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1. Introduction

A “spike train” is a temporal sequence containing the times of all
action potentials for a given cell. Such spike trains are central to the
analysis of neural data and are generated from electrophysiologi-
cal recordings by a process called spike sorting (see, for example,
Lewicki, 1998 for a review). Spike sorting involves detecting all
action potentials that occur in a neurophysiological recording and
labeling them to indicate from which neuron each came. In this
paper we present a new approach to spike sorting that differs from
almost all prior art in that no single best spike train is sought.
Instead a distribution over spike trains is estimated which allows us
to express uncertainties that arise during the spike sorting process
and in the results of neural data analysis. To do so we expand on
the infinite Gaussian mixture model (IGMM) spike sorter of Wood
et al. (2004a) and illustrate how it can be used as a model of spike
trains.
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eural recordings typically begins with careful spike sorting and all anal-
the correctness of the resulting spike trains. In many situations this is
l and spike sorting procedures often focus on well isolated units. There is
ever, that errors in spike sorting can occur even with carefully collected
chronically implanted electrodes and arrays with fixed electrodes cannot
ell isolated units. In these situations, multiple units may be recorded and
o units may be ambiguous. At the same time, analysis of such data may
t and clinically relevant. In this paper we address this issue using a novel
ts for several important sources of uncertainty and error in spike sorting.

o produce a single best spike train, we estimate a probabilistic model of
data. We show how such a distribution over spike sortings can support

ons while providing a representation of uncertainty in the analysis. As a
e approach, we analyzed primary motor cortical tuning with respect to
d with a chronic multi-electrode array in non-human primates. We found

generally agrees with human sorters but suggests the presence of tuned

© 2008 Elsevier B.V. All rights reserved.

We are motivated by traditional neural data analyses that rest
on the accuracy of spike trains. Among many others these include

hypothesis tests about single cells or population characteristics, and
decoding from single or multiple neurons. Currently it is typical
in such problems to assume that the spike trains upon which the
analysis is based are unambiguously correct. In other words, any
uncertainties that might have arisen during the conversion from an
analog voltage trace to a discrete spike train are ignored. While it
is common practice to report in published results the spike sorting
methodology employed and signal to noise ratios for analyzed data,
this does not readily admit a quantification of the uncertainty in any
conclusions based on the data. Unfortunately several studies have
demonstrated that spike sorting is not always unambiguous and
that expert human spike sorters can, and do, produce spike trains
that vary extensively (Harris et al., 2000; Wood et al., 2004a). The
effect of such variability is not widely reported and is not commonly
analyzed. Many analyses consequently rely on only well isolated,
and hence less ambiguous neurons. This, of course, may limit both
the kind and amount of data that can be analyzed.

We argue that new statistical tools are needed to make the anal-
ysis of such ambiguous neural data practical. In particular there
are situations in which discarding data that is potentially ambigu-
ous may be undesirable or impractical. An example of this involves

http://www.sciencedirect.com/science/journal/01650270
mailto:fwood@gatsby.ucl.ac.uk
mailto:black@cs.brown.edu
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chronically implanted human and non-human primates where one
might expect the implanted recording device to work for years
without post-implant adjustment. Chronic recordings can yield a
wealth of information but may contain poorly isolated units (Joshua
et al., 2007) which may in turn produce waveforms that are difficult
to sort unambiguously. For human neural prostheses in particular,
it may be important to make the best of the available signal, even
if it is ambiguous.

The proposed nonparametric Bayesian (NPB) approach differs
significant from typical automated spike sorting approaches. Our
aim is not a new and improved automated spike sorter like those
proposed by Nguyen et al. (2003), Shoham et al. (2003), Wood et
al. (2004b), Hulata et al. (2002), Lewicki (1998), Takahashi et al.
(2003), or Sahani et al. (1998). These previous methods attempt to
produce a single “best” spike train given a recording. Rather than
try to remove the inherent uncertainty we develop a probabilistic
model to represent it explicitly and automatically account for its
effect on spike train analysis. The approach enables the evaluation
of the confidence in neural data analysis outcomes with respect to
spike sorting variability.

In this paper we apply nonparametric Bayesian estimation and
inference techniques to the problem of spike sorting. Specifically we

develop an infinite Gaussian mixture model (Rasmussen, 2000) in
which the number of units present on a recording channel does not
need to be known a priori. In Nguyen et al. (2003) a similar approach
was taken, and we, like them, demonstrate that our approach is
a practical improvement over traditional Gaussian mixture model
(GMM) spike sorting. In Nguyen et al. (2003) maximum a posteri-
ori model estimation was used to learn the number of neurons in
a recording. Our approach is similar in that we too estimate how
many neurons are in the recording, but we go one step further and
suggest how to use a probabilistic model to express spike sorting
uncertainty in subsequent spike train analyses.

Like in Nguyen et al. (2003) and many other spike sorting papers
we restrict our focus to a subproblem of the overall spike sorting
problem. In particular our focus is on the process of determining
from which neuron, out of an unknown number of neurons, each
action potential arose based on action potential waveshape alone.
In doing so we overlook the problem of spike detection and instead
refer readers to Radons et al. (1994) for treatment of that topic.
Additionally we ignore the problem of detecting overlapping spikes
(deconvolving coincident action potentials) here referring readers
to the work of Fee et al. (1996) and Görür et al. (2004). Finally, our

Fig. 1. Example spike sorting problem. Spiking data for six chronically implanted electrode
directions; each dot represents a single spike. Left: unsorted data. Right: human sorted (
deemed too ambiguous to sort).
ience Methods 173 (2008) 1–12

analysis here does not take into account the refractory period of a
cell. In principle, however, the Bayesian framework developed here
can be extended to model these additional aspects of the prob-
lem.

Finally, the method is illustrated with an analysis of action
potentials recorded from primary motor cortex in a monkey per-
forming reaching tasks. Specifically we present an analysis of
direction tuning in units recorded using a chronically implanted
microelectrode array. We demonstrate how our method allows us
to make use of all of the recorded data by accounting for spike sort-
ing uncertainty. The modeling consequence of our approach is that,
given a recording, we build a distribution over tuning directions.
This stands in contrast to the typical finding of a single direction
for each manually identified unit. Evidence gleaned from exam-
ining the estimated model suggests that additional, potentially
valuable information can be extracted from suboptimal neural data
by accounting for spike sorting uncertainty in the way we suggest.

The following section briefly summarizes the data used here.
Section 3 introduces notation and reviews finite Gaussian mixture
modeling. Section 4 reviews infinite Gaussian mixture modeling
and two kinds of IGMM estimation, one batch algorithm and a sec-
ond “sequential” or “iterative” algorithm. Section 5 then uses the

IGMM to analyze neural signals.

2. Spike sorting

Suppose that we have N action potential waveforms from a sin-
gle channel neurophysiological recording R = [�t1, . . . , �tN], where
each waveform is represented by a vector of n = 40 voltage samples,
�ti = [t1

i
, . . . , tn

i
]
T ∈Rn. Our goal is to build a posterior distribution

over sortings of this recording; a distribution which simultaneously
represents how many neurons are present and which waveforms
came from which neurons.

Instead of clustering the waveforms in the high dimensional
(n = 40) space, we cluster a reduced dimensionality representation
of the waveforms, where each �ti is represented in a lower dimen-
sional basis obtained via principal component analysis (PCA). Given
a set of recordings we perform PCA and keep only the first D = 2
eigenvectors characterizing the largest variance in the data and
approximate a waveform as �ti ≈ � +

∑D
d=1yd

i
�ud. Here � is the mean

waveshape in R, �ud is the dth PCA basis vector, and the yd
i

are linear
coefficients. The projection of six channels of monkey motor corti-

s are shown. Spike waveforms are projected onto the first two principal component
light and dark blue indicate a “spike” while black indicates that the datapoint was
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that the posterior probability of a model M given a set of observa-
tions Y is proportional to the likelihood of the observations under
the model P(Y|M) times the prior probability of the model M:
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cal data onto the first two PC’s is shown in Fig. 1 (left). A detailed
description of this data is given in Section 5.

The human sorting, Fig. 1 (right), was performed using offline
spike sorting software (Plexon Inc., 2003). Note that in this case,
the sorter appears to have been quite conservative and many of the
waveforms were deemed too ambiguous to include in subsequent
analysis. We will return to this example later in the paper.

Our spike sorting algorithm clusters the low dimensional rep-
resentation of the waveforms Y = [�yi, . . . , �yN] rather than the full
waveforms, so, for the remainder of this paper, when we write
“event”, “spike”, or “waveform” it should be read as shorthand for
“low dimensional waveform representation”.

We follow Lewicki (1998) in making the common assumption
that the distribution of waveforms from a single neuron is well
approximated by a multivariate Gaussian.

3. Finite Gaussian mixture modeling

A finite Gaussian mixture model is a latent variable probabilis-
tic model formed by adding together weighted Gaussians. Finite
GMM’s are frequently used because they can both approximate
arbitrary multi-modal probability densities and cluster data if the
latent variables are interpreted as class labels.

In spike sorting this interpretation of the latent variables is
crucial. Each neuron is identified by its mean action potential wave-
form and the statistics of how this waveform varies between spikes.
The Gaussian assumption means that only second-order statistics
of waveform variability are accounted for (by a per-neuron covari-
ance matrix). The semantics of the Gaussian mixture model are
such that each individual waveform is seen as being generated
from a single stochastically chosen neuron. The traditional Gaussian
mixture model notation

P(�yi) =
K∑

k=1

P(ci = k)P(�yi|�k)

makes this intuition precise. Here K is the number of units present
on the channel (assumed known and finite for now) and ci indicates
from which neuron each waveform arose (i.e. ci = k means that the
ith waveform came from neuron k). P(ci = k) = �k represents the
a priori probability that the waveform was generated by neuron k.
Finally the likelihood P(�yi|�k) is the generative model of waveforms
arising from neuron k. This is taken to be a multivariate Gaussian

with parameters �k for each neuron k.

For the remainder of the paper, we will specify this model with
the following notation:

ci| �� ∼ Discrete( ��)
�yi|ci = k; � ∼ Gaussian(·|�k).

(1)

The notation y|x; z ∼ f (y, x; z) means that y is conditionally dis-
tributed given x and parameter z according to the probability
density function f. Here by “Gaussian” we mean the multivariate
normal (MVN) density function and by “Discrete” we mean the dis-
crete (multinomial) distribution defined by a vector whose entries
sum to one.

Additionally we will sometimes utilize more general names for
the variables in this model. For instance, instead of “neuron” we
will often write “class”. Thus C = {ci}N

i=1 is the collection of all class

indicator variables, � = {�k}K
k=1, is the collection of all class param-

eters, �k = { ��k, �k} are the mean and covariance for class k, and
�� = {�k}K

k=1, �k = P(ci = k) are the class prior probabilities.
To use a GMM for spike sorting, one must estimate model param-

eters from the data. Expectation maximization (EM), introduced by
(Dempster et al., 1977) in general and Lewicki (1998) in the context
ience Methods 173 (2008) 1–12 3

of spike sorting, is a maximum likelihood parameter estimation
approach that can be used to estimate model parameters in situa-
tions where there are missing or latent data. Here the parameters
of the model are � and ��; C is a hidden (or latent) variable. Given
a set of waveforms Y our estimation task is to find the waveform
means and covariances � for each neuron and their relative firing
rates, or equivalently their prior probability, ��.

Maximum likelihood approaches such as EM all seek a single
“best” model of the data which is the intuitive thing to do if a single
setting of the model parameters is the quantity of interest. However
there can be problems with this approach, particularly if the objec-
tive being maximized leads to multiple equivalently good models
of the data. Also, some quantities, such as the number of neurons
in the recording (K) can be difficult to optimize explicitly, leading
to difficult model selection problems.

While it is common practice to try to find a single best model
(with the hope that this model corresponds to the ground truth), it
may not always be necessary or beneficial to do so. With respect to
spike sorting, if the ultimate data analysis goal is to reach some con-
clusion about the neural population recorded on a single channel
(“Is there evidence of excess synchrony?”, “Does this brain area have
cells that are strongly correlated to some stimulus?”, etc.) it may be
possible to express the analysis in such a way that its result can be
averaged over multiple models (spike sortings). Then, for instance
in cases where determining the best model is difficult, it may be
beneficial to report an average result computed across multiple
models of the data. In other words, if a particular single channel
recording is hard to spike sort because of overlapping clusters (for
instance), sorting it multiple times and repeating the analysis using
each different sorting will provide evidence about the robustness of
the particular analytical finding. This is both because the distribu-
tion of results will tend towards the true distribution over results,
and also because a distribution over results allows confidence in
the analysis result to be reported.

One way to do this is to take a Bayesian approach to spike sorting.
This means that the model parameters will themselves be treated
as random variables and that generative models for the parameters
will be specified as well; these being called “priors.” Thus, instead of
estimating a single best model (set of parameters), our goal will be
to estimate a distribution over models (parameters) instead. This is
called the posterior distribution. As a reminder, Bayes’ rule tells us
P(M|Y) ∝ P(Y|M)P(M). (2)

To estimate the posterior distribution we first have to specify
a prior for all of the parameters of the model. For both purposes
of illustration and for use in subsequent sections we follow Fraley
and Raftery (2005) in choosing priors of the following types for
the model parameters: Dirichlet for �� and Gaussian times inverse
Wishart for the Gaussian parameters (Gelman et al., 1995). These
priors are chosen for mathematical convenience and interpretable
expressiveness. They are conjugate priors1 which will allow us to
analytically perform many of the marginalization steps (integra-
tions) necessary in estimating the posterior distribution for this
model. This choice of priors is denoted

��|˛ ∼ Dirichlet
(

·
∣∣∣˛

K
, . . . ,

˛

K

)
� ∼ G0

(3)

1 A prior is conjugate if it yields a posterior that is in the same family as the prior
(Gelman et al., 1995).
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Fig. 2. From left to right: graphical models for a finite Gaussi

where � ∼ G0 is shorthand for

�k ∼ inverse Wishart�0 (�−1
0 ) (4)

��k ∼ Gaussian

(
��0,

�k

�0

)
. (5)

The formulas for these distributions are widely available, e.g. in
Gelman et al. (1995). Here we give a brief overview of the modeling
assumptions this particular choice of priors embodies. The Dirich-
let prior is used to encode prior knowledge about the number and
relative activity of neurons in the recording. In the finite model the
number of neurons is assumed to be known and is the same as
the length of ��. The parameters to the Dirichlet prior is a vector of
exactly the same length and, if parameterized uniformly as above,
says that all neurons are a priori equally likely to have generated
every spike. This uniform parameterization is chosen for mathe-
matical convenience when generalizing to unknown K; however,
if K is somehow known a priori then a more specific parameter-
ization of the prior can be employed. For instance, if it is known
that there are three neurons in a particular recording and the most
active neuron produced 50% of the total activity in the recording
and the other two produced the remaining spikes in nearly equal
proportion then the Dirichlet prior should be initialized with some

multiple of [.5 .25 .25] (i.e. [500 250 250]). The specific values cho-
sen encode how confident we are in our prior. Each parameter of
the Dirichlet prior is a count of pseudo-observations that follow the
pattern expressed in the prior. The higher the pseudo-counts the
more real data it takes to cause the posterior to deviate from the
prior and vice versa. In the uniformly parameterized case we can
simply think of ˛ as a hyperparameter that indicates how confident
we are that all neurons in the recording are equally active.

The parameters of the inverse Wishart prior, H = {�−1
0 ,

�0, ��0, �0}, are used to encode our prior beliefs regarding the action
potential waveform shape and variability. For instance ��0 specifies
our prior belief about what the mean waveform should look like,
where �0 is the number of pseudo-observations we are willing
to ascribe to our belief (in a way similar to that described above
for the Dirichlet prior). The hyperparameters �−1

0 and �0 encode
the ways in which waveforms are likely to vary from the mean
waveform and how confident we are in our prior beliefs about that.

We will refer to H as the hyperparameters of our model. In gen-
eral these will be specified by a user and not estimated from the
data. These are not the only choices that one could make for the
priors.
xture model (GMM), a Bayesian GMM, and an infinite GMM.

A graphical model representing this model is shown in the
middle of Fig. 2. This graphical model illustrates the conditional
dependency structure of the model. For instance �k is independent
of yi given ci. In this figure circles indicate random variables and
boxes (plates) indicate repetition (with the number of repetitions
in the lower right). Links between variables indicate the assumed
conditional dependency structure of the joint probability distri-
bution. From such a graphical model the joint distribution of the
data and model parameters can easily be read out. Here that joint
distribution is given by

P(Y, �, C, ��, ˛;H)

=

⎛
⎝ K∏

j=1

P(�j;H)

⎞
⎠( N∏

i=1

P(�yi|ci, �ci
)P(ci| ��)

)
P( ��|˛)P(˛). (6)

Applying Bayes rule and conditioning on the observed data we
see that posterior distribution is simply proportional to the joint
(rewritten slightly):

P(C, �, ��, ˛|Y;H) ∝ P(Y|C, �)P(�;H)

(
N∏

P(ci| ��)

)
P( ��|˛)P(˛).
i=1
(7)

where P(Y|C, �) =∏N
i=1P(�yi|ci, �ci

) and P(�;H) =∏K
j=1P(�j;H).

In Eq. (7) the proportionality sign hides the marginal probabil-
ity of the data under the model (also called the “evidence”) which
cannot be computed analytically. In such cases Markov chain Monte
Carlo (MCMC) methods such as those reviewed in Neal (1993) can
be used to obtain a discrete representation of the posterior by sam-
pling from this unnormalized density. These methods simulate a
discrete Markov process whose equilibrium distribution is the pos-
terior distribution. Other posterior inference methods can be used
here, particularly the variational approach outlined in Jordan et al.
(1999), but in this work we will largely focus on MCMC methods.

Unfortunately we have not yet specified how we are going to
get around the problem of needing to know the number of neurons
in the recording, K, a priori. Since varying the number of neurons
in the model will certainly alter spike sorting results and thereby
spike train analysis results, we would either like to be extremely
certain that the number we choose is correct or ideally we would
like to be able to represent our uncertainty about the choice.
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Our approach for dealing with an unknown K is “nonparametric
Bayesian” modeling. NPB models are characterized by having infi-
nite complexity. In this case that means taking the limit of the model
defined above as K → ∞, resulting in a mixture model with an infi-
nite number of components. Of consequence to the spike sorting
problem, the posterior distribution in such a NPB mixture model
consists of infinite mixture model realizations that vary in the num-
ber of realized (non-zero) mixture components. Put another way,
given a finite set of observations (spikes), any particular sorting
can only have a finite number of non-zero mixture components.
Realizations from the infinite mixture (samples) all have a finite
number of components but the number and characteristics of these
non-zero components may vary.

4. Infinite Gaussian mixture model

We use a NPB model called the infinite Gaussian mixture model
which was developed by Rasmussen (2000). Towards understand-
ing the IGMM and how to apply it to the spike sorting problem note
that the only terms in Eq. (7) that explicitly depend on K are P(ci| ��)
and P( ��|˛) as both involve �� whose dimensionality is K. Of course
the likelihood P(Y|C, �) and the class parameter prior P(�;H) also
implicitly depend on K as it is the number of hidden classes. This
dependence on K is indirect however as both the likelihood and the
class parameter prior only need to be evaluated for realized hidden
classes (i.e. hidden classes to which at least one observation (spike)
is attributed).

The IGMM arises as K → ∞. While it is possible to work directly
with such infinite dimensional models it is easier to consider the
limit of a Bayesian mixture model having integrated �� out. So, oper-
ating on P(ci| ��) and P( ��|˛), recognize that �� can be marginalized
out because the Dirichlet prior is conjugate to the discrete (multi-
nomial) likelihood:

P(C|˛) =
∫

d ��
N∏

i=1

P(ci| ��)P( ��|˛)

=

K∏
k=1

� (mk + (˛/K))

� (˛/K)K

� (˛)
� (N + ˛)

.

(8)

This expression is the joint probability of a single labeling of all
observations. Notice that permutating the labels assigned to sets

of observations does not change structure of the labeling, i.e. only
the labels are switched around. Because of this we would prefer
a model that expresses the probability of partitions of the data
rather than a specific labelings per se. A partitioning of the data
is a grouping of the data into nonoverlapping subsets, each being
sets of spikes attributed to a neuron. The number of different ways
of applying K labels to a single partitioning of the data with K+ < K
bins is K!/(K − K+)!. As every one of these labelings has the same
marginal probability under Eq. (8) the total probability of any one
partitioning of the data is

P(C|˛) = K!
(K − K+)!

K∏
k=1

� (mk + (˛/K))

� (˛/K)K

� (˛)
� (N + ˛)

. (9)

where mk =
∑N

i=1I(ci = k) is the number of items in class k (I( )
is the indicator function) and � ( ) is the Gamma function with
� (˛) = (˛ − 1)� (˛ − 1). Here K+ is the number of non-empty bins
in the partitioning; this being equivalent to the number of neu-
rons that generated at least one action potential waveform in the
recording.
ience Methods 173 (2008) 1–12 5

It is the limit of this expression as K → ∞ that turns the Bayesian
GMM into the IGMM (Rasmussen, 2000). The limiting expression
(taken from Griffiths and Ghahramani, 2005) is given here without
derivation:

P(C|˛) = ˛K+

(
K+∏

k=1

(mk − 1)!

)
� (˛)

� (N + ˛)
. (10)

Given Eqs. (7) and (10) one can accomplish model estimation by
sampling. In fact Gibbs sampling, as developed in general by Geman
and Geman (1984), is possible in this model. A Gibbs sampler for this
model requires an expression for the conditional distribution of a
single class label given the value of all of the others. This conditional
distribution is given here

P(ci = k|C−i) =
{ mk

i − 1 + ˛
k ≤ K+

˛

i − 1 + ˛
k > K+

. (11)

These equations characterize a process known as the Chinese
restaurant process (CRP) because of a story that illustrates the pro-
cess (Pitman, 2002). Repeated here, the story describes a method
of sequentially seating customers stochastically at tables in a Chi-
nese restaurant with an infinite number of tables: the first customer
enters the restaurant and is seated at the first table. Subsequent cus-
tomers enter the restaurant and are stochastically seated according
to the number of people already sitting at each table. If there are
many people already sitting at a table (i.e. mk, the number of cus-
tomers sitting at table k is large) then the probability of being seated
at that table is high and vice versa. However, there is always a small
probability of being seated at a table that has no current occupants;
˛/(i − 1 + ˛) where i is the number of the current customer being
seated. Seating arrangements drawn from this seating process are
distributed according to the density given in Eq. (10).

The language of Chinese restaurants, tables, and customers can
be directly converted into the language of spike sorting. In spike
sorting the restaurant is a single recording, each table is a neuron,
and each customer is an action potential waveform. Bearing in mind
that this is only the prior over assignments of spikes to neurons,
and does not take into account the likelihood at all, the Chinese
restaurant process story can be used to describe our model for how
spikes are attributed to neurons. Spikes enter the recording one
at a time and are attributed to a neuron according to how many
spikes that neuron has already emitted. Neurons that have been
responsible for many spikes are more likely to have new spikes

attributed to them.

In the infinite Gaussian mixture model the generative view of
this prior is that the class identifiers for all N datapoints are first
generated via the Chinese restaurant process. Depending on ˛ this
will yield some stochastic number of classes K+ < N. Observations
from each class are then are generated from each of K+ Gaussian
densities whose parameters are each drawn independently from
the multivariate normal inverse Wishart (MVN-IW) prior.

Given this nonparametric Bayesian prior for our spike sort-
ing model we need now to perform posterior estimation; that is,
determine a distribution over classes and assignments given the
observed spike waveforms. Here we review two different samplers
for doing so. The first corresponds to algorithm “three” in Neal
(1998), which itself derives from the work of Bush and MacEachern
(1996), West et al. (1994), MacEachern and Muller (1998), and
Neal (1992). The second is a sequential posterior estimation algo-
rithm that corresponds to the techniques in Fearnhead and Clifford
(2003), Fearnhead (2004), Sanborn et al. (2006) and is related to
Wood and Griffiths (2007). The first we call the collapsed Gibbs
sampler (following Liu (2001)) because the latent class parame-
ters are integrated out and the sampler state consists of only the
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class identifiers. In the language of spike sorting this means that we
integrate out the waveform means and covariances. It is an offline
or batch sampling algorithm requiring that the entire dataset be
present. In contrast, the second algorithm is a sequential posterior
estimation algorithm, meaning that each observation (spike) is pro-
cessed once in sequence when estimating the posterior. This latter
type of model estimation makes online spike sorting possible.

4.1. Collapsed Gibbs sampler

Remember that our goal is build an estimate of the posterior
distribution for the infinite Gaussian mixture model by using MCMC
to draw samples from the posterior; that is, we want to learn a
distribution over spike sortings where both the number of units
and the assignments of spikes to units can vary.

Having chosen the multivariate normal inverse Wishart prior
for the multivariate normal class distributions makes it possible to
analytically integrate these parameters out yielding an expression
for a posterior over only C:

P(C|Y;H) =
∫

d�P(C, �|Y;H)

∝ P(C;H)

∫
d�P(Y|C, �;H)P(�;H).

(12)

Remember that C are variables that indicate which neuron each
spike came from and Y are the spike waveforms themselves.

Algorithm 1. Collapsed Gibbs sampler for the IGMM
The advantage of analytically marginalizing out these param-
eters is that the state space of the sampler is reduced. Typically
this leads to faster convergence of the sampler to the equilibrium
distribution (Liu, 2001).

For the collapsed Gibbs sampler in Algorithm 1 the sampler state
consists of C and ˛. The updates for the class labels are

P(ci = j|C−i,Y, ˛;H) ∝ P(Y|C;H)P(C|˛)

∝
K+∏
j=1

P(Y(j);H)P(ci = j|C−i, ˛)

∝ P(Y(j);H)P(ci = j|C−i, ˛)
∝ P(yi|Y(j) \ yi;H)P(ci = j|C−i, ˛)

(13)
ience Methods 173 (2008) 1–12

where Y (j) \ yi is the set of observations currently assigned to class
j except yi (yi is “removed” from the class to which it belongs when
sampling). Because of our choice of conjugate prior we know that
P(yi|Y (j) \ yi;H) is multivariate Student-t (Gelman et al., 1995, p.
88):

yi|Y (j) \ yi;H ∼ t	n−D+1( ��n, �n(�n + 1)/(�n(	n − D + 1))) (14)

where

��n = �0

�0 + N
��0 + N

�0 + N
ȳ

�n = �0 + N
	n = 	0 + N

�n = �0 + S + �0n

�0 + N
(ȳ − ��0)(ȳ − ��0)T

and D is the dimensionality of yi (D = 2 or 3 in our case). The sub-
script 	n − D + 1 indicates the number of degrees of freedom of the
multivariate Student-t distribution.

In Eq. (11) there are two cases. The first case corresponds to
attributing a spike to one of the units that has already been iden-
tified in the recording. The second case corresponds to positing a
new unit and attributing the spike to it. This means that Eq. (13)
splits into two cases as well.

We also must consider the probability of starting a new cluster
(unit). This is given by

P(ci > K+|C−i,Y, ˛;H) ∝ P(yi;H)P(ci > K+|C−i, ˛). (15)

In positing a new cluster, P(yi;H) has the same form as P(yi|Y(j) \
yi;H) above; however, as there are no other observations the orig-
inal hyperparameters are used instead, i.e.

yi;H ∼ t	0−D+1
��0, �0(�0 + 1)
�0(	0 − D + 1)

. (16)

For ease of reference the multivariate Student-t density function is
given here

P(y) = t	(y|�, W)

= � ((	 + D)/2)
� (	/2)	D/2�D/2

|W|1/2
(

1 + 1
	

(y − �)TW−1(y − �)
)−(	+D)/2

.

4.2. Sequential posterior estimation
An appealing property of the nonparametric mixture modeling
approach to spike sorting and spike train modeling is that sequen-
tial posterior estimation is possible. In spike sorting, sequential
posterior estimation means that estimation of the posterior distri-
bution is accomplished by processing each spike once in sequence.
In the IGMM this is possible because the prior on Cyields an analytic
expression for the conditional distribution of the label of a single
observation given the labels for all of the others, P(ci|C−i).

To explain this, recall that �yi is the ith observation, and let Y(1:i)

be all observations up to and including the ith (similarly for the class
identifiers C(1:i)). Note that this superscript notation means some-
thing different than it did in the previous section. Also remember
that it is easy to sample from P(ci|C(1:i−1)); to do so, sample the ith
class identifier given the first i − 1 identifiers directly from the prior
(using Eq. (11)). Applying Bayes’ rule we write the unnormalized
posterior of C(1:i) given Y(1:i) in the following way:

P̂(C(1:i)|Y(1:i)) ∝ P(�yi|C(1:i),Y(1:i−1))P(ci|Y(1:i−1)).

Since we can evaluate P(�yi|C(1:i),Y(1:i−1)), we can obtain weighted
samples from the normalized posterior P(C(1:i)|Y(1:i)) using impor-
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tance sampling with a proposal distribution of

P(ci|Y(1:i−1)) =
∑


C(1:i−1)

P(ci|C(1:i−1))P(C(1:i−1)|Y(1:i−1))

≈
L∑

l=1

w(1:i−1)
{l} P(ci|C(1:i−1)

{l} )

where w(1:i)
{l} is the weight for the lth sample having integrated

i observations into the model, C(1:i)
{l} is the corresponding sample

and 
C(1:i−1) is shorthand for all possible assignments of labels 1
through i − 1. “Particle filtering” is the name given to sequential
density estimation approaches of this form. In a particle filter, a
set of L weighted “particles” (the samples and weights) are used to
form a discrete representation of the distribution of interest (here
the posterior distribution over class identifiers given observations):

{w(1:i−1)
{l} , C(1:i−1)

{l} } ≈ P(C(1:i−1)|Y(1:i−1)).

These particles are updated once per observation in sequence. The
discrete particle representation of the posterior distribution is an
approximation in the traditional Monte Carlo integration sense. As
the number of particles goes to infinity, averages over the discrete
representation converge to expectations of the true distribution;
that is, for some function g( ):

lim
L→∞

L∑
l=1

w(1:i−1)
{l} g(C(1:i−1)

{l} ) =EP(C(1:i−1)|Y(1:i−1))[g]

=
∑


C(1:i−1)

P(C(1:i−1)|Y(1:i−1))g(C(1:i−1)).
(17)

Algorithm 2. Particle filter posterior estimation for the IGMM
Referring to Algorithm 2 and noting that P(�yi|C(1:i),Y(1:i−1)) is
given by Eq. (14) for existing clusters and Eq. (16) for putative new
clusters this completes the mathematical description of the basic
particle filter.

The resampling step used in sequential importance resam-
pling particle filters (Doucet et al., 2001) (the function “resample”
in Algorithm 2) helps but does not completely alleviate a
problem with particle filtering for Dirichlet process mixture
models (Fearnhead and Clifford, 2003) known as weight degen-
eracy. To get around this weight degeneracy problem we follow
Fearnhead and Clifford (2003) in adopting a resampling strat-
egy that ensures a well distributed particle set. In Fearnhead and
Clifford (2003) we are reminded that these two particle sets are
equivalent

1
3

, {1, 2, 1}; 1
3

, {1, 1, 1}; 1
3

, {1, 1, 1}
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and

1
3

, {1, 2, 1}; 2
3

, {1, 1, 1}

where here the fraction represents the weight given to each parti-
cle and the three integers in the brackets are the particles which
themselves indicate the class labels given to three hypothetical
observations. Clearly, the second representation is more efficient in
that it requires fewer particles to represent the distribution with the
same accuracy. This efficiency is merely a product of the measure
being weighted rather than unweighted.

While the details of the exact methodology are available in
Fearnhead and Clifford (2003), we give here a brief accounting for
IGMM’s. In the step in which the class label for the ith observation
is sampled from the CRP prior we need not restrict ourselves to
sampling only a single new class label from the prior. In this model
it is possible to exhaustively enumerate all possible values of ci|C−i

(i.e. no sampling from the prior, merely enumerating all possible
next labels). Doing this generates a particle set of size M from the
original N particles where M > N, with each particle replicated as
many times as the number of pre-existing unique labels in the par-
ticle plus one to account for the possibility of the new observation
having been generated by an as yet unseen latent class. Weights
for each of these particles can be computed as before using Eqs.
(13) and (15), only now computing M instead of N weights. Having
increased the diversity and cardinality of our particle set we now
must down-sample the representation to avoid exponential growth
in the number of particles. One can resample N particles directly
from this discrete distribution; however in Fearnhead and Clifford
(2003) a resampling algorithm is developed that is provably opti-
mal in terms of preserving the expected Monte Carlo integration
error in expectations using the reduced particle set. Additionally,
their approach limits the number of times a particle can be selected
in the down-sampling step to one which yields an optimally diverse
particle set. A consequence of their approach is that the particle set
is no longer unweighted after resampling like it is in regular particle
filtering.

In all of our experiments where we report results for particle
filter posterior estimation the approach of Fearnhead and Clifford
(2003) is used to resample the particle set.

5. Experiments

Having introduced the IGMM for spike sorting in the previous

section it remains to demonstrate its utility in performing neural
data analysis. In particular, we show how this model represents
uncertainty in the assignment of waveforms to units and demon-
strate how this uncertainty can be incorporated into the analysis
of neural signals. In particular we use our NPB spike train model
to study the encoding properties of motor cortical neurons. Our
aim is to show how the IGMM posterior distribution over spike
trains allows us to analyze neural data in a new way, potentially
utilize data that might otherwise not be utilized, and to express
(un)certainty in our conclusions.

We start by describing two primate motor cortical datasets ana-
lyzed here. Both were recorded from the same monkey but on two
different dates over a year apart. The tasks performed by the mon-
key on each occasion were different; the first was the “pursuit
tracking” task described by Wu et al. (2005) and the second was the
“pinball” task described by Serruya et al. (2003). In the discussion
and results these datasets will be distinguished by task name.

Both the pursuit tracking task and the pinball task are volun-
tary arm movement tasks. In the pursuit tracking task the objective
was to track a continuously moving target on a computer mon-
itor by moving a manipulandum on a 2D surface. Both the target
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and a cursor representing the current manipulandum location were
shown to the monkey. In the pinball task the task objective was to
acquire (move a cursor onto) a sequence of targets that appeared
sequentially at random points in the space reachable by the manip-
ulandum. This can be seen as a generalization of the center-out
reaching task commonly utilized in the motor control literature.
The pursuit tracking dataset consisted of 10 trials each contain-
ing approximately 5–10 s of movement. The pinball task dataset

Fig. 3. Results from sorting six channels of the pursuit tracking neural data using differ
principal component directions are shown in each of the six panels. The top left panel show
are not assigned to any neuron), the left panel in the second row shows a maximum likel
ience Methods 173 (2008) 1–12

consisted of 50 trials each consisting of approximately the same
movement duration.

For both tasks the firing activity of a population of cells was
recorded from a chronically implanted microelectrode array man-
ufactured by Cyberkinetic Neurotechnology Systems Inc. (2005)
from which six electrodes were selected for analysis. The inter-
electrode spacing in these microelectrode arrays is large enough
that each recording electrode is independent. Threshold crossing

ent techniques. Projections of waveforms from channels 1 to 6 onto the first two
s the unsorted waveforms, the top right shows a manual labeling (the black points

ihood labeling, and the remaining three are samples from the IGMM posterior.
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events (waveforms) were saved on all channels along with the time
at which they occurred. The thresholds were empirically set by the
experimenter at the time of recording to exclude non-neural wave-
forms from being captured. Following application of the waveform
dimensionality reduction procedure given above to each channel
individually, the waveforms from the pursuit tracking task were
projected onto the first two PCA basis vectors accounting for on
average 66% of the waveform variance (51%, 87%, 69%, 78%, 58%,
and 55% per channel, respectively, all rounded to the nearest per-
cent). The waveforms for the pinball data were projected onto the

Fig. 4. Results from sorting six channels of the pursuit tracking neu
ience Methods 173 (2008) 1–12 9

first three PCA basis vectors accounting for on average 56% of the
total waveform variance (59%, 72%, 52%, 54%, 54%, and 47% per
channel).

Both datasets were sorted three ways: (1) expectation max-
imization with finite Gaussian mixture models and Bayesian
information criterium model selection (we refer to this as the max-
imum likelihood approach), (2) IGMM with Gibbs sampling, and (3)
with sequential (particle filter) posterior estimation. The hyperpa-
rameters chosen for the IGMM were the same for both datasets,
�0 = [0 0], �0 = .2, �0 = diag(.1), and 	0 = 20 (for the pinball data

ral data using different techniques. See the caption of Fig. 3.
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are sh
int is
Fig. 5. Uncertainty in the sorting of the pursuit tracking neural data. Channels 1–6
are plotted but with colors that indicate how uncertain the cluster label for that po
means certain; red, orange, and yellow through white mean more uncertain.

�0 and �0 were appropriately sized for three-dimensional obser-
vations).

Sorting results for the pursuit tracking data are shown in Fig. 3
and for the pinball data in Fig. 4. Both of these figures are divided

into six sections by thin black lines. We refer to these sections as
panels. The upper left panel in both figures shows the six selected
channels before spike sorting. Each dot is the projection of one
waveform onto the first two principal components. The upper right
panel shows a manual labeling of the data. In this panel the color
black is significant as it indicates waveforms that were identified
by the human sorter as being too ambiguous to sort. The left panel
in the second row is the maximum likelihood solution. The remain-
ing three panels illustrate the posterior distribution over labelings
induced by the IGMM. Each of these three panels is one sample from
the IGMM posterior, where each sample represents one complete
sorting of the data. Looking closely one can see that many of the
individual waveform labels change from one sample to another as
both new and different neurons are posited and individual wave-
forms are attributed.

We also provide plots that illustrate how uncertainty is repre-
sented by this model in Figs. 5 and 6. Both figures redisplay the
unsorted (unlabeled) data for ease of reference along with a plot
that illustrates the relative (to the dataset) uncertainty of the label
given to each datapoint. This plot was produced by computing the

Fig. 6. Uncertainty in the sorting of six channels of
own in both panels. On the left is the unsorted data, on the right the same points
(the entropy of the conditional label distribution over labels for that point). Black

entropy of the marginal distribution over class identity at every
point. The higher the entropy of a point’s labeling the hotter the
color assigned (black → red → orange → yellow→ white). Points
that are nearly white have label distributions that have high entropy

which means that the cluster to which they are attributed is uncer-
tain under the model.

To evaluate the applicability of the model for neural data analysis
we use it to investigate movement direction tuning properties of
motor cortical neurons. We show how our model helps us to use all
of the available data and allows us to display our confidence in our
findings as well.

In Georgopoulos et al. (1982) it was established that neu-
ral firing rates in primate motor cortex change in response to
the direction of hand movement in two-dimensional movement
tasks. The direction that evokes a cell’s maximum firing rate is
called its preferred direction. Furthermore they found that the
firing rate of a cell is higher for movement in directions near
a cell’s preferred direction and falls off smoothly as a function
of the difference between the direction of movement and the
cell’s preferred direction. It was shown that a cosine function
(cosine tuning curve) fit the relationship between average firing
rate and movement direction well. The preferred direction for
a cell may be established by cosine regression and differentia-
tion.

pinball neural data. See the caption of Fig. 5.
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right:
prefer
e IGM
Fig. 7. On the left: human sorted waveforms from the pursuit tracking task. On the
line in the circle indicates movement to the right. The dashed red lines indicate the
of the circle are the normalized histogram of cell preferred direction counts from th

The right panel of Fig. 7 shows a visualization of the distri-
bution over preferred directions for the pursuit tracking neural
data. Both panels of Fig. 7 have the same row and column order-
ing as the panels in Fig. 3. The red dashed lines indicate the
estimated preferred directions for the manual labeling. The solid
black lines of varying length protruding like spines out from the
circle are a visualization of a marginal of the estimated IGMM
posterior distribution. The length of each of these lines is propor-
tional to the normalized count of the number of times a cell with
a given preferred direction was found in the posterior distribu-
tion.

To be more concrete, remember that the posterior distribution
of the IGMM can be thought of as a collection of different sort-
ings. For each sorting the preferred directions for all posited cells
were determined. The normalized count of the number of times a
cell with a given preferred direction was found was computed by
dividing the total number of times a cell with a particular preferred
direction was posited by the number of cells identified in all of the
posterior samples (sortings). This we call the marginal distribution
over cell preferred directions. It indicates the level of certainty one

can have in concluding that a cell with a certain preferred direction
exists on the channel.

Remember that the red dotted lines indicate the preferred direc-
tions of the neurons identified by the human sorter. In the right
panel of Fig. 7 the middle row and first column of the third row
have no red dotted lines. This is because the human sorter did not
have enough confidence in the separability of the cell to include it
in subsequent analyses. The IGMM spike train model, on the other
hand, reveals evidence that there are directionally tuned cells on
each of these channels. Moreover, the spread of these marginals
provides evidence for how well the detected units fit the cosine
tuning model. In some cases the tuning is very precise, indicated
by a tight peak, and in others it is much more diffuse. Knowledge
of this may be useful for decoding algorithms that exploit cosine
tuning.

We note from this that (1) the distribution of preferred direc-
tions include the directions found in the human sorted data, (2)
several channels suggest clear tuning where the human found the
waveforms too uncertain to sort, and (3) several channels contained
evidence for additional putative tuned units beyond those found by
the human.
preferred direction distributions for the pursuit tracking channels. The solid black
red direction of cells identified in the manually sorted data. The radial ticks outside
M posterior.

6. Discussion

We have presented a new way of thinking about spike sorting
and uncertainty in spike sorting. Rather than seek a single best spike
sorting, we represent a distribution over sortings and apply this to
the analysis of neural signals. The spike sorting results and example
analysis from the previous section suggest that our NPB approach
will aid in neural data analysis by virtue of modeling some types of
spike sorting uncertainty. Although we show only a simple exam-
ple analysis, it should be clear that the extra information about
spike sorting uncertainty captured by our model would be of use
in many other types of neural data analysis. It is worth noting that
this analysis is fully automatic.

There are a number of ways in which our model can be extended
and improved. One extension to consider is directly modeling the
raw voltage trace. Because our model does not extend to spike
detection, clearly not all variability arising in the spike sorting pro-
cess can be captured by our model. Additionally, as we do not model
overlapping spikes, it would be desirable to extend it by integrating
the work of Görür et al. (2004) on mixtures of factor analyzers for

modeling overlapping waveforms. Our model also does not explic-
itly exclude spikes from occurring in the refractory period, i.e. two
spikes can be generated by the same “neuron” under our model
even if the time between them is less than a few milliseconds.
Extending this model to exclude refractory period violations is also
feasible. Likewise our model can be extended to account for chang-
ing spike waveshape.

Lastly, for long-term chronic spike sorting applications such
as unattended neuroprostheses, disappearance and appearance of
classes should be modeled. In its current form the model cannot
handle disappearance and appearance of new neurons. This is pos-
sible to do by leveraging the dependent Dirichlet process work of
Srebro and Roweis (2005) and Griffin and Steel (2006). Doing so will
make application of nonparametric spike sorting models to chronic
spike sorting applications realistic.

While these avenues for improvement are important to pursue
as the applicability of this particular nonparametric spike sorting
approach is limited to a subset of neural data analyses (for instance,
tests for excess synchrony would be an inappropriate use of our
model because in its current form overlapping waveforms are not
detected), it still remains that this IGMM approach to spike sorting
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is a significant step towards accounting for spike sorting uncer-
tainty in analyses of neural data. While our approach is similar
in this respect to Nguyen et al. (2003), they did not demonstrate
the utility of the full posterior distribution. Furthermore, the IGMM
posterior estimation approach is simpler to implement and admits
a sequential estimation variant.

Beyond accounting for spike train variability arising from spike
sorting uncertainties, particle filter posterior estimation makes
sophisticated online spike sorting possible, a long time goal of
the community. Looking towards a future in which online IGMM
spike sorting is computationally practical (specialized software
and/or dedicated hardware would be necessary to achieve this now)
reveals a number of possible novel spike sorting applications. For
instance, in the case of a chronically implanted neural prosthesis an
online spike sorter could run for the duration of the implant, sorting
everything as it is recorded, dramatically decreasing the amount of
human time necessary to prepare and maintain the prosthesis.
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