
Doi:10.1145/1897816.1897842

The Sequence Memoizer
By Frank Wood, Jan Gasthaus, Cédric Archambeau, Lancelot James, and Yee Whye Teh

Abstract
Probabilistic models of sequences play a central role in 
most machine translation, automated speech recognition, 
lossless compression, spell-checking, and gene identifica-
tion applications to name but a few. Unfortunately, real-
world sequence data often exhibit long range dependencies 
which can only be captured by computationally challeng-
ing, complex models. Sequence data arising from natural 
processes also often exhibits power-law properties, yet com-
mon sequence models do not capture such properties. The 
sequence memoizer is a new hierarchical Bayesian model 
for discrete sequence data that captures long range depen-
dencies and power-law characteristics, while remaining 
computationally attractive. Its utility as a language model 
and general purpose lossless compressor is demonstrated.

1. intRoDuction
It is an age-old quest to predict what comes next in 
sequences. Fortunes have been made and lost on the suc-
cess and failure of such predictions. Heads or tails? Will 
the stock market go up by 5% tomorrow? Is the next card 
drawn from the deck going to be an ace? Does a particular 
sequence of nucleotides appear more often then usual in a 
DNA sequence? In a sentence, is the word that follows the 
United going to be States, Arab, Parcel, Kingdom, or some-
thing else? Using a probabilistic model of sequences fit to a 
particular set of data is usually an effective way of answering 
these kinds of questions.

Consider the general task of sequence prediction. For 
some sequences, the true probability distribution of the 
next symbol does not depend on the previous symbols in 
the sequence. For instance, consider flipping a coin that 
comes up heads with probability p or tails with probability 
1 − p every time it is flipped. Subsequent flips of such a coin 
are completely independent and have the same distribution 
(in statistics, such coin flips are called independent and iden-
tically distributed [iid]). In particular, heads will occur with 
probability p irrespective of whether previous flips have 
come up heads or tails. Assuming we observe a sequence of 
such coin flips, all we need to do is to estimate p in order to 
fully characterize the process that generated the data.

For more interesting processes, the distribution of the 
next symbol often depends in some complex way on previous 
outcomes. One example of such a process is natural language 
(sequences of words). In English, the distribution of words 
that follow the single-word context United is quite different 
from the distribution of words that follow Cricket and rugby 
are amongst the most popular sports in the United. In the first 
case, the distribution is relatively broad (though not nearly as 
broad as the distribution given no context at all), giving signifi-
cant probability to words such as States, Kingdom, Airlines, 
and so forth, whereas in the second case, the distribution is 

almost certainly highly peaked around Kingdom. Information 
from distant context (Cricket and rugby) impacts the distri-
bution of the next word profoundly. Production of natural 
language is but one example of such a process; the real world 
is replete with other examples.

Employing models that capture long range contextual 
dependencies will often improve one’s ability to predict 
what comes next, as illustrated in the example above. Of 
course, modeling the distribution of the next symbol emit-
ted by a process will only be improved by consideration of 
longer contexts if the generating mechanism actually does 
exhibit long range dependencies. Unfortunately, building 
models that capture the information contained in longer 
contexts can be difficult, both statistically and computation-
ally. The sequence memoizer (SM) captures such long range 
dependencies in a way that is both statistically effective and 
scales well computationally.

While the SM and related models are useful for predict-
ing the continuation of sequences, prediction is not the 
only application for these models. Automated speech rec-
ognition and machine translation require assessing the 
typicality of sequences of words (i.e., Is this sentence a prob-
able English sentence?). Speaker or writer identification 
tasks require being able to distinguish typicality of phrases 
under word sequence models of different writers’ styles. 
Classifying a sequence of machine instructions as malicious 
or not requires establishing the typicality of the sequence 
under each class. Models of sequences can be used for pre-
dicting the continuation of sequences, clustering or classify-
ing sequences, detecting change points in sequences, filling 
in gaps, compressing data, and more.

In this article we describe the SM in terms of general 
sequences over a discrete alphabet of symbols, though often 
we will refer to sequences of words when giving intuitive 
explanations.

2. PReDictinG seQuences
To start, let S be the set of symbols that can occur in some 
sequence. This set can consist of dictionary entries, ASCII 
values, or {A, C, G, T} in case of DNA sequences. Suppose 
that we are given a sequencea x = x1, x2, …, xT of symbols 

The work reported in this paper originally appeared 
in “A Hierarchical Bayesian Language Model based on 
Pitman–Yor Processes,” published in the  Proceedings 
of International Conference on Computational Linguistics 
and the Association for Computational Linguistics, 2006; 
“A Stochastic Memoizer for Sequence Data,” published in 
the Proceedings of the International Conference on Machine 
Learning, 2009 and “Lossless compression based on the 
Sequence Memoizer” published in the Proceedings of the 
IEEE Data Compression Conference, 2010.

FEBRUARY  2011  |   voL.  54  |   No.  2  |   communicAtions of tHe Acm     91



92    communicAtions of tHe Acm   |   FEBRUARY  2011  |   voL.  54  |   No.  2

research�highlights�

 

case, the data consists of the observed sequence, and the 
parameters are the conditional distributions Gu for some 
set of u’s.

In a sense, ML is an optimistic procedure, in that it 
assumes that x is an accurate reflection of the true under-
lying process that generated it, so that the ML parame-
ters will be an accurate estimate of the true parameters. 
It is this very optimism that is its Achilles heel, since 
it becomes overly confident about its estimates. This 
 situation is often referred to as overfitting. To elaborate 
on this point, consider the situation in which we have 
long contexts. The denominator of (1) counts the number 
of times that the context u occurs in x. Since x is of finite 
length, when u is reasonably long, the chance that u never 
occurs at all in x can be quite high, so (1) becomes unde-
fined with a zero denominator. More pernicious still is if 
we are “lucky” and u did occur once or a few times in x. In 
this case (1) will assign high probability to the few symbols 
that just by chance did follow u in x, and zero probability 
to other symbols. Does it mean that these are the only sym-
bols we expect to see in the future following u, or does it 
mean that the amount of data we have in x is insufficient to 
characterize the conditional distribution Gu? Given a com-
plex process with many parameters the latter is often the 
case, leading to ML estimates that sharpen far too much 
around the exact observations and don’t reflect our true 
uncertainty.

Obviously, if one uses models that consider only short 
context lengths, this problem can largely be avoided if one 
has enough data to estimate some (relatively) smaller num-
ber of conditional distributions. This is precisely what is typ-
ically done: one makes a fixed-order Markov assumption and 
restricts oneself to estimating collections of distributions 
conditioned on short contexts (for instance, an  nth-order 
Markov model, or an m-gram language model). The con-
sequence of doing this is that ML estimation becomes 
 feasible, but longer-range dependencies are discarded. By 
assumption and design, they cannot be accounted for by 
such restrictive models.

Even having imposed such a restriction, overfitting often 
remains an issue. This has led to the development of creative 
approaches to its avoidance. The language modeling and 
text compression communities have generally called these 
smoothing or back-off methodologies (see Chen and Goodman3 
and references therein). In the following, we will propose a 
Bayesian approach that retains uncertainty in parameter esti-
mation and thus avoids overconfident estimates.

4. BAyesiAn moDeLinG
As opposed to ML, the Bayesian approach is inherently 
conservative. Rather than trusting the data fully, Bayesian 
parameter estimation incorporates both evidence from the 
data as well as from prior knowledge of the underlying pro-
cess. Furthermore, uncertainty in estimation is taken into 
account by treating the parameters Q as random, endowed 
with a prior distribution P(Q) reflecting the prior knowledge 
we have about the true data generating process. The prior 
distribution is then combined with the likelihood P(x|Q) to 
yield, via Bayes’ Theorem (the namesake of the approach), 

from S and would like to estimate the probability that the 
next symbol takes on a particular value.

One way to estimate the probability that the next sym-
bol takes some value s Î S is to use the relative frequency 
of its occurrence in x, i.e., if s occurs frequently in x we 
expect its probability of appearing next to be high as well. 
Assuming that x is long enough, doing this will be bet-
ter than giving equal probability to all symbols in S. Let us 
denote by N(s) the number of occurrences of s in x. Our esti-
mate of the probability of s being the next symbol is then 

. The function G is a discrete 
distribution over the elements of S: it assigns a non-negative 
number G(s) to each symbol s signifying the probability of 
observing s, with the numbers summing to one over S.

Of course, this approach is only reasonable if the process 
generating x has no history dependence (e.g., if x is pro-
duced by a sequence of tosses of a biased coin). It is highly 
unsatisfying if there are contextual dependencies which 
we can exploit. If we start accounting for context, we can 
quickly improve the quality of the predictions we make. For 
instance, why not take into account the preceding symbol? 
Let u be another symbol. If the last symbol in x is u, then we 
can estimate the probability of the next symbol being s by 
counting the number of times s occurs after u in x. As before, 
we can be more precise and define

to be the estimated probability of s occurring after u, where 
N(us) is the number of occurrences of the subsequence us in x. 
The function Gu is again a discrete distribution over the sym-
bols in S, but it is now a conditional distribution as the prob-
ability assigned to each symbol s depends on the context u.

In the hope of improving our predictions, it is natural to 
extend this counting procedure to contexts of length greater 
than one. The extension of this procedure to longer con-
texts is notationally straightforward, requiring us only to 
reinterpret u as a sequence of length n ³ 1 (in fact, for the 
remainder of this article boldface type variables will indicate 
sequences, and we will use S* to denote the set of all finite 
sequences). Unfortunately, using this exact procedure for 
estimation with long contexts leads to difficulties, which we 
will consider next.

3. mAXimum LiKeLiHooD
Some readers may realize that the counting procedure 
described above corresponds to a ubiquitous statisti-
cal estimation technique called maximum likelihood 
(ML) estimation. The general ML estimation setup is 
as  follows: we observe some data x which is assumed to 
have been generated by some underlying stochastic pro-
cess and wish to  estimate parameters Q for a probabilis-
tic model of this process. A probabilistic model defines 
a distribution P(x|Q) over x parameterized by Q, and the 
ML estimator is the value of Q maximizing P(x|Q). In our 

a It is straightforward to consider multiple sequences in our setting, we 
 consider being given only one sequence in this paper for simplicity.



FEBRUARY  2011  |   voL.  54  |   No.  2  |   communicAtions of tHe Acm     93

 

not be good at all. In particular, if a rare symbol did not occur 
in our sequence (which is likely), our estimate of its probabil-
ity will be zero, while the probability of a rare symbol that did 
occur just by chance in our sequence will be overestimated. 
Since most symbols in S will occur quite rarely under a power-
law, our estimates of G(s) will often be inaccurate.

To encode our prior knowledge about power-law scaling, we 
use a prior distribution called the Pitman–Yor process (PYP),15 
which is a distribution over the discrete probability distribu-
tion . It has three parameters: a base distribution 

, which is the mean of the PYP and reflects our 
prior belief about the frequencies of each symbol, a discount 
parameter a between 0 and 1 which  governs the exponent of 
the power-law, and a concentration parameter c which governs 
the variability around the mean G0. When a = 0, the PYP loses 
its power-law properties and reduces to the more well-known 
Dirichlet process. In this paper, we assume c = 0 instead for 
simplicity; see Gasthaus and Teh6 for the more general case 
when c is allowed to be positive. When we write G  PY (a, G0) 
it means that G has a prior given by a PYP with the given para-
meters. Figure 1 illustrates the power-law scaling produced by 
PY processes.

To convey more intuition about the PYP we can consider 
how using it affects our estimate of symbol frequencies. 
Note that in our Bayesian framework G is random, and one 
of the standard steps in a procedure called inference is to 
estimate a posterior distribution P(G|x) from data. The prob-
ability that symbol s Î S occurs next is then:

where E in this case stands for expectation with respect 
to the posterior distribution P(G|x). This integral is a stan-
dard Bayesian computation that sometimes has an analytic 
solution but often does not. When it does not, like in this 
situation, it is often necessary to turn to numerical inte-
gration approaches, including sampling and Monte Carlo 
integration.16

In the case of the PYP, E[G(s)] can be computed as described 
at a high level in the following way. In addition to the counts 

, assume there is another set of random “counts” 
 satisfying 1 £ M(s¢) £ N(s¢) if N(s¢) > 0 and M(s¢) = 0 

otherwise. The probability of symbol s Î S occurring next is 
then given by:

Given this, it is natural to ask what purpose these M(s)’s 
serve. By studying Equation 3, it can be seen that each M(s) 
reduces the count N(s) by aM(s) and that the total amount 
subtracted is then redistributed across all symbols in S 
proportionally according to the symbols’ probability under 
the base distribution G0. Thus non-zero counts are usually 
reduced, with larger counts typically reduced by a larger 
amount. Doing this mitigates the overestimation of prob-
abilities of rare symbols that happen to appear by chance. 
On the other hand, for symbols that did not appear at all, 
the estimates of their probabilities are pulled upward 

the posterior distribution P(Q|x) = P(Q)P(x|Q)/P(x), which 
specifies the belief about the parameter Q after combin-
ing both sources of information. Computations such as 
 prediction are then done taking into account the a posteriori 
uncertainty about the underlying parameters.

What kinds of prior knowledge about natural sequence data 
might we wish to employ? We make use of two: that natural 
sequence data often exhibits power-law properties, and that 
conditional distributions of similar contexts tend to be similar 
themselves, particularly in the sense that recency matters. We 
will consider each of these in turn in the rest of this section.

4.1. Power-law scaling
As with many other natural phenomena like social networks 
and earthquakes, occurrences of words in a language fol-
low a power-law scaling.23 This means that there are a small 
number of words that occur disproportionately frequently 
(e.g., the, to, of), and a very large number of rare words that, 
although each occurs rarely, when taken together make up a 
large proportion of the language. The power-law scaling in 
written English is illustrated in Figure 1. In this subsection 
we will describe how to incorporate prior knowledge about 
power-law scaling in the true generative process into our 
Bayesian approach. To keep the exposition simple, we will 
start by ignoring contextual dependencies and instead focus 
only on one way of estimating probability distributions that 
exhibit power-law scaling.

To see why it is important to incorporate knowledge 
about power-law scaling, consider again the ML estimate 
given by the relative frequency of symbol occurrences 

. For the frequently occurring symbols, 
their corresponding probabilities will be well estimated since 
they are based on many observations of the symbols. On the 
other hand, our estimates of the rare symbol probabilities will 

105

104

103

102

101

100

100 101 102 103 104 105 106

106

W
or

d 
fr

eq
ue

nc
y

Rank(according to frequency)

Pitman–Yor
English text
Dirichlet

figure 1. illustration of the power-law scaling of word frequencies 
in english text. the relative word frequency (estimated from a large 
corpus of written text) is plotted against each word’s rank when 
ordered according to frequency. one can see that there are a few 
very common words and a large number of relatively rare words; 
in fact, the 200 most common words account for over 50% of the 
observed text. the rank/frequency relationship is very close to a 
pure power law relationship which would be a perfectly straight 
line on this log–log plot. Also plotted are samples drawn from a PyP 
(in blue) and a Dirichlet distribution (in red) fitted to the data. the 
Pitman–yor captures the power-law statistics of the english text 
much better than the Dirichlet.



94    communicAtions of tHe Acm   |   FEBRUARY  2011  |   voL.  54  |   No.  2

research�highlights�

 

from zero, mitigating underestimation of their probability. 
We describe this effect as “stealing from the rich and giv-
ing to the poor.” This is precisely how the PYP manifests a 
power-law characteristic. If one thinks of the M(s)’s and a as 
parameters then one could imagine ways to set them to best 
describe the data. Intuitively this is not at all far from what is 
done, except that the M(s)’s and a are themselves treated in a 
Bayesian way, i.e., we average over them under the posterior 
distribution in Equation 3.

4.2. context trees
We now return to making use of the contextual dependen-
cies in x and to estimating all of the conditional distribu-
tions Gu relevant to predicting symbols following a general 
context u. The assumption we make is that if two contexts 
are similar, then the corresponding conditional distribu-
tions over the symbols that follow those contexts will tend 
to be similar as well. A simple and natural way of defining 
similarity between contexts is that of overlapping contex-
tual suffixes. This is easy to see in a concrete example from 
language modeling. Consider the distribution over words 
that would follow u = in the United States of. The assump-
tion we make is that this distribution will be similar to 
the distribution following the shorter context, the United 
States of, which we in turn expect to be similar to the distri-
bution following United States of. These contexts all share 
the same length three suffix.

In this section and the following one, we will discuss 
how this assumption can be codified using a hierarchical 
Bayesian model.8, 11 To start, we will only consider fixed, 
finite length contexts. When we do this we say that we are 
making an nth order Markov assumption. This means that 
each symbol only depends on the last n observed symbols. 
Note that this assumption dictates that distributions are 
not only similar but equal among contexts whose suffixes 
overlap in their last n symbols. This equality constraint is 
a strong assumption that we will relax in Section 5.

We can visualize the similarity assumption we make by con-
structing a context tree: Arrange the contexts u (and the associ-
ated distributions Gu) in a tree where the parent of a node u, 
denoted s(u), is given by its longest proper suffix (i.e.,  u with its 
first symbol from the left removed). Figure 2 gives an example 
of a context tree with n = 3 and S = {0,1}. Since for now we 

are making an nth order Markov assumption, it is sufficient 
to consider only the contexts u Î Su

* = {u′ Î S*: |u′| ≤ n} of 
length at most n. The resulting context tree has height n and 
the total number of nodes in the tree grows exponentially in n. 
The memory complexity of models built on such context trees 
usually grows too large and too quickly for reasonable values 
of n and |S|. This makes it nearly impossible to estimate all of 
the distributions Gu in the naïve way described in Section 2. 
This estimation problem led us to hierarchical Bayesian mod-
eling using Pitman–Yor processes.

4.3. Hierarchical Pitman–yor processes
Having defined a context tree and shown that the Pitman–
Yor prior over distributions exhibits power-law characteris-
tics, it remains to integrate the two.

Recall that G   PY (a, G0) means that G is a random distri-
bution with a PYP prior parameterized by a discount param-
eter a and a base distribution G0. The expected value of G 
under repeated draws from the PYP is the base distribution G0. 
Because of this fact we can use this process to encode any 
assumption that states that on average G should be similar 
to G0. To be clear, this is just a prior assumption. As always, 
observing data may lead to a change in our belief. We can 
use this mechanism to formalize the context tree notion of 
similarity. In particular, to encode the belief that Gu should 
be similar to Gs(u), we can use a PYP prior for Gu with base 
distribution Gs(u). We can apply the same mechanism at each 
node of the context tree, leading to the following model 
specification:

 Ge   PY (a0, G0) (4)

 Gu|Gs(u) 

  PY (a|u|, Gs(u)) for all u Î Sn
*\e 

xi|xi –n:i–1 = u, Gu   Gu for i = 1, . . . , T

The second line says that a priori the conditional distribu-
tion Gu should be similar to Gs(u), its parent in the context 
tree. The variation of Gu around its mean Gs(u) is described 
by a PYP with a context length-dependent discount param-
eter a|u|. At the top of the tree the distribution Ge for the 
empty context e is similar to an overall base distribution 
G0, which specifies our prior belief that each symbol s will 
appear with probability G0(s). The third line describes the 

Gε

G0 G1

G01 G11G00 G10

G011 G111G001 G101G010 G110G000 G100

0 1

0 1 10

0 10 10 10 1

(a)
Gε

G0 G1

G01 G11

G011

0 1

10

0

0

1

1

0

(b)
Gε

G0 G1

G01

G011

0 1

10

0

0

1

1

0

(c)

figure 2. (a) full context tree containing all contexts up to length 3 over symbol set S = {0, 1}. (b) context tree actually needed for the string 
0110. observations in the context in which they were observed are denoted in gray below the corresponding context. (c) compact context tree 
for the same string, with non-branching chains marginalized out.



FEBRUARY  2011  |   voL.  54  |   No.  2  |   communicAtions of tHe Acm     95

 

nth order Markov model for x: It says that the distribution 
over each symbol xi in x, given that its context consisting of 
the previous n symbols xi-n:i−1 is u, is simply Gu.

The hierarchical Bayesian model in Equation 4 is called 
the hierarchical Pitman-Yor process.18 It formally encodes 
our context tree similarity assumption about the con-
ditional distributions using dependence among them 
induced by the hierarchy, with more similar distribu-
tions being more dependent. It is this dependence which 
allows the model to share information across the different 
contexts, and subsequently improve the estimation of all 
conditional distributions. It is worth noting that there is a 
well-known connection between the hierarchical PYP and 
a type of smoothing for m-gram language models called 
interpolated Kneser–Ney.10, 18

5. seQuence memoizeR
The name sequence memoizer (SM) refers to both an extension 
of the hierarchical PYP model presented in the previous sec-
tion, as well as to the set of techniques required to make prac-
tical use of the extended model. We first describe how the SM 
model extends the hierarchical PYP model and then discuss 
how to reduce the complexity of the model to make it compu-
tationally tractable. Finally, we sketch how inference is done 
in the SM.

5.1. the model
The SM model is a notationally subtle but important exten-
sion to the hierarchical PYP model (4) is described in the 
previous section. Instead of limiting the context lengths 
to n, the model is extended to include the set of distribu-
tions in all contexts of any (finite) length. This means that 
the distribution over each symbol is now conditioned on all 
previous symbols, not just the previous n.

Formally, the SM model is defined exactly as the hierar-
chical PYP model in Equation 4, but with two differences. 
First, the contexts range over all finite nonempty strings, 
u Î S*\e. Second, in the third line of Equation 4, instead of 
conditioning only on the previous n symbols, we condition 
on all previous symbols, so that xi|x1:i−1 = u, Gu  Gu. The 
assumptions embodied in the resulting model remain the 
same as that for the hierarchical PYP model: power-law 
scaling and similarity between related contexts.

The SM model can be interpreted as the limit of a 
hierarchical PYP model as the Markov order n tends to 
infinity. One’s first impression of such a model might be 
that it would be impossible to handle, both statistically 
because of overfitting and other problems, and compu-
tationally because the model as described so far cannot 
even be represented in a computer with finite memory! 
Fortunately the Bayesian approach, where we compute 
the posterior distribution and marginalize over the 
parameters as in Equation 2 to obtain estimators of inter-
est, prevents overfitting. Additionally, the techniques we 
develop in the next subsection make computation in this 
model practical.

5.2. compacting the context tree
While lifting the finite restriction on context lengths 

seems very desirable from a modeling perspective, the 
resulting SM model is a prior over an infinite number of 
parameters (conditional distributions) . In order 
to compute in this model, the number of conditional 
distributions that is accessed must be reduced to a finite 
number. The key to realizing that this is possible is that 
given a finite length sequence of symbols x, we only need 
access to a finite number of conditional distributions. In 
particular, we only need Gx1:i

 where i = 0, . . . , T and all the 
ancestors of each Gx1:i

 in the context tree. The ancestors 
are needed because each Gu has a prior that depends on 
its parent Gs(u). The resulting set of conditional distribu-
tions that the sequence x actually depends on consists of 
Gu where u ranges over all contiguous substrings of x, a 
finite set of O (T 2) contexts. All other contexts in the tree 
can effectively be ignored. We denote this subtree of the 
context tree that x actually depends on by T  (x); Figure 2b 
shows an example with x = 0110.

Computation with such a quadratically sized context 
tree is possible but inefficient, especially if the sequence 
length is large. A second step reduces the tree down to a lin-
ear number of nodes. The key observation underlying this 
reduction is that many of the contexts that appear in T  (x) 
only appear in non-branching chains, i.e., each node on the 
chain only has one child in T  (x). For example, in Figure 2b, 
the context 11 only occurs as a suffix of the longer context 
011, and is part of the non-branching chain . In 
such a situation, G11 serves no purpose except to relate G011 
with G1. If we can directly express the prior of G011 in terms of 
G1, then we can effectively ignore G11 and marginalize it out 
from the model.

Fortunately, a remarkable property related to an opera-
tion on Pitman–Yor processes called coagulation allows us 
to perform this marginalization exactly.14 Specifically in the 
case of G11|G1

  PY(a2, G1) and G011|G11  PY (a3, G11), the 
property states simply that G011|G1

 PY(a2a3, G1) where G11 
has been marginalized out. In other words, the prior for 
G011 is another PYP whose discount parameter is simply the 
product of the discount parameters along the chain leading 
into it on the tree T  (x), while the base distribution is simply 
the head of the chain G1.

In general, applying the same marginalization proce-
dure to all the non-branching chains of T  (x), we obtain 
a compact context tree T̂  (x) where all internal nodes have 
at least two children (all others have been integrated 
out). This is illustrated in Figure 2c, where each chain is 
replaced by an edge labeled by the sequence of symbols 
on the original edges of the chain (in the example only 

 is replaced by ). One can easily show 
that the number nodes in the compact context tree T̂  (x) is 
at most twice the length of the sequence x (independent 
of |S|).

At this point some readers may notice that the compact 
context tree has a structure reminiscent of a data structure 
for efficient string operations called a suffix tree.9 In fact, the 
structure of the compact context tree is given by the suffix 
tree for the reverse sequence xT, xT−1, …, x1. Similar extensions 
from fixed-length to unbounded-length contexts, followed 
by reductions in the context trees, have also been developed 



96    communicAtions of tHe Acm   |   FEBRUARY  2011  |   voL.  54  |   No.  2

research�highlights�

 

in the compression literature.4, 19

5.3. inference and prediction
As a consequence of the two marginalization steps described 
in the previous subsection, inference in the full SM model 
with an infinite number of parameters is equivalent to infer-
ence in the compact context tree T̂  (x) with a linear number 
of parameters. Further, the prior over the conditional distri-
butions on T̂  (x) still retains the form of a hierarchical PYP: 
each node still has a PYP prior with its parent as the base 
distribution. This means that inference algorithms devel-
oped for the finite-order hierarchical PYP model can be eas-
ily adapted to the SM. We will briefly describe the inference 
algorithms we employ.

In the SM model we are mainly interested in the predic-
tive distribution of the next symbol being some s Î S given 
some context u, conditioned on an observed sequence x. 
As in Equation 2, this predictive distribution is expressed 
as an expectation E[Gu(s)] over the posterior distribution 
of {Gu¢}u¢ Î T̂  (x). Just as in Equation 3 as well, it is possible 
to express E[Gu(s)] as an expectation over a set of random 
counts {N(u¢s¢), M(u¢s¢)}u¢ Î T̂  (x), s¢ ÎS :

Again, the first term in the numerator can be interpreted as 
a count of the number of times s occurs in the context u, the 
second term is the reduction applied to the count, while the 
third term spreads the total reduction across S according to 
the base distribution Gs(u)(s). Each context u now has its own 
discount parameter au, which is the product of discounts 
on the non-branching chain leading to u on T (x), while the 
parent s  (u) is the head of the chain. Notice that Equation 5 
is defined recursively, with the predictive distribution Gu in 
context u being a function of the same in the parent s  (u) and 
so on up the tree.

The astute reader might notice that the above does not 
quite work if the context u does not occur in the compact 
context tree T̂  (x). Fortunately the properties of the hierarchi-
cal PYP work out in our favor, and the predictive distribution 
is simply the one given by the longest suffix of u that is in 
T  (x). If this is still not in T̂  (x), then a converse of the coagula-
tion property (called fragmentation) allows us to reintroduce 
the node back into the tree.

To evaluate the expectation (5), we use stochastic (Monte 
Carlo) approximations where the expectation is approximated 
using samples from the posterior distribution. The samples 
are obtained using Gibbs sampling16 as in Teh18 and Wood,21 
which repeatedly makes local changes to the counts, and 
using sequential Monte Carlo5 as in Gasthaus et al.,7 which 
iterates through the sequence x1, x2, …, xT, keeping track of a 
set of samples at each step, and updating the samples as each 
symbol xi is incorporated into the model.

6. DemonstRAtion
We now consider two target applications: language mod-
eling and data compression. It is demonstrated that the 
SM model is able to achieve better performance than 

most state-of-the-art techniques by capturing long-range 
dependencies.

6.1. Language modeling
Language modeling is the task of fitting probabilistic models 
to sentences (sequences of words), which can then be used 
to judge the plausibility of new sequences being sentences in 
the language. For instance, “God save the Queen” should be 
given a higher score than “Queen the God save” and certainly 
more than “glad slave the spleen” under any model of English. 
Language models are mainly used as building blocks in natural 
language processing applications such as statistical machine 
translation and automatic speech recognition. In the former, 
for example, a translation algorithm might propose multiple 
sequences of English words, at least one of which is hoped to 
correspond to a good translation of a foreign language source. 
Usually only one or a few of these suggested sequences are 
plausible English language constructions. The role of the lan-
guage model is to judge which English construction is best. 
Better language models generally lead to better translators.

Language model performance is reported in terms of 
a  standard measure called perplexity. This is defined as 
2l(x) where  is the average log-loss 
on a sequence x and the average number of bits per word 
required to encode the sequence using an optimal code. 
Another interpretation of perplexity is that it is the average 
number of guesses the model would have to make before it 
guessed each word correctly (if it makes these guesses by draw-
ing samples from its estimate of the conditional distribution). 
For the SM model P(xi|x1:i−1) is computed as in Equation 5. Both 
lower log-loss and lower  perplexity are better.

Figure 3 compares the SM model against nth order Markov 

b Note that an nth order Markov model is an m-gram model where m = n + 1.

0 1 2 3 4 5 6

Context length(n)

0

1.5×107

1.2×107

9×106

6×106

3×106

N
um

be
r 

of
 n

od
es

100

200

300

400

P
er

pl
ex

it
y

M
arkov perplexity

SM perplexity

Markov #nodes

SM #nodes

figure 3. in blue is the performance of the sm model (dashed line) 
versus nth order markov models with hierarchical PyP priors (solid 
line) as n varies (test data perplexity, lower is better). in red is the 
computational complexity of the sm model (dashed line) versus the 
markov models (solid line) in terms of the number of nodes in the 
context tree/trie. for this four million word new york times corpus, as 
n passes 4, the memory complexity of the markov models grows larger 
than that of the sm, yet, the sm model yields modeling performance 
that is better than all markov models regardless of their order. this 
suggests that for n ≥ 4 the sm model is to be preferred: it requires less 
space to store yet results in a comparable if not better model.



FEBRUARY  2011  |   voL.  54  |   No.  2  |   communicAtions of tHe Acm     97

 

models with hierarchical PYP priors, for various values of 
n, on a four million word New York Times corpusb. Table 1 
compares the hierarchical PYP Markov model and the SM 
model against other state-of-the-art models, on a 14 million 
word Associated Press news article corpus. The AP corpus is a 
benchmark corpus for which the performance of many mod-
els is available. It is important to note that it was processed by 
Bengio et al.2 to remove low frequency words. Note that this 
is to the detriment of the SM, which is explicitly designed to 
improve modeling of low word frequencies due to power-law 
scaling. It is also a relatively small corpus, limiting the bene-
fits of the SM model at capturing longer range dependencies.

Our results show that the SM model is a competitive language 
model. However, perplexity results alone do not tell the whole 
story. As more data is used to estimate a language model, typi-
cally its performance improves. This means that computational 
 considerations such as memory and runtime must enter into 
the discussion about what constitutes a good language model. 
In many applications, fast prediction is imperative, in oth-
ers, particularly in online settings, incorporation of new data 
into the model must be fast. In comparison to more complex 
language models, prediction in the SM has real-world time 
complexity that is essentially the same as that of a smoothed 
finite-order Markov model, while its memory complexity is 
 linear in the amount of data. The computational complex-
ity of Markov models theoretically does not depend on the 
amount of data but is exponential in the Markov order, ren-
dering straightforward extensions to higher orders impracti-
cal. The SM model directly fixes this problem while remaining 
computationally tractable. Constant space, constant time 
extensions to the SM model1 have been developed, which show 
great promise for language modeling and other applications.

6.2. compression
Shannon’s celebrated results in information theory17 have 
led to lossless compression technology that, given a coding 
distribution, nearly optimally achieves the theoretical lower 
limit (given by the log-loss) on the number of bits needed to 
encode a sequence. Lossless compression is closely related 
to sequence modeling: an incrementally constructed prob-
abilistic sequence model such as the SM can be used to 
adaptively construct coding distributions which can then be 

directly used for compression based on entropy coding.
We demonstrate the theoretical performance of a loss-

less compressor based on the SM model on a number of 
standard compression corpora. Table 2 summarizes a com-
parsion of our lossless compressor against other state-of-
the-art compressors on the Calgary corpus, a well-known 
compression benchmark consisting of 14 files of different 
types and varying lengths.

In addition to the experiments on the Calgary corpus, SM 
compression performance was also evaluated on a 100MB 
excerpt of the English version of Wikipedia (XML text 
dump).12 On this excerpt, the SM model achieved a log-loss 
of 1.66 bits/symbol amounting to a compressed file size of 
20.80MB. While this is worse than 16.23MB achieved by the 
best demonstrated Wikipedia compressor, it demonstrates 
that the SM model can scale to sequences of this length. We 
have also explored the performance of the SM model when 
using a larger symbol set (S). In particular, we used the SM 
model to compress UTF-16 encoded Chinese text using a 
16-bit alphabet. On a representative text file, the Chinese 
Union version of the bible, we achieved a log-loss of 4.91 bits 
per Chinese character, which is significantly better than the 
best results in the literature (5.44 bits).22

7. concLusion
The SM achieves improved compression and language mod-
eling performance. These application-specific performance 
improvements are arguably worthwhile scientific achieve-
ments by themselves. Both have the potential to be tremen-
dously useful, and may yield practical consequences of 
societal and commercial value.

We encourage the reader, however, not to mentally cate-
gorize the SM as a compressor or language model. Nature is 
replete with discrete sequence data that exhibits long-range 
dependencies and power-law characteristics. The need to 
model the processes that generate such data is likely to grow 
in prevalence. The SM is a general purpose model for dis-
crete sequence data that remains computationally tractable 
despite its power and despite the fact that it makes only very 
general assumptions about the data generating process.

Our aim in communicating the SM is also to encourage 
readers to explore the fields of probabilistic and Bayesian 
modeling in greater detail. Expanding computational capac-
ity along with significant increases in the amount and 
variety of data to be analyzed across many scientific and 
engineering disciplines is rapidly enlarging the class of 
probabilistic models that one can imagine and employ. 
Over the coming decades hierarchical Bayesian models are 

table 1. Language modeling performance for a number of models on an 
Associated Press news corpus (lower perplexity is better). interpolated 
and modified Kneser–ney are state-of-the-art language models. Along 
with hierarchical PyP and the sequence memoizer, these models do not 
model relationships among words in the vocabulary. Provided for  
comparison are the results for the models of Bengio et al. and mnih 
et al. which belong to a different class of models that learn word  
representations from data

source Perplexity

Bengio et al.2 109.0

Mnih et al.13 83.9
4-gram interpolated Kneser–Ney3, 18 106.1

4-gram Modified Kneser–Ney3, 18 102.4

4-gram hierarchical PyP18 101.9

Sequence Memoizer21 96.9

table 2. compression performance in terms of weighted average 
log-loss (average bits per byte under optimal entropy encoding, lower 
is better) for the calgary corpus, a standard benchmark collection of 
diverse filetypes. the results for unboundedlength context PPm is from 
cleary and teahan.4 the results for ctW is from Willems.20 the bzip2 
and gzip results come from running the corresponding standard unix 
command line tools with no extra arguments

model sm PPm ctW bzip2 gzip

Average bits/byte 1.89 1.93 1.99 2.11 2.61



98    communicAtions of tHe Acm   |   FEBRUARY  2011  |   voL.  54  |   No.  2

research�highlights�

 

 10. Goldwater, S., Griffiths, T.L., Johnson, M.  
Interpolating between types and 
tokens by estimating power law 
generators. In Advances in Neural 
Information Processing Systems 18 
(2006), MIT Press, 459–466.

 11. MacKay, D.J.C., Peto, L.B. A hierarchical 
Dirichlet language model. Nat. Lang. 
Eng. 1, 2 (1995), 289–307.

 12. Mahoney, M. Large text compression 
benchmark. URL: http://www.
mattmahoney.net/text/text.html (2009).

 13. Mnih, A., Yuecheng, Z., Hinton, G. 
Improving a statistical language 
model through non-linear prediction. 
Neurocomputing 72, 7–9 (2009), 
1414–1418.

 14. Pitman, J. Coalescents with multiple 
collisions. Ann. Probab. 27 (1999), 
1870–1902.

 15. Pitman, J., Yor, M. The two-parameter 
Poisson–Dirichlet distribution derived 
from a stable subordinator. Ann. 
Probab. 25 (1997), 855–900.

 16. Robert, C.P., Casella, G. Monte Carlo 
Statistical Methods. Springer Verlag, 
2004.

 17. Shannon, C.E. A mathematical theory 

of communication. Bell Syst. Tech. J. 
(reprinted in ACM SIGMOBILE Mobile 
Computing and Communications 
Review 2001) (1948).

 18. Teh, Y.W. A hierarchical Bayesian 
language model based on Pitman–
Yor processes. In Proceedings of 
the Association for Computational 
Linguistics (2006), 985–992.

 19. Willems, F.M.J. The context-tree 
weighting method: Extensions. IEEE 
Trans. Inform. Theory 44, 2 (1998), 
792–798.

 20. Willems, F.M.J. CTW website. URL: 
http://www.ele.tue.nl/ctw/ (2009).

 21. Wood, F., Archambeau, C.,  
Gasthaus, J., James, L., Teh, Y.W. A 
stochastic memoizer for sequence 
data. In 26th International 
Conference on Machine Learning 
(2009), 1129–1136.

 22. Wu, P., Teahan, W.J. A new PPM 
variant for Chinese text compression. 
Nat. Lang. Eng. 14, 3 (2007), 417–430.

 23. Zipf, G. Selective Studies and the 
Principle of Relative Frequency in 
Language. Harvard University Press, 
Cambridge, MA, 1932.

likely to become increasingly prevalent in data analysis ori-
ented fields like applied statistics, machine learning, and 
computer science. It is our belief that the SM and its ilk will 
come to be seen as relatively simple building blocks for the 
enormous and powerful hierarchical models of tomorrow.

Source code and example usages of the SM are available 
at http://www.sequencememoizer.com/. A lossless com-
pressor built using the SM can be explored at http://www.
deplump.com/.

Acknowledgments
We wish to thank the Gatsby Charitable Foundation and 
Columbia University for funding. 

 1. Bartlett, N., Pfau, D., Wood, F. 
Forgetting counts: Constant memory 
inference for a dependent hierarchical 
Pitman–Yor process. In 27th 
International Conference on Machine 
Learning, to appear (2010).

 2. Bengio, Y., Ducharme, R., Vincent, P., 
Jauvin, C. A neural probabilistic 
language model. J. Mach. Learn. Res. 
3 (2003), 1137–1155.

 3. Chen, S.F., Goodman, J. An empirical 
study of smoothing techniques for 
language modeling. Comput. Speech 
Lang. 13, 4 (1999), 359–394.

 4. Cleary, J.G., Teahan, W.J. Unbounded 
length contexts for PPM. Comput. J. 
40 (1997), 67–75.

 5. Doucet, A., de Freitas, N., Gordon, N.J. 
Sequential Monte Carlo Methods in 
Practice. Statistics for Engineering and 
Information Science. Springer-Verlag, 

New York, May 2001.
 6. Gasthaus, J., Teh, Y.W. Improvements 

to the sequence memoizer. In 
Advances in Neural Information 
Processing Systems 23, to appear 
(2010).

 7. Gasthaus, J., Wood, F., Teh, Y.W. 
Lossless compression based on 
the sequence memoizer. Data 
Compression Conference 2010. 
J.A. Storer, M.W. Marcellin, eds. Los 
Alamitos, CA, USA, 2010, 337–345. 
IEEE Computer Society.

 8. Gelman, A., Carlin, J.B., Stern, H.S., 
Rubin, D.B. Bayesian data analysis. 
Chapman & Hall, CRC, 2nd edn, 2004.

 9. Giegerich, R., Kurtz, S. From Ukkonen 
to McCreight and Weiner: A unifying 
view of linear-time suffix tree 
construction. Algorithmica 19, 3 
(1997), 331–353. © 2011 ACM 0001-0782/11/0200 $10.00

References

Frank Wood (fwood@stat.columbia.
edu), Department of Statistics, Columbia 
University, New York.

Jan Gasthaus (j.gasthaus@gatsby.
ucl.ac.uk), Gatsby Computational 
Neuroscience Unit, University College 
London, England.

Cédric Archambeau (cedric.
archambeau@xerox.com), Xerox Research 
Centre Europe, Grenoble, France.

Lancelot James (lancelot@ust.hk), 
Department of Information, Systems, 
Business, Statistics and Operations 
Management, Hong Kong University of 
Science and Technology, Kowloon, Hong Kong.

Yee Whye Teh (ywteh@gatsby.ucl.ac.uk), 
Gatsby Computational Neuroscience Unit, 
University College London, England.

You’ve come a long way.
Share what you’ve learned.

ACM has partnered with MentorNet, the award-winning nonprofit e-mentoring network in engineering,
science and mathematics. MentorNet’s award-winningOne-on-OneMentoring Programs pair ACM
student members with mentors from industry, government, higher education, and other sectors.

• Communicate by email about career goals, course work, and many other topics.
• Spend just 20minutes a week - and make a huge difference in a student’s life.
• Take part in a lively online community of professionals and students all over the world.

Make a difference to a student in your field.
Sign up today at: www.mentornet.net

Find out more at: www.acm.org/mentornet
MentorNet’s sponsors include 3M Foundation, ACM, Alcoa Foundation, Agilent Technologies, Amylin Pharmaceuticals, Bechtel Group Foundation, Cisco
Systems, Hewlett-Packard Company, IBM Corporation, Intel Foundation, Lockheed Martin Space Systems, National Science Foundation, Naval Research
Laboratory, NVIDIA, Sandia National Laboratories, Schlumberger, S.D. Bechtel, Jr. Foundation, Texas Instruments, and The Henry Luce Foundation.




