particularly the variational approach outlined in Jordan et al. (1999),
but in this work we will largely focus on MCMC methods.

Unfortunately we have not yet specified how we are going to get around the
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problem of needing to know the number of neurons in the recording, K, a
priori. Since varying the number of neurons in the model will certainly alter
spike sorting results and thereby spike train analysis results, we would either
like to be extremely certain that the number we choose is correct or ideally
we would like to be able to represent our uncertainty about the choice.

Our approach for dealing with an unknown K is “nonparametric Bayesian”
(NPB) modeling. NPB models are characterized by having infinite complexity.
In this case that means taking the limit of the model defined above as K →
∞, resulting in a mixture model with an infinite number of components. Of
consequence to the spike sorting problem, the posterior distribution in such a
NPB mixture model consists of infinite mixture model realizations that vary
in the number of realized (non-zero) mixture components. Put another way,
given a finite set of observations (spikes), any particular sorting can only have
a finite number of non-zero mixture components. Realizations from the infinite
mixture (samples) all have a finite number of components but the number and
characteristics of these non-zero components may vary.

4 Infinite Gaussian mixture model

We use a NPB model called the infinite Gaussian mixture model (IGMM)
which was developed by Rasmussen (2000). Towards understanding the IGMM
and how to apply it to the spike sorting problem note that the only terms
in Equation 7 that explicitly depend on K are P (ci|~π) and P (~π|α) as both
involve ~π whose dimensionality is K. Of course the likelihood P (Y|C, Θ) and
the class parameter prior P (Θ;H) also implicitly depend on K as it is the
number of hidden classes. This dependence on K is indirect however as both
the likelihood and the class parameter prior only need to be evaluated for
realized hidden classes (i.e. hidden classes to which at least one observation
(spike) is attributed).

The IGMM arises as K → ∞. While it is possible to work directly with
such infinite dimensional models it is easier to consider the limit of a Bayesian
mixture model having integrated ~π out. So, operating on P (ci|~π) and P (~π|α),
recognize that ~π can be marginalized out because the Dirichlet prior is conju-
gate to the discrete (multinomial) likelihood

P (C∞|α) =
∫

d~π
N∏

i=1

P (ci|~π)P (~π |α)

=

∏K
k=1 Γ(mk + α

K
)

Γ( α
K

)K

Γ(α)

Γ(N + α)
. (8)
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This expression is the joint probability of a single labeling of all observations.
Notice that permutating the labels assigned to sets of observations does not
change structure of the labeling, i.e. only the labels are switched around.
Because of this we would prefer a model that expresses the probability of
partitions of the data rather than a specific labelings per se. A partitioning of
the data is a grouping of the data into nonoverlapping subsets, each being sets
of spikes attributed to a neuron. The number of different ways of applying K
labels to a single partioning of the data with K+ < K bins is K!

(K−K+)!
. As every

one of these labelings has the same marginal probability under Equation 8 the
total probability of any one partitioning of the data is

P (C|α) =
K!

(K −K+)!

∏K
k=1 Γ(mk + α

K
)

Γ( α
K

)K

Γ(α)

Γ(N + α)
. (9)

where mk =
∑N

i=1 I(ci = k) is the number of items in class k (I() is the indicator
function) and Γ() is the Gamma function with Γ(α) = (α−1)Γ(α−1). Here K+

is the number of non-empty bins in the partitioning; this being equivalent to
the number of neurons that generated at least one action potential waveform
in the recording

It is the limit of this expression as K →∞ that turns the Bayesian GMM into
the IGMM (Rasmussen, 2000). The limiting expression (taken from Griffiths
and Ghahramani (2005)) is given here without derivation

P (C|α) = αK+

K+∏
k=1

(mk − 1)!

 Γ(α)

Γ(N + α)
. (10)

Given Equations 10 and 7 one can accomplish model estimation by sampling.
In fact Gibbs sampling, as developed in general by Geman and Geman (1984),
is possible in this model. A Gibbs sampler for this model requires an expression
for the conditional distribution of a single class label given the value of all of
the others. This conditional distribution is given here:

P (ci = k|C−i) =


mk

i−1+α
k ≤ K+

α
i−1+α

k > K+

. (11)

These equations characterize a process known as the Chinese restaurant pro-
cess (CRP) because of a story that illustrates the process (Pitman, 2002).
Repeated here, the story describes a method of sequentially seating customers
stochastically at tables in a Chinese restaurant with an infinite number of
tables: the first customer enters the restaurant and is seated at the first table.
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Subsequent customers enter the restaurant and are stochastically seated ac-
cording to the number of people already sitting at each table. If there are many
people already sitting at a table (i.e., mk, the number of customers sitting at
table k is large) then the probability of being seated at that table is high and
vice versa. However, there is always a small probability of being seated at a
table that has no current occupants; α/(i−1+α) where i is the number of the
current customer being seated. Seating arrangements drawn from this seating
process are distributed according to the density given in Eqn. 10.

The language of Chinese restaurants, tables, and customers can be directly
converted into the language of spike sorting. In spike sorting the restaurant
is a single recording, each table is a neuron, and each customer is an action
potential waveform. Bearing in mind that this is only the prior over assign-
ments of spikes to neurons, and does not take into account the likelihood at
all, the Chinese restaurant process story can be used to describe our model for
how spikes are attributed to neurons. Spikes enter the recording one at a time
and are attributed to a neuron according to how many spikes that neuron has
already emitted. Neurons that have been responsible for many spikes are more
likely to have new spikes attributed to them.

In the infinite Gaussian mixture model the generative view of this prior is that
the class identifiers for all N datapoints are first generated via the Chinese
restaurant process. Depending on α this will yield some stochastic number of
classes K+ < N . Observations from each class are then are generated from
each of K+ Gaussian densities whose parameters are each drawn independently
from the multivariate normal inverse Wishart (MVN-IW) prior.

Given this nonparametric Bayesian prior for our spike sorting model we need
now to perform posterior estimation; that is, determine a distribution over
classes and assignments given the observed spike waveforms. Here we review
two different samplers for doing so. The first corresponds to algorithm “three”
in Neal (1998), which itself derives from the work of Bush and MacEachern
(1996); West et al. (1994); MacEachern and Muller (1998), and Neal (1992).
The second is a sequential posterior estimation algorithm that corresponds to
the techniques in Fearnhead and Clifford (2003); Fearnhead (2004); Sanborn
et al. (2006) and is related to Wood and Griffiths (2007). The first we call
the collapsed Gibbs sampler (following Liu (2001)) because the latent class
parameters are integrated out and the sampler state consists of only the class
identifiers. In the language of spike sorting this means that we integrate out the
waveform means and covariances. It is an offline or batch sampling algorithm
requiring that the entire dataset be present. In contrast, the second algorithm
is a sequential posterior estimation algorithm, meaning that each observation
(spike) is processed once in sequence when estimating the posterior. This latter
type of model estimation makes online spike sorting possible.
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Algorithm 1 Collapsed Gibbs sampler for the IGMM

1: c1, . . . cN ∼ uniform-random-integer(1..N)
2: C0 ← {c1, . . . cN}
3: K+ = 0
4: for s = 1 : # samples do
5: Cs ← Cs−1

6: for i = 1 : N do
7: m−i ←

∑N
j=1 I(cj = ci)− 1

8: if m−i = 0 then
9: cj = cj − 1 ∀ j > i

10: K+ = K+ − 1
11: end if
12: sample ci ∼ P (·|C−i,Y , . . .) // Using Eqn’s: 13 and 15
13: if ci > K+ then
14: K+ = K+ + 1
15: end if
16: end for
17: sample α using a Metropolis or Gibbs step
18: end for

4.1 Collapsed Gibbs sampler

Remember that our goal is build an estimate of the posterior distribution for
the infinite Gaussian mixture model by using MCMC to draw samples from
the posterior; that is, we want to learn a distribution over spike sortings where
both the number of units and the assignments of spikes to units can vary.

Having chosen the multivariate-normal inverse Wishart prior for the multi-
variate normal class distributions makes it possible to analytically integrate
these parameters out yielding an expression for a posterior over only C

P (C|Y ;H) =
∫

dΘP (C, Θ|Y ;H)

∝P (C;H)
∫

dΘP (Y|C, Θ;H)P (Θ;H).

(12)

Remember that C are variables that indicate which neuron each spike came
from and Y are the spike waveforms themselves.

The advantage of analytically marginalizing out these parameters is that the
state space of the sampler is reduced. Typically this leads to faster convergence
of the sampler to the equilibrium distribution (Liu, 2001).
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For the collapsed Gibbs sampler in Algorithm 1 the sampler state consists of
C and α. The updates for the class labels are

P (ci = j|C−i,Y , α;H)∝P (Y|C;H)P (C|α)

∝
K+∏
j=1

P (Y(j);H)P (ci = j|C−i, α)

∝P (Y(j);H)P (ci = j|C−i, α)

∝P (yi|Y(j)\yi;H)P (ci = j|C−i, α) (13)

where Y(j)\yi is the set of observations currently assigned to class j except yi

(yi is “removed” from the class to which it belongs when sampling). Because
of our choice of conjugate prior we know that we know that P (yi|Y(j)\yi;H)
is multivariate Student-t (Gelman et al. (1995) pg. 88)

yi|Y(j)\yi;H ∼ tνn−D+1(~µn,Λn(κn + 1)/(κn(νn −D + 1))) (14)

where

~µn =
κ0

κ0 + N
~µ0 +

N

κ0 + N
ȳ

κn = κ0 + N

νn = ν0 + N

Λn =Λ0 + S +
κ0n

κ0 + N
(ȳ − ~µ0)(ȳ − ~µ0)

T

and D is the dimensionality of yi (D = 2 or 3 in our case). The subscript
νn − D + 1 indicates the number of degrees of freedom of the multivariate
Student-t distribution.

In Equation 11 there are two cases. The first case corresponds to attributing
a spike to one of the units that has already been identified in the recording.
The second case corresponds to positing a new unit and attributing the spike
to it. This means that Equation 13 splits into two cases as well.

We also must consider the probability of starting a new cluster (unit). This is
given by

P (ci > K+|C−i,Y , α;H)∝P (yi;H)P (ci > K+|C−i, α) (15)

In positing a new cluster, P (yi;H) has the same form as P (yi|Y(j)\yi;H)
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above; however, as there are no other observations the original hyperparame-
ters are used instead, i.e.

yi;H ∼ tν0−D+1(~µ0,Λ0(κ0 + 1)/(κ0(ν0 −D + 1))). (16)

For ease of reference the multivariate Student-t density function is given here

P (y) = tν(y|µ,W) =
Γ((ν + D)/2)

Γ(ν/2)νD/2πD/2
|W|1/2(1+

1

ν
(y−µ)TW−1(y−µ))−(ν+D)/2

4.2 Sequential posterior estimation

An appealing property of the nonparametric mixture modeling approach to
spike sorting and spike train modeling is that sequential posterior estimation
is possible. In spike sorting, sequential posterior estimation means that esti-
mation of the posterior distribution is accomplished by processing each spike
once in sequence. In the IGMM this is possible because the prior on C yields
an analytic expression for the conditional distribution of the label of a single
observation given the labels for all of the others, P (ci|C−i).

To explain this, recall that ~yi is the ith observation, and let Y(1:i) be all observa-
tions up to and including the ith (similarly for the class identifiers C(1:i)). Note
that this superscript notation means something different than it did in the
previous section. Also remember that it is easy to sample from P (ci|C(1:i−1));
to do so, sample the ith class identifier given the first i − 1 identifiers di-
rectly from the prior (using Equation 11). Applying Bayes’ rule we write the
unnormalized posterior of C(1:i) given Y(1:i) in the following way

P̂ (C(1:i)|Y(1:i)) ∝ P (~yi|C(1:i),Y(1:i−1))P (ci|Y(1:i−1)).

Since we can evaluate P (~yi|C(1:i),Y(1:i−1)), we can obtain weighted samples
from the normalized posterior P (C(1:i)|Y(1:i)) using importance sampling with
a proposal distribution of

P (ci|Y(1:i−1)) =
∑

∆C(1:i−1)

P (ci|C(1:i−1))P (C(1:i−1)|Y(1:i−1))

≈
L∑

l=1

w
(1:i−1)
{l} P (ci|C(1:i−1)

{l} )
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Algorithm 2 Particle filter posterior estimation for the IGMM

1: C(1)
{:} ← 1

2: for i = 2 : N do
3: for l = 1 : L do
4: sample C(i)

{l} ∼ P (C(i)
{l} = k|C(1:i−1)

{l} ) // Using Eqn. 11

5: calculate weight ω
(i)
{l} ∝ P (Y(i)|C(1:i)

{l} ,Y(1:i−1), . . .) // Using Eqn.’s 13
and 15

6: end for
7: normalize the weights ω

(i)
{l} ← ω

(i)
{l}/

∑L
j= ω

(i)
{j} ∀ l

8: C(i)
{:} ← resample(ω

(i)
{:}, C

(i)
{:})

9: end for

where w
(1:i)
{l} is the weight for the lth sample having integrated i observations

into the model, C(1:i)
{l} is the corresponding sample and ∆C(1:i−1) is shorthand

for all possible assignments of labels 1 through i − 1. “Particle filtering” is
the name given to sequential density estimation approaches of this form. In a
particle filter, a set of L weighted “particles” (the samples and weights) are
used to form a discrete representation of the distribution of interest (here the
posterior distribution over class identifiers given observations)

{w(1:i−1)
{l} , C(1:i−1)

{l} } ≈ P (C(1:i−1)|Y(1:i−1)).

These particles are updated once per observation in sequence. The discrete
particle representation of the posterior distribution is an approximation in
the traditional Monte Carlo integration sense. As the number of particles goes
to infinity, averages over the discrete representation converge to expectations
of the true distribution; that is, for some function g()

lim
L→∞

L∑
l=1

w
(1:i−1)
{l} g(C(1:i−1)

{l} ) = EP (C(1:i−1)|Y(1:i−1))[g]

=
∑

∆C(1:i−1)

P (C(1:i−1)|Y(1:i−1))g(C(1:i−1)) (17)

Refering to Algorithm 2 and noting that P (~yi|C(1:i),Y(1:i−1)) is given by Equa-
tion 14 for existing clusters and Equation 16 for putative new clusters this
completes the mathematical description of the basic particle filter.

The resampling step used in sequential importance resampling particle filters
(Doucet et al., 2001) ( the function “resample” in Algorithm 2) helps but does
not completely alleviate a problem with particle filtering for Dirichlet process
mixture models (Fearnhead and Clifford, 2003) known as weight degeneracy.
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To get around this weight degeneracy problem we follow Fearnhead and Clif-
ford (2003) in adopting a resampling strategy that ensures a well distributed
particle set. In Fearnhead and Clifford (2003) we are reminded that these two
particle sets are equivalent

1

3
, {1, 2, 1}; 1

3
, {1, 1, 1}; 1

3
, {1, 1, 1}

and
1

3
, {1, 2, 1}; 2

3
, {1, 1, 1}

where here the fraction represents the weight given to each particle and the
three integers in the brackets are the particles which themselves indicate the
class labels given to three hypothetical observations. Clearly, the second rep-
resentation is more efficient in that it requires fewer particles to represent the
distribution with the same accuracy. This efficiency is merely a product of the
measure being weighted rather than unweighted.

While the details of the exact methodology are available in Fearnhead and
Clifford (2003), we give here a brief accounting for IGMM’s. In the step in
which the class label for the ith observation is sampled from the CRP prior we
need not restrict ourselves to sampling only a single new class label from the
prior. In this model it is possible to exhaustively enumerate all possible values
of ci|C−i (i.e. no sampling from the prior, merely enumerating all possible
next labels). Doing this generates a particle set of size M from the original N
particles where M > N , with each particle replicated as many times as the
number of pre-existing unique labels in the particle plus one to account for the
possibility of the new observation having been generated by an as yet unseen
latent class. Weights for each of these particles can be computed as before
using Equations 13 and 15, only now computing M instead of N weights.
Having increased the diversity and cardinality of our particle set we now must
down-sample the representation to avoid exponential growth in the number of
particles. One can resample N particles directly from this discrete distribution;
however in Fearnhead and Clifford (2003) a resampling algorithm is developed
that is provably optimal in terms of preserving the expected Monte Carlo
integration error in expectations using the reduced particle set. Additionally,
their approach limits the number of times a particle can be selected in the
down-sampling step to one which yields an optimally diverse particle set. A
consequence of their approach is that the particle set is no longer unweighted
after resampling like it is in regular particle filtering.

In all of our experiments where we report results for particle filter posterior
estimation the approach of Fearnhead and Clifford (2003) is used to resample
the particle set.
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5 Experiments

Having introduced the IGMM for spike sorting in the previous section it re-
mains to demonstrate its utility in performing neural data analysis. In par-
ticular, we show how this model represents uncertainty in the assignment of
waveforms to units and demonstrate how this uncertainty can be incorporated
into the analysis of neural signals. In particular we use our NPB spike train
model to study the encoding properties of motor cortical neurons. Our aim is
to show how the IGMM posterior distribution over spike trains allows us to
analyse neural data in a new way, potentially utilize data that might otherwise
not be utilized, and to express (un)certainty in our conclusions.

We start by describing two primate motor cortical datasets analyzed here.
Both were recorded from the same monkey but on two different dates over
a year apart. The tasks performed by the monkey on each occasion were
different; the first was the “pursuit tracking” task described by Wu et al.
(2005) and the second was the “pinball” task described by Serruya et al.
(2003). In the discussion and results these datasets will be distinguished by
task name.

Both the pursuit tracking task and the pinball task are voluntary arm move-
ment tasks. In the pursuit tracking task the objective was to track a continu-
ously moving target on a computer monitor by moving a manipulandum on a
2D surface. Both the target and a cursor representing the current manipulan-
dum location were shown to the monkey. In the pinball task the task objective
was to acquire (move a cursor onto) a sequence of targets that appeared se-
quentially at random points in the space reachable by the manipulandum. This
can be seen as a generalization of the center-out reaching task commonly uti-
lized in the motor control literature. The pursuit tracking dataset consisted of
ten trials each containing approximately five to ten seconds of movement. The
pinball task dataset consisted of fifty trials each consisting of approximately
the same movement duration.

For both tasks the firing activity of a population of cells was recorded from
a chronically implanted microelectrode array manufactured by Cyberkinetic
Neurotechnology Systems, Inc. from which six electrodes were selected for
analysis. The interelectrode spacing in these microelectrode arrays is large
enough that each recording electrode is independent. Threshold crossing events
(waveforms) were saved on all channels along with the time at which they
occured. The thresholds were empirically set by the experimenter at the time
of recording to exclude non-neural waveforms from being captured. Following
application of the waveform dimensionality reduction procedure given above to
each channel individiually, the waveforms from the pursuit tracking task were
projected onto the first two PCA basis vectors accounting for on average 66%
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of the waveform variance (51%, 87%, 69%, 78%, 58%, and 55% per channel
respectively, all rounded to the nearest percent). The waveforms for the pinball
data were projected onto the first three PCA basis vectors accounting for on
average 56% of the total waveform variance ( 59%, 72%, 52%, 54%, 54%, and
47% per channel)

Both datasets were sorted three ways, 1) expectation maximization with finite
Gaussian mixture models and Bayesian information criterium model selection
(we refer to this as the maximum likelihood approach), 2) IGMM with Gibbs
sampling, and 3) with sequential (particle filter) posterior estimation. The
hyperparameters chosen for the IGMM were the same for both datasets, µ0 =
[0 0], κ0 = .2, Λ0 = diag(.1), and ν0 = 20 (for the pinball data µ0 and Λ0 were
appropriately sized for three dimensional observations).

Sorting results for the the pursuit tracking data are shown in Figure 3 and for
the pinball data in Figure 5. Both of these figures are divided into six sections
by thin black lines. We refer to these sections as panels. The upper left panel
in both figures shows the six selected channels before spike sorting. Each dot
is the projection of one waveform onto the first two principal components.
The upper right panel shows a manual labeling of the data. In this panel the
color black is significant as it indicates waveforms that were identified by the
human sorter as being too ambiguous to sort. The left panel in the second row
is the maximum likelihood solution. The remaining three panels illustrate the
posterior distribution over labelings induced by the IGMM. Each of these three
panels is one sample from the IGMM posterior, where each sample represents
one complete sorting of the data. Looking closely one can see that many of the
individual waveform labels change from one sample to another as both new
and different neurons are posited and individual waveforms are attributed.

We also provide plots that illustrate how uncertainty is represented by this
model in Figures 4 and 6. Both figures redisplay the unsorted (unlabeled)
data for ease of reference along with a plot that illustrates the relative (to
the dataset) uncertainty of the label given to each datapoint. This plot was
produced by computing the entropy of the marginal distribution over class
identity at every point. The higher the entropy of a point’s labeling the hotter
the color assigned (black → red → orange → yellow → white). Points that
are nearly white have label distributions that have high entropy which means
that the cluster to which they are attributed is uncertain under the model.

To evaluate the applicability of the model for neural data analysis we use it to
investigate movement direction tuning properties of motor cortical neurons.
We show how our model helps us to use all of the available data and allows
us to display our confidence in our findings as well.

In Georgopoulos et al. (1982) it was established that neural firing rates in
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Fig. 3. Results from sorting six channels of the pursuit tracking neural data using
different techniques. Projections of waveforms from channels 1-6 onto the first two
principal component directions are shown in each of the six panels. The top left
panel shows the unsorted waveforms, the top right shows a manual labeling (the
black points are not assigned to any neuron), the left panel in the second row shows a
maximum likelihood labeling, and the remaining three are samples from the IGMM
posterior.
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Fig. 4. Uncertainty in the sorting of the pursuit tracking neural data. Channels 1-6
are shown in both panels. On the left is the unsorted data, on the right the same
points are plotted but with colors that indicate how uncertain the cluster label
for that point is (the entropy of the conditional label distribution over labels for
that point). Black means certain; red, orange, and yellow through white mean more
uncertain.

primate motor cortex change in response to the direction of hand movement in
two dimensional movement tasks. The direction that evokes a cell’s maximum
firing rate is called its preferred direction. Furthermore they found that the
firing rate of a cell is higher for movement in directions near a cell’s preferred
direction and falls off smoothly as a function of the difference between the
direction of movement and the cell’s preferred direction. It was shown that
a cosine function (cosine tuning curve) fit the relationship between average
firing rate and movement direction well. The preferred direction for a cell may
be established by cosine regression and differentiation.

The right panel of Figure 7 shows a visualization of the distribution over pre-
ferred directions for the pursuit tracking neural data. Both panels of Figure 7
have the same row and column ordering as the panels in Figure 3. The red
dashed lines indicate the estimated preferred directions for the manual label-
ing. The solid black lines of varying length protruding like spines out from the
circle are a visualization of a marginal of the estimated IGMM posterior dis-
tribution. The length of each of these lines is proportional to the normalized
count of the number of times a cell with a given preferred direction was found
in the posterior distribution.

To be more concrete, remember that the posterior distribution of the IGMM
can be thought of as a collection of different sortings. For each sorting the pre-
ferred directions for all posited cells were determined. The normalized count of
the number of times a cell with a given preferred direction was found was com-
puted by dividing the total number of times a cell with a particular preferred
direction was posited by the number of cells identified in all of the posterior
samples (sortings). This we call the marginal distribution over cell preferred
directions. It indicates the level of certainty one can have in concluding that
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Fig. 5. Results from sorting six channels of the pursuit tracking neural data using
different techniques. See the caption of Figure 3.

a cell with a certain preferred direction exists on the channel.

Remember that the red dotted lines indicate the preferred directions of the
neurons identified by the human sorter. In the right panel of Figure 7 the
middle row and first column of the third row have no red dotted lines. This is
because the human sorter did not have enough confidence in the separability
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Fig. 6. Uncertainty in the sorting of six channels of pinball neural data. See the
caption of Figure 4.

Fig. 7. On the left: human sorted waveforms from the pursuit tracking task. On the
right: preferred direction distributions for the pursuit tracking channels. The solid
black line in the circle indicates movement to the right. The dashed red lines indicate
the preferred direction of cells identified in the manually sorted data. The radial
ticks outside of the circle are the normalized histogram of cell preferred direction
counts from the IGMM posterior.

of the cell to include it in subsequent analyses. The IGMM spike train model,
on the other hand, reveals evidence that there are directionally tuned cells
on each of these channels. Moreover, the spread of these marginals provides
evidence for how well the detected units fit the cosine tuning model. In some
cases the tuning is very precise, indicated by a tight peak, and in others it is
much more diffuse. Knowledge of this may be useful for decoding algorithms
that exploit cosine tuning.

We note from this that 1) the distribution of preferred directions include the
directions found in the human sorted data; 2) several channels suggest clear
tuning where the human found the waveforms too uncertain to sort; and 3)
several channels contained evidence for additional putative tuned units beyond

23



those found by the human.

6 Discussion

We have presented a new way of thinking about spike sorting and uncertainty
in spike sorting. Rather than seek a single best spike sorting, we represent a
distribution over sortings and apply this to the analysis of neural signals. The
spike sorting results and example analysis from the previous section suggest
that our NPB approach will aid in neural data analysis by virtue of modeling
some types of spike sorting uncertainty. Although we show only a simple exam-
ple analysis, it should be clear that the extra information about spike sorting
uncertainty captured by our model would be of use in many other types of
neural data analysis. It is worth noting that this analysis is fully automatic.

There are a number of ways in which our model can be extended and improved.
One extension to consider is directly modeling the raw voltage trace. Because
our model does not extend to spike detection, clearly not all variability arising
in the spike sorting process can be captured by our model. Additionally, as
we do not model overlapping spikes, it would be desirable to extend it by
integrating the work of Görür et al. (2004) on mixtures of factor analyzers for
modeling overlapping waveforms. Our model also does not explicitly exclude
spikes from occurring in the refractory period, i.e. two spikes can be generated
by the same “neuron” under our model even if the time between them is less
than a few milliseconds. Extending this model to exclude refractory period
violations is also feasible. Likewise our model can be extended to account for
changing spike waveshape.

Lastly, for long term chronic spike sorting applications such as unattended
neuroprostheses, disappearance and appearance of classes should be modeled.
In its current form the model cannot handle disappearance and appearance
of new neurons. This is possible to do by leveraging the dependent Dirichlet
process work of Srebro and Roweis (2005) and Griffin and Steel (2006). Doing
so will make application of nonparametric spike sorting models to chronic
spike sorting applications realistic.

While these avenues for improvement are important to pursue as the applica-
bility of this particular nonparametric spike sorting approach is limited to a
subset of neural data analyses (for instance, tests for excess synchrony would
be an inappropriate use of our model because in its current form overlapping
waveforms are not detected), it still remains that this IGMM approach to spike
sorting is a significant step towards accounting for spike sorting uncertainty
in analyses of neural data. While our approach is similar in this respect to
Nguyen et al. (2003), they did not demonstrate the utility of the full posterior
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distribution. Furthermore, the IGMM posterior estimation approach is simpler
to implement and admits a sequential estimation variant.

Beyond accounting for spike train variability arising from spike sorting uncer-
tainties, particle filter posterior estimation makes sophisticated online spike
sorting possible, a long time goal of the community. Looking towards a future
in which online IGMM spike sorting is computationally practical (specialized
software and/or dedicated hardware would be necessary to achieve this now)
reveals a number of possible novel spike sorting applications. For instance, in
the case of a chronically implanted neural prosthesis an online spike sorter
could run for the duration of the implant, sorting everything as it is recorded,
dramatically decreasing the amount of human time necessary to prepare and
maintain the prosthesis.
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