
Canonical Correlation Forests
Tom Rainforth and Frank Wood

Abstract—We introduce canonical correlation forests (CCFs), a new decision tree ensemble method for classification. Individual
canonical correlation trees are binary decision trees with hyperplane splits based on canonical correlation components. Unlike axis-
aligned alternatives, the decision surfaces of CCFs are not restricted to the coordinate system of the input features and therefore more
naturally represent data with correlation between the features. Additionally we introduce a novel alternative to bagging, the projection
bootstrap, which maintains use of the full dataset in selecting split points. CCFs do not require parameter tuning and our experiments
show that they out-perform axis-aligned random forests, other state-of-the-art tree ensemble methods and all of the 179 classifiers
considered in a recent extensive survey.

F

1 INTRODUCTION

D ECISION tree ensemble methods such as random forests [1],
extremely randomized trees [2] and boosted decision trees

[3] are widely employed methods for classification and regression
due to their scalability, fast out of sample prediction, and tendency
to require little parameter tuning. In many cases, they are capable
of giving predictive performance close to, or even equalling, state
of the art when used in an out-of-the-box fashion. The trees used
in such models are, however, typically axis-aligned, restricting the
ensemble decision surface to be piecewise axis-aligned, even when
there is little evidence for this in the data. Canonical correlation
forests (CCFs) overcome this problem by instead using carefully
chosen hyperplane splits, leading to a more powerful classifier that
naturally incorporates correlation between the features, as shown
in Figure 1. In this paper we demonstrate that this innovation
regularly leads to a significant increase in accuracy over previous
state-of-the-art tree ensemble methods, whilst maintaining speed
and black-box applicability. Furthermore, we demonstrate that
CCFs run without parameter tuning outperform all of the 179
classifiers considered in the recent survey of Fernández-Delgado
et al [4] over a large selection of datasets, including many popular
support vector machines and neural nets.

A decision tree is a predictive model that imposes sequential
divisions of an input space to form a set of partitions known as
leafs, each containing a local classification or regression model.
Out of sample prediction is performed by using the partitioning
structure to assign a data point to a particular leaf and then
using the corresponding local predictive model. Typically, the leaf
models are taken to be independent of each other and the class
labels are assumed to be independent of input features given the
leaf assignments.

Classical decision tree learning algorithms work in a greedy
top down fashion, exhaustively searching the possible space of
axis-aligned unique split points and choosing the best based on a
splitting criterion, such as the Gini gain or information gain used
in CART [5] and C4.5 [6] respectively. This process continues
until no further split is advantageous or some user-set limit is
reached. For classification with continuous features this typically
only occurs once each leaf is “pure,” containing only data points
of a single class. When used as individual classifiers, trees are
usually “pruned” after being grown to prevent overfitting.

• Tom Rainforth and Frank Wood are with the Department of Engineering
Science, University of Oxford (e-mail: {twgr, fwood}@robots.ox.ac.uk)

It was established by Ho [7] that combining individual trees
to form a decision forest can simultaneously improve predictive
performance and provide regularization against over-fitting, with
the need for pruning. In a forest, each tree is separately trained,
with predictions based on a voting system across the ensemble.
As classical decision tree algorithms are deterministic procedures,
such combination requires the introduction of probabilistic ele-
ments into the generative process to prevent identical trees. The
random subspace method used by Ho (refined in a later paper
[8]) involves only searching splits along a randomly selected
subset of the features at each node. Breiman [9] proposed the
alternative scheme of bagging, in which each predictor is trained
on a bootstrap sample of the original dataset. Breiman later
combined these schemes to great effect in his popular random
forest (RF) algorithm [1]. He also demonstrated that splitting
along random linear combinations of features at each node can
give small performance improvements over using a single feature.

Oblique decision trees (ODTs) extend classical decision trees
by splitting using linear combinations of the available features.
Some algorithms such as OC1 [10] attempt to directly optimize
for the hyperplane representing the best partition, while others,
such as functional trees [11] and QUEST [12], carry out a linear
discriminant analysis (LDA) to find a projection which optimizes
some discriminant criterion and then search over possible splits in
this projected space. Although ODTs generally produce better re-
sults than single axis aligned trees, existing algorithms suffer from
a number of common issues, such as a failure to effectively deal
with multiple classes, numerical instability or significant increase
in computational cost. Most also carry out a simplified version of
Fisher’s LDA [13], making the unnecessary assumptions that the
classes are normally distributed with the same covariance.

Lemmond et al [14] and Menze et al [15] both introduce
the idea of creating forests of oblique decision trees using splits
based on LDA projections. However, neither method is applicable
to multi-class classification and neither carries out the LDA in
a manner that is both numerically stable and computationally
efficient. The latter paper also introduce the idea of carrying out
LDA as a ridge regression, where there is regularization towards
the principle component directions. However, their results suggest
no advantage is gained by this regularization.

Rotation forests [16] use individually orthogonal trees, but ap-
ply probabilistic rotations, based on principle component analysis,
to the original coordinate system as a preprocessing step, such

CANONICAL CORRELATION FORESTS, RAINFORTH AND WOOD 2

(a) Single CART (unpruned) (b) RF with 200 Trees

(c) Single CCT (unpruned) (d) CCF with 200 Trees

Fig. 1: Decision surfaces for artificial spirals dataset. (a) Shows the hierarchical partitions and surface for a single axis aligned tree while
(b) shows the effect of averaging over a number of, individually randomized, axis aligned trees. (c) Shows a single canonical correlation
tree (CCT) and (d) demonstrates that averaging over CCTs to give a canonical correlation forest leads to “smoother” decision surfaces
which better represent the data than the axis aligned equivalent.

that different trees are trained in a different coordinate system.
Although this was shown to given significant improvement in
predictive performance over RF, they require all features to be
considered for splitting at every node, leading to a computationally
relatively expensive algorithm for more than a modest number of
features.

2 CANONICAL CORRELATION FORESTS

Canonical correlation forests (CCFs) are a new tree ensemble
method for classification. Individual canonical correlation trees
(CCTs) are oblique decision trees, trained by using canonical cor-
relation analysis (CCA) [17] to find feature projections that give
the maximum correlation between the features and a coordinate
free representation of the class labels, and then selecting the best
split in this projected space. Unlike many previous oblique forest
methods, CCFs are equally suited to both binary and multi-class
classification, have the same computational complexity as RFs and
calculate the splitting hyperplanes in a numerically stable manner.
We also introduce the projection bootstrap, a novel alternative to
bagging. Open source code for CCFs is available online1. Both
training and testing of the algorithm require only a single short line
of code without the need for parameter tuning (although there are
a small number of parameter which can be changed, all presented
results are created using default values).

2.1 Forest Definition and Notation
Although the model we introduce can easily be extended to
regression problems, our focus will be on classification. Our aim
will be to predict class labels yn ∈ {1, . . . ,K} given a vector
of input features xn ∈ RD for each data point n ∈ {1, . . . , N}.
We will denote the set of labels Y = {yn}Nn=1 and the set of
feature vectors X = {xn}Nn=1. Let T = {ti}i=1...L denote
a forest comprised of binary trees ti, where L is a user set
parameter dictating the ensemble size. The model operates in a
train / test fashion, in which T is learnt using training data and out
of sample predictions are made independently of the training data
conditioned on T . Each individual tree t = {Ψ,Θ} is defined by
a set of discriminant nodes Ψ = {ψj}j∈J\∂J and a set of leaf
nodes Θ = {θj}j∈∂J where J ⊂ Z≥0 is a set of node indices
and ∂J ⊆ J is the subset of leaf node indices. Each discriminant

1. http://www.robots.ox.ac.uk/∼twgr/

node is defined by the tuple ψj = {χj,1, χj,2, φj , sj} where
{χj,1, χj,2} ⊆ J \j are the two child node ids, φj ∈ RD
is a weight vector used to project the input features and sj is
the point at which the splitting occurs in the projected space
XTφj . Note that for orthogonal trees only a single element of
φj will be non-zero, whereas oblique trees will have multiple
non-zero elements. Let B (j, t) denote the partition of the input
space associated with node j such that B (0, t) = RD and
B (j, t) = B (χj,1, t) ∪ B (χj,2, t). The partitioning procedure
is then defined such that

B (χj,1, t) = B (j, t) ∩
{
z ∈ RD : zTφj ≤ sj

}
B (χj,2, t) = B (j, t) ∩

{
z ∈ RD : zTφj > sj

}
.

(1)

Thus Ψ defines a hierarchical partitioning procedure that deter-
ministically assigns data points to leaf nodes, with prediction
then based on the corresponding local leaf model. Although more
complicated leaf models are possible (e.g. logistic regression
models [11]), in this paper we only consider the case where the
leaf models are deterministic assignments to a particular class,
thus θj ∈ {1, . . . ,K} ∀j ∈ ∂J .

As for RFs, out of sample prediction is done using an equally
weighted voting scheme of the tree predictions. The predictive
probability assigned to a certain class is thus the number of trees
that predicted that class divided by the total number of trees.

2.2 Canonical Correlation Analysis
Canonical correlation analysis (CCA) [17] is a deterministic
method giving of pairs of linear projections that maximise the
correlation between two matrices in the co-projected space.
Let us consider applying CCA between the arbitrary matrices
W ∈ Rn×d and V ∈ Rn×k, and let a ∈ Rd×1, ‖a‖2 = 1 and b ∈
Rk×1, ‖b‖2 = 1 be arbitrary vectors on the (d− 1)-hypersphere
and (k − 1)-hypersphere respectively. Denote the set of solutions
for the canonical coefficients as {Aν , Bν}ν∈{1,...,νmax} where
each Aν and Bν are in the space of a and b respectively and
νmax = min (rank (W) , rank (V)). The first pair of canonical
coefficients are given by

{A1, B1} = argmax
a,b

(corr (Wa, V b)) (2)

and the corresponding canonical correlation components are given
by WA1 and V B1. The second pair of coefficients, {A1, B1} is

CANONICAL CORRELATION FORESTS, RAINFORTH AND WOOD 3

Algorithm 1: CCF training algorithm

Inputs: ordinal features Xr ∈ RN×D
r

, categorical features Xc ∈
SN×D

c

, class labels Y ∈ IN×K , number of trees L ∈ Z+,
number of features to sample λ ∈ {1, . . . , Dr +Dc}

Outputs: CCF T
1: Convert Xc to 1-of-K encoding Xb ∈ IN×D

b

2: X =
{
Xr, Xb

}
3: µ(d) =

∑N
n=1X(n,d)/N ∀d

4: σ(d) =
(

1
N−1

∑N
n=1X(n,d)

2 − µ(d)
2
)0.5

∀d
5: X(:,d) ←

(
X(:,d) − µ(d)

)
/σ(d) ∀d

6: Set missing values in X to 0
7: if λ < (Dr +Dc) then b = true else b = false end if
8: for i = 1: L do
9: if b then

10: {X ′,Y ′} ← {X,Y}
11: else
12: {X ′,Y ′} ← bootstrap sample N rows from {X,Y}
13: end if
14: [·,Ψ,Θ] = GROWTREE(X ′,Y ′, {1, . . . , Dr +Dc} , λ, b)
15: ti = {Ψ,Θ}
16: end for
17: return T = {ti}i=1...L

given by the solution to (2) under the additional constraint that
new components are uncorrelated with the previous components:

(WA1)
T
WA2 = 0 and (V B1)

T
V B2 = 0. (3)

This process is repeated with all new components uncorrelated
with the previous components, to produce a full set of νmax
pairs of canonical coefficients. Note that CCA is a co-ordinate
free process that is unaffected by rotation, translation or global
scaling of the inputs.

As shown by, for example, Borga [18], the solution of CCA
has a closed form. Namely the coefficients satisfy:

Σ−1WWΣWV Σ−1V V ΣVWAν = ρ2νAν

Σ−1V V ΣVWΣ−1WWΣWVBν = ρ2νBν
(4)

where ΣWW , ΣV V and ΣWV = ΣTVW are the covariance of W ,
covariance of V and cross covariance of W and V respectively.
The common eigenvalues, which correspond to the squares of
the canonical correlations ρν , make the pairing between the
coefficients of W and V apparent and the order of the coefficients
is found by the corresponding decreasing order of the canonical
correlations, ρ1 ≥ ρ2 ≥ · · · ≥ ρνmax

.

2.3 Canonical Correlation Forest Training Algorithm
Algorithm 1 gives a step by step process for the generation of a
CCF. We use← to denote assignment and MATLAB notation with
subscript parentheses for indexing such that a colon indicates all
the values along a dimension, a vector index indicates assignment
to the corresponding subarray and the notation : \i indicates all
the indices except those in set i.

CCTs are trained in the greedy, top down procedure shown
in Algorithm 2. Note that this is self similar for sub-trees
and continues until no split is beneficial. The key difference
to classical decision learning tree algorithms is that instead of
searching over the axis aligned splits, a CCA is first carried out
between the features and classes and then the split is selected
using an exhaustive search in the space of projected features.

Algorithm 2: GROWTREE

Inputs: features Xj ∈ RN
j×(Dr+Db), classes Yj ∈ IN

j×K , avail-
able feature ids Dj ⊆ {1, . . . , Dr +Dc}, number of features to
sample λ ∈ Z+, whether to projection bootstrap b ∈ {true, false}

Outputs: Sub-tree root node identifier j, sub-tree discriminant nodes
Ψ, sub-tree leaf nodes Θ

1: Set current node index j to an unique node identifier
2: Sample δ ⊆ Dj by taking min

(
λ,
∣∣Dj∣∣) samples without re-

placement from Dj
3: While δ contains features without variation, eliminate these from
Dj and δ and resample

4: γ = δ mapped to the column indices of Xj in accordance with
the 1-of-K encoding of Xc

5: if b then
6: {X ′,Y ′} ← bootstrap sample N j rows from {Xj

(:,γ),Y
j}

7: else
8: {X ′,Y ′} ← {X,Y}
9: end if

10: if all rows in X ′ or Y ′ are identical then
11: if all rows in Xj

(:,γ) or Yj are identical then
12: return

[
j, ∅, LABEL(Yj)

]
. LABEL as per Section 2.3

13: end if
14: {X ′,Y ′} ← {Xj

(:,γ),Y
j}

15: end if
16: if X ′ contains only two unique rows then
17: X ′ = UNIQUEROWS(X ′)
18: φj(γ) ← X

′
(2,:) −X ′(1,:), φj(:\γ) ← 0

19: sj = 1
2

(
X ′(1,:) + X ′(2,:)

)T
φj

20: else
21: [Φ, ·] = CCA(X ′,Y ′) . as per Section 2.5
22: R(γ,:) ← Φ, R(:\γ,:) ← 0
23: U = XjR
24: [ξ, sj , gain] = FINDBESTSPLIT(U) . as per Section 2.3
25: if gain ≤ 0 then
26: return

[
j, ∅, LABEL(Yj)

]
27: end if
28: φj = R(:,ξ)

29: end if
30: τl = {n ∈

{
1, . . . , N j

}
: Xj

(n,:)φj ≤ sj}
31: τr = {1, . . . , N j}\τl
32:

[
χ(j,1),Ψl,Θl

]
= GROWTREE(Xj

(τl,:)
,Yj(τl,:),D

j , λ, b)

33:
[
χ(j,2),Ψr,Θr

]
= GROWTREE(Xj

(τr,:)
,Yj(τr,:),D

j , λ, b)

34: ψj =
{
χ(j,1), χ(j,2), φj , sj

}
35: return [j, {ψj ∪Ψl ∪Ψr} , {Θl ∪Θr}]

Formally given array X and a 1-of-K encoding of the class labels
Y ∈ RN×1 → Y ∈ IN×K , where Ynk = 1 indicates point n
belongs to class k, we calculate

[Φ, ·] = CCA (X,Y) (5)

where Φ are the canonical coefficients corresponding to X . For
node j, the split projection vector φj is taken as the column of
Φ for which the best split occurred during training and sj as
the corresponding best split point in Xφj . Finding the best such
pair corresponds to function FINDBESTSPLIT(·) in Algorithm 2,
which returns the index of the projection giving the best split ξ,
the corresponding split point sj and the respective value of split
criterion relative to if the node were a leaf, denoted gain. Note
that the CCA is only required during the training phase with the
splitting rule (1) used directly for out of sample prediction.

Although the CCF training algorithm still uses feature sub-
spacing (sampling λ features) in the same way as RF, it does

CANONICAL CORRELATION FORESTS, RAINFORTH AND WOOD 4

not use bagging2. Instead we introduce the projection bootstrap
which calculates Φ using a local bootstrap sample of the data
points {X ′,Y ′}, but then searches over possible splits in the
projected space XΦ using the original dataset {X,Y} such that
no information is discarded in the choice of {φj , sj} given Φ.

Prior to running the CCA, the bootstrap sample is tested to
ensure it contains more than one class and more than two unique
data points. If there is only a single class or one unique point, one
can either assign the node to be a leaf or replace the bootstrap
sample with the original data when this does not have the same
degeneracy. We found that either can be preferable depending on
the dataset but take the latter as the default behaviour because
this performed better on average in preliminary tests. If there are
two unique points, the discriminant projection is set to be the
vector between the two points, as shown in line 18 of Algorithm
2, instead of carrying out a CCA. The process of assigning a label
to leaf, i.e. the LABEL(Y) function in Algorithm 2, is simply the
most populous class at the label. In the event of a tie, the function
assigns the most populous of the tied classes at the parent node,
recursing up the tree if required.

2.4 Data Preprocessing

The format of our forest definition given in Section 2.1 requires
the data to be in numerical form. Ordered categorical features
can be treated as numerical using the class index. For unordered
categorical features xc ∈ S , where S represents the space of
arbitrary qualitative attributes, we use a 1-of-K encoding. To
ensure equal probability of selecting categorical and numerical
features, the expanded binary array of each categorical feature is
still treated as a single feature during feature subspacing. We refer
to numeric, binary and ordered categorical features as ordinal and
no-ordered categorical features as non-ordinal.

As described in lines 3-5 of Algorithm 1, we convert data
points to their corresponding z-scores as a preprocessing step.
Although this will not directly change the canonical correlation
components, it does affect the rank reduction used in ensuring the
numerical stability of CCA discussed in Section 2.5. Missing data
is dealt with by setting its value to the training data mean.

2.5 Numerically Stable CCA

The closed form solution for CCA based on eigenvectors given
in (4), can be numerically unstable if carried out naı̈vely, as
it requires an inversion of the potentially degenerate covariance
matrices. For example, if there are more features than data points,
the covariance matrix is certain to be degenerate. Given the
sequential partitioning of data in a decision tree, such degeneracy
will become common as the tree depth increases, even if the
covariances for the complete dataset are not degenerate. However,
Björck and Golub [19] demonstrated that the solution for CCA
can also be found in a numerically stable way. After centring both
inputs, a QR decomposition with pivoting is carried out on each:
QR = WP for cantered input W , where Q is a unitary matrix,
R is an upper triangular matrix and P is a pivot matrix such that
the diagonal elements of R are of decreasing magnitude. If

ζ = max
{
i :
∣∣R(i,i)

∣∣ > ε
∣∣R(1,1)

∣∣} (6)

2. An exception to this is that bagging is used instead of the projection
bootstrap when the number of features to be sampled, λ, is equal to the total
number of present features. This is done to avoid overfitting.

is the number of non-zero main diagonal terms within some
tolerance ε, then the first ζ columns of Q will describe an
orthonormal basis for the span of W . Therefore by applying the
reductions Q′ ← Q(: ,1:ζ) and R′ ← R(1:ζ,1:ζ), then Q′R′ will
be a pivoted reduction of W that is full rank and R′ will be
invertible. The algorithm then proceeds with the reduced matrices
Q′ and R′ to carry out the CCA in a numerical stable manner, full
details are provided in Appendix A.

Although for analytical application then the rank tolerance
parameter ε should be taken as 0+, we recommend taking a finite
value (we use ε = 10−4) to guard against numerical error and
because this can act as a regularization term against individual
splits overfitting the inputs. Note that packaged applications of this
algorithm are available, for example CANONCORR in MATLAB, but
in general these do not allow ε to be set manually.

3 EXPERIMENTS

3.1 Comparison to State-of-the-art Tree Ensembles
To investigate the predictive performance of CCFs, we ran com-
parison tests against the state-of-the-art algorithms random forest
(RF) and rotation forest over a broad variety of datasets. The
results show that CCFs significantly outperformed both methods,
creating a new benchmark in classification accuracy for out-of-
the-box decision tree ensembles, despite being a considerably
more computationally efficient than rotation forests as discussed
in Section 4.3. In addition to comparing to these state-of-the-art
methods, we also compared to a reduced version of our algorithm
where we use tree bagging, as per RF, as an alternative to the
projection bootstrap. We refer to this method as CCF-Bag.

For each method the ensemble was composed of L = 500
trees, noting that as forests converge with increasing L [1], the
selection of L need only be based on computational budget. Each
tree used the information gain split criterion of C4.5 [6] as the
basis for choosing the best split, as is the default for WEKA’s
[20] implementations of RF and rotation forest. The choice of the
information split criterion over the Gini criterion (the split criterion
in MATLABs TREEBAGGER function and Breiman’s original [1]
implementation), was based on this giving better results for RF on
the tested datasets. The RF, CCF-Bag and CCF algorithms were
all implemented in MATLAB and we set the parameter for the
number of features to sample at each step to λ = CEIL(log2 (D)+
1) (where D = Dr + Dc is the total number of features prior to
the binary expansion of categorical features), with the exception
that we set λ = 2 when D = 3 so that random subspacing and
CCA can both be employed.

Rotation Forests were implemented in WEKA with 500 trees
and the default options except that we used binary, unpruned, trees
and set the minimum number of instances per leaf to 1. In addition
to keeping the implementation of rotation forest as consistent
as possible with the other algorithms, these settings dominated
rotation forests of the same size with the default options over a
single cross validation. As recommended by Rodriguez et al [16],
1-of-K encoding was used for non-ordinal features for rotation
forests (note rotation forests do not then treat them differently to
ordinal variables).

For each dataset, 15 different 10-fold cross-validation tests
were performed. The majority of the 37 datasets were taken from
the UCI machine learning database [21] with the exceptions of
the ORL face recognition dataset [22], the Polyadenylation Signal
Prediction (polya) dataset [23] and the artificial spiral dataset from

CANONICAL CORRELATION FORESTS, RAINFORTH AND WOOD 5

TABLE 1: Dataset summaries and mean and standard deviations of percentage of test cases misclassified. Method with best accuracy is
shown in bold. • and ◦ indicate that CCFs were significantly better and worse respectively at the 1% level of a Wilcoxon signed rank
test. K = number of classes, N = number of data points, Dc = number of non-ordinal features and Dr = number of ordinal features.
The ORL and Polya datasets could not be run in reasonable time for rotation forest.

Data set K N Dc Dr CCF RF Rotation Forest CCF-Bag
Balance scale 3 625 0 4 8.84 ± 3.73 18.66 ± 4.56 • 7.25 ± 3.38 ◦ 8.84 ± 3.73

Banknote 2 1372 0 4 0.00 ± 0.00 0.58 ± 0.64 • 0.00 ± 0.00 0.00 ± 0.00
Breast tissue 6 106 0 9 27.64 ± 12.10 31.09 ± 12.38 • 28.48 ± 12.36 27.33 ± 11.85

Climate crashes 2 360 0 18 6.33 ± 4.12 6.46 ± 4.10 6.11 ± 3.94 ◦ 6.85 ± 4.10 •
Fertility 2 100 0 9 12.73 ± 9.40 14.53 ± 9.45 • 12.40 ± 8.87 12.73 ± 9.11

Heart-SPECT 2 267 0 22 17.16 ± 7.06 18.86 ± 7.25 • 17.56 ± 7.29 18.25 ± 6.96 •
Heart-SPECTF 2 267 0 44 18.79 ± 7.09 18.91 ± 7.09 18.57 ± 7.06 18.35 ± 6.87

Hill valley 2 1212 0 100 0.00 ± 0.00 39.16 ± 4.05 • 6.32 ± 2.65 • 0.00 ± 0.00
Hill valley noisy 2 1212 0 100 4.86 ± 1.84 42.08 ± 4.57 • 11.01 ± 2.80 • 5.45 ± 2.02 •

ILPD 2 640 0 10 28.05 ± 5.14 29.92 ± 5.17 • 29.02 ± 5.25 • 28.32 ± 5.15
Ionosphere 2 351 0 33 4.78 ± 3.59 6.53 ± 3.95 • 5.79 ± 3.56 • 5.30 ± 3.60 •

Iris 3 150 0 4 2.40 ± 3.73 5.07 ± 5.22 • 4.31 ± 5.19 • 2.13 ± 3.73
Landsat satellite 2 6435 0 36 8.16 ± 1.02 8.03 ± 1.00 ◦ 7.75 ± 1.02 ◦ 8.57 ± 1.03 •

Letter 26 20000 0 16 2.17 ± 0.33 3.36 ± 0.39 • 2.43 ± 0.32 • 2.47 ± 0.38 •
Libras 15 360 0 90 10.37 ± 5.05 18.54 ± 5.93 • 9.48 ± 4.47 ◦ 11.44 ± 5.20 •

MAGIC 2 19020 0 10 11.59 ± 0.69 11.90 ± 0.72 • 12.67 ± 0.71 • 11.69 ± 0.72 •
Nursery 5 12960 0 8 0.04 ± 0.06 0.19 ± 0.13 • 0.03 ± 0.06 0.08 ± 0.10 •

ORL 40 400 0 10304 1.85 ± 2.18 1.72 ± 2.03 - 2.00 ± 2.28
Optical digits 10 5620 0 64 1.27 ± 0.41 1.59 ± 0.49 • 1.29 ± 0.41 1.46 ± 0.46 •

Parkinsons 2 195 0 22 6.20 ± 5.20 9.43 ± 6.17 • 7.19 ± 5.33 • 7.83 ± 6.14 •
Pen digits 10 10992 0 16 0.41 ± 0.19 0.82 ± 0.28 • 0.48 ± 0.22 • 0.45 ± 0.20 •

Polya 2 9255 0 169 21.03 ± 1.26 21.20 ± 1.27 • - 21.22 ± 1.26 •
Seeds 3 210 0 7 4.95 ± 4.71 5.78 ± 5.01 • 4.79 ± 4.60 5.56 ± 4.89 •

Skin seg 2 245057 0 3 0.03 ± 0.01 0.05 ± 0.01 • 0.04 ± 0.01 • 0.03 ± 0.01 •
Soybean 19 683 13 22 5.31 ± 2.82 5.50 ± 3.02 5.67 ± 2.91 5.73 ± 3.11 •
Spirals 3 10000 0 2 0.27 ± 0.15 1.21 ± 0.33 • 1.01 ± 0.32 • 0.27 ± 0.15
Splice 3 3190 60 0 3.03 ± 0.89 3.05 ± 0.93 4.21 ± 1.16 • 3.08 ± 0.91
Vehicle 4 846 0 18 18.20 ± 4.13 25.22 ± 4.57 • 21.12 ± 4.27 • 18.38 ± 4.19
Vowel-c 11 990 2 10 0.90 ± 0.93 2.56 ± 1.66 • 0.95 ± 0.94 1.26 ± 1.12 •
Vowel-n 11 990 0 10 1.72 ± 1.30 3.93 ± 1.98 • 1.43 ± 1.19 ◦ 2.38 ± 1.43 •

Waveform (1) 3 5000 0 21 13.54 ± 1.56 15.06 ± 1.69 • 13.53 ± 1.50 13.39 ± 1.52 ◦
Waveform (2) 3 5000 0 40 13.39 ± 1.68 14.61 ± 1.64 • 13.31 ± 1.64 13.28 ± 1.58
Wholesale-c 2 440 1 7 8.50 ± 4.13 8.15 ± 4.01 8.44 ± 3.99 8.42 ± 3.96
Wholesale-r 3 440 0 7 29.80 ± 5.93 28.97 ± 6.10 ◦ 28.18 ± 6.19 ◦ 28.39 ± 6.15 ◦

Wisconsin cancer 2 699 0 9 3.10 ± 1.95 3.54 ± 2.17 • 2.87 ± 1.82 3.04 ± 1.95
Yeast 10 1484 0 8 38.02 ± 3.98 37.89 ± 4.22 37.21 ± 4.23 ◦ 37.12 ± 4.05 ◦
Zoo 7 101 0 16 3.20 ± 5.71 5.13 ± 6.73 • 5.47 ± 6.71 • 3.47 ± 5.79

TABLE 2: Number of victories column vs row at 1% significance
level of Wilcoxon signed rank test

CCF RF Rotation Forest CCF-Bag

CCF - 2 7 3
RF 28 - 28 28
Rotation Forest 14 2 - 12
CCF-Bag 18 2 10 -

figure 1. Summaries of the datasets along with the results are given
in Table 1. Note for the vowel-c dataset the sex and identifier
for the speaker are included whereas these are omitted for the
vowel-n dataset which is otherwise identical. The wholesale-c
and wholesale-r datasets correspond to predicting the channel and
region attributes respectively.

Table 2 shows a summary of results over all the datasets, giving
the number of datasets for which the performance of one dataset
was significantly better than another at the 1% level of a Wilcoxon
signed rank test. This shows that CCFs performed excellently. The
improvement over RF was particularly large, with RF having on
average 1.77 times as many misclassifications as CCF (ignoring
the two datasets where CCF had perfect accuracy). To give another

perspective, if one were using RF and decided to switch to
CCF, then the number of misclassifications would be reduced
by a factor of 29.0% on average for the tested datasets. The
domination of CCFs over CCF-Bag highlights the improvement
from the projection bootstrap, while the good performance on a
large variety of datasets demonstrates the robustness and wide
ranging applicability of CCFs.

3.2 Comparison to Other Classifiers

In order to provide comparison to a wider array of classifiers,
we also tested CCFs using the experiments of Fernández-Delgado
et al [4] from their recent survey of 179 classifiers applied to
121 datasets. We used the same partitions which were a mix of
4-fold cross validations and predefined train / test splits3. We
omitted datasets containing non-ordinal features on the basis that
they pre-processed such features by treating the category indexes
as numeric features, instead of our recommended procedure (see
section 2.4). The image-segmentation dataset was also omitted as
we were unable to replicate the RF results of the original test. In

3. Partitions and results from [4] are available at
http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/

CANONICAL CORRELATION FORESTS, RAINFORTH AND WOOD 6

TABLE 3: Comparison of top 20 performing classifiers on 82 UCI
datasets. R is the mean rank over all 180 classifiers according to
error rate; E is the mean error rate (%); κ is the mean Cohen’s
κ [24]; ECCF and κCCF are the respective values for CCFs on
the datasets where the competing classifier successfully ran (note
CCFs successfully ran on all datasets); Nv and Nl are the number
of datasets where the CCFs κ was higher and lower than the
classifier respectively; and p is the p-value for whether the CCFs
κ mean is higher using a Wilcoxon signed ranks test. Classifier
types: SVM = support vector machine, NNET = neural net, RF =
random forest, Bag = bagging and BST = boosting. For details on
classifiers see [4].

Classifier R E ECCF κ κCCF Nv Nl p
CCF 28.87 14.08 - 70.67 - - - -

svmPoly (SVM) 31.53 15.73 14.27 65.10 69.61 54 25 2.3e-4
svmRadialCost (SVM) 31.84 15.33 14.27 66.55 69.61 43 36 0.11

svm C (SVM) 32 15.67 14.18 67.65 70.49 46 32 0.18
elm kernel (NNET) 32.19 15.20 14.54 69.01 69.75 42 36 0.16

parRF (RF) 33.03 15.54 14.08 67.73 70.67 52 27 0.014
svmRadial (SVM) 33.77 15.68 14.27 65.88 69.61 50 28 1.6e-3

rf caret (RF) 34.48 15.56 14.18 67.67 70.49 54 23 6.3e-4
rforest R (RF) 40.70 15.82 14.18 66.67 70.49 57 20 2e-5

TreeBagger (RF) 40.91 15.75 14.08 67.51 70.67 55 23 3.5e-5
Bag LibSVM (Bag) 42.28 16.65 14.25 58.13 70.27 70 12 3.2e-12

C50 t (BST) 42.61 16.85 14.08 66.11 70.67 57 22 4.0e-4
nnet t (NNET) 42.87 18.74 14.08 64.72 70.67 54 26 1.5e-3

avNNet t (NNET) 43.26 18.77 14.08 64.88 70.67 50 29 1.0e-3
RotationForest 44.62 16.64 14.08 65.34 70.67 64 15 7.1e-9

pcaNNet t (NNET) 45.86 19.28 14.08 63.83 70.67 54 25 1.5e-4
mlp t (NNET) 46.06 17.38 14.08 66.75 70.67 54 26 1.6e-3

LibSVM (SVM) 46.50 16.65 14.08 63.80 70.67 57 21 2.9e-6
MB LibSVM (BST) 46.90 16.82 14.25 64.47 70.27 61 17 1.8e-6

RRF t (RF) 49.56 16.71 14.18 66.30 70.49 59 20 1.1e-5

total 82 datasets were compared, for which summaries along with
detailed results are available in Appendix C.

Whereas [4] included an, often intensive, parameter tuning
step in their tests, we used CCFs in an out-of-the-box fashion,
taking the same parameters as in Section 3.1. As a check that
tests were run correctly, we also ran MATLAB’s TREEBAGGER

algorithm, with 500 trees and λ = CEIL(log2 (D) + 1), which as
expected gave performance on par with the very similar rforest R
algorithm. A summary of the results for the top 20 performing
classifiers (based on average accuracy rank) is given in table 3.
Despite using no parameter tuning, CCFs outperformed all other
tested classifiers based on every calculated performance metric.

4 DISCUSSION

4.1 Relationship with Linear Discriminant Analysis

As shown by, for example, De la Torre [25], CCA with 1-of-K
class encoding is exactly equivalent to Rao’s [26] extension of
FLDA to the multi-class case. We have presented our work as
the former because we believe that considering uncorrelated sets
of co-projections which maximise correlation between features
and classes labels is an intuitive way to understand the multiple
solutions from a multi-class FLDA and because of the relative ease
of carrying out CCA in a numerically stable fashion.

4.2 Effect of Correlation

As shown by Menze et al [15], RFs often struggle on data with
highly correlated features. CCA naturally incorporates information

(a) Banknote

10−2 10−1 100 101 102 103

0

0.1

0.2

0.3

0.4

0.5

Correlating Parameter κ

Te
st

 M
is

cl
as

si
fic

at
io

n
R

at
e

(b) Iris

10−2 10−1 100 101 102 1030

0.2

0.4

0.6

0.8

Correlating Parameter κ

Te
st

 M
is

cl
as

si
fic

at
io

n
R

at
e

Fig. 2: Misclassification rate of CCFs (blue) and RFs (red) on
artificially correlated data. For each method, 5 separate 10-fold
cross validations were run and the mean test accuracy across the
50 tests reported. ε was set to 10−12 to prevent the variation
corresponding to the original data being eliminated in the rank
reduction step of the CCA calculation for large κ.

about feature correlations, therefore CCFs do not suffer the same
issues. This is demonstrated by their superior performance on the
highly correlated hill valley datasets.

To further investigate the effect of correlation, we used the
following method of artificially correlating the data (after carrying
out the preprocessing described in section 2.4):

1) Add a new random feature X(D+1,n) ∼ N (0, κ),
∀n = 1, . . . , N where κ is a parameter which will
control the degree of correlation to be added.

2) To each of the existing features, randomly either add or
subtract the new feature:
X(:,d) ← X(:,d) + ζdX(:,D+1), ∀d = 1, . . . , D

where ζd
i.i.d∼ UNIFORM-DISCRETE {−1, 1}.

As shown in figure 2, this transformation has no effect on the
accuracy of CCFs, whereas the accuracy of RF decreases with
increasing κ, eventually giving the same accuracy as random
prediction. The use of PCA means rotation forests exhibit similar
robustness to global correlations as CCFs.

We postulate that CCFs are better than rotation forests at
incorporating class dependent and localized correlations. This is
because the rotation step of rotation forests does not incorporate
any class information other than in the random elimination of
classes. Further, individual trees in a rotation forest are orthogonal
and therefore cannot incorporate spatial variation in correlation.
The self similar nature of the growth algorithm for CCTs, on the
other hand, means that the local correlations of a partition can be
incorporated as naturally as the global correlations.

To investigate these suggestions formally, we tested perfor-
mance on compound datasets in which localized and class de-
pendent correlations had been artificially added. A replica of
the dataset with the classes in the replica treated separately was
created, such that if a point has class k in the original dataset, it
has class k + K in the replica. The features in the original and
the replica were independently correlated and a constant added to
replica to separate it from the original. Formally:

X ←
[

CORR(X)
CORR(X) + β1N×(D+1)

]
, Y ←

[
Y 0
0 Y

]
(7)

where CORR denotes the correlation process described earlier in
the section and β is a scalar dictating the degree of separation.

We performed a single crossfold validation on a selection of
the datasets from table 1, taking β = 2000 and κ = 100. The
results, given in Table 4, show that CCFs only experienced a small

CANONICAL CORRELATION FORESTS, RAINFORTH AND WOOD 7

TABLE 4: Mean and standard deviations of percentage of test
cases misclassified for compound datasets. Method with best
accuracy is shown in bold. • and ◦ indicate that CCFs were
significantly better and worse respectively at the 5% level of a
Wilcoxon signed rank test.

Data set CCF RF Rotation Forest
Balance Scale 7.84 ± 2.08 47.12 ± 3.76 • 20.24 ± 4.46 •

Banknote 0.00 ± 0.00 35.29 ± 2.76 • 2.85 ± 0.62 •
Iris 3.67 ± 2.77 70.33 ± 7.52 • 19.67 ± 9.87 •

Landsat satellite 8.64 ± 0.88 32.64 ± 1.14 • 11.56 ± 0.82 •
Libras 11.53 ± 2.85 89.58 ± 4.57 • 7.36 ± 2.45 ◦

Parkinsons 8.97 ± 3.67 32.82 ± 7.93 • 12.56 ± 6.22 •
Vowel-n 3.13 ± 0.71 86.06 ± 2.04 • 20.20 ± 2.79 •

Wholesale-r 31.02 ± 3.03 37.39 ± 5.68 • 28.18 ± 4.82
Wisconsin cancer 2.86 ± 1.56 30.64 ± 2.94 • 2.93 ± 1.66

Yeast 38.86 ± 1.85 70.17 ± 3.20 • 56.09 ± 1.85 •

loss of accuracy on all of the datasets, whereas there was a large
loss of accuracy in all cases for RFs and on some of the datasets
for rotation forests. This supports our hypothesis that CCFs are
better than rotation forests at dealing with localized correlations.

4.3 Computational Complexity

For L trees, N data points, K classes and λ features used at
each node, the average case training computational complexity of
RF is O

(
NLλ (logN)

2
)

[27]. The two limiting factors for the
complexity of CCFs are the search over possible splits and the
CCA calculations. Assuming all features are ordinal, the search
over splits for CCFs has the same complexity as RF except that one
must search over ν = min (λ,K − 1) dimensions at each node.
The theoretically achievable4 combined complexity for all CCA
calculations across the forest is O

(
NLλ2 logN

)
, giving a total

complexity of O
(
NLν (logN)

2
+NLλ2 logN

)
. The first of

these terms is upper bounded by the complexity of RF, while the
second term also is if λ < logN . Using the recommended value
of λ = CEIL(log2 (D) + 1) this means the complexity of CCF
is upper bounded by that of RF whenever N > D and may be
noticeably lower if N is large and K is small. In practise the
constant factor for the CCA is typically less than the split search
and empirically we found that even for the ORL dataset (N =
400, D = 10304, K = 40) with the default of λ = 15, only
around 1/6 of the time was taken in the CCA calculations.

Should one wish to use λ significantly larger than the sug-
gested default, speeds gains would be achievable by separately
generate M projection matrices {Φm}m=1:M , each using λ/M
features, and search for the optimal split over all generated
projections. Note ifM = λ, Breiman’s RF algorithm is recovered.

In the presence of non-ordinal features, λ is replaced with
the number of features used after the 1-of-K encoding is applied
in the CCF complexity. Therefore if the data contains non-
ordinal features with a large number of possible values, it may
be computationally preferable to consider the 1-of-K expanded
features as separate entities during feature subspacing.

4. The numerically stable method used for experiments and outlined in
Appendix A is actually O

(
NL

(
λ2 +K2

)
logN

)
, with the additional term

occuring due to the QR decomposition of the centred Y . In practise we found
the constant factor for this term to be very small and therefore that this was not
a problem. However, for datasets with a very large K, an alternative method
for CCA might be preferable, for example by exploiting the LDA equivalence,
if numerical stability can be ensured by other means.

0 100 200 300 400 500

0.7

0.8

0.9

1

1.1

1.2

Number of Trees

Te
st

 M
is

cl
as

si
fic

at
io

n
R

at
io

CCF / RF Same Number of Trees
CCF / RF 500 Trees

Fig. 3: Mean misclassification ratios for 37 datasets in Table 1. The
red line shows the average across the datasets of the ratio between
the number of CCF and RF test misclassifications for forests of
the same size. The blue line gives the same ratio when comparing
CCFs of varying number of trees to a RF with 500 trees.

Rotation forest training requires each tree to search the
full set of features and therefore has a training complexity of
O
(
NLD (logN)

2
)

. This is exponentially more expensive in
the number of features than RFs and CCFs when λ is set to a
logarithmic factor of D. This makes their implementation imprac-
tical for datasets with more than a modest number of features, as
demonstrated by the ORL and polya datasets for which we were
unable to train a rotation forest, experiencing both memory issues
and an impractically long training time.

4.4 Effect of Number of Trees

To investigate the variation in performance with the number of
trees we used the individual tree predictions from 3.1 to evaluate
the accuracy of RF and CCF for different ensemble sizes. Figure
3 summarises the results and shows that, as expected, it is always
beneficial to use more trees, but that there are diminishing returns.
Some datasets require more trees than others before the accuracy
begins to saturate (not shown), but the advantages of CCFs over
RFs is maintained across all ensemble sizes (though for a very
small number of trees this is slightly less pronounced). A further
results of interest is that on average it only takes around 15 CCF
trees to match the accuracy of 500 RF trees. One could therefore
envisage using a smaller CCF as a fast and accurate alternative to
a larger RF under a restricted computational budget.

4.5 Related Work

Since our development of CCFs, we became aware of recent
similar work by Zhang and Suganthan [28]. In addition to the large
improvements we have shown by using projection bootstrapping
instead of bagging, we believe our method has two significant
advantages over their method. Firstly their method of dealing with
categorical features by carrying out LDA on all possible permuta-
tions can lead to combinatorial computational complexity and will
therefore be intractable when the number of categorical features
is large. Secondly, their method of carrying out LDA by finding
the generalized eigenvectors of the between-class and within-class
scatter matrices can easily become numerically unstable.

As Zhang and Suganthan performed the same cross validation
tests on 14 of the common datasets, it is possible to make numeri-
cal comparisons. Taking the first 100 trees from our experiments to
match the ensemble sizes and using a t-test at the 1% significance
level, gives win/draw/loss ratios for CCFs of 9/5/0 and 10/4/0

CANONICAL CORRELATION FORESTS, RAINFORTH AND WOOD 8

compared to PCA-RF and LDA-RF respectively. On average PCA-
RF and LDA-RF had 1.70 and 1.53 times as many misclassifica-
tions as CCFs respectively. These results demonstrate that CCFs
give a significant improvement in empirical performance over both
PCA-RF and LDA-RF.

Donoser and Schmalstieg [29] recently developed a method
in which they use CCA as a preliminary step in a random fern
classifier [30]. Their method shares many similarities with rotation
forests with each fern trained using a separate global CCA projec-
tion. Although their method offers the potential for computational
gains for large datasets, it is only suitable when there are a large
number of classes. Further, the lack of hierarchical splits restricts
the ability to learn local structure, with ferns typically giving lower
predictive accuracy that tree ensemble methods.

5 CONCLUSIONS AND FUTURE WORK

We have introduced canonical correlation forests, a new decision
tree ensemble learning scheme that creates a new performance
benchmark for out-of-box tree ensemble classifiers and potentially
black-box classification in general, despite being significantly
less computationally expensive than some of the previously best
alternatives. This performance is based on two core innovations:
the use of a numerically stable CCA for generating projections
along which the trees split and a novel new alternative to bagging,
the projection bootstrap, which retains the full dataset for split
selection in the projected space.

As it is the aim of the CCF method to operate in a parameter
free context, we have made no attempt to adjust any algorithm
operation between datasets and have made little investigation as to
whether our choices of default parametrisation are in fact the best.
The method is fully compatible with alternative meta schemes
such as boosting or training each tree on a rotated coordinate
system, such as done for rotation forests. Zhang and Suganthan’s
[28] RF-ensemble extension could also easily be applied to CCFs
and might offer further improvement. Weighted voting schemes
for trees such as Bayesian model combination [31] and similarity
based schemes [32] would directly apply to CCFs and may also
offer improvement at the cost of additional complexity, computa-
tional time and in some cases the need for additional parameter
adjustment. All the concepts introduced should also directly apply
to random forest regression models, providing a natural extension.

ACKNOWLEDGMENTS

Tom Rainforth is supported by a BP industrial grant.

REFERENCES

[1] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[2] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine learning, vol. 63, no. 1, pp. 3–42, 2006.

[3] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[4] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
The Journal of Machine Learning Research, vol. 15, no. 1, pp. 3133–
3181, 2014.

[5] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and regression trees. CRC press, 1984.

[6] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.
[7] T. K. Ho, “Random decision forests,” in Document Analysis and Recogni-

tion, 1995., Proceedings of the Third International Conference on, vol. 1.
IEEE, 1995, pp. 278–282.

[8] ——, “The random subspace method for constructing decision forests,”
vol. 20, pp. 832–844, 1998.

[9] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

[10] S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induction of
oblique decision trees,” arXiv preprint cs/9408103, 1994.

[11] J. Gama, “Functional trees,” Machine Learning, vol. 55, no. 3, pp. 219–
250, 2004.

[12] W.-Y. Loh and Y.-S. Shih, “Split selection methods for classification
trees,” Statistica sinica, vol. 7, no. 4, pp. 815–840, 1997.

[13] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[14] T. D. Lemmond, A. O. Hatch, B. Y. Chen, D. Knapp, L. Hiller,
M. Mugge, and W. G. Hanley, “Discriminant random forests.” in DMIN,
2008, pp. 55–61.

[15] B. H. Menze, B. M. Kelm, D. N. Splitthoff, U. Koethe, and F. A.
Hamprecht, “On oblique random forests,” in Machine Learning and
Knowledge Discovery in Databases. Springer, 2011, pp. 453–469.

[16] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, “Rotation forest: A new
classifier ensemble method,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 28, no. 10, pp. 1619–1630, 2006.

[17] H. Hotelling, “Relations between two sets of variates,” Biometrika, pp.
321–377, 1936.

[18] M. Borga, “Canonical correlation: a tutorial,” On line tutorial
http://people.imt.liu.se/magnus/cca, vol. 4, 2001.

[19] A. Björck and G. H. Golub, “Numerical methods for computing angles
between linear subspaces,” Mathematics of computation, vol. 27, no. 123,
pp. 579–594, 1973.

[20] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[21] M. Lichman, “Uci machine learning repository,” 2013.
[22] F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic model

for human face identification,” in Applications of Computer Vision, 1994.,
Proceedings of the Second IEEE Workshop on, 1994, pp. 138–142.

[23] J. Li and H. Liu, “Kent ridge bio-medical data set repository,” Institute for
Infocomm Research. http://sdmc.lit.org.sg/GEDatasets/Datasets, 2002.

[24] J. Carletta, “Assessing agreement on classification tasks: the kappa
statistic,” Computational linguistics, vol. 22, no. 2, pp. 249–254, 1996.

[25] F. De la Torre, “A least-squares framework for component analysis,” Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, vol. 34,
no. 6, pp. 1041–1055, 2012.

[26] C. R. Rao, “The utilization of multiple measurements in problems of
biological classification,” Journal of the Royal Statistical Society. Series
B (Methodological), vol. 10, no. 2, pp. 159–203, 1948.

[27] G. Louppe, “Understanding random forests: From theory to practice,”
arXiv preprint arXiv:1407.7502, 2014.

[28] L. Zhang and P. N. Suganthan, “Random forests with ensemble of feature
spaces,” Pattern Recognition, vol. 47, no. 10, pp. 3429–3437, 2014.

[29] M. Donoser and D. Schmalstieg, “Discriminative feature-to-point match-
ing in image-based localization,” in Computer Vision and Pattern Recog-
nition (CVPR), 2014 IEEE Conference on. IEEE, 2014, pp. 516–523.

[30] M. Özuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast keypoint recog-
nition using random ferns,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 32, no. 3, pp. 448–461, 2010.

[31] K. Monteith, J. L. Carroll, K. Seppi, and T. Martinez, “Turning bayesian
model averaging into bayesian model combination,” in Neural Networks
(IJCNN), The 2011 International Joint Conference on. IEEE, 2011.

[32] M. Robnik-Šikonja, “Improving random forests,” in Machine Learning:
ECML 2004. Springer, 2004, pp. 359–370.

CANONICAL CORRELATION FORESTS, RAINFORTH AND WOOD 9

APPENDIX A NUMERICALLY STABLE CCA SOLUTION IN DETAIL

Algorithm 3 outlines the numerically stable method used to carry out CCA. Here [q, r, p] = QR(α) refers to a QR decomposition with
pivoting such that qr = α(:,p) where q is an orthogonal matrix, r is upper triangular matrix and p is a column ordering defined implicitly
such that |r (i, i)| > |r (j, j)| ∀i < j. Here [u,Ω, z] = SVD(α) refers to a singular value decomposition such that uΩzT = α where
u and z are unitary matrix and Ω is diagonal matrix of singular values, with the ordering defined such that Ω (i, i) > Ω (j, j) ∀i < j.

The core idea of the algorithm is that reducing qw, qv , rw and rv such that rw and rv are full rank, ensures that rw and rv are invertible.
Further as the r matrices are upper triangular, the coefficient calculation of line 18 can be simply calculated by back substitution without
the need for inversion.

Algorithm 3: Numerically Stable CCA

Inputs: First array w ∈ RN×D , second array v ∈ RN×K , tolerance parameter ε ∈
[
0+, 1−

]
Outputs: Projection matrices for first and second arrays A and B, correlations ρ

1: µw = 1
N

∑
n=1:N w(n,:) . First centre the inputs

2: µv = 1
N

∑
n=1:N v(n,:)

3: w(:,d) ← w(:,d) − µw(d) ∀d ∈ {1, . . . , D}
4: v(:,k) ← v(:,k) − µv(k) ∀k ∈ {1, . . . ,K}
5: [qw, rw, pw] = QR(w) . Carry out pivoted QR decompositions
6: [qv, rv, pv] = QR(v)

7: ζw = max{i : |rw(i,i)| < ε|rw(1,1)|}
8: ζv = max{i : |rv(i,i)| < ε|rv(1,1)|}
9: qw ← qw(:,1:ζw), rw ← rw(1:ζw,1:ζw) . Reduce to full rank

10: qv ← qv(:,1:ζv), rv ← rv(1:ζv,1:ζv)
11: νmax = min (ζw, ζv) . Number of coefficient pairs that will be returned
12: if ζw > ζv then . Select which of two equivalent SVD decompositions is faster
13: [u,Ω, z] = SVD((qw)T qv)

14: else
15: [z,Ω, u] = SVD((qv)T qw)

16: end if
17: u← u(:,1:νmax), z ← z(:,1:νmax) . Remove meaningless components
18: A = (rw)−1 u . As rw and rv are upper triangular these can be solved by back substitution
19: B = (rv)−1 z

20: ρ = DIAG(Ω)

21: A(pw,:) ←
[
AT ,0

]T
. Reorder rows to match corresponding columns in original matrices

22: B(pv,:) ←
[
BT ,0

]T
. Some rows are set to zero if original matrix was not full rank

23: return A,B, ρ

APPENDIX B INVERTED CROSS VALIDATION

To investigate the performance of CCFs on datasets containing few data points relative to the complexity of the underlying structure,
we carried out inverted cross validations, training on one fold and testing on the other nine. 15 such tests were carried out, using the
same folds as the original cross validation. Table 5 gives the results on each of the individual datasets and Table 6 gives a summary of
the significant victories and losses. The parameters used were the same as for the standard cross validation except that only 200 trees
were used for computational reasons.

The performance of CCFs relative to rotation forests was similar to the standard cross validation case. CCF-Bag performed relatively
more favourably compared with CCFs , but was still comprehensively outperformed. The relative performance of RFs to the other
methods improved slightly but it was still the worst performing method by a large margin.

All methods performed worse than predicting the most popular class for the fertility and wholesale-r datasets, which gives
misclassification rates of 12.0% and 28.2% respectively. This suggests that it may be beneficial to incorporate information about
the overall class ratios into the algorithm in some way.

CANONICAL CORRELATION FORESTS, RAINFORTH AND WOOD 10

TABLE 5: Mean and standard deviations of percentage of test cases misclassified for inverted cross validation. Method with best
accuracy is shown in bold. • and ◦ indicate that CCFs were significantly better and worse respectively at the 1% level of a Wilcoxon
signed rank test.

Data set CCF RF Rotation Forest CCF-Bag
Balance scale 14.86 ± 2.54 21.02 ± 2.74 • 15.27 ± 2.52 • 14.08 ± 2.59 ◦

Banknote 0.64 ± 0.57 3.96 ± 1.66 • 0.89 ± 0.70 • 0.78 ± 0.58 •
Breast tissue 50.51 ± 8.19 52.06 ± 7.72 • 51.03 ± 8.10 54.76 ± 8.87 •

Climate crashes 7.23 ± 0.65 7.22 ± 0.51 7.22 ± 0.79 7.22 ± 0.54
Fertility 18.97 ± 8.16 14.20 ± 5.36 ◦ 15.38 ± 5.92 ◦ 16.76 ± 7.20 ◦

Heart-SPECT 20.63 ± 3.08 20.76 ± 3.06 20.09 ± 3.22 ◦ 20.04 ± 2.83 ◦
Heart-SPECTF 21.11 ± 1.87 20.79 ± 1.93 ◦ 20.93 ± 2.05 ◦ 21.38 ± 2.56

Hill valley 0.14 ± 0.39 48.34 ± 1.75 • 7.18 ± 1.77 • 0.17 ± 0.45
Hill valley noisy 20.37 ± 4.07 49.27 ± 1.48 • 22.22 ± 3.50 • 21.63 ± 4.57 •

ILPD 30.65 ± 1.79 30.68 ± 1.71 30.14 ± 1.52 ◦ 30.29 ± 1.62 ◦
Ionosphere 11.90 ± 4.05 13.90 ± 4.44 • 12.95 ± 4.28 • 16.78 ± 4.82 •

Iris 5.93 ± 3.83 7.59 ± 4.31 • 9.74 ± 5.64 • 5.65 ± 4.13
Landsat satellite 11.58 ± 0.41 12.07 ± 0.49 • 11.41 ± 0.45 ◦ 12.19 ± 0.42 •

Letter 10.14 ± 0.47 13.46 ± 0.57 • 11.14 ± 0.48 • 11.22 ± 0.48 •
Libras 49.86 ± 4.83 61.57 ± 4.31 • 55.27 ± 4.82 • 52.30 ± 4.66 •

MAGIC 13.46 ± 0.22 14.03 ± 0.28 • 14.19 ± 0.29 • 13.55 ± 0.23 •
Nursery 3.15 ± 0.34 3.97 ± 0.43 • 2.89 ± 0.39 ◦ 3.67 ± 0.36 •

ORL 54.95 ± 3.80 60.35 ± 4.04 • - 61.22 ± 3.74 •
Optical digits 3.54 ± 0.38 4.79 ± 0.47 • 3.91 ± 0.42 • 3.93 ± 0.38 •

Parkinsons 17.06 ± 4.05 18.75 ± 4.02 • 18.55 ± 4.43 • 18.24 ± 4.62 •
Pen digits 1.43 ± 0.22 2.97 ± 0.35 • 1.84 ± 0.27 • 1.67 ± 0.24 •

Polya 23.80 ± 0.51 24.16 ± 0.61 • 23.08 ± 0.50 ◦ 23.84 ± 0.50
Seeds 8.84 ± 3.14 13.34 ± 3.21 • 11.71 ± 3.70 • 8.53 ± 3.21 ◦

Skin seg 0.06 ± 0.01 0.13 ± 0.02 • 0.10 ± 0.01 • 0.06 ± 0.01
Soybean 18.96 ± 3.95 21.99 ± 4.00 • 21.22 ± 4.73 • 20.23 ± 4.06 •
Spirals 0.68 ± 0.16 3.29 ± 0.49 • 3.80 ± 0.57 • 0.68 ± 0.16
Splice 7.53 ± 1.75 4.81 ± 0.68 ◦ 6.72 ± 1.11 ◦ 9.06 ± 2.12 •
Vehicle 26.02 ± 2.14 32.76 ± 2.66 • 27.79 ± 2.31 • 26.78 ± 2.26 •
Vowel-c 40.71 ± 3.17 46.42 ± 3.00 • 41.63 ± 2.87 • 41.46 ± 3.44 •
Vowel-n 34.15 ± 2.99 41.52 ± 2.94 • 35.82 ± 3.16 • 35.37 ± 2.92 •

Waveform (1) 14.76 ± 0.41 16.52 ± 0.53 • 14.91 ± 0.42 • 14.66 ± 0.41 ◦
Waveform (2) 14.83 ± 0.48 16.24 ± 0.49 • 14.83 ± 0.49 14.70 ± 0.47 ◦
Wholesale-c 11.41 ± 2.14 10.82 ± 2.00 ◦ 10.58 ± 1.84 ◦ 11.16 ± 2.13 ◦
Wholesale-r 35.64 ± 4.09 33.38 ± 3.66 ◦ 31.23 ± 3.59 ◦ 33.08 ± 3.81 ◦

Wisconsin cancer 4.12 ± 1.02 4.31 ± 0.98 • 3.53 ± 0.69 ◦ 4.10 ± 1.03
Yeast 46.12 ± 1.86 45.98 ± 1.91 45.32 ± 1.82 ◦ 45.37 ± 1.83 ◦
Zoo 23.43 ± 10.80 25.36 ± 11.26 • 24.10 ± 10.66 24.12 ± 11.15 •

TABLE 6: Number of victories column vs row at 1% significance level of Wilcoxon signed rank test for inverted cross fold validation

CCF RF Rotation Forest CCF-Bag

CCF - 5 12 10
RF 28 - 26 26
Rotation Forest 20 5 - 15
CCF-Bag 19 8 12 -

APPENDIX C DETAILED RESULTS FOR COMPARISONS TO OTHER CLASSIFIERS

Table 7 gives a detailed comparison of CCFs to MATLAB’s TREEBAGGER algorithm, along with a comparison to a summary of
the performance of the 179 classifiers tested in [4] for 82 UCI datasets. Both CCFs and TREEBAGGER used 500 trees and λ =
CEIL(log2 (D) + 1). For significance comparisons with the TREEBAGGER algorithm a 10% significance level was necessary as the
Wilcoxon signed rank test cannot give a p-value lower than 6.25% for 4-fold cross validation. This gave a win/draw/loss ratio for CCFs
of 22/56/4. It should be noted that the number of losses is no more than would be expected by chance and that the reason that there
are many more draws than in the tests of Section 3.1 is that a many fewer tests were carried out for each dataset (4 instead of 150).
There were a number of datasets were CCFs performed noticeably better then any of the other classifiers, with the performance on the
hill-valley-noisy dataset particularly impressive, giving a error rate of 6.93% with the next best classifier only achieving 25.7%.

CANONICAL CORRELATION FORESTS, RAINFORTH AND WOOD 11

TABLE 7: Dataset summaries and mean and standard deviations of percentage of test cases misclassified for CCFs and TREEBAGGER

on 82 datasets used for comparison to classifiers used in [4]. Datasets were a predefined train / test split was used instead of a 4-fold
cross validation have no standard deviation given. K = number of classes, N = number of data points and D = number of features.
Method with best accuracy is shown in bold. • and ◦ indicate that CCFs were significantly better and worse respectively at the 10%
level of a Wilcoxon signed rank test. Also shown is the average and standard deviation, best and worst for the error rate across the 178
classifiers (not including CCF and TREEBAGGER), and NB and NW the number of classifiers that were better and worse than CCFs
respectively.

Data set K N D CCF TREEBAGGER Average Best Worst NB NW

abalone 3 4177 8 34.15 ± 1.53 35.42 ± 0.99 • 39.91 ± 7.52 32.6 65.4 14 157
acute-inflammation 2 120 6 0.00 ± 0.00 0.00 ± 0.00 5.14 ± 12.97 0.0 50.9 0 50

acute-nephritis 2 120 6 0.00 ± 0.00 0.00 ± 0.00 4.04 ± 10.20 0.0 41.7 0 56
balance-scale 3 625 4 8.81 ± 0.95 15.87 ± 1.23 • 20.68 ± 17.84 1.0 92.8 23 151

balloons 2 16 4 12.50 ± 12.50 25.00 ± 17.68 36.79 ± 15.19 0.0 81.3 7 159
blood 2 748 4 24.20 ± 3.47 25.00 ± 1.75 24.17 ± 4.35 19.7 62.6 137 41

breast-cancer-wisc 2 699 9 2.71 ± 1.17 2.86 ± 0.99 6.54 ± 7.74 2.6 34.5 1 176
breast-cancer-wisc-diag 2 569 30 2.46 ± 1.06 3.87 ± 1.27 7.24 ± 8.14 1.8 37.3 10 162
breast-cancer-wisc-prog 2 198 33 15.31 ± 1.77 17.35 ± 2.28 24.53 ± 4.36 17.2 44.9 0 178

breast-tissue 6 106 9 28.85 ± 11.05 28.85 ± 5.77 39.08 ± 15.35 20.2 83.1 33 144
car 4 1728 6 0.87 ± 0.60 1.39 ± 0.33 14.01 ± 13.27 0.8 98.3 1 177

cardiotocography-10clases 10 2126 21 13.14 ± 1.54 12.05 ± 1.15 ◦ 31.68 ± 20.22 11.5 84.5 4 170
cardiotocography-3clases 3 2126 21 6.12 ± 0.21 5.18 ± 0.54 ◦ 12.82 ± 9.35 4.4 93.7 10 165

congressional-voting 2 435 16 39.91 ± 2.29 39.91 ± 2.38 39.58 ± 3.97 36.8 84.4 131 44
conn-bench-sonar-mines-rocks 2 208 60 13.94 ± 2.50 14.90 ± 3.43 25.42 ± 8.74 9.6 53.4 12 166
conn-bench-vowel-deterding 11 462 11 0.00 1.30 30.02 ± 29.52 0.0 98.1 0 164

contrac 3 1473 9 49.18 ± 2.60 48.37 ± 2.31 50.41 ± 5.55 42.8 68.5 96 78
dermatology 6 366 34 2.75 ± 0.55 2.47 ± 0.91 13.81 ± 20.13 1.4 69.6 30 140

echocardiogram 2 131 10 17.42 ± 2.51 15.15 ± 2.14 18.49 ± 5.74 12.3 46.2 106 68
ecoli 8 336 7 14.58 ± 2.96 12.50 ± 2.15 22.39 ± 12.92 9.1 79.5 50 123

energy-y1 3 768 8 2.86 ± 1.07 3.26 ± 1.30 14.05 ± 14.03 2.2 94.5 6 170
energy-y2 3 768 8 9.24 ± 1.30 9.64 ± 0.94 15.74 ± 12.43 6.6 95.4 39 136

fertility 2 100 9 11.00 ± 1.73 11.00 ± 1.73 14.22 ± 5.65 10.0 54.0 1 174
glass 6 214 9 25.94 ± 1.56 24.06 ± 5.72 39.01 ± 11.25 21.5 68.1 14 163

haberman-survival 2 306 3 29.61 ± 2.18 33.55 ± 1.47 27.43 ± 3.63 22.9 51.4 151 26
heart-cleveland 5 303 13 41.45 ± 3.89 42.76 ± 2.87 44.04 ± 4.49 35.2 80.3 38 134
heart-hungarian 2 294 12 16.10 ± 3.54 18.84 ± 3.27 • 20.04 ± 5.15 13.4 36.1 25 153

heart-switzerland 5 123 12 56.45 ± 3.61 59.68 ± 2.79 62.00 ± 5.77 46.8 87.1 24 149
heart-va 5 200 12 67.00 ± 3.00 67.50 ± 4.56 68.19 ± 3.83 60.0 77.5 68 103
hepatitis 2 155 19 17.95 ± 3.14 18.59 ± 2.13 19.97 ± 5.96 10.3 69.2 54 123

hill-valley-noisy 2 606 100 6.93 50.83 45.91 ± 7.53 25.7 93.9 0 176
ilpd-indian-liver 2 583 9 29.79 ± 1.03 29.28 ± 2.44 30.08 ± 5.18 22.4 70.5 115 60

ionosphere 2 351 33 5.11 ± 1.70 7.10 ± 1.68 14.05 ± 9.58 4.5 64.2 3 173
iris 3 150 4 2.70 ± 1.91 4.73 ± 2.24 10.61 ± 17.57 0.7 99.3 29 147

led-display 10 1000 7 27.30 ± 1.77 27.20 ± 1.47 39.76 ± 22.15 25.2 91.2 37 135
lenses 3 24 4 16.67 ± 16.67 16.67 ± 16.67 26.02 ± 13.60 4.2 83.3 30 119
letter 26 20000 16 2.27 ± 0.07 3.55 ± 0.14 • 37.28 ± 32.22 2.6 96.1 0 163
libras 15 360 90 11.39 ± 3.46 20.00 ± 2.22 • 42.91 ± 25.55 10.8 93.4 1 176

low-res-spect 9 531 100 7.52 ± 0.53 8.08 ± 0.98 19.99 ± 12.21 6.6 62.0 1 176
magic 2 19020 10 12.31 ± 0.19 12.76 ± 0.26 • 19.98 ± 6.75 11.7 41.4 7 159

miniboone 2 130064 50 6.13 ± 0.07 6.32 ± 0.08 • 17.41 ± 15.01 6.2 71.6 0 132
musk-1 2 476 166 11.55 ± 1.82 11.97 ± 4.88 20.59 ± 9.65 6.3 56.6 29 148
musk-2 2 6598 166 2.96 ± 0.20 2.29 ± 0.16 ◦ 7.50 ± 7.94 0.2 73.5 38 134
nursery 5 12960 8 0.15 ± 0.02 0.34 ± 0.12 • 16.15 ± 21.35 0.0 76.7 3 157

oocytes merluccius nucleus 4d 0 1022 41 15.59 ± 2.36 22.45 ± 3.67 • 27.33 ± 10.82 14.0 91.7 2 175
oocytes merluccius states 2f 0 1022 25 6.76 ± 0.98 7.75 ± 0.85 • 14.18 ± 12.19 6.0 99.7 1 176

oocytes trisopterus nucleus 2f 0 912 25 14.91 ± 1.24 19.41 ± 1.62 • 28.79 ± 12.16 13.2 90.2 5 171
oocytes trisopterus states 5b 0 912 32 6.36 ± 1.30 7.46 ± 0.44 15.58 ± 12.61 4.9 100.0 12 163

optical 10 1797 62 2.62 2.56 26.67 ± 29.52 1.3 90.1 5 163
ozone 2 2536 72 2.96 ± 0.13 2.92 ± 0.08 5.02 ± 6.92 2.6 48.9 84 72

page-blocks 5 5473 10 2.87 ± 0.35 2.76 ± 0.39 5.93 ± 5.55 2.5 59.7 20 148
parkinsons 2 195 22 6.63 ± 3.02 10.71 ± 2.65 • 14.94 ± 7.27 5.6 62.2 8 169
pendigits 10 3498 16 3.20 4.35 25.31 ± 28.39 2.2 89.7 16 157

pima 2 768 8 24.48 ± 1.61 25.39 ± 1.00 25.73 ± 4.05 21.0 41.8 85 87
planning 2 182 12 32.22 ± 3.69 31.67 ± 1.84 32.32 ± 5.57 27.2 58.8 123 55

plant-margin 100 1600 64 11.06 ± 0.48 14.44 ± 1.30 • 50.61 ± 31.22 12.8 99.0 0 163
plant-shape 100 1600 64 24.31 ± 0.89 34.94 ± 1.79 • 62.16 ± 23.43 27.7 99.4 0 161
plant-texture 100 1599 64 14.19 ± 0.84 16.63 ± 1.35 • 49.80 ± 30.84 13.4 99.1 2 156

ringnorm 2 7400 20 2.24 ± 0.36 4.38 ± 0.40 • 16.09 ± 14.33 1.3 50.5 25 149
seeds 3 210 7 5.29 ± 2.50 4.81 ± 2.15 14.02 ± 16.34 2.8 87.0 21 146

semeion 10 1593 256 4.96 ± 1.44 4.65 ± 1.30 30.74 ± 27.22 3.6 89.9 9 164
spambase 2 4601 57 4.02 ± 0.34 4.76 ± 0.22 • 12.89 ± 9.73 3.9 43.6 1 170

spect 2 186 22 31.72 25.81 42.88 ± 6.07 27.8 92.5 6 170

CANONICAL CORRELATION FORESTS, RAINFORTH AND WOOD 12

Data set K N D CCF TREEBAGGER Average Best Worst NB NW

spectf 2 187 44 8.02 8.02 17.44 ± 21.91 7.5 94.1 4 128
statlog-image 7 2310 18 1.39 ± 0.49 2.04 ± 0.72 • 18.51 ± 25.22 1.4 85.9 0 176
statlog-landsat 6 2000 36 9.10 9.10 24.28 ± 19.65 8.1 78.9 6 166
statlog-shuttle 7 14500 9 0.03 0.01 6.61 ± 8.77 0.0 57.6 0 159
statlog-vehicle 4 846 18 17.65 ± 2.71 24.64 ± 1.74 • 34.61 ± 16.17 14.9 74.4 10 168

steel-plates 7 1941 27 21.24 ± 0.87 21.34 ± 0.83 36.40 ± 16.11 19.6 92.0 4 172
synthetic-control 6 600 60 0.83 ± 0.73 1.50 ± 1.09 18.19 ± 26.13 0.3 87.3 5 171

trains 2 10 29 12.50 ± 21.65 12.50 ± 21.65 31.89 ± 17.36 0.0 87.5 7 131
twonorm 2 7400 20 2.11 ± 0.40 2.72 ± 0.22 • 10.44 ± 13.71 2.0 50.1 2 145

vertebral-column-2clases 2 310 6 16.23 ± 1.95 16.23 ± 3.84 19.85 ± 6.46 12.6 67.8 57 120
vertebral-column-3clases 3 310 6 13.96 ± 3.36 15.91 ± 2.96 23.00 ± 11.63 12.6 67.8 7 170

wall-following 4 5456 24 2.93 ± 0.45 0.46 ± 0.20 ◦ 21.40 ± 20.01 0.1 76.7 47 126
waveform 3 5000 21 13.70 ± 0.93 15.28 ± 0.99 • 23.99 ± 14.81 12.9 74.9 29 145

waveform-noise 3 5000 40 12.78 ± 0.51 13.88 ± 0.72 • 24.38 ± 14.75 12.6 76.3 1 174
wine 3 178 13 0.00 ± 0.00 1.14 ± 1.14 9.95 ± 16.15 0.0 98.3 0 176

wine-quality-red 6 1599 11 29.94 ± 1.08 30.88 ± 1.66 44.48 ± 12.26 31.0 98.1 0 177
wine-quality-white 7 4898 11 30.29 ± 0.12 31.58 ± 0.78 48.44 ± 12.39 30.9 98.2 0 173

yeast 10 1484 8 37.60 ± 3.05 37.80 ± 2.48 47.56 ± 10.20 36.3 70.3 3 173
zoo 7 101 16 1.00 ± 1.73 1.00 ± 1.73 13.49 ± 16.79 1.0 99.0 0 175

TABLE 8: Comparison of all classifiers on 82 UCI datasets. R is the mean rank according to error rate; E is the mean error rate (%); κ is
the mean Cohen’s κ [24]; ECCF and κCCF are the respective values for CCFs on the datasets where the competing classifier successfully
ran (note CCFs successfully ran on all datasets), Nv and Nl are the number of datasets where the CCFs κ was higher and lower than
the classifier respectively, and p is the p-value for whether the CCFs κ mean is higher using a Wilcoxon signed ranks test.

Classifier R E ECCF κ κCCF Nv Nl p
CCF 28.87 14.08 - 70.67 - - - -

svmPoly t 31.53 15.73 14.27 65.10 69.61 54 25 0.00023
svmRadialCost t 31.84 15.33 14.27 66.55 69.61 43 36 0.11

svm C 32 15.67 14.18 67.65 70.49 46 32 0.18
elm kernel m 32.19 15.20 14.54 69.01 69.75 42 36 0.16

parRF m 33.03 15.54 14.08 67.73 70.67 52 27 0.01
svmRadial t 33.77 15.68 14.27 65.88 69.61 50 28 0.0016

rf caret 34.48 15.56 14.18 67.67 70.49 54 23 0.00063
rforest R 40.70 15.82 14.18 66.67 70.49 57 20 2e-05

TreeBagger 40.91 15.75 14.08 67.51 70.67 55 23 3.5e-05
Bag LibSVM w 42.28 16.65 14.25 58.13 70.27 70 12 3.2e-12

C50 t 42.61 16.85 14.08 66.11 70.67 57 22 0.0004
nnet t 42.87 18.74 14.08 64.72 70.67 54 26 0.0015

avNNet t 43.26 18.77 14.08 64.88 70.67 50 29 0.001
RotationForest w 44.62 16.64 14.08 65.34 70.67 64 15 7.1e-09

pcaNNet t 45.86 19.28 14.08 63.83 70.67 54 25 0.00015
mlp t 46.06 17.38 14.08 66.75 70.67 54 26 0.0016

LibSVM w 46.50 16.65 14.08 63.80 70.67 57 21 2.9e-06
MultiBoostAB LibSVM w 46.90 16.82 14.25 64.47 70.27 61 17 1.8e-06

RRF t 49.56 16.71 14.18 66.30 70.49 59 20 1.1e-05
adaboost R 50.48 18.33 14.01 64.24 71.07 58 21 1.8e-06

RRFglobal caret 51.88 16.83 14.18 65.97 70.49 58 20 2.7e-07
RandomForest weka 52.66 16.75 14.24 63.42 69.64 62 15 1.6e-08

svmLinear caret 53.14 17.96 14.27 61.51 69.61 60 19 1.3e-08
MultiBoostAB RandomForest weka 53.38 16.51 13.93 62.91 69.78 66 13 2.8e-09

gaussprRadial R 53.75 18.41 14.69 61.92 70.70 62 17 1.9e-09
MultiBoostAB MultilayerPerceptron weka 56.49 17.20 14.08 66.29 70.67 61 18 2.3e-06

pnn matlab 56.56 18.03 14.36 62.98 70.13 66 13 2.2e-08
mda caret 57.04 20.96 14.08 62.25 70.67 59 20 4.3e-07

cforest caret 58.27 19.52 14.61 59.80 69.50 70 9 1.9e-11
svmlight C 58.35 18.46 15.80 61.29 65.70 57 21 5.2e-07

mlp C 58.50 18.47 14.08 64.35 70.67 67 13 9.4e-09
Decorate weka 58.69 17.87 14.12 64.58 70.56 65 14 7.1e-07

Bagging RandomForest weka 59.75 17.39 14.09 58.82 67.12 66 12 5.8e-11
rbfDDA caret 59.91 19.23 15.80 60.96 66.34 67 11 8.7e-11

MultiBoostAB PART weka 60.27 18.08 14.08 65.01 70.67 61 18 2e-06
dkp C 60.57 17.93 14.08 45.14 70.67 66 12 1e-10

knn caret 60.94 18.93 14.08 61.20 70.67 65 14 7.7e-09
MultilayerPerceptron weka 61.97 18.00 14.08 64.79 70.67 64 15 1.2e-07

glmnet R 62 19.35 14.08 61.25 70.67 60 17 7.1e-09
multinom caret 62.04 19.77 14.08 61.20 70.67 65 15 2.1e-09

Bagging PART weka 62.45 18.43 14.08 63.97 70.67 63 16 7.1e-08
rda R 62.63 18.40 14.08 62.68 70.67 57 20 1.9e-07
knn R 62.64 18.21 14.08 62.91 70.67 63 16 1.5e-08

CANONICAL CORRELATION FORESTS, RAINFORTH AND WOOD 13

Classifier R E ECCF κ κCCF Nv Nl p
fda caret 63.32 19.05 14.08 62.65 70.67 67 13 2.7e-09

elm matlab 63.79 18.86 14.08 61.64 70.67 67 14 2e-09
SMO weka 63.94 18.41 14.08 62.63 70.67 64 16 2.5e-08

RandomCommittee weka 64.11 18.19 14.08 63.62 70.67 63 16 4.5e-09
MultiBoostAB J48 weka 65.09 18.70 14.18 63.78 70.49 65 14 2e-08

mlpWeightDecay caret 65.72 22.12 14.18 59.53 70.49 64 16 4.1e-09
Bagging RandomTree weka 65.85 18.50 14.08 63.84 70.67 64 15 3.1e-09

pda caret 66.80 19.59 14.08 61.04 70.67 62 17 1e-09
mlm R 66.82 19.94 14.08 60.78 70.67 65 14 1.1e-08

ClassificationViaRegression weka 67.05 19.50 14.08 61.09 70.67 66 14 8.8e-10
Bagging J48 weka 67.42 19.02 14.08 62.90 70.67 66 13 2.1e-09

AdaBoostM1 J48 weka 69.14 18.42 14.18 64.49 70.49 63 16 8.7e-08
treebag caret 69.31 18.82 14.18 62.82 70.49 65 15 3.2e-09

rbf caret 69.49 22.06 14.08 58.67 70.67 65 15 6e-09
SimpleLogistic weka 69.76 20.26 14.08 58.47 70.67 66 14 7.2e-11

fda R 70.26 20.09 14.08 60.35 70.67 63 16 4.4e-09
ldaBag R 70.31 20.21 14.08 60.00 70.67 62 16 2e-09

gcvEarth caret 70.46 20.42 14.08 60.38 70.67 66 14 1.1e-10
lda R 70.64 20.21 14.08 60.22 70.67 63 16 3.2e-09

lssvmRadial caret 72.38 19.13 14.51 62.62 69.66 69 10 4e-09
LibLINEAR weka 72.68 20.36 14.08 60.29 70.67 69 11 1.7e-11

lda2 caret 72.76 20.19 14.08 59.75 70.67 67 13 2.1e-10
Bagging Logistic weka 73.91 19.70 13.96 60.82 70.61 67 13 1.2e-10

MultiBoostAB RandomTree weka 74.09 19.04 14.08 62.81 70.67 69 11 2.8e-10
Logistic weka 75.35 20.29 13.96 59.52 70.61 69 11 1.1e-11

MultiBoostAB REPTree weka 75.37 19.99 14.08 61.17 70.67 72 9 1.7e-11
END weka 75.48 19.34 14.08 61.30 70.67 66 14 3.8e-10

Bagging IBk weka 75.65 19.74 14.08 60.75 70.67 74 7 2.2e-12
Bagging LWL weka 75.65 19.74 14.08 60.75 70.67 74 7 2.2e-12

Bagging weka 75.65 19.74 14.08 60.23 70.67 74 7 1.7e-12
mda R 76.31 20.04 14.08 59.93 70.67 68 13 1.5e-10

sda caret 76.40 20.34 14.08 59.40 70.67 65 13 5e-11
MultiBoostAB Logistic weka 76.62 20.48 14.08 60.71 70.67 65 15 2e-10

svmBag R 76.80 25.06 13.98 55.03 70.52 65 13 2.4e-09
RandomSubSpace weka 78.20 20.71 14.08 56.89 70.67 74 5 7.3e-14

hdda R 79.29 20.48 14.08 59.99 70.67 62 17 6e-09
lvq caret 79.69 19.85 14.09 58.23 70.00 70 11 3.2e-11
pls caret 79.98 24.08 14.89 54.92 68.93 68 12 9.4e-12

ctreeBag R 80.06 21.01 14.27 56.26 69.82 72 8 7.7e-13
MultiClassClassifier weka 81.43 21.75 14.08 58.42 70.67 68 12 2.1e-11

LogitBoost weka 83.48 20.92 14.08 58.88 70.67 69 10 3.3e-11
C50Rules caret 83.87 20.95 14.08 59.97 70.67 71 8 2.5e-11

JRip caret 83.95 22.05 14.08 56.94 70.67 69 12 6.3e-12
PART caret 84.03 20.95 14.08 57.65 70.67 71 9 1.2e-11

RBFNetwork weka 85.81 20.79 14.14 54.81 69.84 71 7 2.5e-12
J48 caret 86.10 20.88 14.08 56.85 70.48 68 11 1e-11

C50Tree caret 87.52 21.49 14.08 59.16 70.67 69 10 5.5e-12
IBk weka 87.93 20.30 14.08 61.11 70.67 68 10 1.2e-10
qda caret 89.09 21.96 14.18 55.45 70.47 71 11 8.4e-13

PART weka 89.14 21.53 14.08 60.35 70.67 67 13 6.4e-10
IB1 weka 89.25 20.53 14.08 60.17 70.67 71 7 1.4e-11

KStar weka 89.32 20.74 14.18 58.60 70.49 75 4 4.6e-13
NBTree weka 89.73 21.41 14.08 58.91 70.67 69 10 2.7e-12

J48 weka 89.94 21.75 14.18 59.29 70.49 70 10 8.1e-11
Bagging DecisionTable weka 91.38 22.73 14.18 55.73 70.49 75 4 7.3e-14

MultiBoostAB DecisionTable weka 91.52 23.78 14.18 55.37 70.49 72 8 9.5e-13
obliqueTree R 92.02 23.77 14.14 55.43 69.84 71 8 6.9e-12

AttributeSelectedClassifier weka 92.12 22.36 14.08 56.63 70.67 71 8 2e-12
NNge weka 93.20 21.31 14.18 58.21 70.49 73 6 1.7e-13
bagging R 94.07 31.45 14.18 49.22 70.49 70 11 1.7e-12
rbf matlab 94.39 26.03 16.39 51.92 65.73 66 12 1.5e-11

DTNB weka 96.04 22.10 14.08 56.56 70.67 72 7 3.2e-12
ctree2 caret 96.23 25.83 14.18 52.85 70.49 72 10 7.9e-12

lvq R 96.51 27.97 14.08 52.58 70.67 72 7 2.5e-12
REPTree weka 96.69 23.05 14.08 55.64 70.67 75 6 2.3e-13

rrlda R 97.07 24.39 14.08 56.76 70.67 69 10 1e-10
cascor C 97.54 23.07 14.08 57.12 70.67 71 9 7e-13

ctree caret 98.09 24.20 14.33 53.72 69.96 73 8 5.6e-12
JRip weka 98.14 23.08 14.18 56.73 70.49 73 8 3.4e-12
mlp matlab 98.26 27.00 14.08 48.38 70.67 74 6 1e-13

OrdinalClassClassifier weka 98.77 24.40 14.08 56.17 70.67 71 9 6.1e-12
nbBag R 98.81 22.94 14.17 56.08 70.48 70 11 7.7e-12

CANONICAL CORRELATION FORESTS, RAINFORTH AND WOOD 14

Classifier R E ECCF κ κCCF Nv Nl p
Ridor weka 99.05 21.65 14.14 56.21 69.84 72 8 5.3e-13

bdk R 99.14 21.99 14.08 58.06 70.67 74 5 2.7e-13
Dagging weka 99.29 24.46 14.08 50.08 70.67 76 4 3.5e-14

rpart caret 99.90 25.03 14.08 53.93 70.67 74 8 3.4e-12
BayesNet weka 100.64 23.16 14.08 55.20 70.67 69 10 8.1e-13
naiveBayes R 101.61 23.50 14.08 56.55 70.67 70 9 4.7e-12

FilteredClassifier weka 101.65 23.82 14.08 54.16 70.67 75 4 6.7e-14
plsBag R 101.70 31.34 14.18 44.50 70.49 72 6 3.8e-13

rpart2 caret 102.34 24.06 14.08 55.35 70.48 72 10 1.8e-11
logitboost R 102.60 24.16 14.08 64.70 70.67 67 12 1.5e-08

rpart R 103.37 25.84 14.08 52.04 70.67 73 8 7.3e-13
slda caret 105.58 26.13 14.08 48.75 70.67 76 3 4e-14
nnetBag R 105.84 39.24 14.08 35.37 70.67 70 10 2.5e-12
pam caret 107.69 25.52 14.08 46.49 70.67 78 2 1.2e-14

mars R 108.10 35.05 14.18 49.44 70.49 73 7 1.9e-13
MultiBoostAB NaiveBayes weka 109.33 25.66 14.08 52.92 70.67 70 11 1.4e-12

RandomTree weka 111.01 23.91 14.08 55.65 70.67 76 6 3.4e-14
sddaLDA R 111.26 26.96 14.08 44.47 70.67 76 4 3.8e-14

simpls R 112.09 37.47 14.08 42.78 70.67 71 9 3.6e-13
widekernelpls R 112.30 36.93 14.73 41.31 69.36 71 9 2.4e-13

Bagging NaiveBayes weka 113.50 26.54 14.08 51.39 70.67 70 10 1.4e-12
NaiveBayes weka 113.84 26.49 14.08 51.54 70.67 70 10 8e-13

stepQDA caret 114.34 27.16 14.26 45.82 70.12 75 6 5.6e-14
DecisionTable weka 114.41 27.07 14.08 50.31 70.67 76 4 3.1e-14

QdaCov caret 114.59 26.47 14.28 50.35 70.29 77 5 9.3e-14
kernelpls R 114.73 39.72 14.08 40.72 70.67 71 9 3.6e-13

sparseLDA R 114.96 30.47 13.96 43.73 70.61 72 9 3.2e-13
NaiveBayesUpdateable weka 115.50 27.73 14.08 51.54 70.67 70 10 8e-13

bayesglm caret 116.20 42.40 14.08 34.14 70.67 72 6 4e-13
PenalizedLDA R 116.24 32.62 14.08 42.79 70.67 66 13 2.6e-12

sddaQDA R 116.75 29.97 14.08 41.12 70.67 77 4 4.4e-14
stepLDA caret 117 27.88 14.08 43.57 70.48 78 3 1.3e-14

NaiveBayesSimple weka 124.85 26.95 13.07 50.31 70.52 75 7 1.4e-13
glmStepAIC caret 124.85 43.05 14.20 34.13 70.37 74 5 1.3e-13

LWL weka 126.43 30.60 14.18 42.89 70.49 75 4 6.1e-14
gpls R 126.52 45.94 14.84 33.86 69.16 71 7 2.4e-13
dpp C 127.03 31.59 14.08 49.22 70.67 68 12 3.3e-12

AdaBoostM1 weka 128.16 37.45 14.08 36.59 70.67 75 4 3.7e-14
glm R 130.88 51.04 14.08 31.62 70.67 72 8 2.8e-13

Bagging HyperPipes weka 133.59 36.56 14.08 32.96 70.67 80 1 6.5e-15
MultiBoostAB weka 133.60 38.57 14.08 33.58 70.67 76 3 2.2e-14

MultiBoostAB IBk weka 133.60 38.57 14.08 31.80 70.67 76 3 2e-14
MultiBoostAB OneR weka 133.72 35.98 14.08 36.85 70.67 78 2 8.8e-15

Bagging OneR weka 133.90 36.19 14.08 35.35 70.67 78 3 8.1e-15
VFI weka 135.01 32.76 14.08 47.06 70.67 75 6 5e-14

Bagging DecisionStump weka 138.01 38.98 14.08 30.20 70.67 79 3 6.6e-15
OneR caret 138.07 37.68 14.08 38.16 70.67 77 5 1.1e-14

HyperPipes weka 139.46 39.62 14.08 31.01 70.67 80 2 5.5e-15
OneR weka 139.71 37.78 14.08 34.57 70.67 79 3 7.9e-15

spls R 140.37 46.35 14.08 19.96 70.67 78 4 9.2e-15
RacedIncrementalLogitBoost weka 140.37 44.08 14.08 16.78 70.67 80 1 6.5e-15

DecisionStump weka 140.85 40.81 14.08 27.77 70.67 79 3 6.8e-15
ConjunctiveRule weka 140.92 41.12 14.08 28.71 70.67 79 3 8.5e-15

Bagging MultilayerPerceptron weka 143.11 46.63 14.08 16.33 70.67 77 3 1.8e-14
StackingC weka 154.88 53.05 14.10 3.43 70.62 80 1 6.2e-15

CVParameterSelection weka 154.90 53.05 14.10 3.45 70.62 80 1 6.2e-15
Grading weka 154.90 53.05 14.10 3.45 70.62 80 1 6.2e-15
Stacking weka 154.90 53.05 14.10 3.45 70.62 80 1 6.2e-15
MetaCost weka 154.94 53.16 14.08 7.26 70.67 79 2 7e-15

CostSensitiveClassifier weka 155.02 53.13 14.08 5.78 70.67 79 2 7.5e-15
MultiScheme weka 155.02 53.13 14.08 2.74 70.67 80 1 6.2e-15

Vote weka 155.02 53.13 14.08 2.74 70.67 80 1 6.2e-15
ZeroR weka 155.02 53.13 14.08 2.74 70.67 80 1 6.2e-15

ClassificationViaClustering weka 156.78 46.81 14.08 28.61 70.67 79 2 7.8e-15

